• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High efficient Raman sideband cooling and strong three-body recombination of atoms

    2023-11-02 08:10:22YuqingLi李玉清ZhennanLiu劉震南YunfeiWang王云飛JizhouWu武寄洲WenliangLiu劉文良YongmingFu付永明PengLi李鵬JieMa馬杰LiantuanXiao肖連團(tuán)andSuotangJia賈鎖堂
    Chinese Physics B 2023年10期
    關(guān)鍵詞:馬杰李鵬永明

    Yuqing Li(李玉清), Zhennan Liu(劉震南), Yunfei Wang(王云飛), Jizhou Wu(武寄洲),?,Wenliang Liu(劉文良), Yongming Fu(付永明), Peng Li(李鵬),Jie Ma(馬杰), Liantuan Xiao(肖連團(tuán)), and Suotang Jia(賈鎖堂)

    1State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Laser Spectroscopy,College of Physics and Electronics Engineering,Shanxi University,Taiyuan 030006,China

    2Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China

    Keywords: matter wave,atom cooling methods,ultracold gases

    1.Introduction

    Laser cooling and trapping techniques enable the preparation and application of atomic ensembles at ultracold temperatures, where many quantum effects will dominate.[1-7]As a kind of sub-Doppler cooling, gray molasses has been demonstrated as a powerful tool to cool the atomic sample to a lower temperature for6Li,[8-10]7Li,[11]23Na,[12,13]39K,[14,15]40K,[9,16]41K,[17]87Rb[18]and133Cs atoms[19]than the general optical molasses cooling.In a different approach, threedimensional degenerated Raman sideband cooling(3D dRSC)was earlier used to obtain sub-μK temperature in the pioneering works on Cs atoms.[20,21]3D dRSC is also indispensable for Cs atoms to achieve their atomic Bose-Einstein condensate.[22-25]Quite recently,3D dRSC has been used for39K atoms and produces a lower temperature ofT=1.3 μK compared to the result from the gray molasses cooling.[26]For the87Rb and133Cs atoms trapped in a 2D optical lattice operating at the wavelength ofλ=1064 nm,dRCS enables the production of quantum gases by the direct laser cooling.[27,28]

    Since dRSC is used to cool the atomic sample to a low temperature around 1 μK, a large volume optical dipole trap(ODT)with the shallow trapping potential is beneficial to enhance the number of atoms loaded into the ODT.[29-31]For the interacting ultracold Bose atoms in the ODT, of particular interest is the three-body recombination,in which two particles form a dimmer while interacting with a third particle.Understanding the three-body recombination has for a long time been important in the studies of both few- and manybody physics in ultracold atoms.[32]The universal scaling laws in the strongly correlated unitary Bose gases dominated by the three-body recombination have been explored experimentally and theoretically.[33-36]For the non-degenerated ultracold Bose atoms at the large scattering length,the three-body recombination induces the large atom loss and heating.[37-39]Thus, a highly efficient 3D dRSC is promised for the preparation of a large number of atoms in the optical dipole trap,and a comprehensive study of the three-body recombination is significant for understanding the unequilibrium process after loading of cooled atoms into the optical dipole trap.

    In this work, we realize a highly efficient 3D dRSC for Cs atoms and obtain an ultracold temperature ofT~500 nK.The cold temperature is consistent with the theoretical estimation according to the calibrated energy spacing of neighboring vibrational levels in the lattice used in 3D dRSC.Combined with the optimized excessive levitation gradient,the cold temperature enables a large number of atoms to be loaded into the magnetically levitated ODT.The evolution of the number of atoms trapped in the ODT is measured at a large scattering length, and a strong three-body loss is observed.The threebody recombination coefficient is obtained by fitting the derived model to the data.In particular, the one-body loss due to the collisions of atoms with background gas becomes dominant after the large reduction of atomic density under the initial strong three-body loss.

    2.Experimental setup and process

    The experimental scheme of 3D dRCS is basically the same as the previous works on Cs atoms.[20,21,27,28]The main difference is the geometric configuration of the lasers constructing the lattice and the optical pumping laser.As shown in Fig.1,a stable 3D lattice is formed by using one retroreflected standing wave and two running waves.The standing wave has an angle of~77°with the vertical direction, and is perpendicular to another beam with an angle of~13°relative to the horizontal plane.The linear polarizations of the two running beams lie in a plane, which is formed by these two running beams.The two polarizations of the standing wave are rotated by±10°relative to the angular bisector of the two running beams.This special polarization configuration of four laser beams guarantees the maximum of the Raman coupling in 3D dRSC.The optical pump laser is calibrated to aσ+polarization and reflected by a mirror.The magnetic field is optimized to mainly parallel to the optical pump laser beam.

    Fig.1.Experimental geometry and configuration of both lasers and magnetic coils for the 3D dRSC and the magnetic levitated loading of ODT.(a) The lattice (red inward arrows) consists of two running laser beams with the polarizations that lie in the plane determined by these two beams and the retro-reflected standing wave with the±10° polarizations(yellow arrows) relative to the angular bisector of the two running beams.The optical pump laser(blue arrows)has the σ+ polarization and reflected by a mirror.The direction of the combined magnetic field is mainly parallel with the optical pump laser beam.(b) The magnetically levitated ODT consists of a pair of quadrupole coils in anti-Helmholtz configuration, a pair of bias coils in Helmholtz configuration,and two horizontally crossing 1064-nm laser beams at an angle of ~90°.

