• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ambipolar performance improvement of the C-shaped pocket TFET with dual metal gate and gate-drain underlap

    2023-11-02 08:13:36ZiMiaoZhao趙梓淼ZiXinChen陳子馨WeiJingLiu劉偉景NaiYunTang湯乃云JiangNanLiu劉江南XianTingLiu劉先婷XuanLinLi李宣霖XinFuPan潘信甫MinTang唐敏QingHuaLi李清華WeiBai白偉andXiaoDongTang唐曉東
    Chinese Physics B 2023年10期
    關鍵詞:趙梓

    Zi-Miao Zhao(趙梓淼), Zi-Xin Chen(陳子馨), Wei-Jing Liu(劉偉景),?, Nai-Yun Tang(湯乃云),Jiang-Nan Liu(劉江南), Xian-Ting Liu(劉先婷), Xuan-Lin Li(李宣霖), Xin-Fu Pan(潘信甫),Min Tang(唐敏), Qing-Hua Li(李清華), Wei Bai(白偉), and Xiao-Dong Tang(唐曉東)

    1College of Electronics and Information Engineering,Shanghai University of Electric Power,Shanghai 200090,China

    2Semiconductor Manufacturing International Corporation,Shanghai 201203,China

    3Radiwave Technologies Corporation Limited,Shenzhen 518172,China

    4Key Laboratory of Polar Materials and Devices,East China Normal University,Shanghai 200041,China

    Keywords: tunnel field effect transistor,ambipolar current,dual metal gate,gate-drain underlap

    1.Introduction

    With Moore’s law, MOSFET devices have scaled to the nanometer size, the number of devices and components on a single chip has increased dramatically, and today we have a significant increase in the ability of data processing.However, to further scale, MOSFETs start to face a series of challenges: short-channel effects (SCEs), hot-carrier effects(HCEs), higher power consumption, etc.To meet these challenges, one of the solutions is to find new devices to replace MOSFETs.The tunneling field-effect transistor (TFET) is one of the promising devices to replace CMOS for low-power applications.[1]The conduction mechanism of TFETs is bandto-band tunneling (BTBT), which is the key phenomenon for the conduction of current in this quintessential reversebiased gated p-i-n structure, unlike MOSFETs, where conduction is due to the transition of charge.[2]With a lower subthreshold swing (SS), TFETs can break the 60 mV/decade limit at room temperature, and achieve lower off-state currents and better immunity to short-channel effects.However,there are still two main problems with TFETs: the low onstate currentIon, and the ambipolar characteristics.To address the low on-state current problem, researchers have now proposed a number of solutions, such as the introduction of heterostructures,including heterogeneous gate dielectrics,[3-5]source channel heterojunctions,[6-8]and heterogeneous gate materials;[9,10]the introduction of line tunneling structures to increase the tunneling area;[11-16]utilization of black phosphorus instead of silicon materials;[17,18]insertion of a metal strip in the gate oxide layer;[19]and the introduction of pocket structures.[20,21]Ambipolar conduction makes the TFET less effective in complementary circuits and restricts its utility in digital circuit design.Several solutions have been proposed to suppress ambipolar currents: using asymmetric doping,[22-24]gate-drain underlap,[23,25,26]gate-drain overlap,[27]heterogeneous dielectrics,[23,28,29]work function engineering,[23,30,31]recessed drains[32]and spacer engineering.[33]

    To solve these issues,a TFET with a C-type pocket(CSPTFET)[34]was proposed in previous work by our team,which improved the low on-state current while further reducing the sub-threshold swing;however,the ambipolar behavior was not fully suppressed.Further work is needed to optimize the structure of the device to completely suppress the ambipolar current while ensuring that the on-state current is not affected as much as possible, thus improving the performance of the device.Therefore,this work investigates the effects of both dualmetal gate and gate-drain underlap designs on the ambipolar characteristics of the device based on the CSP-TFET,respectively,and combines the two designs to propose the C-shaped pocket dual metal underlap TFET (CSP-DMUN-TFET).The effects of the work function of the metal gate and the gatedrain underlap length on the DC and analog/RF characteristics of the device are analyzed in detail.The optimum values of these two parameters are also determined to achieve a high on-state current with significant suppression of the ambipolar behavior.

    The article is arranged as follows:Section 2 describes the basic structure of the proposed device,parameters,the model used for simulation and the calibration of the model.Section 3 discusses the DC and analog/RF characteristics of the device and the structure optimization process.Section 4 summarizes the work performed.

    2.Device structure and simulation model

    The C-type pocket TFET (CSP-TFET) structure is characteristically based on a conventional double-gate siliconbased tunneling field-effect transistor structure with a pocket region added to the source and channel regions with the opposite type of doping concentration to the source region.The aim of the mechanism is to enhance the electric field by fully depleting the pocket region under the action of the electric field, thus increasing the band-band tunneling rate between the source region and the channel and further improving the on-state current.

    The structure parameters of the C-type pocket TFET with a dual-metal gate structure (CSP-DM-TFET) and the C-type pocket TFET with a gate-drain underlap (CSP-UN-TFET)proposed in this paper are as follows: to suppress ambipolar characteristics,the doping concentration of the source and drain are 1×1020cm-3and 5×1018cm-3, respectively.Also, the channel is doped with a doping concentration of 1×1017cm-3.All regions are assumed to be uniformly doped.SiO2was used as the gate oxide layer with a thickness of 2 nm.Based on the team’s previous work,[34]we found that increasing theTpandLp2in the C-pocket would increase the leakage current and prevent the device from switching off,and increasing theTpwould also reduce the on-state current of the device.Therefore,theTpandLp2should not be large,and we also considered the fabrication issues.[35]Finally, the parameters of the C-type pocket were selected to beLp1=30 nm,Tp=2 nm andLp2=1 nm.The device structures of the CSPDM-TFET and CSP-UN-TFET are shown in Fig.1.

