• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel GaN-based double-channel p-heterostructure field-effect transistors with a p-GaN insertion layer

    2023-11-02 08:12:52XueruiNiu牛雪銳BinHou侯斌MengZhang張濛LingYang楊凌MeiWu武玫XinchuangZhang張新創(chuàng)FuchunJia賈富春ChongWang王沖XiaohuaMa馬曉華andYueHao郝躍
    Chinese Physics B 2023年10期
    關(guān)鍵詞:楊凌新創(chuàng)

    Xuerui Niu(牛雪銳), Bin Hou(侯斌),?, Meng Zhang(張濛), Ling Yang(楊凌),?, Mei Wu(武玫),Xinchuang Zhang(張新創(chuàng)), Fuchun Jia(賈富春), Chong Wang(王沖), Xiaohua Ma(馬曉華), and Yue Hao(郝躍)

    1Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    2School of Advanced Materials and Nanotechnology,Xidian University,Xi’an 710071,China

    Keywords: GaN, double-channel heterostructure field-effect transistors, p-GaN insertion layer, C-doped buffer layer

    1.Introduction

    In recent years, GaN has demonstrated great prospects in the field of power electronics due to its wide bandgap and high electron mobility.GaN-based high electron mobility transistors (HEMTs) on Si substrates have been widely explored in research, and fabricated as power switches with a high breakdown voltage for commercial usage.[1,2]The application of discrete GaN-based power switches requires the collaboration of Si-based peripheral circuit structures such as gate driver,controller and protection modules.However,the differences between the two materials and the interconnections between devices can introduce extra parasitic effects to the power conversion circuit, which induce instability of GaN power switches and circuits.[3-5]Furthermore, the high-temperature stability of Si is worse than that of GaN.These problems deteriorate the performance of GaN-based HEMTs and have seriously hindered the industrialization process.

    GaN-based monolithic integration technology is an emerging but promising solution to solve these problems; it not only allows GaN-based devices to have more functions but also enhances circuit robustness and promotes the miniaturization of the power conversion system.[6,7]Therefore, there has been great interest in researching the integration of GaNbased gate drivers and power switches.So far, most of the developed GaN-based gate drivers are based on the combination of enhancement mode (E-mode) and depletion mode(D-mode) n-channel HEMTs (n-HEMTs).But such directcoupled FET logic circuits suffer from serious power losses that are not conducive to the efficiency of the power conversion system.[8,9]Given these considerations, a complementary logic circuit prepared from GaN-based E-mode p-channel heterostructure field-effect transistors(p-HFETs)and E-mode n-HEMTs has been proposed as a promising alternative to greatly suppress power losses.

    However,p-HFETs have encountered many challenges in their development.One of the major challenges is the much lower mobility of the holes in GaN than that of the electrons,which will lead to a low on-state current and decreased driving capability of p-HFETs.To address this issue, aggressive lateral scaling of p-HFETs,the fin configuration,[10]GaN/AlN heterostructures[11,12]and multi-channel structures[13,14]have been proposed.The reported multi-channel p-HFETs introduced Mg doping in each layer, but the presence of the large number of Mg impurities in the heterostructure resulted in severe ionized-impurity scattering, which in turn reduced the mobility of the holes.

    In this work, we propose a double heterostructure with a p-GaN insertion layer to realize double-channel p-HFETs,where holes can be distributed in two channels.By using Silvaco TCAD simulations,the influences of the thickness of the upper AlGaN layer, the doping impurities and concentrations of the GaN buffer layer,and the thickness and doping concentration of the p-GaN insertion layer on the densities of the twodimensional hole gas (2DHG) and valence band energies of two channels are discussed;this complements the mechanisms concerning the impact of doping on the modulation of energy bands in double heterostructures.The increased 2DHG density in the lower channel and the reduced doping concentration in the GaN buffer layer can be achieved by the insertion of a p-GaN layer between the AlGaN layer and C-doped GaN buffer layer.It is worth noting that the distribution of the 2DHG between the two channels is mainly affected by the variation in the thickness of the upper AlGaN layer.Our results suggest that a double heterostructure with a p-GaN insertion layer is an attractive approach for realizing double-channel p-HFETs.

