• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonmonotonic anomalous Hall effect and anisotropic magnetoresistance in SrRuO3/PbZr0.52Ti0.48O3 heterostructures

    2023-11-02 08:12:08ZhenLiWang王振禮ChaoYangKang康朝陽CaiHongJia賈彩虹HaiZhongGuo郭海中andWeiFengZhang張偉風(fēng)
    Chinese Physics B 2023年10期
    關(guān)鍵詞:朝陽彩虹

    Zhen-Li Wang(王振禮), Chao-Yang Kang(康朝陽), Cai-Hong Jia(賈彩虹),Hai-Zhong Guo(郭海中), and Wei-Feng Zhang(張偉風(fēng)),?

    1Center for Topological Functional Materials,Henan University,Kaifeng 475004,China

    2Key Laboratory of Material Physics(Ministry of Education),School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450052,China

    Keywords: Berry curvature, electric field, anomalous Hall effect, anisotropic magnetoresistance,magnetization rotation

    1.Introduction

    Berry curvature in the conduction band of materials is an important physical concept in modern condensed matter physics, which is closely related to many novel physical properties of ferromagnetic materials.[1-4]When studying the Hall effect, the Berry curvature for magnetic material can be considered as a magnetic field in momentum space, leading to many interesting magnetotransport phenomena.[5-7]For example, it is well known that for the anomalous Hall effect (AHE) and the topological Hall effect(THE) in ferromagnet,[2,8-10]the anomalous Hall conductivity()is directly proportional to the Berry curvature integral of all occupied electron bands in Brillouin zone.[11]The amplitude and sign ofare especially sensitive to the electronic band structure, particularly in a ferromagnetic material with significant spin-orbit coupling.[12,13]In transition metal oxides,the coupling effects between lattice,charge,orbit,and spin degree of freedom greatly affect electronic structures,thus affecting the physical properties of materials.[14-16]Therefore,the strain and electric field can be considered as an effective method to modulate the Berry curvature and AHE.

    Perovskite oxides have been widely studied because of their intriguing and rich physical properties, such as superconductivity,magnetism,ferroelectricity,Berry curvature,and so on.[17-20]SrRuO3(SRO) is the only 4d transition metal oxide with ferromagnetism and metallicity among the many perovskite-structured oxides known to date.In SRO, the THE induced by skyrmions and the AHE related to Berry curvature have been reported.[19,21-26]Renet al.observed nonmonotonic behavior formed by the superposition of positive and negative polarity AHE signals in BiFeO3/SrRuO3heterostructures.[27]Mizunoet al.reported the realization of gating-induced changes in Berry curvature integral over the filled electronic states in BaTiO3/SrRuO3heterostructures.[28]Recently, Tianet al.demonstrated that the change of Berry curvature is closely related to the magnitude of the in-plane tensile strain or compressive strain of the SRO film.[29]In SRO films or related heterostructures,non-monotonic AHE behavior, which is directly related to the evolution of spin-rotating Berry curvature, has been observed only in SRO films grown on DyScO3substrates so far.The magnetization also changes with the external magnetic field.If the simultaneous modulation can be realized by strain and gating,it is not only helpful in building novel low-power spintronic devices but also an effective research strategy to achieve the modulation of Berry curvature and to explore the physical phenomena related to the magnetization rotation.Therefore,it is more than essential to further investigate the effects of epitaxial strain and electric field associated with ferroelectric Pb(Zr,Ti)O3on nonmonotonic AHE and magnetization rotation in SRO films.

    In the present study, we observed the strain-induced nonmonotonic anomalous Hall effect and the four-fold symmetry anisotropic magnetoresistance simultaneously in SrRuO3/PbZr0.52Ti0.48O3/La0.7Sr0.3MnO3heterostructures.We further revealed that the electric field can modulate the Berry curvature by inducing the rotation of the magnetization.Both the magnitude and sign of the anomalous Hall resistivity()can be effectively modulated by an electric field,which arises from the electric field-induced magnetization rotation in SRO, which further induces Berry curvature evolution.This work suggests that the strain and electric field manipulation ofcan be an effective pathway to explore the relationship between Berry curvature and magnetization rotation in SRO heterostructures.

    2.Methods

    The SRO, PbZr0.52Ti0.48O3(PZT), and La0.7Sr0.3MnO3(LSMO) films were deposited by the pulsed laser deposition(PLD, Adnano-Tek).The SrTiO3(STO) substrate was pretreated according to the procedure described in our previous work[30]to obtain TiO2-terminated surfaces.The SRO(~20 nm),PZT(~90 nm),and LSMO(~10 nm)films were grown at 650°C under an oxygen partial pressure of 10 Pa(the laser wavelength of 248 nm,the pulse repetition rate of 2 Hz,and the laser energy density of 1.8 J/cm2).Figure 1(a)shows the schematic diagram of the SRO/PZT/LSMO heterostructure grown on a TiO2-terminated SrTiO3(001) substrate.X-ray diffraction(XRD,Bruker D8 advance)with CuKαradiation was performed to determine the crystalline state of film.Surface morphology and ferroelectric property were investigated by a scanning probe microscope(SPM,Asylum Research 3D Infinity)with a conductive tip.The Hall effect and magnetoresistance were measured in a physical property measurement system(PPMS-9)with a rotator module.To obtain the angular dependence of the resistivity, the sample orientation was varied with magnetic field under a certain temperature and magnetic field.