    The lattice lasers are derived from a power-amplified external-cavity diode laser(ECDL),which is operated without the frequency stabilization.The frequency is tuned to a red detuning ofΔl=-22 GHz from the 6S1/2,F=3→6P3/2,F'=4 transition of Cs atoms.The standing wave laser has the power of~46 mW,and the other two running lasers have the same power of~16.5 mW.A weak magnetic field,which is used to bring the vibrational sublevel|n〉in the|F=3,mF〉state to degeneracy with the vibrational sublevel|n-1〉in the|F=3,mF-1〉 state, is provided by the combined field of three pairs of compensation coils.This magnetic field is optimized by minimizing the atomic temperature and maximizing the number of atoms after 3D dRSC.The optical pumping laser with the power of~1.2 mW is from another ECDL,which provides the repumping laser in the magneto-optical trap (MOT), and is detuned by +10 MHz from the 6S1/2,F= 3→6P3/2,F'= 2 transition.An additional depumping laser is introduced to pump the atoms back to theF=3 ground state, since the excited atoms in 3D dRSC can decay to theF=4 ground state,in which the atoms can’t participate in the cooling process.Here the cooling laser in MOT is used for the depumping laser and is detuned by+10 MHz relative to the 6S1/2,F=4→6P3/2,F'=4 transition.

    After 3D dRSC,we use a large-volume crossed ODT with the shallow potential of~kB×9 μK to capture more atoms,wherekBis the Boltzmann constant.The ODT consists of two horizontally crossing 1064-nm laser beams at an angle of~90°.These two beams have the same power of~2 W,and the beam waists arewx=310±12μm andwy=300±13μm.During the loading of ODT, the large gravity of Cs atom induces a big destructive potential in the vertical direction.[41]To compensate the gravity and form an effective trapping potential,a magnetic field gradient of?B/?z=31.3 G/cm needs to be applied for the Cs atoms in theF=3,mF=3 state to cancel the gravity completely, i.e.,whereμBis Bohr’s magneton,gF=-1/4 denotes the Land′eg-factor,andgis the gravitational acceleration.The magnetic field gradient is produced by a pair of quadrupole coils, as shown in Fig.1(b).

    According to Maxwell’s equation of ?·B= 0 and the cylindrical symmetry, the application of?B/?zleads to the horizontal magnetic field gradient of?B/?x=?B/?y=-1/2?B/?z, which causes the horizontal outward pointing force and leads to the anti-trapping potential in the horizontal direction.In order to eliminate the influence of the anti-trapping potential along the horizontal direction,we use a vertical bias fieldB0,which is produced by another pair of Helmholtz coils shown in Fig.1(b),to reduce the outward force.The combined field leads to a horizontal trapping frequency

    whereε=0.0303 cm-2denotes the departure of the actual geometry of magnetic coils from the Helmholtz configuration.

    3.Results

    3.1.The 3D degenerated Raman sideband cooling

    Cs atoms are slowed down by a Zeeman slower and then collected by a MOT with up to~5×108atoms.Through the compressed MOT and optical molasses cooling, we have 6×107atoms with the temperature of~8 μK.For a lower temperature,we use 3D dRSC to further cool and polarize the atoms in theF=3,mF=3 state.The lattice in 3D dRSC is adiabatically switched on before the end of optical molasses for 0.5 ms, and the depumping laser is simultaneously switched on to keep the atoms populating in theF=3 state.The magnetic fields produced by three pairs of compensation coils are adjusted to the optimized values for 2.5 ms previous to the switching of the optical pump laser, because the compensation coils have a 1.5-ms delay.During the cooling process, the atoms are transferred from the|6S1/2,F=3,mF,n〉state into|6S1/2,F=3,mF-1,n-1〉 by a two-photon Raman process, and then the atoms are excited by theσ+optical pumping laser to the|6P3/2,F'=2,mF,n-1〉state.In the lamb-Dicke regime ofwhereEris the recoil energy of photon andωis the vibrational frequency of the lattice in 3D dRSC,the vibrational quantum number is conserved in the spontaneous decay from the excited|6P3/2,F'=2,mF,n-1〉state.The cooling enables that the atoms finally populate in the|6S1/2,F=3,mF=2,n=0〉state,which is a dark state for theσ+pumping light with the 6S1/2,F=3→6P3/2,F'=2 transition.To transfer atoms to the|6S1/2,F=3,mF=3,n=0〉state, the direction of the magnetic field is slightly tilted relative to the optical pumping beam for a weaklyπ-polarized component.

    Fig.2.The square of the measured 1/e width of atomic cloud σ2x (blue circles) and σ2y (black diamonds) as a function of the square of flight time t2.The 1/e widths σx and σy are obtained through the atomic column density distribution along x and y directions,respectively.The temperature of atoms is given by using Eq.(2) to fit the data, and the red and green lines are the corresponding linear fittings.

    After the 20-ms dRSC, the optical pumping laser and depumping laser are switched off,and then the lattice laser is adiabatically switched off.The number of atoms is measured asN=5×107by the absorption image.The atomic temperature is determined by fitting the linear dependence ofσ2i,tont2

    whereσi,tis the 1/e width of the atomic cloud with subscriptibeing thexorydirection at the flight timet.[40]The fitted temperature isTx=360±120 nK andTy=580±160 nK,and the corresponding effective temperature is about 480 nK.