    2.Device structure

    The typical cross-sectional structure of a double-channel p-HFET is exhibited in Fig.1(a).The designed epilayer,from top to the bottom, consists of a 20 nm p++-GaN layer (Mg:5×1019cm-3), a 40 nm p-GaN layer (Mg: 1×1019cm-3),a 10 nm upper unintentionally doped(UID)-GaN layer,an upper Al0.25GaN layer,a 10 nm UID-GaN layer,a 20 nm lower Al0.25GaN layer and a 3 μm GaN buffer layer with residual background electrons of 1×1015cm-3.Mg can diffuse from the p-GaN layer to the UID-GaN layer during the growth of the heterostructure, which makes the upper UID-GaN layer into a p-type one.The diffusion coefficient of Mg is set to be 0.2.All the results in this work were obtained using Silvaco TCAD.The model used in these simulations has been calibrated to match the published results.[15]

    C doping and Fe doping play a key role in achieving a highly resistive GaN buffer layer,[16,17]which will also influence the energy band and density of the 2DHG in the double heterostructure.C doping in the simulations is modeled as deep acceptor traps with energyEV+0.9 eV,[18]while Fe doping is modeled as acceptor traps with energyEC-0.57 eV.[19]The ionized densities are calculated according to a literature study.[20]The 2DHG density is the integral of hole concentration in the GaN channel layer with respect to its channel thickness.Figures 2(a)and 2(b)show the influence of the C-doping induced acceptor concentration in the GaN buffer layer on the distribution of holes and the variation of the valence band(i.e.,in the access region).As shown in Fig.2(a), the density of the 2DHG in the upper channel is almost unaffected.However, the 2DHG density in the lower channel increases significantly when the concentration rises from 1×1018cm-3to 1×1019cm-3, and even gets close to that of the upper channel when the concentration is between 5×1018cm-3and 1×1019cm-3.As shown in Fig.2(b), the valence band of the GaN buffer layer rises with the increase in C-doping induced acceptor concentration, which explains the significant increase in the 2DHG density in the lower channel when the concentration exceeds 1×1018cm-3.

    The effect of Fe doping in the GaN buffer layer on the 2DHG density in the access region of the two channels is now discussed.It can be seen in Fig.3(a)that when the concentration varies from 1×1016cm-3to 1×1019cm-3, the 2DHG density remains constant in the upper channel but changes slightly in the lower one.Figure 3(b)displays the variation of the valence band according to different Fe-doping induced acceptor concentrations.The rise of the valence band for the Fedoped GaN buffer layer is not obvious,suggesting that the Fedoped buffer layer is not preferred for the double heterostructure compared with the C-doped one.

    Fig.3.Schematic illustration of(a)the distribution of 2DHG density and(b)the variation of the valence band of two channels in the access region with the Fe-doping induced acceptor trap concentration.

    3.Results and discussion

    Based on the above results,the buffer layer of the double heterostructure utilized in this work is selected to be C doped.For the structure shown in Fig.1(a), the main way to improve the carrier density of the lower channel is to increase the C-doping induced acceptor concentration in the GaN buffer layer.If the concentration is 1×1019cm-3,the carrier density of the lower channel can increase to 5×1012cm-2.Although a highly C-doped buffer layer facilitates the presence of an increased 2DHG density in the lower channel, it introduces other challenges.On the one hand, a C-doped GaN buffer should be grown at a relatively low temperature to enhance incorporation of C in the GaN layer, so that the buffer layer will have poor structural quality resulting in the degradation of hole mobility.[21]On the other hand, acceptor traps introduced by the high C-doped buffer layer will seriously affect the carriers,which leads to the hot-carrier effect,trapping effect and current collapse.[22,23]Since p-GaN has a low trap concentration[24]and its energy band modulation can enhance the 2DHG density in the lower channel,the introduction of the p-GaN insertion layer can improve device performance and reliability without reducing the carrier density.As a result, the C-doping induced trap concentration can be reduced, and the performance of devices can be improved.

    Figure 1(b) demonstrates the proposed double heterostructure with a p-GaN layer inserted between the C-doped buffer layer and the AlGaN layer.Based on this heterostructure,the variation of 2DHG density with different thicknesses of the upper AlGaN layer (t1) is discussed, as shown in Fig.4(a).The thickness of the p-GaN insertion layer was set to be 20 nm, while the Mg-doping concentration was 4×1018cm-3.It can be seen from Fig.4(a) that the distribution of the holes between the two channels is critically influenced byt1.Whent1is small, the density of the 2DHG in the lower channel is larger than that in the upper channel, and vice versa.This is mainly because a largert1will increase the density of the 2DHG at the upper GaN/AlGaN interface and screen the holes at the lower GaN/AlGaN interface.Figure 4(b)shows the effect of differentt1values on the valence band energy.It can be observed that the hole quantum well (QW) only exists in the lower/upper channel whent1=2 nm/13 nm,while hole QWs exist in both channels whent1=6 nm.