    3.Results and discussion

    Figure 1(b)shows the XRDθ-2θscanning pattern of the SRO/PZT/LSMO heterostructure, where the (00l) diffraction peaks from the PZT film and the STO substrate are clearly observed.The diffraction peaks of SRO and LSMO films can be clearly seen in the enlarged region between the angles 42°and 49°in the inset of Fig.1(b).According to the Bragg diffraction equation,the lattice constant of thecaxis of the SRO film can be calculated to be about 3.924 °A.Since the lattice constant of the bulk SRO is 3.930 °A,the out-of-plane compressive strain in the SRO film of-0.15%is obtained.Furthermore, the inplane tensile strain of 0.16%is achieved from the Poisson ratio of 0.32.[31]As shown by the atomic force microscope measurement shown in Fig.1(c),the surface of SRO/PZT/LSMO is quite flat,with a roughness of about 0.4 nm,implying that a high-quality SRO/PZT/LSMO heterostructure is obtained.

    Fig.1.(a) The schematic diagram, (b) the XRD pattern, (c) the AFM height topographic images of the SRO/PZT/LSMO heterostructure (image size:3 μm×3 μm), (d) the temperature-dependent longitudinal resistivity (ρxx-T) and I-V curves of the SRO/PZT/LSMO heterostructure, (e) the magnetic field-dependent MR of SRO/PZT/LSMO heterostructure at different temperatures, and (f) the magnetic field-dependent MR of the SRO film at different temperatures.

    As shown in Fig.1(a), the LSMO conductive layer is completely covered by the ferroelectric insulating layer PZT.Moreover, the insulating behavior is demonstrated in the SRO/PZT/LSMO heterostructure in the inset of Fig.1(c).Therefore, we can rule out the influence of the LSMO layer on the SRO/PZT/LSMO heterostructure in the transport measurement.Figure 1(d) shows the temperature dependence of the longitudinal resistivity of the SRO/STO sample and the SRO/PZT/LSMO/STO sample.A clear kink at 148 K can be observed for SRO/STO, which is consistent with the previously reported result in SRO film.[16,32,33]For SRO/PZT/LSMO/STO,a weak kink at 157 K is observed.The kink corresponds to the Curie temperature (TC), at which the phase transition from the paramagnetic to the ferromagnetic state occurs.TheTCvalue of the in-plane tensile-strained SRO film is higher than that of the in-plane compressivestrained SRO film on the STO substrate, which is consistent with previous result about the enhancement ofTCby tensile strain.[34]Figure 1(e) shows the magnetic-field dependence of magnetoresistance (MR) [MR = (RH-R)/R)], which is measured at temperatures ranging from 10 K to 100 K.For the SRO/PZT/LSMO heterostructure,the out-of-plane MR exhibits a nonmonotonic variation, with positive MR observed in the low magnetic field region.This result is in agreement with the previous result of SRO film with in-plane tensile strain.[14,19]As shown in Fig.1(f), for the SRO film grown on STO substrates under compressive strain, we can observe standard negative MR with butterfly-shaped hysteresis.These clearly indicate that there are two competing MR mechanisms in the SRO/PZT/LSMO heterostructure at different temperatures.The positive MR effect in low magnetic field and the negative MR effect in high magnetic field cause magnetic easy axis to deviate from out-of-plane with the increase of magnetic field.This point will be further clarified by the anisotropic magnetoresistance(AMR)measurements.

    The schematic diagram for the AMR measurement is shown in Fig.2(a).To demonstrate that the magnetic easy axis of the SRO/PZT/LSMO heterostructure lies in the plane,we performθ-dependent AMR measurements.The angleθis defined as the angle between the magnetic field and the film’s normal direction in the(010)plane,andθ=0°defined as the external magnetic fieldHperpendicular to the film surface.The reversal of magnetization leads to peaks inρxxaround the easy axis when the angle between the easy axis and the field exceeds 90°.[29,35,36]The AMR of the SRO/PZT/LSMO heterostructure shows hysteretic peaks nearθ= 180°[see Fig.2(b)], indicating that the magnetic easy axis is close to the in-plane direction, which accords with an in-plane tensile strain derived from the XRD measurement.On the contrary,the AMR of the SRO film shows two hysteresis peaks nearθ=90°and 270°, respectively [see Fig.2(c)], implying that the magnetic easy axis is close to the out-of-plane direction,which is consistent with the previous result.[35]Then,we performφ-dependent AMR measurements.The angleφis defined as the angle between the magnetic field and the film’s normal direction in the(100)plane, andφ=0°is defined as the external magnetic fieldHperpendicular to the film surface.Figures 2(d)-2(f) show the angle (φ)-dependent AMR of the SRO/PZT/LSMO heterostructure at 40 K under the magnetic fields of 1 T,4 T,and 8 T,respectively.Under a low magnetic field of 1 T,the AMR curve shows a two-fold symmetry,and it presents a four-fold symmetry feature under a high magnetic field of 4 T.The four-fold symmetry feature of the AMR curve is more pronounced at higher magnetic fields.The AMR curve can be well fitted by the following equation:

    whereC2φandC4φrepresent the amplitude of two-fold and four-fold symmetric AMR,respectively,C0,φ1,andφ2are the coefficients.[36-39]It turns out that the above AMR curves can be fitted very well by Eq.(1).According to the spin dependent scattering theory,[40,41]the resistivity of a magnetic system is closely related to the alignments of spin moments and the free energy as well.The free energy of a system includes magnetocrystalline anisotropy energy (EK), Zeeman energy(EH),and exchange energy(Eex),i.e.,E=EK+EH+Eex.[42]For a fully magnetized ferromagnetic system, the magnetic moments point to the same direction at the same time, and the exchange energy is negligible.The magnetocrystalline anisotropy energy varies along crystal axis direction in high magnetic field.The easy axis has the lowest magnetocrystalline anisotropy energy, while the hard axis has the highest one.The Zeeman energy in ferromagnetic system is related to the applied magnetic field.When the magnetic moment points to the same direction as the external field direction,the Zeeman energy reaches its lowest value.Therefore, for the SRO/PZT/LSMO heterostructure, the main attribution to AMR isEKandEH.We speculate that the four-fold symmetric behavior in the AMR curve results from the rotation of the magnetization due to the competition between the magnetocrystalline anisotropy energy and the Zeeman energy.[39]The two-fold symmetric AMR is mainly attributed to the uniaxial anisotropy with the easy axis lying in the plane.With the increase of the magnetic field,SRO forms a spin canting state and the magnetization tends to align along the external field magnetic direction, albeit with some deviation.[43]When the magnetic field is perpendicular to the heterostructure plane,the equivalent spin-canting state will appear both at the angle above or below 90°, which means that the two AMR peaks will be revealed in the vicinity of 90°and a minimum AMR will be at 90°.When the angle(φ)is rotated to 90°,the magnetic field is parallel to the SRO/PZT/LSMO heterostructure plane.The spins tend to be arranged regularly in the plane,so the AMR is in a low state.Thus, a clear four-fold dominant symmetric AMR is observed under a high magnetic field of 8 T at the low temperature of 40 K.

    Fig.2.(a)Schematic diagram of out-of-plane anisotropic magnetoresistance measurement.Angular θ-dependent AMR for(b)SRO/PZT/LSMO heterostructures and(c)SRO flims measured at 40 K withμ0H=1 T,with angular φ-dependent AMR of SRO/PZT/LSMO heterostructures measured at(d)1 T,(e)4 T,and(f)8 T at 40 K,and blue solid lines representing ftiting results.

    We further investigate the effect of the polarization electric field on thein SRO/PZT/LSMO heterostructure.We choose the Ag electrode on the back of the STO as a bottom electrode and the SRO as a top electrode as shown in Fig.1(a).A vertical electric field of +2.6 kV/cm can be generated by applying a negative bias to the top electrode of the sample.As shown in Fig.4(a), as the positive electric field gradually increases, the intersecting hump-like features are obviously suppressed and theare enhanced.On the contrary, the intersecting hump-like features can be clearly observed in the downward polarization under a negative electric field, which is consistent with the pristine state.It is worth noting that the magnitude ofis larger than that of the pristine state whether this electric field is-2 kV/cm or-2.6 kV/cm.This can be understood from the fact the pristine state is not in fully downward polarization.Using a piezoelectric force microscope, the spontaneous polarization of PZT can be well-oriented and switched.The out-of-plane phase images are acquired after applying a written bias of±8 V to a PFM tip over an area of 3 μm×3 μm.In Fig.4(g), we show that the pristine ferroelectric polarization is downward.Figure 4(h)shows the phase images of the PZT film after being polarized with an electric field of+2.6 kV/cm generated by a negative bias.We observed that the phase images of the central region with-8 V applied are almost completely the same as those of the unbiased region,and the phase flip contrast of the PZT film is close to 180°,indicating that the PZT film can be completely polarized under an electric field of +2.6 kV/cm,and the polarization direction is vertically upward.Then, we apply the negative bias to the bottom electrode.As shown in Fig.4(i), the phase images of the PZT film after being polarized with an electric field of-2.6 kV/cm.We observed that the phase images of the central region with-8 V applied are almost completely the same as those of the unbiased region, indicating that the polarization direction of the PZT film is reversed downward under an electric field of-2.6 kV/cm.