    We precisely diagnose the magnetic field used in 3D dRSC by the microwave spectroscopy and estimate the atomic population in theF= 3,mF= 3 state.Here a 1-ms microwave pulse is used to pump the atoms in the 6S1/2,F=3 to the 6S1/2,F=4 state, and then the probe laser with the 6S1/2,F= 4→6P3/2,F'= 5 transition is used in the absorption image.Figure 3 shows the dependence of the number of atoms on the frequency of the microwave pulse.In Fig.3, we find five main peaks and they correspond to the transitions ofF= 3,mF= 3→F'= 4,m'F= 2, 3, 4 andF=3,mF=2→F'=4,m'F=1, 2, 3, where theF=3,mF=3→F'=4,m'F=2 transition has the same frequency with theF=3,mF=2→F'=4,m'F=3 transition.Any two adjacent peaks have the same energy spacing, which can be calculated by the Zeeman splitting under an external magnetic field.The transitional energy is given by

    whereI= 7/2 is the nuclear spin of Cs atoms,EH=h×9192.63177 MHz is the hyperfine splitting of the ground state,gI=-3.98854×10-4is the nuclear Land′eg-factor,gJ=2.00254 is the fine structure Land′eg-factor in the 6S1/2ground state,andx=(gJ-gIμBB)/EH.[42]Based on Eq.(3),we calculate the splitting of the Zeeman sublevels induced by an external magnetic field, the effective magnetic field in 3D dRSC is derived for 108 mG.Thus the vibrational frequency of the lattice is determined asω=2π×50 kHz according toˉhω=ΔmFμBgFwith ΔmF=1.

    In Fig.3, the population of atoms in the different Zeeman sublevels indicates that most of the atoms populate in theF=3,mF=3 state, and the other atoms mainly populate in theF=3,mF=2 state.The number of atoms populating in theF= 3,mF= 3 state is directly estimated asN ≥3.5×107by referring to the number of atoms detected with theF=3,mF=3→F'=4,m'F=3 microwave transition.The energy spacing between the two adjacent vibrational levels in the lattice of 3D dRSC defines the lowest temperature ofT=300 nK,but the obtained effective temperature ofT~480 nK is higher than the prediction.This may be attributed to the slight heating in the optical pumping process and the scattering of the photons from the lattice in 3D dRSC.The low temperature prevents the inelastic endothermic collisions of the Cs atoms in theF=3,mF=3 state and will improve the efficiency of loading the cooled atoms into the magnetically levitated ODT.

    Fig.3.The number of atoms detected by using a microwave pulse instead of the repumping laser in absorption image as a function of microwave frequency.The peaks represent that the atoms in the sublevels of F =3, mF =1,2,3 are transferred to the sublevels of F =4,m'F =1,2,3,4 according to the selection rule of ΔmF =0,±1.Dots are from the experimental measurement, and the lines connecting the dots are used to guide the eyes.

    3.2.Magnetically levitated optical dipole trap

    During the loading of ODT, the magnetic field gradient should be switched on quickly for the formation of an effective trapping potential in the vertical direction.In our experiment,however,the eddy currents in the metal vacuum chamber and other stainless steel flanges limit the rapid variation of magnetic field gradient.When the magnetic force is increasing but has not yet compensated for the gravity completely,the remaining gravitational force always accelerates the atoms and hence leads to the heating of the atomic sample.Thus,to suppress the heating,an excessive levitation gradient of?B/?z >31.3 G/cm is used to reduce the velocity obtained by the atoms in the loading process of ODT.When the magnetic field gradient reaches?B/?z=31.3 G/cm,the atoms have the maximum downward velocity.With the continuous increase of?B/?z,an excessively magnetic force can reduce the downward velocity of atoms.The value of the excessive levitation gradient is optimized experimentally for a fixed duration of 4 ms.As shown in Fig.4(a), the number of atoms trapped in the ODT first increases and then decreases with the excessive levitation gradient, and an optimized value of?B/?z=40.5 G/cm is used to maximize the loading of atoms from 3D dRSC into the ODT.

    The timing diagram for the magnetically levitated loading of ODT is summarized in Fig.4(a).When the lattice in 3D DRSC is shut down, the magnetic field gradient is switched on and quickly ramped to an excessive levitation gradient of?B/?z= 40.5 G/cm.After a holding time of 4 ms, the magnetic field gradient takes 2 ms to decrease to?B/?z=31.3 G/cm.We find that the application of the excessive?B/?zhas the advantages not only for improving the number of atoms loaded into the ODT but also for reducing the heating of atoms.The bias field is ramped toB=105 G within 6 ms to eliminate the horizontal anti-trapping potential induced by the application of the magnetic field gradient.

    Fig.4.Optimization for the loading of the magnetically levitated ODT.(a) The number of atoms detected after 200 ms following the loading of the ODT as a function of excessive levitation field.The dots are the experimental data,and the solid line is the Gaussian fitting to guide the eyes.(b)The time sequence of magnetic field gradient ?B/?z and bias field B in the optimized loading of the ODT.