    During the fabrication process, the p-GaN layer in the gate region requires etching followed by the deposition of a dielectric layer.These two steps will inevitably cause damage and create a high density of interface states in the recessed region,leading to the degradation of carrier mobility and operational stability.[25,26]Hence, a low 2DHG density in the upper channel is preferred.When the AlGaN layer is thinner than 5 nm, the 2DHG density in the lower channel is much higher than that in the upper channel.Nevertheless,this is not conducive to the optimization of performance of p-HFETs.A much higher density of 2DHG in the lower channel will not only affect the off-state characteristics of the devices but also increase the scattering effect between holes.As a result, a 5 nm AlGaN layer is selected in our simulations.

    Fig.5.Variation of(a)2DHG density and(b)valence band energy of two channels in the access region with the Mg-doping concentration in p-GaN insertion layer.

    The effect of doping concentrationnMgin the p-GaN insertion layer on the density of the 2DHG in the access region was evaluated, as shown in Fig.5(a).The thicknesses of the upper AlGaN layer and p-GaN insertion layer were set to be 5 nm and 20 nm, respectively.It can be observed thatnMgin the p-GaN layer greatly influences the lower channel while demonstrating little impact on the upper one.The larger thenMg,the higher the 2DHG density in the lower channel.WhennMgincreases from 2×1018cm-3to 4×1018cm-3,nsin the lower channel increases significantly.This is mainly a result of the fact that the valence band energy of the p-GaN insertion layer appears to be close to the Fermi level whennMg=4×1018cm-3, as shown in Fig.5(b), thus causing an increase in 2DHG density in the lower channel.WithnMgincreasing to 1×1019cm-3,the valence band of the p-GaN layer is even closer to the Fermi level.However, a highernMgwill lead to difficulties in achieving excellent off-state characteristics for p-HFETs and intensify the ionized-impurity scattering effect with lower hole mobility.

    In addition tonMgin the p-GaN insertion layer,the thickness of the p-GaN insertion layer(t2)was also analyzed.The Mg-doping concentration in the p-GaN layer was set to be 4×1018cm-3and C-doping induced acceptor concentration in the GaN buffer layer was 5×1018cm-3.Figure 6(a) illustrates the variation in the 2DHG density of two channels in the access region with increasingt2.Ast2increases from 0 to 60 nm, the 2DHG density in the lower channel first demonstrates an overall upward trend and then tends to saturate at the end.But a sudden drop can also be observed whent2reaches 15 nm.To explain such nonmonotonic behavior, the variation of 2DHG density according tot2with different Cdoping induced acceptor trap concentrations in the GaN buffer layer was further analyzed,as shown in Fig.6(b).Whent2is small,the 2DHG density in the lower channel changes significantly across different C-doping induced acceptor trap concentrations.The 2DHG density in the lower channel is completely determined by the p-GaN insertion layer when the C-doping induced acceptor trap concentration is low,but it is gradually dominated by the buffer layer as the concentration increases.However,whent2reaches 15 nm,the p-GaN insertion layer is sufficient to screen the impact of the GaN buffer layer.Therefore,the nonmonotonic behavior of 2DHG density in the lower channel at smallt2is a combined effect of both the C-doped buffer layer and the p-GaN insertion layer.

    According to the previous simulation results, the evaluated baseline structure of the device can provide a reasonably satisfactory performance.The schematic illustration of a cross-section of p-HFET is shown in Fig.1(b), wheret1,t2,nMgand the C-doping induced acceptor trap concentration are 5 nm, 20 nm, 4×1018cm-3and 5×1018cm-3, respectively.For the device without a p-GaN insertion layer,the Cdoping induced acceptor trap concentration in the buffer layer is 1×1019cm-3.Hence,2DHG densities in the upper channel and lower channel for the two devices are almost equal.The thickness of the upper GaN channel in the gate region is 5 nm.The gate length(LG)is 0.5μm andLGS=LGD=1μm.The mobility model used in the simulations is the Albrecht model.Figure 7(a) shows the transfer characteristics of the two devices.The threshold voltages of the two devices are 2.4 V and 2.6 V, respectively.The gate-control ability is better for the device with a p-GaN insertion layer.Figures 7(b)and 7(c)display the output characteristics of the two devices.The maximum current density of the device without a p-GaN insertion layer is-42 mA·mm-1and that of the device with a p-GaN insertion layer is-46 mA·mm-1.These values demonstrate that the performance of the device with a p-GaN insertion layer is improved.Although devices are D-mode,other methods such as fin configuration and plasma treatment can be developed to realize E-mode double-channel p-HFETs.

    Fig.7.(a) Transfer characteristics of two devices at VDS =-5 V.Output characteristics of the devices (b) with a p-GaN insertion layer and(c)without a p-GaN insertion layer.