    As shown in Fig.4(a),the intersecting hump-like features are obviously suppressed or strengthened by applying a positive electric field or a negative electric field,respectively.More importantly,at a high magnetic field of-9 T,the sign ofis reversed from negative to positive at the positive electric field.Furthermore,when the electric field is switched back to the negative electric field, the sign ofis reversed from positive to negative.As shown in Fig.4(b), the MR curves of SRO/PZT/LSMO heterostructures also have corresponding features in the magnetic field region where the intersecting hump-like features appear in thecurves.At the same time,the intersecting features can be clearly seen to disappear or appear by applying positive electric field or negative electric field,respectively.Figure 4(c)shows the electric-field dependence of(~-) for the SRO/PZT/LSMO heterostructures at 40 K.Similarly, the sign of(taken at-9 T) remains positive at the negative electric fields and turns negative at the positive electric fields.Compared with the value oat a zero electric field, it reduces by about 19.4% at the electric field of-2.6 kV/cm but 483.3% at the electric field of+2.6 kV/cm,respectively.

    In view of the fact that strain controls magnetic easy axis,[29]it is speculated that the sign reversal and the intersecting hump-like features of theare related to the magnetization rotation.To further clarify the contribution of magnetization rotation to the,the AHE is measured under inclined magnetic fields at an angle ofφwith respect to the normal of films.In Fig.4(d),the intersecting hump-like features are obviously suppressed at a small tilting angle (φ=30°),while a large tilting angle (φ= 50°) leads the intersecting hump-like features to reappear.Similarly,in Fig.4(e),the intersecting features of the MR curves are obviously suppressed at a small tilting angle (φ=30°), while a large tilting angle(φ=50°)leads the intersecting features to reappear.It should be noted that the change characteristics of angle-dependent AHE and MR are consistent with the those of AHE and MR modulated by external electric fields.Based on the angledependent AHE measurement,the intersecting hump-like features are indeed related to the magnetization rotation.Theis very sensitive to the angle (α) between the magnetization and the out-of-plane sample normal, exhibiting nonmonotonical dependence, which should be attributed to the fact that Fermi level and electronic band structure are modified with the Zeeman energy.[29]With the increase of the magnetic field, SRO forms a spin canting state and the magnetization tends to align with the external magnetic field direction,albeit with some deviations.[43]

    whereΩz(k) is thez-component of the Berry curvature.[1]The Berry curvature can also be modulated by rotating magnetization.[29]Therefore, the sign change ofin SRO/PZT/LSMO heterostructure may be closely related to the electronic band structure with the Zeeman energy.The rotation of magnetization in real space leads to Berry curvature evolution.These results demonstrate that the electric-fieldinduced sign reversal of the(taken at-9 T) and the intersecting hump-like features are indeed related to the magnetization rotation.Therefore,the electric field can effectively modulate the Berry curvature through the magnetization rotation, which provides a material basis for the application of spintronic devices.

    4.Conclusions

    In summary, SRO films with in-plane tensile strain can be obtained by epitaxial growth of LSMO and PZT layers on STO substrates.The anisotropic magnetoresistance of the SRO/PZT/LSMO heterostructure exhibits a four-fold symmetric in a high magnetic field of 8 T.Furthermore, the anomalous Hall resistivity of the SRO/PZT/LSMO heterostructure exhibits a nonmonotonic behavior with the magnetic field.In a high magnetic field of-9 T, the sign of anomalous Hall conductivity is reversed owing to the change of electric field.The experimental results suggest that these interesting physical phenomena induced by electric field are attributed to the rotation of magnetization, which results the evolution of the Berry curvature.This work provides a controllable approach for modulating the magnetization and AHE in SrRuO3based heterostructures.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.11974099), the Intelligence Introduction Plan of Henan Province, China in 2021 (Grant No.CXJD2021008), the Plan for Leading Talent of Fundamental Research of the Central China in 2020, and the Key Scientific Research Project of Colleges and Universities in Henan Province,China(Grant No.21A140005).