    All the electrical characteristics simulations were carried out by Synopsys Sentaurus TCAD.The Fermi-Dirac model,the bandgap narrowing model,the doping-dependent mobility model,the carrier Shockley-Read-Hall(SRH)model,and the Auger model were used in the simulation.Since the silicon thickness (Tsi) is 20 nm (larger than 7 nm), quantum effects are not considered in this simulation.In this paper,we employ the dynamic non-local band-to-band tunneling(BTBT)model,which can consider the spatial variation of energy bands and apply to arbitrary tunneling potentials with abrupt or asymptotic heterojunctions, and can simulate the tunneling process more accurately.The non-local BTBT model used in this paper is calibrated using the work by Boucart and Ionescu.[3]The calibration of transfer characteristics is depicted in Fig.2.

    Table 1.The device parameters.

    Fig.1.A 2-D schematic view of(a)the CSP-DM-TFET and(b)the CSPUN-TFET.

    Fig.2.Calibration of the TCAD model parameters obtained by comparing the simulated and experimental Ids-Vgs characteristics of Ref.[3].

    3.Results and discussion

    The effects of the D-gate work functionφ2, the D-gate lengthLφ2, and the gate-drain underlap lengthLunderon device performance are investigated to obtain better suppression of ambipolar characteristics.TheIon,Iamb,Ion/Ioff,and SSavgare important indicators of DC characteristics, andgm,fT,and GBP are important indicators of analog/RF characteristics.The drain voltageVDSis set to 1 V,and the gate voltageVgsis varied from-1.5 V to 2 V.The currents in the statesVDS=1 V,Vgs=2 V,VDS=1 V,Vgs=-1.5 V andVDS=1 V,Vgs=0 V are defined as the on-state currentIon,the ambipolar currentIamband the off-state currentIoff, respectively.Note that in this work, the energy band diagrams and electric field diagrams are obtained at the location of 1 nm (line A-A'in Fig.1)below the interface of the silicon and gate oxide layer along the channel direction.

    3.1.DC characteristics analysis

    3.1.1.Effect ofφ2andLφ2on the device

    Figure 3 shows the energy band diagram of the CSPTFET device in the on, off, and ambipolar states.When a positive voltage is applied to the gate, the energy band in the channel bends downwards, resulting in a partial overlap between the source valence band and the channel conduction band,and carriers tunneling from the valence band to the conduction band to form a current.This phenomenon is called band-to-band tunneling (BTBT).Similarly, when a negative voltage is applied to the gate, the energy band of the channel bends upwards,causing the drain valence band and the channel conduction band to partially overlap,generating a tunneling current.Since the device conducts in both gate polarities,this characteristic is called ambipolarity.This current is created when a negative voltage is applied to the gate and is called the ambipolar current.Ambipolarity is undesirable as it causes malfunction of the inverter-based logic circuits.[36]

    Thus this work takes two designs to suppress ambipolar currents, namely, the dual metal gate and the gate-drain underlap, and analysis the effects of these two designs on the ambipolar characteristics of the CSP-TEFT.The present work focuses on the suppression of ambipolar currents and therefore focuses on the channel-drain junction.

    The transmission characteristics of the CSP-DM-TFET are shown in Fig.4.We setLp1as 30 nm andLDGas 0.5(LDGis the D-gate gate length factor,which is the proportion of Dgate to the total channel area gate length), change the D-gate gate work functionφ2from 4.0 eV to 4.6 eV, and keep the S-gate gate work function at 4.5 eV.It can be seen from Fig.4 that the ambipolar current decreases as the D-gate gate work functionφ2decreases.This is due to the fact that as the D-gate work functionφ2continues to decrease,it leads to a reduction in the degree of energy band bending,an increase in the width of the tunneling barrier, and an increasing depletion width at the drain-channel junction, as shown in Fig.5(a), which reduces the incidence of tunneling and suppresses the ambipolar current.

    Fig.3.Energy band diagrams of CSP-TFET devices in the on-state(VDS =1 V,Vgs =2 V), off-state (VDS =1 V,Vgs =0 V) and ambipolar state(VDS=1 V,Vgs=-1.5 V),respectively.

    Fig.4.Effects of the work function φ2 on the transmission characteristics of CSP-DM-TFET devices,where the left Y-axis corresponds to the logarithmic curve and the right Y-axis to the linear curve.

    Fig.5.(a) An energy band diagram of the CSP-DM-TFET in the ambipolar state corresponding to the variation of the work function φ2 from 4.0 eV to 4.6 eV (VDS =0 V,Vgs =-1.5 V).(b) The lateral electric field intensity of the CSP-DM-TFET in the off-state (VDS =0 V,Vgs =0 V) and in the ambipolar state(VDS=0 V,Vgs=-1.5 V).(c)An energy band diagram corresponding to the CSP-DM-TFET in the off-state(VDS=0 V,Vgs=0 V)and the ambipolar state(VDS=0 V,Vgs=-1.5 V).

