• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    深度學(xué)習(xí)引導(dǎo)的高通量分子篩選用于鍶銫的選擇性配位

    2023-11-01 06:58:36張智淵邱雨晴畢可鑫胡孔球戴一陽石偉群
    核化學(xué)與放射化學(xué) 2023年5期
    關(guān)鍵詞:高能物理四川大學(xué)工程學(xué)院

    張智淵,董 越,邱雨晴,畢可鑫,胡孔球,戴一陽,周 利,劉 沖,*,吉 旭,石偉群

    1.四川大學(xué) 化學(xué)工程學(xué)院,四川 成都 610065;2.中國(guó)科學(xué)院 高能物理研究所,北京 100049

    To meet the carbon neutral agenda globally, development and expansion of nuclear power remains an ideal option to provide electricity for an ever-growing world population while minimizing environmental impacts during operation[1]. State-of-the-art nuclear technologies that hold the promise of a future of clean energy require a closed fuel cycle for safety and sustainability reasons among others, necessitating more research on advanced reprocessing of spent nuclear fuel(SNF). Over the past seven decades, various SNF reprocessing processes have been established to recover critical radionuclides and to reduce radioactive wastes, such as PUREX(plutonium-uranium extraction), UNEX(universal extraction), FPEX(fission product extraction), etc[2]. Among all radionuclides in the high-level liquid waste(HLLW) generated from SNF reprocessing,90Sr and137Cs are major sources for the heat load and radiation[3-5]. Therefore, processes like UNEX were employed to separate90Sr and137Cs simultaneously to lessen the raffinates’ radioactivity, beneficial for downstream operations[3]. Additionally, a further separation between chemically similar90Sr and137Cs could produce valuable materials for radiation therapy, radioisotope thermoelectric generators, industrial gauging devices, etc[3].

    In fact, for many SNF reprocessing scenarios, differential coordinative chemical properties of various species are usually the basis to realize successful separation. The same principle is applicable for Sr/Cs separation[6-7], where a large number of coordinating ligands need to be assessed and compared to identify ones with selectivity to achieve preferential coordination(for extraction or crystallization). In our previous work, a machine-learning-guided methodology was developed to rank bridging linkers to form coordination polymers for crystallizing separation of Sr2+over Cs+, in which strengths of coordination bonds were found to be critical in evaluating and comparing different linker molecules’ coordinative affinities and selectivity[8]. Continuing on that, we now propose a more comprehensive study to reliably assess and rank ligands based on their coordinative affinities toward Sr/Cs, using a deep learning(DL) architecture. Specifically, we employ atransformerframework that originated in the field of natural language processing(NLP)[9], specializing in the identification of meaningful segments(e.g., functional groups in molecules) and extraction of contextual information(e.g., structure-property relationships). Moreover, considering the complexities of DL(i.e.,transformer) models and demanding computational burdens thereof, Bayesian optimization(BO) was applied to improve efficiency of the training process[10-11].

    An overview of the workflow is shown in Fig.1. The present study started with mining the crystal data of the Cambridge Structural Database(CSD)[12], from which we retrieved information regarding relevant metal-ligand(M-L, M=select 1A/2A metals) pairs and corresponding ligands for subsequent analysis. Next, we trained DL models(i.e.,transformer) using said M-L pairs, which enabled us to systematically evaluate the coordination capabilities of the ligands toward metals of interest. Specifically,to optimize the DL models efficiently, the hyperparameters(HPs) were tuned employing a BO approach. Finally, we ranked the ligands according to their predicted(differential) coordinative affinities for Sr and Cs. We expect that, for a certain ligand, the more different affinities it exhibits toward Cs over Sr(or vice versa), the higher degree of selective coordination is anticipated, hence better separation capability.