    4.Conclusion

    In this study, we have proposed a double heterostructure with a p-GaN insertion layer that is promising for the realization of double-channel p-HFETs.The influences of parameters of the different layers on the 2DHG densities and valence band energies of two channels were analyzed using Silvaco TCAD.The mechanisms concerning the influence of doping on the modulation of the energy band in the double heterostructure were also discussed.The enhanced 2DHG density and the reduced doping concentration in GaN buffer layer demonstrate that employing a p-GaN insertion layer in the double heterostructure is a better approach for realizing double-channel p-HFETs than using a highly C-doped buffer alone.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.62104184,62234009,62090014,62188102, 62104178, and 62104179), the Fundamental Research Funds for the Central Universities of China (Grant Nos.YJSJ23019, XJSJ23047, and ZDRC2002), the China National Postdoctoral Program for Innovative Talents (Grant No.BX20200262),and the China Postdoctoral Science Foundation(Grant No.2021M692499)

    猜你喜歡
    楊凌新創(chuàng)
    陜西楊凌成立彩色小麥團隊
    楊凌推出穩(wěn)農(nóng)助農(nóng)“定心丸”
    解碼楊凌:不老的農(nóng)業(yè)
    當代陜西(2020年14期)2021-01-08 09:30:32
    楊凌深耕服務“田園”
    當代陜西(2019年12期)2019-07-12 09:12:08
    新創(chuàng)企業(yè)網(wǎng)絡導向?qū)ζ髽I(yè)績效的影響:戰(zhàn)略能力的中介效應
    陜西青年作家采風團走進陜西楊凌
    2017山西省新春新創(chuàng)優(yōu)秀劇目展演
    戲友(2017年1期)2017-06-19 19:33:43
    藏戲表演舞臺調(diào)度傳承與發(fā)展的點滴思考——以新創(chuàng)藏戲劇目《圖蘭朵》為例
    結(jié)句的新創(chuàng)(外一題)——李清照《武陵春》
    中華詩詞(2017年9期)2017-04-18 14:04:37
    新創(chuàng)企業(yè)的滯漲