    Furthermore,it can be seen from Fig.4 that as the negative gate voltage continues to increase, the ambipolar current shows a decreasing trend and then increases.The reason for this,as shown in Fig.5(b),is that the existence of the C-type pocket, as well as the gate full overlap structure, results in a high lateral electric field in the pocket region of the device in the off-state, leading to a high leakage current.As the negative gate voltage increases, the leakage current is suppressed.In other words, the leakage current is dominant in the negative gate voltage range of 0 V to-1 V.As shown in Fig.5(c),as the negative voltage rises,the energy band gradually bends upwards,the tunneling barrier decreases,and the reverse conduction takes place.At this point,the tunneling current at the drain-channel junction becomes dominant.

    To further optimize the CSP-DM-TFET,the effect of theLφ2on the ambipolar and on-state currents is analyzed.TheLφ2is the length of the D-gate and is defined asLDG×Lg(0<LDG≤1).The effect of theLDGon the DC characteristics of the CSP-DM-TFET withLp1at 30 nm,Lp2at 1 nm,andφ1andφ2at 4.5 eV and 4.0 eV, is shown in Fig.6(a).TheLDGvaries from 0.1 to 0.9,with the ambipolar current decreasing with the increasingLDGuntil it goes to 0.6.It can be seen in Fig.6(b) that as theLDGincreases, the degree of energy band bending at the channel/drain junction decreases,leading to an increase in the tunneling barrier and suppression of the ambipolar current.As theLDGcontinues to increase beyond 0.6, there is no significant change in the ambipolar current, but the leakage current in the off-state increases and the device cannot be switched off.As shown in Fig.6(c),due to the increasedLDG, which brings the D-gate with its lower work function closer to the source-channel junction,the electric field strength near the source-channel junction is increased, thus reducing the tunneling barrier width and allowing the device to have a higher leakage current in the off-state.In addition,Ionslightly increases with the increasingLDG.Based on the above analysis, theLDGwas optimally set to 0.6,withIon=9.66×10-4A/μm,Iamb=6.94×10-17A/μm,SSavg=17.7 mV/dec,andIon/Ioff≈1×1011.In this work,the average subthreshold swing is used as a performance metric.Bhuwalka[37]and Boucart and Ionescu[3]proposed a definition for calculating SSavgwith the following equation:[38]

    whereVTHis the threshold voltage,whose value is the voltage corresponding to a drain currentITHof 10-7A/μm.AndVOFFtakes the value of the gate voltage corresponding to a drain currentIoffof 10-14A/μm.

    3.1.2.Effect ofLunderon the device

    The CSP-UN-TFET retains full overlap of the gate at the source, varying the value of theLunderfrom 5 nm to 25 nm,and its transfer characteristics are shown in Fig.7(a).As the length of theLunderincreases,the ambipolar current decreases.When it reaches 25 nm, the ambipolar current decreases by about six orders of scale.As shown in Fig.7(b),the decreased ambipolar current is caused by gate-drain underlap,which results in a reduced electric field at the channel/drain junction.As theLunderincreases,the electric field density at the channeldrain junction becomes smaller,which reduces the probability of tunneling and thus suppresses the ambipolar current.In addition, from the energy band diagram, as shown in Fig.7(c),the energy band bending at the channel-drain junction decreases as theLunderincreases, which increases the width of the tunneling barrier.Similarly, when theLunderis 25 nm,the ambipolar current decreases with an increasing negative gate voltage in the 0 to-1 V range.Because the leakage current dominates in this range, there is a relatively small increase in the tunneling current at the channel/drain junction.As the negative gate voltage continues to increase after-1 V,the tunneling current at the channel/drain junction dominates,at which point it rises slightly as the negative gate voltage increases.Compared to the CSP-DM-TFET,the CSP-UN-TFET is more effective at suppressing ambipolar currents,which remains low by~10-16orders of scale at the gate voltage of-1.5 V.Furthermore, as shown in Fig.7(a), the on-state currentIondecreases as the length of theLunderincreases, but the reduction is limited.Therefore, to suppress the ambipolar current more effectively, theLunderlength is set to 25 nm.The DC characteristics of the CSP-UN-TFET device in this case areIon=8.34×10-4A/μm,Iamb=2.79×10-17A/μm,SSavg=16.9 mV/dec,andIon/Ioff≈1×1011.

    Fig.7.(a)The effect of the Lunder change from 5 nm to 25 nm on the transfer characteristics of CSP-UN-TFET devices.CSP-UN-TFET devices in the ambipolar state(VDS=1 V,Vgs=-1.5 V)with the Lunder change from 5 nm to 25 nm,corresponding to(b)the energy band diagram,and(c)the lateral electric field.

    In summary, the ambipolar characteristics of both the CSP-DM-TFET and CSP-UN-TFET devices are suppressed.But compared to the CSP-DM-TFET,the CSP-UN-TFET can suppress the ambipolar current better with the disadvantage of the reducedIon.

    Therefore,to ensure that the ambipolar currents are suppressed without affecting the on-state currents as much as possible,a combination of these two methods is used to compensate for the negative effects on the on-state currents caused by the gate-drain underlap structure.During the combination process of optimization,the following principles were applied: minimal reduction of the on-state current and complete suppression of the ambipolar current.The finalized improved device CSP-DMUN-TFET structure is shown in Fig.8.The device parameters are:LDGof 0.4,Lunderof 20 nm, andφ2of 4.0.Figure 9 shows a comparison of the transfer characteristic curves of the CSP-DM-TFET, CSP-UN-TFET, and CSP-DMUN-TFET devices.It can be seen that the ambipolar current of the CSP-DMUN-TFET device remains at the same level as that of the CSP-UN-TFET, and theIonof the CSPDMUN-TFET is larger than that of the CSP-UN-TFET.In this case,the DC characteristics of the CSP-DMUN-TFET device areIon=9.03×10-4A/μm,Iamb=2.15×10-17A/μm,SSavg=13.3 mV/dec,andIon/Ioff≈1×1011.