    猜你喜歡
    朝陽彩虹
    美是童年朝陽
    迎朝陽
    科教新報(2021年22期)2021-07-21 15:09:05
    阮春黎 迎著朝陽,一直跑
    海峽姐妹(2020年11期)2021-01-18 06:16:04
    Seesaw Cofee朝陽大悅城
    不許耍賴
    彩虹
    勇于認(rèn)錯(三)
    樂于助人的彩虹花
    為什么雨后會有彩虹?
    來,一起收割彩虹
    天堂影院成人在线观看| 99热6这里只有精品| 免费在线观看成人毛片| 亚洲av成人精品一区久久| 久久精品国产鲁丝片午夜精品| 六月丁香七月| www.色视频.com| 亚洲精品亚洲一区二区| 色5月婷婷丁香| 久久久久久久亚洲中文字幕| 十八禁国产超污无遮挡网站| 亚洲中文字幕日韩| 长腿黑丝高跟| 久久国内精品自在自线图片| 国产成人a区在线观看| 亚洲成人av在线免费| 国产一区二区在线观看日韩| 日本爱情动作片www.在线观看| 能在线免费观看的黄片| 国产乱来视频区| 狂野欧美激情性xxxx在线观看| 亚洲成人av在线免费| 如何舔出高潮| 久久精品久久精品一区二区三区| 久久久久久伊人网av| 亚洲av成人精品一二三区| 色哟哟·www| 日韩欧美精品免费久久| 国产高清三级在线| 久久久欧美国产精品| 真实男女啪啪啪动态图| 一个人免费在线观看电影| 深夜a级毛片| 亚洲精品日韩在线中文字幕| av.在线天堂| 黄片无遮挡物在线观看| 日韩成人av中文字幕在线观看| 久久精品夜色国产| 久久久久久久久久成人| 精品久久久久久久久亚洲| 亚洲精品国产成人久久av| 免费看美女性在线毛片视频| 九色成人免费人妻av| 天天躁夜夜躁狠狠久久av| 日韩,欧美,国产一区二区三区 | 小说图片视频综合网站| 高清视频免费观看一区二区 | 97超视频在线观看视频| 久久韩国三级中文字幕| 69人妻影院| 精品久久久久久久人妻蜜臀av| 国产探花在线观看一区二区| 看片在线看免费视频| 亚洲三级黄色毛片| 精品人妻偷拍中文字幕| 国产视频首页在线观看| 欧美成人精品欧美一级黄| 亚洲最大成人中文| av国产免费在线观看| 搡老妇女老女人老熟妇| 99久久成人亚洲精品观看| 国产高清不卡午夜福利| 亚洲18禁久久av| 日韩亚洲欧美综合| 日韩在线高清观看一区二区三区| 日本五十路高清| 美女xxoo啪啪120秒动态图| 久久精品久久久久久久性| 久久久久免费精品人妻一区二区| 男人舔女人下体高潮全视频| 性色avwww在线观看| 十八禁国产超污无遮挡网站| 成人毛片a级毛片在线播放| 又粗又硬又长又爽又黄的视频| 男人和女人高潮做爰伦理| 国产色婷婷99| 老司机影院毛片| 国产亚洲精品久久久com| 草草在线视频免费看| 色综合亚洲欧美另类图片| 久久婷婷人人爽人人干人人爱| 久久99蜜桃精品久久| 国产精品福利在线免费观看| 久久久久久九九精品二区国产| 成人毛片60女人毛片免费| 日本免费在线观看一区| 91久久精品电影网| 国产av在哪里看| 国产免费福利视频在线观看| kizo精华| 联通29元200g的流量卡| 观看免费一级毛片| 免费av不卡在线播放| 97超碰精品成人国产| 国产一区有黄有色的免费视频 | 天天躁夜夜躁狠狠久久av| 一级黄色大片毛片| 国产黄片美女视频| 欧美日本亚洲视频在线播放| 亚洲熟妇中文字幕五十中出| 久久久久久久久久黄片| 哪个播放器可以免费观看大片| 日本黄色视频三级网站网址| 欧美最新免费一区二区三区| 纵有疾风起免费观看全集完整版 | 亚洲性久久影院| 2021天堂中文幕一二区在线观| 一个人免费在线观看电影| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久久久免费av| 少妇被粗大猛烈的视频| 日韩大片免费观看网站 | 午夜a级毛片| 村上凉子中文字幕在线| 亚洲精品,欧美精品| 亚洲乱码一区二区免费版| 国产极品天堂在线| av免费观看日本| 免费av不卡在线播放| 亚洲成色77777| 成人高潮视频无遮挡免费网站| 伦精品一区二区三区| 中文亚洲av片在线观看爽| 免费观看在线日韩| 国产精品国产三级专区第一集| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久99精品国语久久久| 亚洲精品aⅴ在线观看| 精品国产一区二区三区久久久樱花 | 欧美成人一区二区免费高清观看| 国产精品久久电影中文字幕| 亚洲精华国产精华液的使用体验| 国产亚洲av片在线观看秒播厂 | 亚洲国产欧美在线一区| 天堂√8在线中文| 草草在线视频免费看| 六月丁香七月| 