    精品久久久久久久久av| 久久久久久久亚洲中文字幕| 亚洲中文字幕日韩| 波多野结衣高清作品| 一级二级三级毛片免费看| 日本欧美国产在线视频| 亚洲三级黄色毛片| 夜夜看夜夜爽夜夜摸| 18禁黄网站禁片免费观看直播| 日韩强制内射视频| 三级毛片av免费| 黄色欧美视频在线观看| 亚洲国产高清在线一区二区三| 草草在线视频免费看| 我要看日韩黄色一级片| 美女高潮的动态| 精品久久久久久久人妻蜜臀av| 国产一级毛片七仙女欲春2| 国产高清激情床上av| 日韩成人av中文字幕在线观看| 狂野欧美白嫩少妇大欣赏| 国产色婷婷99| 一进一出抽搐gif免费好疼| 久久久久久久久久黄片| 亚洲va在线va天堂va国产| 内地一区二区视频在线| 一级黄色大片毛片| 免费不卡的大黄色大毛片视频在线观看 | 成人一区二区视频在线观看| 国产爱豆传媒在线观看| a级毛片免费高清观看在线播放| 久久久色成人| 日本一本二区三区精品| 国产熟女欧美一区二区| 久久婷婷人人爽人人干人人爱| 听说在线观看完整版免费高清| 国产黄色视频一区二区在线观看 | 不卡一级毛片| 长腿黑丝高跟| 一进一出抽搐动态| 免费av观看视频| 亚洲精品乱码久久久久久按摩| 九色成人免费人妻av| 日本欧美国产在线视频| 午夜精品一区二区三区免费看| 欧美日韩综合久久久久久| 亚洲欧美成人综合另类久久久 | 成年av动漫网址| 欧美日韩国产亚洲二区| 欧美bdsm另类| 欧美成人一区二区免费高清观看| 如何舔出高潮| 看片在线看免费视频| 久久久久久久亚洲中文字幕| 噜噜噜噜噜久久久久久91| 偷拍熟女少妇极品色| 免费大片18禁| 最近2019中文字幕mv第一页| 国产v大片淫在线免费观看| 婷婷色av中文字幕| 久久精品久久久久久久性| 欧美丝袜亚洲另类| 国产又黄又爽又无遮挡在线| 亚洲人成网站高清观看| 天堂影院成人在线观看| 老师上课跳d突然被开到最大视频| 九九爱精品视频在线观看| 亚洲人成网站在线观看播放| 在线a可以看的网站| 成人高潮视频无遮挡免费网站| 日产精品乱码卡一卡2卡三| 91久久精品国产一区二区三区| 久久韩国三级中文字幕| 日本黄色片子视频| 国产综合懂色| 美女被艹到高潮喷水动态| 国产精品一区二区三区四区免费观看| 日本与韩国留学比较| 蜜臀久久99精品久久宅男| 久久久久久久久大av| 美女黄网站色视频| 欧美一区二区亚洲| 国产老妇伦熟女老妇高清| 日韩欧美国产在线观看| 欧美激情国产日韩精品一区| 国产av在哪里看| 中文字幕熟女人妻在线| 亚洲国产精品成人久久小说 | 全区人妻精品视频| 午夜福利在线在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品成人久久久久久| 亚洲国产欧洲综合997久久,| 青春草视频在线免费观看| 赤兔流量卡办理| 免费无遮挡裸体视频| 亚洲欧美精品专区久久| 亚洲精品色激情综合| 久久韩国三级中文字幕| 亚洲精品国产av成人精品| 91精品国产九色| 亚洲国产日韩欧美精品在线观看| 亚洲欧美精品自产自拍| 丰满人妻一区二区三区视频av| 中国国产av一级| 午夜免费激情av| 嘟嘟电影网在线观看| 国产精品电影一区二区三区| 国产精品.久久久| 99久久久亚洲精品蜜臀av| eeuss影院久久| 免费观看人在逋| 久久精品久久久久久久性| 波多野结衣巨乳人妻| 成人特级黄色片久久久久久久| 亚洲成人久久性| 精品人妻偷拍中文字幕| 在线观看一区二区三区| 欧美一区二区亚洲| 一级黄片播放器| 日韩欧美在线乱码| 一个人看的www免费观看视频| 男人舔奶头视频| 国产精品人妻久久久影院| 亚洲精品久久国产高清桃花| 99热6这里只有精品| 大又大粗又爽又黄少妇毛片口| 国产精品.久久久| 蜜臀久久99精品久久宅男| 欧美bdsm另类| 黄色视频,在线免费观看| 亚洲欧美清纯卡通| 久久久国产成人免费| 日韩大尺度精品在线看网址| 国产成人精品一,二区 | 日韩中字成人| 日韩强制内射视频| 精品一区二区三区视频在线| 亚洲精品乱码久久久v下载方式| 成人综合一区亚洲| 寂寞人妻少妇视频99o| 久久久久久久久大av| 偷拍熟女少妇极品色| 午夜福利在线观看吧| 一级毛片我不卡| 国产亚洲精品久久久com| 桃色一区二区三区在线观看| 精品久久久久久成人av| 亚洲性久久影院| 在线观看免费视频日本深夜| 亚洲成人精品中文字幕电影| 欧美精品国产亚洲| 男人和女人高潮做爰伦理| 十八禁国产超污无遮挡网站| 国产高清不卡午夜福利| 免费看a级黄色片| 亚洲国产欧美人成| 亚洲人与动物交配视频| 中文字幕av在线有码专区| 你懂的网址亚洲精品在线观看 | 久久婷婷人人爽人人干人人爱| videossex国产| 久久精品国产鲁丝片午夜精品| 少妇高潮的动态图| 亚洲欧美精品专区久久| 日本av手机在线免费观看| 秋霞在线观看毛片| 亚洲在线自拍视频| 一个人看的www免费观看视频| 