    Fig.8.A 2-D schematic view of the CSP-DMUN-TFET.

    Fig.9.A comparison of transmission characteristics curves for the CSPDM-TFET,CSP-UN-TFET,and CSP-DMUN-TFET devices.

    3.2.Analog/RF characteristics analysis

    In this section, the effects ofφ2andLunderon the analog/RF characteristics of the CSP-DM-TFET and CSP-UNTFET devices are investigated,including the transconductance(gm), cut-off frequency(fT), gain-bandwidth product(GBP),etc., respectively.These parameters are extracted at the frequency of 1 MHz.Thegmis an important indicator that is used to measure the analog characteristics of devices,[39]and a highergmindicates better performance for analog applications.Analysis of the analog parametergmplays a critical role in obtaining a higherfTand GBP.[40]

    Figures 10(a)and 10(b)shows the effect ofφ2andLunderparameters on thegmof the CSP-DM-TFET and CSP-UNTFET devices, respectively.It can be seen from Figs.10(a)and 10(b)that as the gate voltage increases, the drain current increases,which leads to an increase in thegm.However,due to the decrease in carrier mobility, the higher theVgsvoltage is, the lower thegmis.Furthermore, it can be noted that theLunderhas a greater effect on thegmthan theφ2, as a largerLunderreduces the drain current.

    Fig.10.(a)Variation of φ2 from 4.0 eV to 4.6 eV,corresponding to the gm of the CSP-DM-TFET device.(b) Variation of Lunder from 5 nm to 25 nm,corresponding to the gm of the CSP-UN-TFET device.

    Figures 11(a)and 11(b)show the effect ofφ2andLunderon theCgdof the CSP-DM-TFET and CSP-UN-TFET devices,respectively.It can be seen from Fig.11(a)that varying theφ2has a greater effect on theCgdof the CSP-DM-TFET device at low voltages.As the lower work function increases, the coupling between the gate and drain,Cgd,gradually increases asφ2decreases, affecting the switching speed of the device.In addition, theCgddecreases with the increasingLunder, as seen in Fig.11(b), due to the fact that the gate-drain underlap structure increases the distance between the gate and drain regions,weakens the capacitive coupling,and reduces the effective charge concentration in the uncovered region of the gate.[41,42]

    The cut-off frequency is the frequency at which the current gain becomes unity, and plays a significant role in deciding the device performance at high frequency,[43]as shown below:

    As can be seen from Eq.(2),fTis positively proportional togmand inversely proportional toCgg.

    As shown in Fig.12,thefTincreases as theVgsincreases initially and after thefTreaches its peak, it begins to fall sharply, due to the fact that thegmbegins to fall after reaching its maximum value and is accompanied by an increase in theCgd.From Fig.12(a), it can be seen that changing theφ2has an apparent effect on thefTof the CSP-DM-TFET device,due to the fact that a decrease in theφ2increases the coupling between the gate-drain and theCgdincreases.When theφ2is 4.0 eV,it obviously reduces the cut-off frequency of the CSPDM-TFET.Figure 12(b) shows that the effect of theLunderis not very significant on thefT, because both thegmin the numerator and theCgdin the denominator decrease as theLunderincreases.

    Another important parameter for RF analysis is the GBP,which signifies the product of gain and bandwidth at a constant DC gain value 10.[44]The value of the GBP is expressed as follows:

    As shown in Figs.12(c)and 12(d),the tendency of the GBP is similar to that of thefT.

    Fig.12.(a)and(c)The change of φ2 from 4.0 eV to 4.6 eV,corresponding to the variation of the fT and GBP of the CSP-DM-TFET device,respectively.(b) and (d) The change of Lunder from 5 nm to 25 nm, corresponding to the variation of the fT and GBP of the CSP-UN-TFET device,respectively.

    In summary,the CSP-DM-TFET device reduces the analog/RF characteristics by increasing the gate-drain capacitance due to the use of a lower work function in the D-gate.The CSP-UN-TFET improves the analog/RF performance by reducing the gate drain capacitance due to the presence of the underlap in the gate-drain.The CSP-DMUN-TFET device proposed in this work combines the advantages of both designs,with an analog/RF performance somewhere between the above two devices:gm=1.27×10-3S,fT=5.99×1010Hz,GBP=2.06×1010Hz.

    4.Conclusion and perspectives

    This work investigated the effects of dual metal gate and gate-drain underlap designs on the ambipolar characteristics of devices based on silicon-based dual-gate CSP-TFETs.Both designs are capable of suppressing ambipolar currents, with the gate-drain underlap being more effective,but with a small reduction in the on-state current, while the dual metal gate barely effects the on-state current.In addition,the dual metal gate structure causes a degradation of the analog/RF performance of the device compared to the gate-drain underlap structure.Therefore, a combination of both designs is proposed for the CSP-DMUN-TFET.Due to the full gate overlap in the pocket area, the CSP-DMUN-TFET has a high onstate current while being able to fully suppress ambipolar currents:Ion=9.08×10-4A/μm,Iamb=2.15×10-17A/μm,SSavg=13.3 mV/dec,Ion/Ioff≈1×1011,gm=1.27×10-3S,fT= 5.99×1010Hz, GBP = 2.06×1010Hz.The CSPDMUN-TFET effectively solves the problems of low on-state current and ambipolar characteristics of conventional dualgate TFETs and is more suitable for low-power applications.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant Nos.52177185 and 62174055).