亚洲精华国产精华液的使用体验| 亚洲av.av天堂| 亚洲精品影视一区二区三区av| 久久人人爽人人片av| 美女cb高潮喷水在线观看| 嫩草影院入口| 一个人观看的视频www高清免费观看| 插阴视频在线观看视频| 国产人妻一区二区三区在| 男人狂女人下面高潮的视频| 网址你懂的国产日韩在线| 在线免费观看的www视频| 精品人妻熟女av久视频| 久久久久久久久久久免费av| 黑人高潮一二区| 91精品伊人久久大香线蕉| 91久久精品国产一区二区成人| 丰满人妻一区二区三区视频av| 国产成人免费观看mmmm| 国产精品,欧美在线| 国产成人91sexporn| 91久久精品国产一区二区成人| 十八禁国产超污无遮挡网站| 美女大奶头视频| 日韩av在线大香蕉| 免费看日本二区| 久久精品国产鲁丝片午夜精品| 麻豆精品久久久久久蜜桃| av女优亚洲男人天堂| 精品人妻熟女av久视频| 免费黄色在线免费观看| 中文在线观看免费www的网站| 国内精品一区二区在线观看| 久久久久久久久久久免费av| 日韩一区二区视频免费看| 日韩一区二区视频免费看| 亚洲最大成人中文| 网址你懂的国产日韩在线| 日本与韩国留学比较| av卡一久久| 青春草视频在线免费观看| 中文天堂在线官网| 亚洲国产精品专区欧美| 日韩中字成人| av国产免费在线观看| 美女黄网站色视频| 国国产精品蜜臀av免费| 91久久精品国产一区二区成人| 在现免费观看毛片| 国产精品99久久久久久久久| 99在线人妻在线中文字幕| 国产精品久久久久久久久免| 日韩av不卡免费在线播放| 成年女人永久免费观看视频| 淫秽高清视频在线观看| 又粗又硬又长又爽又黄的视频| 日本五十路高清| 男人舔女人下体高潮全视频| 国产精品一及| 亚洲av熟女| 中文字幕精品亚洲无线码一区| 特大巨黑吊av在线直播| 建设人人有责人人尽责人人享有的 | 色综合色国产| 日本与韩国留学比较| 91久久精品国产一区二区三区| 亚洲av一区综合| av在线天堂中文字幕| 色播亚洲综合网| 久久久久九九精品影院| 一级毛片我不卡| 麻豆精品久久久久久蜜桃| 国内精品一区二区在线观看| 少妇丰满av| 久久久精品欧美日韩精品| 神马国产精品三级电影在线观看| 汤姆久久久久久久影院中文字幕 | 亚洲在线自拍视频| 精品熟女少妇av免费看| 精品久久久久久电影网 | 91精品伊人久久大香线蕉| 天天躁日日操中文字幕| 亚洲国产精品成人久久小说| 女人被狂操c到高潮| 国产成人精品一,二区| 精品人妻偷拍中文字幕| 亚洲精品国产成人久久av| 欧美成人一区二区免费高清观看| 蜜桃亚洲精品一区二区三区| 国产探花极品一区二区| 国产亚洲午夜精品一区二区久久 | 少妇高潮的动态图| 小说图片视频综合网站| av.在线天堂| 日韩欧美 国产精品| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲高清免费不卡视频| 高清视频免费观看一区二区 | 国产午夜福利久久久久久| av福利片在线观看| 国产高潮美女av| 亚洲成人精品中文字幕电影| 99热网站在线观看| 亚洲国产欧美人成| 精品久久久久久成人av| 亚洲中文字幕一区二区三区有码在线看| 精品久久久久久电影网 | 在线免费观看不下载黄p国产| 尤物成人国产欧美一区二区三区| 久久精品国产亚洲av涩爱| 国产极品精品免费视频能看的| 亚洲欧美日韩无卡精品| 久久韩国三级中文字幕| 国产大屁股一区二区在线视频| 天天一区二区日本电影三级| 久久精品91蜜桃| 国内精品美女久久久久久| 3wmmmm亚洲av在线观看| 国产精品女同一区二区软件| 午夜激情欧美在线| 亚洲av成人精品一区久久| 麻豆久久精品国产亚洲av| 99九九线精品视频在线观看视频| 高清毛片免费看| 熟女电影av网| 国产精品久久久久久精品电影| 天堂√8在线中文| 在线观看美女被高潮喷水网站| 日韩高清综合在线| 成人鲁丝片一二三区免费| 精品久久久噜噜| 在线a可以看的网站| 国产一区二区亚洲精品在线观看| 久久99热6这里只有精品| 国产伦一二天堂av在线观看| 国产精品国产高清国产av| 我的老师免费观看完整版| 蜜臀久久99精品久久宅男| 中文精品一卡2卡3卡4更新| 日本av手机在线免费观看| 欧美3d第一页| 国产色爽女视频免费观看| 国内精品美女久久久久久| 性插视频无遮挡在线免费观看| 欧美日韩国产亚洲二区| 国产一区亚洲一区在线观看| 麻豆成人午夜福利视频| 久久久久久久久久久丰满| 国产成人精品一,二区| 伦理电影大哥的女人| 日韩av不卡免费在线播放| 99在线人妻在线中文字幕| 国产高清有码在线观看视频| 亚洲av电影不卡..