热99在线观看视频| 一区二区三区四区激情视频 | 99久久久亚洲精品蜜臀av| 男人舔女人下体高潮全视频| 国国产精品蜜臀av免费| 老司机影院成人| 精品国内亚洲2022精品成人| 99久久久亚洲精品蜜臀av| 五月玫瑰六月丁香| av视频在线观看入口| 蜜桃久久精品国产亚洲av| 美女高潮的动态| kizo精华| 亚洲精品乱码久久久久久按摩| 一级二级三级毛片免费看| 午夜激情福利司机影院| 一本精品99久久精品77| 国产成人精品久久久久久| 亚洲欧洲国产日韩| 欧美在线一区亚洲| 午夜爱爱视频在线播放| 午夜精品一区二区三区免费看| 天天躁夜夜躁狠狠久久av| 淫秽高清视频在线观看| 成人二区视频| 日日摸夜夜添夜夜添av毛片| 精品熟女少妇av免费看| 精品久久久久久久久av| 女人十人毛片免费观看3o分钟| 老司机福利观看| 一个人看的www免费观看视频| 精品久久久久久久久亚洲| а√天堂www在线а√下载| 国产精品蜜桃在线观看 | 男人舔女人下体高潮全视频| 男女视频在线观看网站免费| 人妻久久中文字幕网| 不卡视频在线观看欧美| 自拍偷自拍亚洲精品老妇| 国产精品爽爽va在线观看网站| 三级毛片av免费| 国产av一区在线观看免费| 国产一区二区激情短视频| 卡戴珊不雅视频在线播放| 老司机福利观看| 国产精品一区二区三区四区免费观看| 18禁黄网站禁片免费观看直播| 18禁在线无遮挡免费观看视频| 女人被狂操c到高潮| 久久久久久久久久成人| 亚洲乱码一区二区免费版| 欧美性感艳星| 一本一本综合久久| 久久久a久久爽久久v久久| 看十八女毛片水多多多| avwww免费| 中国美女看黄片| 亚洲人成网站在线播| 亚洲欧美日韩东京热| 91aial.com中文字幕在线观看| 美女xxoo啪啪120秒动态图| 99热这里只有是精品在线观看| 欧美日韩国产亚洲二区| 3wmmmm亚洲av在线观看| 免费人成视频x8x8入口观看| 色尼玛亚洲综合影院| 免费无遮挡裸体视频| 美女国产视频在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲在线自拍视频| 两个人的视频大全免费| 亚洲内射少妇av| 99热全是精品| 亚洲在久久综合| 男女做爰动态图高潮gif福利片| 性色avwww在线观看| 国产91av在线免费观看| 成人高潮视频无遮挡免费网站| ponron亚洲| 亚洲熟妇中文字幕五十中出| 欧美色视频一区免费| 一级毛片aaaaaa免费看小| 日韩精品青青久久久久久| 99九九线精品视频在线观看视频| 国产单亲对白刺激| 岛国毛片在线播放| 久久这里只有精品中国| 国产成人影院久久av| 日韩视频在线欧美| 日韩人妻高清精品专区| 最近视频中文字幕2019在线8| 免费看日本二区| 看十八女毛片水多多多| 高清日韩中文字幕在线| 日本欧美国产在线视频| 久久这里有精品视频免费| 久久国产乱子免费精品| 非洲黑人性xxxx精品又粗又长| 欧美日韩一区二区视频在线观看视频在线 | 噜噜噜噜噜久久久久久91| 亚洲人成网站高清观看| av免费在线看不卡| 日本三级黄在线观看| 国产极品天堂在线| 午夜激情福利司机影院| 国内少妇人妻偷人精品xxx网站| 最后的刺客免费高清国语| 天天一区二区日本电影三级| 国产精品女同一区二区软件| 中文字幕av在线有码专区| 国产精品人妻久久久影院| 九九爱精品视频在线观看| 亚洲乱码一区二区免费版| 亚洲国产精品成人久久小说 | 国产中年淑女户外野战色| 久久精品91蜜桃| 丝袜美腿在线中文| 黄色配什么色好看| 两个人视频免费观看高清| 日韩在线高清观看一区二区三区| 国产精品日韩av在线免费观看| 午夜久久久久精精品| 97人妻精品一区二区三区麻豆| 国产成人aa在线观看| 亚洲电影在线观看av| 欧美在线一区亚洲| 岛国毛片在线播放| 成人午夜高清在线视频| 一个人看视频在线观看www免费| 一级毛片电影观看 | 中国美白少妇内射xxxbb| 长腿黑丝高跟| 免费观看精品视频网站| 国产精品人妻久久久影院| 国产乱人偷精品视频| 中文欧美无线码| 熟女人妻精品中文字幕| 成人毛片60女人毛片免费| 国产成人影院久久av| 亚洲色图av天堂| 青青草视频在线视频观看| 少妇的逼水好多| 国产国拍精品亚洲av在线观看| 丝袜喷水一区| 99热只有精品国产| 精品久久久久久久久久免费视频| 亚州av有码| 亚洲av电影不卡..