    猜你喜歡
    趙梓
    夏天的喜歡
    Matrix effect suppressing in the element analysis of soils by laser-induced breakdown spectroscopy with acoustic correction
    很忙
    再生水水質安全的研究進展
    突破與重構:教師AI接納的復雜擴散機制探究與建模
    兔子小棕
    有趣的“知己知彼”游戲
    省檔案館開展“圓夢助學”活動
    陜西檔案(2019年5期)2019-01-09 21:58:02
    《綠色行,迎“全運”》
    堅強少女用愛撐起半邊天
    下一代英才(2018年3期)2018-06-23 11:23:20
    亚洲四区av| 女人被狂操c到高潮| 黄色欧美视频在线观看| 在线观看66精品国产| 日韩人妻高清精品专区| 色综合亚洲欧美另类图片| 欧美性猛交╳xxx乱大交人| 1024手机看黄色片| 真实男女啪啪啪动态图| 亚洲电影在线观看av| 欧美日韩精品成人综合77777| 听说在线观看完整版免费高清| 老司机影院成人| 国产在视频线在精品| 久久亚洲国产成人精品v| 欧美三级亚洲精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产片特级美女逼逼视频| 在线播放国产精品三级| 婷婷亚洲欧美| 国产蜜桃级精品一区二区三区| 丝袜美腿在线中文| 亚洲美女搞黄在线观看| 欧美最新免费一区二区三区| 久久久久久久久大av| 少妇猛男粗大的猛烈进出视频 | 我的女老师完整版在线观看| 男人的好看免费观看在线视频| 欧美极品一区二区三区四区| 亚洲av男天堂| 国产黄片视频在线免费观看| 91精品国产九色| 91精品一卡2卡3卡4卡| 日本免费一区二区三区高清不卡| 亚洲一级一片aⅴ在线观看| 国产精品久久久久久av不卡| 色尼玛亚洲综合影院| 国产精品国产高清国产av| 五月伊人婷婷丁香| 99久久无色码亚洲精品果冻| 三级毛片av免费| av专区在线播放| 色哟哟哟哟哟哟| 男女做爰动态图高潮gif福利片| 91在线精品国自产拍蜜月| a级毛色黄片| 亚洲人成网站在线观看播放| 美女大奶头视频| 国产精品女同一区二区软件| 特大巨黑吊av在线直播| 老熟妇乱子伦视频在线观看| 国产蜜桃级精品一区二区三区| 精品久久久久久久末码| 老师上课跳d突然被开到最大视频| 国产精品一区二区在线观看99 | 国产黄片美女视频| 久久久久久久久大av| 99riav亚洲国产免费| 亚洲国产精品国产精品| av.在线天堂| 日韩欧美三级三区| 麻豆国产av国片精品| 99热这里只有是精品50| 日本-黄色视频高清免费观看| 免费电影在线观看免费观看| 午夜爱爱视频在线播放| 国产伦精品一区二区三区四那| 大型黄色视频在线免费观看| 黄色视频,在线免费观看| 国产中年淑女户外野战色| 赤兔流量卡办理| 亚洲激情五月婷婷啪啪| 天美传媒精品一区二区| 亚洲国产精品国产精品| 天堂中文最新版在线下载 | 校园春色视频在线观看| 高清午夜精品一区二区三区 | 在线播放无遮挡| 国产精品福利在线免费观看| 免费搜索国产男女视频| 十八禁国产超污无遮挡网站| 身体一侧抽搐| 99在线人妻在线中文字幕| 乱系列少妇在线播放| 亚洲丝袜综合中文字幕| 久久欧美精品欧美久久欧美| 亚洲无线在线观看| 亚洲欧美精品综合久久99| 国产精品国产高清国产av| 久久精品国产亚洲av香蕉五月| av卡一久久| 国产乱人偷精品视频| 99视频精品全部免费 在线| 亚洲av中文av极速乱| 欧美日韩精品成人综合77777| 国产免费一级a男人的天堂| 高清午夜精品一区二区三区 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 哪里可以看免费的av片| 午夜福利在线在线| 免费av不卡在线播放| 特级一级黄色大片| 国内精品久久久久精免费| 免费观看精品视频网站| 成人欧美大片| 免费观看精品视频网站| 国产av麻豆久久久久久久| 国产探花在线观看一区二区| 又粗又爽又猛毛片免费看| 男女边吃奶边做爰视频| 美女高潮的动态| 国产伦在线观看视频一区| 最好的美女福利视频网| 听说在线观看完整版免费高清| 麻豆乱淫一区二区| 国产精品乱码一区二三区的特点| 搡女人真爽免费视频火全软件| 亚洲国产精品成人综合色| 免费黄网站久久成人精品| 国产白丝娇喘喷水9色精品| 少妇被粗大猛烈的视频| 亚洲高清免费不卡视频| 老师上课跳d突然被开到最大视频| 九九在线视频观看精品| 波多野结衣高清作品| 日本欧美国产在线视频| 