    Based on the optimized parameters, we have loaded 1.8×107Cs atoms into the ODT.Here the number of atoms in the ODT is detected by directly imaging the atomic cloud after 200 ms following the loading of ODT.We find that the atomic cloud is heated to about 3μK after transferring into the ODT.We largely attribute the heating to the imperfect phase space matching.The atomic cloud after 3D dRSC has a 1/e of~350μm,but an equilibrium distribution in the ODT would have a 1/e of~100μm.Besides,the expansion of the atomic cloud in the levitation process leads to the increase of temperature.

    3.3.Three-body recombination of atoms in the ODT

    For the ultracold Cs atoms in the|6S1/2,F=3,mF=3〉state,the three-body recombination is the dominant loss mechanism.As shown in Fig.5, the number of atoms exhibits a strong three-body loss.[37]In the three-body recombination process,the interacting three particles collide and two of them form a dimmer, and then both the dimmer and the remaining particle escape from the trap.[38,39]The loss rate equation for the per-particle is given as ˙N/N=-L3〈n2〉, whereNis the number of atoms,L3is the three-body loss coefficient,andnis the atomic density.When away from unitarity,L3~ˉha4/mwith a dimensionless prefactor exhibiting a variation withain Efimov physics,[43]andais the s-wave scattering length.According to the atomic density distribution in 3D harmonic trap, the term including the average square density can be directly expressed asL3〈n〉2=βN2/T3with, anddenotes the geometrical mean of the trapping frequencies.By considering the collisions of atoms with the background gas as an additional loss term of-αN, we obtain a differential equation of the atom number,i.e.,

    Fig.5.The number of atoms in the ODT as a function of time.The red line is obtained by using Eq.(8)to fit the data,and the fitted three-body loss coefficient is L3 =7.73×10-25 cm6/s.The blue line is obtained by using Eq.(9) to fit the data, where only the three-body loss is considered.The number of atoms shows a strong three-body loss before the intersection of two fitting curves at ~3.1 ms,and after that the onebody loss becomes the dominant mechanism in the atom loss.

    At the large scattering length ofa=1418a0, the threebody recombination is so strong that both the dimmer and the third atom are immediately expelled from the trap, and the number of atoms exhibits a large three-body loss.The atoms undergoing three-body recombination have an average potential energy ofkBT/2,but the ensemble average is 3kBT/2.[37]The loss of an atom leaves an extra energy ofkBTin the remaining ensemble,and this leads to heating.The heating energy corresponding to the relative change in the temperature for the loss of one atom is related to the average energy.The rate of temperature change can be given by multiplying the loss rate of atom number:

    By replacing the atomic loss rate,the evolution of temperature can be expressed as

    Using Eq.(6)to substitute the termβN2/T3in Eq.(4),we can obtain the relationship betweenNandTas

    whereN0andT0are the number of atoms and the atomic temperature after the loading of the atoms into the ODT.By applying Eq.(7)to Eq.(6),Ncan be eliminated and the variation ofTwithtcan be deduced analytically.The evolution of the atom number is derived by substituting the solution forTinto Eq.(7).The analytical expression of the atom number is given as

    The three-body loss coefficient is derived asL3= 7.73×10-25cm6/s by using Eq.(8)to fit the experimental evolution of the atom number.

    In addition, we try to consider only the three-body loss mechanism in the decay model of the atom number with the negligible collisions of atoms with the background gas, i.e.,the one-body loss rate isα →0 in Eq.(4).Equation (8) can be simplified as

    However, Eq.(9) cannot provide an excellent fit for the data,as shown in the blue curve in Fig.5.Therefore the atom loss induced by their collisions with the background gas has to be taken into account.Two fitting results illustrate that the rate of three-body loss reduces with the decrease of atomic density,and the one-body loss becomes dominant.Our result also indicates the lifetime of atoms in the ODT is finally determined by the one-body loss from the collisions with the background gas.

    4.Conclusion

    We have used 3D dRSC to cool a large number of atoms to a cold temperature, which enables the loading of more atoms into a crossed ODT.The optimized excessive levitation is used to reduce the atomic velocity induced by the uneliminated gravity after switching off the lattice laser but before the magnetic field gradient reaches to the critical value to completely cancel the gravity.Compared to the loading of an ODT from a bare MOT or the gray-molasses cooling,there is a significant increase in the number of atoms by a factor of~10 and 3,and an decrease in the temperature by a factor of~50 and 5,respectively.

    For the optically trapped ultracold Cs atoms,the number of atoms shows a fast decay because of a strong three-body loss at the large scattering length.We study the three-body recombination by analyzing the strong loss of Cs atom,and obtain the three-body loss coefficient by fitting the derived model to the experimental data.When the atomic density decreases continuously, we find that the one-body loss induced by the collisions of atoms with the background gas becomes dominant in the atom loss.Finally, the lifetime of atoms in the ODT is determined by the one-body loss.

    Acknowledgements

    Project funded by the National Key Research and Development Program of China(Grant No.2022YFA1404201),the National Natural Science Foundation of China (Grant Nos.62020106014, 92165106, 62175140, 12074234, and 11974331),and the Applied Basic Research Project of Shanxi Province,China(Grant No.202203021224001).