在线观看| www日本黄色视频网| 久久精品久久久久久久性| 91午夜精品亚洲一区二区三区| 欧美色视频一区免费| 亚洲国产高清在线一区二区三| 美女内射精品一级片tv| 国语自产精品视频在线第100页| 搡老妇女老女人老熟妇| 日本熟妇午夜| 亚洲七黄色美女视频| 国产伦一二天堂av在线观看| 超碰av人人做人人爽久久| 午夜视频国产福利| 国产黄a三级三级三级人| 91精品国产九色| 寂寞人妻少妇视频99o| 亚洲国产欧洲综合997久久,| 精品一区二区三区视频在线| 久久这里有精品视频免费| 国产亚洲5aaaaa淫片| 色播亚洲综合网| 国产色婷婷99| av国产免费在线观看| 日本欧美国产在线视频| 搞女人的毛片| 亚洲国产欧美在线一区| 国产亚洲欧美98| 国产精品久久久久久久电影| 九九热线精品视视频播放| 国产精品久久电影中文字幕| 色哟哟哟哟哟哟| 日本爱情动作片www.在线观看| 精品久久久噜噜| 亚洲真实伦在线观看| 最后的刺客免费高清国语| 免费av观看视频| 日日撸夜夜添| 色尼玛亚洲综合影院| 久久亚洲精品不卡| 国产91av在线免费观看| 草草在线视频免费看| 高清毛片免费看| 热99在线观看视频| 亚洲天堂国产精品一区在线| 亚洲自偷自拍三级| 精品久久久久久久久久免费视频| 少妇的逼好多水| 国产色婷婷99| a级毛片免费高清观看在线播放| 2022亚洲国产成人精品| 成年免费大片在线观看| 国产 一区精品| 亚洲一区高清亚洲精品| 亚洲自拍偷在线| 久久精品国产99精品国产亚洲性色| 久久人人精品亚洲av| 亚洲一区高清亚洲精品| 26uuu在线亚洲综合色| 欧美另类亚洲清纯唯美| 婷婷六月久久综合丁香| 日韩欧美国产在线观看| 波多野结衣高清作品| 成人综合一区亚洲| a级毛片免费高清观看在线播放| 麻豆一二三区av精品| 久久久精品94久久精品| 亚洲国产日韩欧美精品在线观看| 一夜夜www| 欧美激情久久久久久爽电影| 18禁在线无遮挡免费观看视频| 一级黄色大片毛片| 久久午夜亚洲精品久久| 精品人妻偷拍中文字幕| 色视频www国产| 久久人人精品亚洲av| 美女高潮的动态| 人人妻人人澡欧美一区二区| 亚洲av不卡在线观看| 最好的美女福利视频网| 18禁裸乳无遮挡免费网站照片| 欧美人与善性xxx| 久久久久久久久大av| 国产淫片久久久久久久久| 麻豆成人av视频| 99久久精品热视频| 性欧美人与动物交配| 亚洲成人久久性| 亚洲婷婷狠狠爱综合网| 欧美+日韩+精品| 丰满乱子伦码专区| av在线老鸭窝| 黄片wwwwww| 麻豆乱淫一区二区| 亚洲第一区二区三区不卡| 中国美女看黄片| 免费无遮挡裸体视频| 欧美在线一区亚洲| 精品少妇黑人巨大在线播放 | 国产精品日韩av在线免费观看| 国产在视频线在精品| 久久精品久久久久久噜噜老黄 | 大又大粗又爽又黄少妇毛片口| av免费在线看不卡| 久久精品国产99精品国产亚洲性色| 大香蕉久久网| 久久精品国产亚洲av涩爱 | 精品人妻熟女av久视频| 两性午夜刺激爽爽歪歪视频在线观看| 色吧在线观看| 免费看日本二区| 国产精品.久久久| 久久久久免费精品人妻一区二区| 久久国产乱子免费精品| 99久久无色码亚洲精品果冻| 日韩,欧美,国产一区二区三区 | 久久这里只有精品中国| 欧美日韩乱码在线| 免费一级毛片在线播放高清视频| 国产精品av视频在线免费观看| 亚洲精品456在线播放app| 欧美三级亚洲精品| 亚洲欧美日韩卡通动漫| 日韩国内少妇激情av| 国国产精品蜜臀av免费| 丝袜喷水一区| 2022亚洲国产成人精品| 亚洲va在线va天堂va国产| 人体艺术视频欧美日本| 18禁在线无遮挡免费观看视频| 一卡2卡三卡四卡精品乱码亚洲| www.av在线官网国产| 噜噜噜噜噜久久久久久91| 可以在线观看毛片的网站| 99久久中文字幕三级久久日本| 内地一区二区视频在线| 精华霜和精华液先用哪个| 国产日本99.