    Fig.1 Overview of deep-learning-centered protocol to identify and rank candidate ligands for selective Sr/Cs coordination

    1 Methods

    1.1 Data mining and molecular representation

    Using the CSD Python API[12]provided by the Cambridge Crystallographic Data Centre(CCDC), we were able to extract all M-L pairs and corresponding ligands from crystallographic data that contain 1A(Na, K, Rb, Cs) and 2A(Mg, Ca, Sr, Ba) elements. Then, these data were pre-processed to remove 74 CSD-predefined solvents[13], self-defined free anions/gas molecules[8], and standalone atoms without linkage to ligands. Subsequently, all M-L pairs and ligands were extracted from the pre-processed data. Data pre-processing and extraction of M-L pairs and ligands are illustrated in an example in Fig.2. Next, to be used as input for the DL models, the extracted M-L pairs were linearly represented by the canonical simplified molecular-input line-entry system(canonical SMILES)[14-15]. Along with the molecular structures, structural parameters like bond lengths, bond angles, and coordination numbers could also be extracted from the datasets, among which the coordination bond length was selected as the representative parameter to describe the coordinative affinity or strength of interaction between M and L in a given M-L pair. Additionally, we also extracted 9 169 ligands that would be used for virtual M-L pair generation.

    Fig.2 An example of data pre-processing and molecular structure extraction

    1.2 Transformer architecture

    We usedtransformer[9, 16]as the DL architecture to model the relationship between the molecular structures of M-L pairs and the coordinative affinity(i.e., bond length) of the ligands involved. As shown in Fig.3, thetransformerarchitecture is composed of a word embedding layer, a positional encoding layer, the main body(encoder/decoder) and a multilayer perceptron(MLP) predictor.

    Fig.3 Schematic illustration of transformer architecture

    Specifically, the word embedding layer[16]can convert discrete symbolic representation(i.e., the abovementioned SMILES symbols) to continuous vectors, as required by thetransformerarchitecture. The positional encoding layer[17]

    compiles the positional information for the sequence of characters in the SMILES, creating another set of vectors to be used as input fortransformermain module. The main oftransformeris composed of encoder and decoder[16]. In short, the encoder can recognize certain combinations of characters in a SMILES sequence, which usually have higher abstract meanings in chemistry than individual characters. Then the decoder would identify which combinations are important for the target(i.e., coordination bond length in our work). Finally, the coordination bond lengths would be predicted by the MLP predictor according to the decoder-proposed important structural combinations.

    It should be noted, as illustrated in Fig.3, that two inputs are required for the encoder and decoder oftransformer, respectively. In general, the input for encoder is the complete original SMILES in our dataset. For the decoder, the input should provide information about the specific target of prediction, that is the coordination bond length of a specific bond, considering there are possibly multiple coordination bonds in a given M-L pair.

    1.3 Model training and Bayesian optimization

    To train thetransformermodels, all M-L pairs were divided into train set, validation set and test set in a ratio of 8∶1∶1. The train set was used to train the models; the validation set was used to validate the performance of trained model and as the “target” for HP optimization; the test set was to test the generalizability of the optimal model. Thetransformermodels were trained by a back-propagation(BP) algorithm[18]and gradient descent to minimize the mean-square-error loss function:

    (1)

    Table 1 HP tuning space

    To improve efficiency, we proposed to apply BO algorithm[19-20]to optimize the HPs. As shown in Fig.4(a)(using only a one-dimensional objective function as an example), Gaussian process(GP)[21]and expected improvement(EI)[22]were chosen as the surrogate function and acquisition function, respectively. In our higher-dimensional objective function of HP tuning, GP fits the(unknown) objective function with estimated uncertainties. Consequently, EI proposes the most valuable samples(HPs) to try next. For a given dataset, optimization was performed by applying BO process for 8 batches(4 models per batch). Comparing to manual optimization(Fig.4(b)), the BO approach(Fig.4(c)) was shown to be superior to optimize thetransformermodels, achieving a higherr2(0.927 vs 0.856 for manual) after 8 batches of optimization. As illustrated in Fig.4(d) where the HPs were reduced to a two-dimensional space by t-distributed Stochastic Neighbor Embedding(t-SNE)[23], BO could cover wider parameter space, beneficial for avoiding local optima which constantly challenge manual optimization strategies.