直男gayav资源| 蜜桃久久精品国产亚洲av| 亚洲精品成人久久久久久| 一级黄色大片毛片| 三级男女做爰猛烈吃奶摸视频| 精品一区二区三区人妻视频| 九九在线视频观看精品| 日韩一本色道免费dvd| 欧美精品一区二区大全| 黄色一级大片看看| 日日摸夜夜添夜夜添av毛片| 级片在线观看| 99久久精品一区二区三区| 91狼人影院| 久久久久国产网址| 亚洲一区二区三区色噜噜| 神马国产精品三级电影在线观看| 精品久久久久久久久亚洲| 免费电影在线观看免费观看| 国产老妇伦熟女老妇高清| 看片在线看免费视频| 国产真实伦视频高清在线观看| 99国产精品一区二区蜜桃av| 大又大粗又爽又黄少妇毛片口| 久久久午夜欧美精品| 一个人免费在线观看电影| 国产单亲对白刺激| 国产精品麻豆人妻色哟哟久久 | 国产国拍精品亚洲av在线观看| 毛片一级片免费看久久久久| 麻豆成人午夜福利视频| 高清毛片免费看| 国产午夜精品论理片| 99久久九九国产精品国产免费| 99视频精品全部免费 在线| 亚洲人成网站在线播放欧美日韩| 国产乱人视频| 久久精品久久久久久噜噜老黄 | 69人妻影院| 51国产日韩欧美| 女的被弄到高潮叫床怎么办| 精品久久久噜噜| 国产探花极品一区二区| 亚洲激情五月婷婷啪啪| 日韩av在线大香蕉| 男人狂女人下面高潮的视频| 日日摸夜夜添夜夜添av毛片| 波多野结衣高清无吗| 亚洲国产欧洲综合997久久,| 在现免费观看毛片| 国产一级毛片在线| 美女被艹到高潮喷水动态| 12—13女人毛片做爰片一| 国产精品一区二区三区四区久久| 毛片一级片免费看久久久久| 国产精品美女特级片免费视频播放器| 少妇熟女aⅴ在线视频| 亚洲在线观看片| 一级毛片aaaaaa免费看小| 欧美激情久久久久久爽电影| 日本熟妇午夜| 夜夜看夜夜爽夜夜摸| 五月伊人婷婷丁香| 国产视频首页在线观看| 久久综合国产亚洲精品| 欧美在线一区亚洲| 成熟少妇高潮喷水视频| 天天一区二区日本电影三级| 日韩中字成人| 亚洲av一区综合| 国产精品久久久久久精品电影小说 | 欧美另类亚洲清纯唯美| 特大巨黑吊av在线直播| 99热精品在线国产| 黄色配什么色好看| 在线a可以看的网站| 欧美日韩综合久久久久久| 欧美日韩在线观看h| 丰满人妻一区二区三区视频av| 99九九线精品视频在线观看视频| 日本欧美国产在线视频| 欧洲精品卡2卡3卡4卡5卡区| 99热精品在线国产| 久久精品国产亚洲av涩爱 | 在线免费观看不下载黄p国产| 亚洲图色成人| www.av在线官网国产| 女同久久另类99精品国产91| 久久热精品热| 婷婷色综合大香蕉| 亚洲国产欧美在线一区| 69av精品久久久久久| 男人狂女人下面高潮的视频| 大香蕉久久网| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产欧美人成| av.在线天堂| 在线观看一区二区三区| 我要搜黄色片| 美女高潮的动态| 97超碰精品成人国产| 午夜福利在线在线| 一级毛片电影观看 | 亚洲第一区二区三区不卡| 久久人人精品亚洲av| 91午夜精品亚洲一区二区三区| 成人国产麻豆网| 男女边吃奶边做爰视频| 婷婷精品国产亚洲av| 不卡一级毛片| av免费观看日本| 欧美一区二区亚洲| 欧美成人一区二区免费高清观看| 国产亚洲欧美98| 尾随美女入室| 国内精品美女久久久久久| 日本一二三区视频观看| 在现免费观看毛片| 国产大屁股一区二区在线视频| 成人毛片60女人毛片免费| 久久中文看片网| 变态另类丝袜制服| 深夜精品福利| 中文在线观看免费www的网站| 国产亚洲av嫩草精品影院| 日韩 亚洲 欧美在线| 国产综合懂色| 亚洲无线观看免费| 天天躁夜夜躁狠狠久久av| 亚洲真实伦在线观看| 国产精品久久久久久精品电影| 亚洲av熟女| 美女高潮的动态| 亚洲无线观看免费| av在线观看视频网站免费| 欧美在线一区亚洲| 免费一级毛片在线播放高清视频| 美女黄网站色视频| 欧洲精品卡2卡3卡4卡5卡区| 五月伊人婷婷丁香| 欧美3d第一页| 日韩一本色道免费dvd| 插阴视频在线观看视频| 少妇高潮的动态图| 青青草视频在线视频观看| 欧美一级a爱片免费观看看| 26uuu在线亚洲综合色| 日韩 亚洲 欧美在线| 插逼视频在线观看| 欧美成人a在线观看| 中文资源天堂在线| 狂野欧美激情性xxxx在线观看| 亚洲人成网站高清观看| 精品国产三级普通话版| 欧美丝袜亚洲另类| 成人毛片a级毛片在线播放| 好男人视频免费观看在线| 特级一级黄色大片| 亚洲综合色惰| av卡一久久| 久久亚洲国产成人精品v| 99在线人妻在线中文字幕| 天堂影院成人在线观看| 最新中文字幕久久久久| 