    猜你喜歡
    馬杰李鵬永明
    胡永明:“糧”心人的三大法寶
    以德求得,因材育才
    江西教育A(2022年4期)2022-05-08 21:45:29
    Single-molecule mechanical folding and unfolding kinetics of armless mitochondrial tRNAArg from Romanomermis culicivorax?
    親親的大別山
    夏天的浪漫
    金秋(2019年16期)2019-11-15 02:41:18
    Theoretical study of overstretching DNA-RNA hybrid duplex?
    鐘永明
    寶藏(2018年6期)2018-07-10 02:26:40
    Efficacy comparison between anterior subcutaneous and submuscular transposition of ulnar nerve in treating moderate-severe cubital tunnel syndrome
    “賭”還是不“賭”?
    無人機(jī)配送,看上去很美
    91精品国产九色| 国产av码专区亚洲av| 在线精品无人区一区二区三| 国产免费福利视频在线观看| 婷婷色综合大香蕉| xxx大片免费视频| 久久ye,这里只有精品| 91久久精品国产一区二区成人| 最近手机中文字幕大全| 国产精品一二三区在线看| 中文乱码字字幕精品一区二区三区| 亚洲欧美日韩另类电影网站| av国产精品久久久久影院| 观看美女的网站| 亚洲欧美清纯卡通| 超碰97精品在线观看| 高清毛片免费看| 国产一区亚洲一区在线观看| 亚洲情色 制服丝袜| 国产免费一区二区三区四区乱码| 国产乱来视频区| 中文乱码字字幕精品一区二区三区| 如何舔出高潮| 女的被弄到高潮叫床怎么办| 亚洲三级黄色毛片| 丝瓜视频免费看黄片| 国产精品嫩草影院av在线观看| 国内精品宾馆在线| 亚洲成人一二三区av| 91成人精品电影| a级片在线免费高清观看视频| 看十八女毛片水多多多| 美女脱内裤让男人舔精品视频| 汤姆久久久久久久影院中文字幕| 久久久亚洲精品成人影院| 日本黄大片高清| 看非洲黑人一级黄片| 日韩中文字幕视频在线看片| 亚洲,一卡二卡三卡| 色婷婷久久久亚洲欧美| 中文字幕制服av| 在线观看一区二区三区激情| 国产av一区二区精品久久| 大陆偷拍与自拍| 色网站视频免费| 中文欧美无线码| 国产男人的电影天堂91| 六月丁香七月| 亚洲成人一二三区av| 男女无遮挡免费网站观看| 女性生殖器流出的白浆| 国产午夜精品久久久久久一区二区三区| 一本—道久久a久久精品蜜桃钙片| 搡老乐熟女国产| 啦啦啦中文免费视频观看日本| 天堂8中文在线网| 成年人午夜在线观看视频| 欧美日韩亚洲高清精品| 91精品一卡2卡3卡4卡| 日本-黄色视频高清免费观看| 久久久亚洲精品成人影院| 97超视频在线观看视频| 美女福利国产在线| 亚洲国产欧美日韩在线播放 | 亚洲精品视频女| 极品人妻少妇av视频| 国产视频首页在线观看| 久久国内精品自在自线图片| 一级av片app| 亚洲丝袜综合中文字幕| 插逼视频在线观看| 九九久久精品国产亚洲av麻豆| 免费大片18禁| 一本久久精品| 极品少妇高潮喷水抽搐| 在线播放无遮挡| 精品熟女少妇av免费看| 美女国产视频在线观看| 卡戴珊不雅视频在线播放| 亚洲精品第二区| 精品亚洲成a人片在线观看| 亚洲精品一二三| 亚洲欧美精品自产自拍| 精品久久久久久久久亚洲| 国产亚洲91精品色在线| 91精品伊人久久大香线蕉| 亚洲国产精品成人久久小说| 在线观看人妻少妇| 日韩熟女老妇一区二区性免费视频| 亚洲精品亚洲一区二区| 国产精品欧美亚洲77777| 卡戴珊不雅视频在线播放| 97精品久久久久久久久久精品| 中文字幕亚洲精品专区| 高清视频免费观看一区二区| av在线观看视频网站免费| 国内揄拍国产精品人妻在线| 搡老乐熟女国产| 亚洲av综合色区一区| www.av在线官网国产| 黄片无遮挡物在线观看| 18禁在线无遮挡免费观看视频| 又爽又黄a免费视频| 精品国产露脸久久av麻豆| 亚洲av男天堂| 欧美精品亚洲一区二区| 国产伦在线观看视频一区| 欧美日韩视频精品一区| 国模一区二区三区四区视频| 在线观看免费视频网站a站| 久久免费观看电影| 啦啦啦中文免费视频观看日本| 高清毛片免费看| 你懂的网址亚洲精品在线观看| 一级片'在线观看视频| 乱系列少妇在线播放| 18+在线观看网站| 欧美日韩视频精品一区| videossex国产| 又黄又爽又刺激的免费视频.