    Fig.4 An example of Bayesian optimization on a one-dimensional objective function(top, black curve), using a GP surrogate function(top, magenta curve and pink area) to generate an EI acquisition function(bottom)(a); comparison of manual optimization(b) and Bayesian optimization(c) on coefficients of determination(r2, scattered points) for transformer models, blue line indicates the averaged r2 for models in the current batch, red line indicates the max r2 of trained models so far; distribution of HPs after dimension reduction by t-SNE, where blue and red dots are HPs selected by BO algorithm and manual optimization, respectively(d)

    1.4 Ligand assessment

    Based on 9 169 ligand molecules extracted from CSD(section 1.1) that contain 12 common coordinating groups(listed in Table 2), Cs-L/Sr-L pairs were generated by virtually bonding the coordinating atoms(e.g., N/O) with Sr/Cs and subsequently represented using SMILES. For the 2×9 169 virtual M-L pairs(i.e., 9 169 Sr-L pairs and 9 169 Cs-L pairs) generated, there is always a Cs-L pair for any Sr-L pair, sharing the identical molecular structure except for the metal, and vice versa, therefore enabling us to predict said L’s different affinity toward Sr/Cs. We grouped each of the 9 169 Sr-L/Cs-L pairs, denoted asGi, wherei=1, 2,…, 9 169.

    Table 2 Counts of coordinating functional groups for generating virtual (Sr, Cs)-L pairs

    (2)

    (3)

    2 Results and discussion

    2.1 Datasets

    After mining of structural data of targeted 1A/2A elements in CSD, we extracted 33 095 M-L pairs, in which 19 467 were mono-coordinated and 13 628 multi-coordinated. A statistical summary is given in Table 3, broken into different elements. In total, these M-L pairs contained 98 411 coordination bonds, i.e., 98 411 samples. It is widely accepted that, for deep learning, to contain as many relevant samples as possible in the training dataset is always beneficial for the model performance[25-27]. Therefore, we argue that all 33 095 M-L pairs(not just ones with Sr/Cs) should be used to train and optimizetransformermodels. Specifically, those M-L pairs containing Na, K, Rb, Mg, Ca and Ba were considered relevant because: 1) they provided information about molecular structures of ligands; and 2) periodicity-dictated elemental similarity in 1A(Na, K, Rb, Cs) and 2A(Mg, Ca, Sr, Ba) groups should lead to similar coordination properties(e.g., coordinating function groups and atoms).

    Table 3 Statistics of extracted M-L pairs of specified 1A/2A elements

    In order to experimentally confirm this empirical rule and justify our choice of expanded datasets instead of focusing on directly relevant(Sr, Cs)-L samples,transformermodels based on two datasets(i.e., all 33 095 M-L pairs and 4 271(Sr, Cs)-L pairs) were trained and optimized using the same protocol(section 1.3). The mean absolute error(MAE) of the best model based on the dataset of all 33 095 M-L pairs was 0.076 6 ?(1 ?=0.1 nm), 14% less than the best MAE based on 4 271(Sr, Cs)-L pairs, which was 0.088 9 ?.

    2.2 Transformer model

    As described in section 1.3 and illustrated in Fig.5(a), based on all 33 095 M-L pairs,transformermodel with the highest performance(r2= 0.927 and MAE=0.077 5 ?) on the test dataset was the 21stmodel(its HPs are characterized by the underlined numbers in Table 1) produced by the BO process. The regression diagram and the distribution histogram of absolute error, comparing the model-predicted values against actual coordination bond lengths(i.e., target) for samples in the test dataset, are shown in Fig.5(a) and 5(b), respectively. Overall, thetransformerarchitecture, expanded dataset and BO algorithm have generated a better prediction model comparing to our previous approach[8].

    Fig.5 Regression diagram between prediction and target(higher density of scatters is brighter-colored)(a); histogram of absolute error between prediction and target(b)

    2.3 Ligand and functional group analysis

    Fig.6 Top 10 identified M-L pairs with the largest

    Further, as functional groups usually play critical roles in determining the coordination properties of ligand molecules, the distribution of most frequent 8 coordinating groups(out of 12 that were listed in Table 2) on the ranking list was analyzed. The mean probability density(MPD) of each functional group appearing in the top 1%, 1%-10%, 10%-50% and bottom 50% of the ranking list was calculated by the following:

    (4)

    WhereNis the total number of virtual M-L pairs(i.e., 9 169),gis the index of functional groups(g=1, 2, …, 8),jis the index of ranking percentages(i.e., 1%, 1%-10%, 10%-50% and bottom 50%, respectively),ngis the amount of functional groupg,pjrepresents the percentage span ofj,cg,jis the count of functional groupgin percentage(range)j. As shown in Fig.7, for any functional groupgin ranking positionj, if MPD(g,j)>1(indicated by the broken line), the occurrence probability(OP) ofginjis greater that the OP ofgin the total list. Therefore, we could conclude that phosphoric acid group, with 3.82 MPD in top 1% and 2.10 MPD in 1%-10%, had the highest probability to be incorporated in a Sr-selective ligand[28-30]. Next in line, hydroxyl, ketone and ether groups showed moderate selectivity toward Sr. Surprisingly, the other common acidic functional groups(i.e., sulfonic acid and carboxylic acid), were not predicted to be coordinatively selective for Sr, which was counterintuitive according to the Hard and Soft Acids and Bases principle as Sr2+is considered a harder Lewis acid than Cs+.