在线观看| 精品国产露脸久久av麻豆 | 欧美成人精品欧美一级黄| 久久这里有精品视频免费| 午夜福利网站1000一区二区三区| 国产亚洲午夜精品一区二区久久 | 黄片无遮挡物在线观看| av女优亚洲男人天堂| 色视频www国产| av在线蜜桃| 国产成人a∨麻豆精品| 欧美激情国产日韩精品一区| 青青草视频在线视频观看| 久久久a久久爽久久v久久| 国产免费福利视频在线观看| 五月玫瑰六月丁香| 亚洲欧美清纯卡通| 国产中年淑女户外野战色| a级一级毛片免费在线观看| 国产精品综合久久久久久久免费| 色综合亚洲欧美另类图片| 免费搜索国产男女视频| 精品久久久久久久久久久久久| 国产爱豆传媒在线观看| 一本一本综合久久| av.在线天堂| 亚洲五月天丁香| 成人高潮视频无遮挡免费网站| 精品久久国产蜜桃| 国产人妻一区二区三区在| 国产成人a区在线观看| www.av在线官网国产| av播播在线观看一区| 国产精品精品国产色婷婷| 久热久热在线精品观看| 国语自产精品视频在线第100页| 国产三级中文精品| 综合色av麻豆| 又黄又爽又刺激的免费视频.| 亚洲欧洲国产日韩| 高清毛片免费看| 久久精品国产自在天天线| 久久精品国产99精品国产亚洲性色| 午夜日本视频在线| 非洲黑人性xxxx精品又粗又长| 国产精品1区2区在线观看.| 国产亚洲午夜精品一区二区久久 | av在线亚洲专区| 午夜福利网站1000一区二区三区| 少妇的逼好多水| 99热6这里只有精品| 国产成人精品一,二区| 中文天堂在线官网| 一本久久精品| 美女被艹到高潮喷水动态| 亚洲中文字幕日韩| 亚洲精品乱久久久久久| 变态另类丝袜制服| 国产老妇伦熟女老妇高清| 中文资源天堂在线| 自拍偷自拍亚洲精品老妇| 亚洲熟妇中文字幕五十中出| videossex国产| 国产精品久久电影中文字幕| 国产av码专区亚洲av| av免费在线看不卡| 国产精品久久视频播放| 99久久九九国产精品国产免费| 在线观看美女被高潮喷水网站| 色5月婷婷丁香| 99九九线精品视频在线观看视频| 欧美潮喷喷水| 精品久久久久久电影网 | 欧美高清成人免费视频www| 免费观看在线日韩| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99久久精品国产国产毛片| 日本一本二区三区精品| 精品午夜福利在线看| 直男gayav资源| 草草在线视频免费看| 91精品国产九色| 1000部很黄的大片| 舔av片在线| 欧美3d第一页| 欧美+日韩+精品| 亚洲精品成人久久久久久| 国产免费视频播放在线视频 | 99热6这里只有精品| 欧美激情久久久久久爽电影| 天天躁日日操中文字幕| 高清午夜精品一区二区三区| 男人和女人高潮做爰伦理| 精品一区二区三区人妻视频| 国产精品一区www在线观看| 大话2 男鬼变身卡| 人人妻人人看人人澡| 免费黄网站久久成人精品| 九九在线视频观看精品| 最近最新中文字幕免费大全7| 91精品伊人久久大香线蕉| 波多野结衣巨乳人妻| 亚洲国产欧美在线一区| 国产在线男女| 一级二级三级毛片免费看| 国产精品麻豆人妻色哟哟久久 | 中文字幕亚洲精品专区| 国产伦精品一区二区三区四那| 久久精品人妻少妇| 丝袜美腿在线中文| 欧美高清成人免费视频www| 久久亚洲精品不卡| 国产淫片久久久久久久久| 亚洲欧美日韩东京热| 日韩成人av中文字幕在线观看| 伦精品一区二区三区| 日日干狠狠操夜夜爽| 网址你懂的国产日韩在线| 国产精品久久视频播放| 亚洲欧美精品自产自拍| 狂野欧美白嫩少妇大欣赏| 只有这里有精品99| 久久久国产成人免费| h日本视频在线播放| 国产av不卡久久| 建设人人有责人人尽责人人享有的 | 视频中文字幕在线观看| 久久精品国产鲁丝片午夜精品| 又粗又爽又猛毛片免费看| 亚洲婷婷狠狠爱综合网| 麻豆一二三区av精品| 精品人妻视频免费看| 插阴视频在线观看视频| 大香蕉久久网| 久久久精品94久久精品| 小蜜桃在线观看免费完整版高清| 国产精品精品国产色婷婷| 两性午夜刺激爽爽歪歪视频在线观看| 精品久久久久久久末码| 午夜福利网站1000一区二区三区| 国产大屁股一区二区在线视频| 欧美区成人在线视频| 午夜精品在线福利| 国产精品一区二区性色av| 午夜老司机福利剧场| 搞女人的毛片| 成人特级av手机在线观看| 亚洲国产精品国产精品| 日本五十路高清| 日韩欧美精品免费久久| 亚洲,欧美,日韩| 国产成人福利小说| 亚洲精品乱码久久久v下载方式| 亚洲自拍偷在线| 午夜爱爱视频在线播放| 白带黄色成豆腐渣| 久久久精品欧美日韩精品| 小蜜桃在线观看免费完整版高清| 国产精品精品国产色婷婷| 免费人成在线观看视频色| 国产精品一及| 国产精品伦人一区二区| 91久久精品电影网| 