| 人妻夜夜爽99麻豆av| 国国产精品蜜臀av免费| 在线亚洲精品国产二区图片欧美 | 街头女战士在线观看网站| 久久青草综合色| 亚洲不卡免费看| 精品国产一区二区三区久久久樱花| 丰满人妻一区二区三区视频av| 热99国产精品久久久久久7| 亚洲丝袜综合中文字幕| 成人黄色视频免费在线看| 亚洲第一av免费看| 国内少妇人妻偷人精品xxx网站| 日韩强制内射视频| 久久久久久久国产电影| 日韩欧美 国产精品| 日韩强制内射视频| 亚洲国产成人一精品久久久| 99视频精品全部免费 在线| 国产一区亚洲一区在线观看| 成人二区视频| 三级国产精品欧美在线观看| 少妇裸体淫交视频免费看高清| 男人狂女人下面高潮的视频| 你懂的网址亚洲精品在线观看| 精品久久国产蜜桃| 久久久久久久国产电影| 天天躁夜夜躁狠狠久久av| 丰满迷人的少妇在线观看| 国产精品久久久久久久久免| 国产av精品麻豆| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久久av不卡| 亚洲人成网站在线观看播放| 日韩中字成人| 久久久久网色| 大香蕉久久网| 国产国拍精品亚洲av在线观看| 人妻系列 视频| 黄色一级大片看看| 日韩大片免费观看网站| 国产亚洲一区二区精品| 青春草视频在线免费观看| 日本-黄色视频高清免费观看| 亚洲精品自拍成人| 亚洲丝袜综合中文字幕| 久久久欧美国产精品| 国产伦理片在线播放av一区| 插逼视频在线观看| 久久久久视频综合| 国产精品熟女久久久久浪| 在线观看人妻少妇| 女人久久www免费人成看片| 人妻夜夜爽99麻豆av| 亚洲国产精品专区欧美| 91久久精品国产一区二区成人| 国产精品一二三区在线看| 80岁老熟妇乱子伦牲交| 性高湖久久久久久久久免费观看| 亚洲精品自拍成人| 精品国产一区二区久久| 国产男女内射视频| 一级二级三级毛片免费看| 久久久久网色| 亚洲精品国产av蜜桃| 午夜免费观看性视频| 国产av精品麻豆| 国产精品福利在线免费观看| 日韩中文字幕视频在线看片| 91精品国产国语对白视频| 欧美xxxx性猛交bbbb| 乱人伦中国视频| 伦精品一区二区三区| 两个人的视频大全免费| 久久精品久久久久久噜噜老黄| 一边亲一边摸免费视频| 精品卡一卡二卡四卡免费| 国产69精品久久久久777片| 少妇精品久久久久久久| 国产av一区二区精品久久| 成人黄色视频免费在线看| 久久韩国三级中文字幕| 色视频www国产| 熟女av电影| 国产黄色免费在线视频| 搡老乐熟女国产| 免费播放大片免费观看视频在线观看| 搡女人真爽免费视频火全软件| 各种免费的搞黄视频| 日韩免费高清中文字幕av| 亚洲高清免费不卡视频| 国产片特级美女逼逼视频| 久久精品国产a三级三级三级| 九九爱精品视频在线观看| 伊人久久精品亚洲午夜| 亚洲熟女精品中文字幕| 中文精品一卡2卡3卡4更新| 少妇裸体淫交视频免费看高清| 午夜福利视频精品| 久久 成人 亚洲| 国产无遮挡羞羞视频在线观看| 亚洲第一av免费看| 一级毛片aaaaaa免费看小| 日韩成人伦理影院| 国产精品国产三级专区第一集| 大码成人一级视频| 国产精品久久久久成人av| 久久精品国产鲁丝片午夜精品| 国产一级毛片在线| 麻豆成人av视频| 国产精品福利在线免费观看| 免费不卡的大黄色大毛片视频在线观看| 偷拍熟女少妇极品色| 亚洲人与动物交配视频| 久久久久久久久久成人| 内射极品少妇av片p| 国产黄色免费在线视频| 看非洲黑人一级黄片| 七月丁香在线播放| 国产精品人妻久久久影院| 美女xxoo啪啪120秒动态图| av卡一久久| 色婷婷久久久亚洲欧美| 秋霞在线观看毛片| 老女人水多毛片| 欧美最新免费一区二区三区| 国产黄片美女视频| 一区二区av电影网| 在线观看免费高清a一片| 亚洲国产成人一精品久久久| 亚洲国产精品999| av天堂中文字幕网| 国产欧美亚洲国产| 国产免费福利视频在线观看| 国产亚洲午夜精品一区二区久久| 午夜激情久久久久久久| 在线观看三级黄色| 人人妻人人添人人爽欧美一区卜| 亚洲人与动物交配视频| 免费在线观看成人毛片| 国产av一区二区精品久久| 婷婷色综合大香蕉| 国产综合精华液| 国模一区二区三区四区视频| 99热这里只有是精品在线观看| 午夜免费观看性视频| av网站免费在线观看视频| 亚洲情色 制服丝袜| 热re99久久精品国产66热6| 国产成人一区二区在线| 少妇高潮的动态图| 插逼视频在线观看| 久久久久久久久久久久大奶| 美女大奶头黄色视频| 日本色播在线视频| 一区二区三区四区激情视频| 婷婷色综合www| 80岁老熟妇乱子伦牲交| 观看av在线不卡| 亚洲欧美清纯卡通| 