    Fig.7 MPD of 8 frequent functional groups in specified ranking percentages

    3 Conclusions

    In summary, tackling the Sr/Cs separation challenge in SNF reprocessing, we have conducted a deep-learning-guided comprehensive study from the perspective of coordination chemistry. Based on crystal structural data of Sr/Cs and select congeners in respective groups, with the aid of Bayesian optimization, we developedtransformermodels with high performances in predicting coordination bond lengths which were identified as a figure of merit for assessing coordinative affinities. As a proof of concept, we analyzed 9 169 CSD-registered ligands and predicted their differential coordination capabilities toward Sr/Cs, as demonstrated in the top 10 molecular structures and a detailed analysis of functional groups with different potentials for selective coordination toward Sr over Cs. The ranking list of ligands and identification of promising functional groups(e.g., phosphoric acid) would be beneficial for downstream experimental screening and evaluation in separation scenarios.

    猜你喜歡
    高能物理四川大學(xué)工程學(xué)院
    福建工程學(xué)院
    盛宴已經(jīng)結(jié)束
    福建工程學(xué)院
    四川大學(xué)西航港實(shí)驗(yàn)小學(xué)
    福建工程學(xué)院
    福建工程學(xué)院
    百年精誠(chéng) 譽(yù)從信來——走進(jìn)四川大學(xué)華西眼視光之一
    四川大學(xué)華西醫(yī)院
    高能物理中的數(shù)據(jù)分析
    四川大學(xué)信息顯示研究所
    液晶與顯示(2014年2期)2014-02-28 21:12:58
    欧美激情高清一区二区三区| 免费在线观看日本一区| 黄色视频在线播放观看不卡| 免费少妇av软件| 亚洲av日韩精品久久久久久密| 欧美精品一区二区免费开放| 大片电影免费在线观看免费| 午夜福利影视在线免费观看| 黑人巨大精品欧美一区二区蜜桃| 一本一本久久a久久精品综合妖精| 久久精品成人免费网站| 国产精品久久电影中文字幕 | 精品国产乱子伦一区二区三区| 777久久人妻少妇嫩草av网站| 在线观看一区二区三区激情| 日韩欧美免费精品| 色婷婷av一区二区三区视频| 黄色毛片三级朝国网站| 在线观看www视频免费| 在线永久观看黄色视频| 精品福利永久在线观看| 色综合欧美亚洲国产小说| 日韩精品免费视频一区二区三区| 亚洲精品粉嫩美女一区| 欧美人与性动交α欧美精品济南到| 制服人妻中文乱码| 一边摸一边做爽爽视频免费| 国产一卡二卡三卡精品| 十八禁人妻一区二区| 黑人猛操日本美女一级片| 在线十欧美十亚洲十日本专区| 丁香六月天网| 成在线人永久免费视频| 性少妇av在线| 精品久久久精品久久久| 