如何舔出高潮| 国产真实伦视频高清在线观看| 国产成人aa在线观看| 欧美日韩一区二区视频在线观看视频在线 | 欧美xxxx黑人xx丫x性爽| 特级一级黄色大片| 欧美日韩乱码在线| 欧美激情国产日韩精品一区| 舔av片在线| 成人欧美大片| 精品久久国产蜜桃| 国产欧美日韩精品一区二区| 五月玫瑰六月丁香| 蜜桃久久精品国产亚洲av| 欧美日韩在线观看h| 美女 人体艺术 gogo| 我的老师免费观看完整版| 日韩高清综合在线| 国产高清不卡午夜福利| 一边摸一边抽搐一进一小说| 欧美最新免费一区二区三区| 卡戴珊不雅视频在线播放| 天堂av国产一区二区熟女人妻| 婷婷色综合大香蕉| 男人和女人高潮做爰伦理| 午夜精品一区二区三区免费看| 日韩精品青青久久久久久| 噜噜噜噜噜久久久久久91| 亚洲av一区综合| 热99在线观看视频| 热99re8久久精品国产| 伦精品一区二区三区| 久久久成人免费电影| 能在线免费观看的黄片| 免费人成在线观看视频色| av国产免费在线观看| 欧美xxxx性猛交bbbb| 久久人妻av系列| 久久精品国产亚洲av涩爱 | 国产精品久久久久久av不卡| 日韩视频在线欧美| 在线观看一区二区三区| 一本一本综合久久| 亚洲av成人精品一区久久| 亚洲成人久久性| 色吧在线观看| 禁无遮挡网站| 国产亚洲av片在线观看秒播厂 | 搡老妇女老女人老熟妇| 亚洲天堂国产精品一区在线| 插逼视频在线观看| 欧美一区二区国产精品久久精品| 精品日产1卡2卡| av福利片在线观看| 亚洲国产欧美在线一区| 亚洲成a人片在线一区二区| 亚洲人成网站在线播放欧美日韩| 深夜精品福利| 美女 人体艺术 gogo| 亚洲国产精品合色在线| 波多野结衣高清作品| 美女高潮的动态| 国产亚洲精品久久久久久毛片| 黑人高潮一二区| av卡一久久| 老师上课跳d突然被开到最大视频| 99视频精品全部免费 在线| 丰满人妻一区二区三区视频av| 可以在线观看的亚洲视频| 久久久久国产网址| 国产久久久一区二区三区| 国产精品人妻久久久久久| 少妇被粗大猛烈的视频| 亚洲精品影视一区二区三区av| 真实男女啪啪啪动态图| 精品熟女少妇av免费看| 亚洲美女视频黄频| 六月丁香七月| 校园春色视频在线观看| .国产精品久久| 丰满的人妻完整版| 精品久久久久久久末码| 国产精品野战在线观看| 久久中文看片网| 国产 一区 欧美 日韩| 色综合亚洲欧美另类图片| 国产av一区在线观看免费| 日韩欧美一区二区三区在线观看| 十八禁国产超污无遮挡网站| 一边亲一边摸免费视频| 国产精品野战在线观看| 色综合站精品国产| 国产精品人妻久久久久久| 噜噜噜噜噜久久久久久91| kizo精华| 一夜夜www| 内射极品少妇av片p| 69人妻影院| www.av在线官网国产| 色播亚洲综合网| 老熟妇乱子伦视频在线观看| 99riav亚洲国产免费| 欧美日韩综合久久久久久| 高清毛片免费观看视频网站| 国产精品一区二区性色av| 麻豆成人午夜福利视频| 日日啪夜夜撸| 老司机影院成人| 国产黄色小视频在线观看| 亚洲av成人精品一区久久| 3wmmmm亚洲av在线观看| 亚洲欧美日韩高清专用| 大香蕉久久网| 国产精品三级大全| 直男gayav资源| 日本与韩国留学比较| 日韩亚洲欧美综合| 麻豆成人av视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精华国产精华液的使用体验 | 亚洲欧洲日产国产| 麻豆国产av国片精品| 日韩在线高清观看一区二区三区| 久久久久久久久大av| 美女 人体艺术 gogo| 亚洲国产高清在线一区二区三| а√天堂www在线а√下载| 日本三级黄在线观看| 人妻夜夜爽99麻豆av| 日本av手机在线免费观看| 99久久精品一区二区三区| 少妇高潮的动态图| 日本-黄色视频高清免费观看| 亚洲国产欧美人成| 高清在线视频一区二区三区 | 高清毛片免费看| 亚洲精品自拍成人| 日本一二三区视频观看| h日本视频在线播放| 国产成人freesex在线| av在线蜜桃| 99国产精品一区二区蜜桃av| 18+在线观看网站| 天堂√8在线中文| 欧美另类亚洲清纯唯美| 边亲边吃奶的免费视频| 久久久精品欧美日韩精品| 99热这里只有是精品50| 亚州av有码| 中文字幕人妻熟人妻熟丝袜美| 国产精品av视频在线免费观看| 成年免费大片在线观看| 在线天堂最新版资源| 久久久久久大精品| 国产色爽女视频免费观看| 18禁黄网站禁片免费观看直播| 精品欧美国产一区二区三| 欧美激情国产日韩精品一区| 有码 亚洲区| 美女被艹到高潮喷水动态| 久久久久久久久久黄片| 国产在视频线在精品| 亚洲综合色惰| 