中文在线观看免费www的网站| 你懂的网址亚洲精品在线观看| 亚州av有码| 在现免费观看毛片| 99久久精品一区二区三区| 2022亚洲国产成人精品| 午夜久久久在线观看| 日韩 亚洲 欧美在线| 亚洲性久久影院| 国产精品秋霞免费鲁丝片| 久久国内精品自在自线图片| 国产亚洲av片在线观看秒播厂| 大码成人一级视频| 美女xxoo啪啪120秒动态图| 亚洲国产精品国产精品| 免费观看av网站的网址| 九色成人免费人妻av| 欧美 日韩 精品 国产| 成人亚洲精品一区在线观看| 各种免费的搞黄视频| 韩国高清视频一区二区三区| 日韩成人伦理影院| 少妇丰满av| 欧美精品亚洲一区二区| 人人妻人人澡人人爽人人夜夜| 成人国产av品久久久| 日本-黄色视频高清免费观看| 欧美另类一区| 自线自在国产av| 久久久亚洲精品成人影院| 日韩成人av中文字幕在线观看| 欧美精品高潮呻吟av久久| 国产午夜精品久久久久久一区二区三区| 亚洲婷婷狠狠爱综合网| 免费看不卡的av| 精品久久久久久久久亚洲| 国产 精品1| 欧美激情极品国产一区二区三区 | 欧美激情极品国产一区二区三区 | 伦理电影大哥的女人| 少妇的逼好多水| 极品教师在线视频| 久久久久久久久久久久大奶| 免费观看无遮挡的男女| 久久狼人影院| 99热国产这里只有精品6| 国产av国产精品国产| 黄色欧美视频在线观看| 久久免费观看电影| 亚洲欧美日韩卡通动漫| 精品久久久噜噜| 亚洲精品,欧美精品| 亚洲欧美清纯卡通| 亚洲性久久影院| 久久久久视频综合| 欧美3d第一页| 国产高清不卡午夜福利| 日韩中文字幕视频在线看片| 性色av一级| av.在线天堂| 人人妻人人添人人爽欧美一区卜| 中文字幕人妻熟人妻熟丝袜美| 国产黄色免费在线视频| av在线播放精品| 亚洲av成人精品一区久久| 亚洲精品日韩在线中文字幕| 嫩草影院入口| 日日摸夜夜添夜夜添av毛片| 99久久中文字幕三级久久日本| 91精品国产九色| 成年美女黄网站色视频大全免费 | 亚洲综合精品二区| 国产精品不卡视频一区二区| 一区二区av电影网| 久久精品夜色国产| 老司机影院毛片| 精品一区在线观看国产| 国产深夜福利视频在线观看| 亚洲激情五月婷婷啪啪| 国语对白做爰xxxⅹ性视频网站| 日本黄色日本黄色录像| 国国产精品蜜臀av免费| 观看免费一级毛片| 免费高清在线观看视频在线观看| 黄色怎么调成土黄色| 免费黄频网站在线观看国产| 男女啪啪激烈高潮av片| 嫩草影院新地址| 久久精品熟女亚洲av麻豆精品| 欧美精品一区二区免费开放| 丰满少妇做爰视频| 日韩一区二区视频免费看| 精品久久久久久久久亚洲| 少妇熟女欧美另类| 亚洲电影在线观看av| 成人漫画全彩无遮挡| 老熟女久久久| 亚洲精品,欧美精品| 一本一本综合久久| 看免费成人av毛片| 亚洲内射少妇av| 老熟女久久久| 美女大奶头黄色视频| 毛片一级片免费看久久久久| 两个人免费观看高清视频 | 精品99又大又爽又粗少妇毛片| 少妇熟女欧美另类| 全区人妻精品视频| 男男h啪啪无遮挡| 精品一品国产午夜福利视频| 色吧在线观看| 午夜精品国产一区二区电影| 国产精品偷伦视频观看了| 亚洲欧美中文字幕日韩二区| 中文字幕人妻丝袜制服| 国产av国产精品国产| 另类亚洲欧美激情| 26uuu在线亚洲综合色| 亚洲欧美中文字幕日韩二区| 在线天堂最新版资源| 亚洲内射少妇av| 亚洲精品一区蜜桃| 午夜av观看不卡| 少妇 在线观看| 黄色日韩在线| 国产亚洲欧美精品永久| av线在线观看网站| 日本与韩国留学比较| 一区二区三区乱码不卡18| 亚洲欧美成人精品一区二区| 国产精品人妻久久久影院| 午夜精品国产一区二区电影| 一级,二级,三级黄色视频| 国产在视频线精品| 久久毛片免费看一区二区三区| 日韩人妻高清精品专区| 天美传媒精品一区二区| 日本欧美视频一区| 又大又黄又爽视频免费| 欧美3d第一页| 日产精品乱码卡一卡2卡三| 亚洲欧美一区二区三区国产| 精品国产一区二区三区久久久樱花| 国产精品三级大全| 一级av片app| 伊人亚洲综合成人网| 免费大片18禁| 又爽又黄a免费视频| 国产免费一级a男人的天堂| 在线观看免费高清a一片| 久久久久久久久久久丰满| 亚洲精品亚洲一区二区| 婷婷色综合www| 夫妻性生交免费视频一级片| 91精品伊人久久大香线蕉| 久久鲁丝午夜福利片| 国产综合精华液| 91精品一卡2卡3卡4卡| 亚州av有码| 亚洲人成网站在线播| av免费观看日本| 91精品国产九色| av在线观看视频网站免费| 啦啦啦中文免费视频观看日本| 国产精品99久久久久久久久| 一区二区av电影网| 亚洲av综合色区一区| 免费人妻精品一区二区三区视频| 日韩 亚洲 欧美在线| 