免费观看| 2022亚洲国产成人精品| 亚洲久久久久久中文字幕| 爱豆传媒免费全集在线观看| 久久久欧美国产精品| 观看美女的网站| 变态另类成人亚洲欧美熟女| 成人性生交大片免费视频hd| 亚洲自拍偷在线| 亚洲精品乱码久久久v下载方式| 国产成年人精品一区二区| 看片在线看免费视频| 亚洲av第一区精品v没综合| 欧美日韩综合久久久久久| 成人av在线播放网站| 亚洲自拍偷在线| 亚洲第一电影网av| 精品久久久久久久久av| 日本熟妇午夜| 国内精品宾馆在线| 久久人人精品亚洲av| 国产久久久一区二区三区| 又粗又硬又长又爽又黄的视频 | 亚洲18禁久久av| 亚洲欧美成人精品一区二区| 亚洲精品影视一区二区三区av| 午夜福利在线观看免费完整高清在 | 欧美不卡视频在线免费观看| 毛片女人毛片| 日本五十路高清| 免费黄网站久久成人精品| 亚洲自偷自拍三级| 欧美+日韩+精品| 一级毛片我不卡| 日韩一本色道免费dvd| 晚上一个人看的免费电影| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av男天堂| 国产精品人妻久久久久久| 卡戴珊不雅视频在线播放| 麻豆久久精品国产亚洲av| 欧美3d第一页| 爱豆传媒免费全集在线观看| 亚洲性久久影院| 日韩欧美精品免费久久| 大型黄色视频在线免费观看| 老司机福利观看| 中文精品一卡2卡3卡4更新| 亚洲,欧美,日韩| 一本久久精品| 国产三级在线视频| 级片在线观看| 青春草亚洲视频在线观看| av天堂中文字幕网| 狂野欧美白嫩少妇大欣赏| avwww免费| 亚洲丝袜综合中文字幕| 欧美zozozo另类| 亚洲成人久久性| 如何舔出高潮| 哪里可以看免费的av片| 看免费成人av毛片| 亚洲国产色片| 精品久久久久久久久亚洲| 日韩视频在线欧美| 两个人视频免费观看高清| 亚洲一区二区三区色噜噜| 又爽又黄无遮挡网站| 免费不卡的大黄色大毛片视频在线观看 | 一级黄片播放器| 99久久精品热视频| 免费av观看视频| 成人无遮挡网站| 又粗又爽又猛毛片免费看| 精品99又大又爽又粗少妇毛片| 国产av不卡久久| 日韩国内少妇激情av| 一本一本综合久久| 3wmmmm亚洲av在线观看| 国产av麻豆久久久久久久| 亚洲成人久久性| 如何舔出高潮| 变态另类丝袜制服| 免费无遮挡裸体视频| 国产美女午夜福利| 久久这里只有精品中国| 国产精品人妻久久久久久| 国模一区二区三区四区视频| 亚洲真实伦在线观看| 国产又黄又爽又无遮挡在线| 最近视频中文字幕2019在线8| 99视频精品全部免费 在线| 99热这里只有是精品在线观看| 99久久中文字幕三级久久日本| 久久久久免费精品人妻一区二区| 日本一二三区视频观看| 亚洲精品日韩av片在线观看| 天堂网av新在线| 亚洲欧美日韩卡通动漫| 大型黄色视频在线免费观看| 亚洲国产精品国产精品| 99九九线精品视频在线观看视频| 成年女人看的毛片在线观看| 久久久国产成人精品二区| 亚洲国产欧洲综合997久久,| www.av在线官网国产| 亚洲成人久久爱视频| 国产伦精品一区二区三区视频9| 中文字幕av在线有码专区| 18禁裸乳无遮挡免费网站照片| 村上凉子中文字幕在线| 日韩大尺度精品在线看网址| 免费人成视频x8x8入口观看| 亚洲av中文av极速乱| 国产又黄又爽又无遮挡在线| 精品免费久久久久久久清纯| 国产爱豆传媒在线观看| 99久久成人亚洲精品观看| 成人漫画全彩无遮挡| 国产成人精品久久久久久| 亚洲av电影不卡..在线观看| 久久久久久大精品| 亚洲国产高清在线一区二区三| 中出人妻视频一区二区| 亚洲国产欧美人成| 欧美日韩综合久久久久久| 干丝袜人妻中文字幕| 亚洲18禁久久av| 老熟妇乱子伦视频在线观看| 国产日本99.免费观看| 国产精品人妻久久久影院| 国产精品国产高清国产av| 非洲黑人性xxxx精品又粗又长| 日韩欧美三级三区| 岛国毛片在线播放| 99热全是精品| 亚洲18禁久久av| 久久久久久久久久久免费av| 人妻系列 视频| 亚洲av免费在线观看| 少妇高潮的动态图| 麻豆精品久久久久久蜜桃| 黑人高潮一二区| 色综合色国产| 青春草国产在线视频 | 久久精品国产亚洲av天美| 深爱激情五月婷婷| 三级国产精品欧美在线观看| 日本三级黄在线观看| 超碰av人人做人人爽久久| 成人毛片a级毛片在线播放| 又爽又黄a免费视频| 国产黄片视频在线免费观看| 亚洲精品乱码久久久久久按摩| 真实男女啪啪啪动态图| 丝袜美腿在线中文| 2021天堂中文幕一二区在线观| 联通29元200g的流量卡| 日韩欧美精品免费久久| 婷婷色综合大香蕉| 少妇的逼水好多| 久久午夜亚洲精品久久|