秋霞在线观看毛片| 人妻夜夜爽99麻豆av| 国产亚洲精品久久久com| 亚洲经典国产精华液单| 国产黄色视频一区二区在线观看 | 国产精品野战在线观看| 亚洲欧洲国产日韩| 一级av片app| 九九在线视频观看精品| а√天堂www在线а√下载| 91精品一卡2卡3卡4卡| 精品午夜福利在线看| 乱码一卡2卡4卡精品| 国产精品av视频在线免费观看| 晚上一个人看的免费电影| 欧美日韩在线观看h| 久久精品久久久久久久性| 日日啪夜夜撸| 亚洲国产精品成人久久小说 | 久久国内精品自在自线图片| 九草在线视频观看| 日韩强制内射视频| 国产又黄又爽又无遮挡在线| 男人舔女人下体高潮全视频| 国产视频内射| 中文字幕av成人在线电影| 在现免费观看毛片| 欧美日韩一区二区视频在线观看视频在线 | 青青草视频在线视频观看| 在线国产一区二区在线| 亚洲国产欧洲综合997久久,| 高清在线视频一区二区三区 | 黄色配什么色好看| 国产一区二区亚洲精品在线观看| 亚洲三级黄色毛片| 长腿黑丝高跟| 精品久久久久久久久久免费视频| 日韩欧美三级三区| 在线播放国产精品三级| 久久婷婷人人爽人人干人人爱| 欧美另类亚洲清纯唯美| av免费在线看不卡| 中文字幕av在线有码专区| 日本爱情动作片www.在线观看| 亚洲中文字幕日韩| 国产亚洲欧美98| 九九久久精品国产亚洲av麻豆| 大又大粗又爽又黄少妇毛片口| 我要搜黄色片| 亚洲人成网站在线播放欧美日韩| 久久精品国产亚洲网站| 色综合亚洲欧美另类图片| 天堂av国产一区二区熟女人妻| av视频在线观看入口| 日本黄大片高清| 麻豆精品久久久久久蜜桃| 久久久成人免费电影| 亚洲av中文字字幕乱码综合| 男女视频在线观看网站免费| 天天躁夜夜躁狠狠久久av| 中文字幕制服av| 中文精品一卡2卡3卡4更新| 国产精品99久久久久久久久| 春色校园在线视频观看| 午夜福利在线在线| av黄色大香蕉| 成人漫画全彩无遮挡| 变态另类成人亚洲欧美熟女| 国产中年淑女户外野战色| 最新中文字幕久久久久| 国产伦精品一区二区三区四那| 99国产精品一区二区蜜桃av| 欧美一区二区精品小视频在线| 午夜精品国产一区二区电影 | 国产乱人偷精品视频| 97在线视频观看| 一个人看的www免费观看视频| 日韩 亚洲 欧美在线| 男人舔女人下体高潮全视频| 国产伦精品一区二区三区四那| 欧美在线一区亚洲| 日韩人妻高清精品专区| 校园春色视频在线观看| 国产一区二区亚洲精品在线观看| 亚洲色图av天堂| 精品欧美国产一区二区三| 2021天堂中文幕一二区在线观| 亚洲国产精品国产精品| 综合色av麻豆| 亚洲成人av在线免费| 午夜激情欧美在线| 日韩制服骚丝袜av| 在线播放无遮挡| 一本久久中文字幕| 久久精品人妻少妇| 晚上一个人看的免费电影| 国产成年人精品一区二区| 欧美日本视频| 日韩高清综合在线| 日韩欧美精品v在线| 精品久久久久久久久久免费视频| 亚洲av第一区精品v没综合| 亚洲成人久久性| 精品久久久久久成人av| a级毛片免费高清观看在线播放| 看十八女毛片水多多多| 秋霞在线观看毛片| 高清日韩中文字幕在线| 成人午夜精彩视频在线观看| 一区二区三区四区激情视频 | 免费看日本二区| 少妇的逼好多水| 三级经典国产精品| 三级毛片av免费| 国产 一区精品| 国产精品久久电影中文字幕| 蜜桃久久精品国产亚洲av| 22中文网久久字幕| 夜夜夜夜夜久久久久| 久久国产乱子免费精品| 国产精品久久久久久久久免| 18禁黄网站禁片免费观看直播| 国产精品久久电影中文字幕| 99久久中文字幕三级久久日本| 国产色爽女视频免费观看| 亚洲精品粉嫩美女一区| 日韩一区二区视频免费看| 精品午夜福利在线看| 久久久精品大字幕| 国产高清视频在线观看网站| 国产欧美日韩精品一区二区| 色哟哟·www| 亚洲,欧美,日韩| 天天躁日日操中文字幕| 欧美三级亚洲精品| 最近的中文字幕免费完整| 亚洲欧美日韩无卡精品| 亚洲美女搞黄在线观看| 亚洲av免费在线观看| 中文字幕av在线有码专区| 欧美激情在线99| 亚洲精品日韩在线中文字幕 | 日日撸夜夜添| 熟妇人妻久久中文字幕3abv| 久99久视频精品免费| 99久久精品热视频| 久久久久久久久久成人| 久久午夜亚洲精品久久| 国内揄拍国产精品人妻在线| 91精品一卡2卡3卡4卡| 99久国产av精品国产电影| 国产精品综合久久久久久久免费| 又爽又黄无遮挡网站| 亚洲精品日韩av片在线观看| 天堂√8在线中文| 看黄色毛片网站| 嫩草影院新地址| 在线观看免费视频日本深夜| 国产黄色视频一区二区在线观看 | 国产高清不卡午夜福利| 99riav亚洲国产免费| av在线蜜桃|