亚洲欧美精品自产自拍| 国产高清国产精品国产三级| 亚洲国产毛片av蜜桃av| av在线观看视频网站免费| av女优亚洲男人天堂| 久久久国产精品麻豆| 18禁在线播放成人免费| 中文字幕久久专区| 精品一区二区免费观看| 另类精品久久| 精品熟女少妇av免费看| 高清欧美精品videossex| 99视频精品全部免费 在线| 亚洲国产精品一区三区| 久久精品熟女亚洲av麻豆精品| 视频区图区小说| 妹子高潮喷水视频| 亚洲伊人久久精品综合| 久热这里只有精品99| 我要看日韩黄色一级片| 国产成人freesex在线| 精品少妇内射三级| 两个人的视频大全免费| 国产亚洲一区二区精品| 极品人妻少妇av视频| 日韩电影二区| 多毛熟女@视频| 久久久久久久久久成人| 插阴视频在线观看视频| a级毛片在线看网站| 啦啦啦啦在线视频资源| 日本wwww免费看| 亚洲av成人精品一区久久| 丰满人妻一区二区三区视频av| 国产在线男女| av国产精品久久久久影院| 国产精品久久久久久久电影| 最近手机中文字幕大全| 男人舔奶头视频| 狠狠精品人妻久久久久久综合| 日本wwww免费看| 国产色婷婷99| 我要看日韩黄色一级片| 成人亚洲欧美一区二区av| 国产亚洲精品久久久com| 国产极品天堂在线| 久久精品国产鲁丝片午夜精品| 午夜久久久在线观看| 不卡视频在线观看欧美| 大片免费播放器 马上看| 亚洲精品aⅴ在线观看| 亚洲精品中文字幕在线视频 | 大香蕉97超碰在线| 久久久午夜欧美精品| 中文字幕亚洲精品专区| av又黄又爽大尺度在线免费看| 国产又色又爽无遮挡免| 久久午夜福利片| 欧美精品人与动牲交sv欧美| 午夜精品国产一区二区电影| 久久久国产一区二区| 精品少妇黑人巨大在线播放| 日韩免费高清中文字幕av| 免费高清在线观看视频在线观看| 十八禁高潮呻吟视频 | 国产一区二区三区综合在线观看 | 大片免费播放器 马上看| 男的添女的下面高潮视频| 一级av片app| 国产欧美另类精品又又久久亚洲欧美| 18+在线观看网站| 久久青草综合色| 大话2 男鬼变身卡| 人妻系列 视频| 国产一区二区三区av在线| 久久久a久久爽久久v久久| 丰满迷人的少妇在线观看| 国产成人精品福利久久| 人妻少妇偷人精品九色| 成人国产麻豆网| 中文字幕久久专区| 国精品久久久久久国模美| 国产精品一区二区性色av| 丰满饥渴人妻一区二区三| 中国三级夫妇交换| 高清视频免费观看一区二区| 2021少妇久久久久久久久久久| 日本-黄色视频高清免费观看| 啦啦啦啦在线视频资源| 国产一区亚洲一区在线观看| 不卡视频在线观看欧美| 成年人午夜在线观看视频| 欧美精品一区二区免费开放| 国产日韩欧美在线精品| 激情五月婷婷亚洲| 亚洲成人av在线免费| 久久久久国产精品人妻一区二区| 视频区图区小说| 亚洲人成网站在线观看播放| 国产免费一区二区三区四区乱码| 男女啪啪激烈高潮av片| 精品亚洲乱码少妇综合久久| 成人漫画全彩无遮挡| 日本免费在线观看一区| 性色av一级| 国产精品人妻久久久影院| 国产成人freesex在线| 麻豆成人午夜福利视频| 99热国产这里只有精品6| 亚洲欧美精品自产自拍| 香蕉精品网在线| 一边亲一边摸免费视频| 久久久久久久久久久免费av| 秋霞在线观看毛片| 丰满人妻一区二区三区视频av| 欧美激情国产日韩精品一区| 女性被躁到高潮视频| 少妇丰满av| 另类亚洲欧美激情| 一本久久精品| 国产熟女午夜一区二区三区 | 男的添女的下面高潮视频| 高清毛片免费看| 久久午夜综合久久蜜桃| 久久人妻熟女aⅴ| 18禁动态无遮挡网站| 高清av免费在线| 人人妻人人澡人人爽人人夜夜| 麻豆乱淫一区二区| 久久久久视频综合| www.av在线官网国产| 男人和女人高潮做爰伦理| 成人黄色视频免费在线看| 免费人成在线观看视频色| 黄色毛片三级朝国网站 | 蜜桃久久精品国产亚洲av| 噜噜噜噜噜久久久久久91| 熟女电影av网| 晚上一个人看的免费电影| 国产精品免费大片| 黑丝袜美女国产一区| 性色av一级| 国产国拍精品亚洲av在线观看| 亚洲成色77777| 国产美女午夜福利| 精品久久久久久电影网| a级片在线免费高清观看视频| 国产在视频线精品| 日韩中字成人| 国产精品人妻久久久久久| 日韩免费高清中文字幕av| 3wmmmm亚洲av在线观看| 国产在线男女| 国产精品久久久久成人av| 久久精品久久久久久噜噜老黄| 亚洲精品一二三| 日韩亚洲欧美综合| 最新中文字幕久久久久| 亚洲人成网站在线观看播放| 国产精品久久久久成人av| 免费播放大片免费观看视频在线观看| 熟女av电影| 亚洲欧美中文字幕日韩二区| 一级毛片 在线播放| 欧美激情极品国产一区二区三区 | 水蜜桃什么品种好|