69av精品久久久久久| 日本一本二区三区精品| 久久精品久久久久久噜噜老黄 | 少妇高潮的动态图| 成人特级av手机在线观看| 十八禁国产超污无遮挡网站| 亚洲国产欧美在线一区| 欧美潮喷喷水| 国产精品人妻久久久影院| 国产91av在线免费观看| 国内少妇人妻偷人精品xxx网站| 女人十人毛片免费观看3o分钟| 黄色欧美视频在线观看| 久久99蜜桃精品久久| 午夜免费激情av| 久久久久国产网址| 麻豆国产97在线/欧美| 国产高清三级在线| 久久精品夜夜夜夜夜久久蜜豆| 日本黄色片子视频| 国内精品美女久久久久久| 色播亚洲综合网| 亚洲三级黄色毛片| 国产成人免费观看mmmm| 国产一级毛片在线| 日韩av在线免费看完整版不卡| 一区二区三区免费毛片| 中国美白少妇内射xxxbb| 国产精品一区二区三区四区久久| 国产激情偷乱视频一区二区| 久久6这里有精品| 日本-黄色视频高清免费观看| 一级黄片播放器| 欧美日韩精品成人综合77777| 尤物成人国产欧美一区二区三区| 久久久久久伊人网av| 久久久久久久久久久丰满| 少妇人妻一区二区三区视频| 毛片女人毛片| 亚洲欧美日韩东京热| 国产精品人妻久久久影院| 亚洲av电影不卡..在线观看| 国产乱人视频| 老司机影院成人| 美女脱内裤让男人舔精品视频| 国产成人a∨麻豆精品| 国产精品一区二区三区四区免费观看| 亚洲精品影视一区二区三区av| 日韩欧美 国产精品| 欧美xxxx性猛交bbbb| 日韩av在线免费看完整版不卡| 国产精品久久久久久精品电影小说 | 欧美高清性xxxxhd video| 欧美精品一区二区大全| 成人av在线播放网站| 天天躁夜夜躁狠狠久久av| 久久精品夜色国产| 又粗又爽又猛毛片免费看| 少妇人妻精品综合一区二区| 亚洲精品日韩在线中文字幕| 麻豆精品久久久久久蜜桃| 欧美精品一区二区大全| 国产精品熟女久久久久浪| 高清午夜精品一区二区三区| 成人无遮挡网站| 插逼视频在线观看| 日日摸夜夜添夜夜爱| 欧美激情久久久久久爽电影| 一级毛片久久久久久久久女| 免费av观看视频| 一级毛片电影观看 | 亚洲欧洲日产国产| 国产精品国产高清国产av| 亚洲国产色片| 亚洲精品成人久久久久久| 一级av片app| 精品人妻视频免费看| 久久草成人影院| 久久久午夜欧美精品| 成人性生交大片免费视频hd| 国产精品久久久久久久电影| 亚洲高清免费不卡视频| 国产精品乱码一区二三区的特点| 国国产精品蜜臀av免费| 在线播放国产精品三级| 国产精品久久久久久精品电影| 国产69精品久久久久777片| 久久热精品热| 久久精品夜色国产| eeuss影院久久| 一级毛片aaaaaa免费看小| 日韩av在线大香蕉| 又粗又爽又猛毛片免费看| 国产久久久一区二区三区| 少妇的逼好多水| 麻豆成人av视频| 一级毛片久久久久久久久女| 国产精品99久久久久久久久| 噜噜噜噜噜久久久久久91| 国产精品野战在线观看| 五月玫瑰六月丁香| 级片在线观看| 亚洲美女视频黄频| 中文字幕免费在线视频6| 亚洲精品日韩av片在线观看| 色视频www国产| 国产精品一区二区性色av| 国产精品嫩草影院av在线观看| 欧美一区二区精品小视频在线| 午夜福利成人在线免费观看| 免费av毛片视频| 久久久a久久爽久久v久久| 国产成人精品婷婷| 成人欧美大片| 激情 狠狠 欧美| 人人妻人人看人人澡| 18禁在线播放成人免费| 成人午夜精彩视频在线观看| 男女边吃奶边做爰视频| 国产探花在线观看一区二区| АⅤ资源中文在线天堂| 亚洲丝袜综合中文字幕| 一边亲一边摸免费视频| 国产激情偷乱视频一区二区| 成年女人永久免费观看视频| 亚洲国产日韩欧美精品在线观看| 欧美性猛交╳xxx乱大交人| 赤兔流量卡办理| 日韩强制内射视频| 精品少妇黑人巨大在线播放 | 国产精品一区二区在线观看99 | 乱人视频在线观看| 内射极品少妇av片p| 一区二区三区四区激情视频| 国内精品一区二区在线观看| 国产免费视频播放在线视频 | 国产伦一二天堂av在线观看| 久久久精品欧美日韩精品| 亚洲无线观看免费| 亚洲欧美日韩卡通动漫| 精品不卡国产一区二区三区| 在现免费观看毛片| 久久欧美精品欧美久久欧美| 国产精品一二三区在线看| av在线观看视频网站免费| 超碰97精品在线观看| 黄片wwwwww| 色尼玛亚洲综合影院| 免费不卡的大黄色大毛片视频在线观看 | 色综合站精品国产| 欧美日本视频| 久久6这里有精品| .国产精品久久| 国产片特级美女逼逼视频| 蜜臀久久99精品久久宅男| 中文字幕制服av| 久久久久久久久大av| 亚洲三级黄色毛片| 久久精品综合一区二区三区| 中文资源天堂在线| 视频中文字幕在线观看| 网址你懂的国产日韩在线|