国产亚洲精品第一综合不卡| 叶爱在线成人免费视频播放| 十分钟在线观看高清视频www| 午夜日韩欧美国产| 精品人妻1区二区| 成人亚洲精品一区在线观看| 99久久国产精品久久久| 国精品久久久久久国模美| 亚洲精品国产区一区二| 亚洲精品美女久久av网站| 制服诱惑二区| 亚洲精品久久午夜乱码| 欧美日韩黄片免| 日韩欧美三级三区| 90打野战视频偷拍视频| 中文欧美无线码| 99热网站在线观看| 成人影院久久| 黄色a级毛片大全视频| 成人精品一区二区免费| 丁香六月欧美| 9191精品国产免费久久| 国产精品免费视频内射| 成人av一区二区三区在线看| 波多野结衣av一区二区av| 国产伦理片在线播放av一区| 国产男女超爽视频在线观看| 一级,二级,三级黄色视频| 18禁黄网站禁片午夜丰满| 亚洲avbb在线观看| 99精品在免费线老司机午夜| 色老头精品视频在线观看| 午夜精品国产一区二区电影| 久久中文看片网| 亚洲一区二区三区欧美精品| 国产人伦9x9x在线观看| 亚洲中文字幕日韩| 亚洲成av片中文字幕在线观看| 亚洲国产精品一区二区三区在线| 欧美人与性动交α欧美精品济南到| www.熟女人妻精品国产| 欧美国产精品va在线观看不卡| 午夜福利视频在线观看免费| 性高湖久久久久久久久免费观看| 中亚洲国语对白在线视频| 麻豆国产av国片精品| 国产精品亚洲av一区麻豆| 男男h啪啪无遮挡| 久久久久久免费高清国产稀缺| 国产成人系列免费观看| 中文字幕人妻丝袜一区二区| 国产精品av久久久久免费| 三级毛片av免费| 50天的宝宝边吃奶边哭怎么回事| 啦啦啦在线免费观看视频4| 香蕉久久夜色| 国产深夜福利视频在线观看| kizo精华| 久久久久久久精品吃奶| 日本vs欧美在线观看视频| 人人妻人人添人人爽欧美一区卜| 久热爱精品视频在线9| 人人妻,人人澡人人爽秒播| 亚洲成av片中文字幕在线观看| 在线看a的网站| 久久精品91无色码中文字幕| 久久精品成人免费网站| 最新在线观看一区二区三区| 国产在线精品亚洲第一网站| 不卡av一区二区三区| 亚洲国产欧美日韩在线播放| 欧美在线黄色| 女人久久www免费人成看片| 中国美女看黄片| 亚洲成国产人片在线观看| 看免费av毛片| 国产视频一区二区在线看| 丁香欧美五月| 母亲3免费完整高清在线观看| 欧美精品av麻豆av| 每晚都被弄得嗷嗷叫到高潮| 极品教师在线免费播放| 一级片'在线观看视频| 手机成人av网站| 国产精品国产av在线观看| 久久性视频一级片| 中文字幕高清在线视频| 天天影视国产精品| 一级,二级,三级黄色视频| 青青草视频在线视频观看| 午夜精品国产一区二区电影| 免费观看人在逋| 精品久久蜜臀av无| 中文亚洲av片在线观看爽 | 电影成人av| 久久国产精品人妻蜜桃| 18禁观看日本| 亚洲av第一区精品v没综合| 国产精品欧美亚洲77777| 亚洲精品在线美女| 国产一区二区三区在线臀色熟女 | 免费在线观看黄色视频的| 欧美乱码精品一区二区三区| 久久精品aⅴ一区二区三区四区| 青草久久国产| 亚洲精品av麻豆狂野| 亚洲少妇的诱惑av| 亚洲黑人精品在线| 精品少妇久久久久久888优播| 丝瓜视频免费看黄片| 亚洲午夜精品一区,二区,三区| 国产精品影院久久| 亚洲国产精品一区二区三区在线| 一级毛片电影观看| 午夜精品国产一区二区电影| 高清黄色对白视频在线免费看| 国产亚洲午夜精品一区二区久久| 欧美日韩精品网址| 久久久久精品人妻al黑| 国产单亲对白刺激| 少妇 在线观看| 亚洲男人天堂网一区| 女警被强在线播放| 成年人午夜在线观看视频| 18禁国产床啪视频网站| 最黄视频免费看| 精品高清国产在线一区| 精品国产一区二区三区四区第35| 久久午夜亚洲精品久久| 国产亚洲精品一区二区www | 这个男人来自地球电影免费观看| 91精品国产国语对白视频| 少妇精品久久久久久久| 国产色视频综合| 99久久99久久久精品蜜桃| 亚洲精品久久成人aⅴ小说| 青草久久国产| 亚洲自偷自拍图片 自拍| 亚洲成人国产一区在线观看| 日本wwww免费看| 欧美国产精品va在线观看不卡| 亚洲,欧美精品.| 人人妻人人澡人人看| 亚洲情色 制服丝袜| 女同久久另类99精品国产91| 免费少妇av软件| 久久久精品免费免费高清| 国内毛片毛片毛片毛片毛片| 最近最新中文字幕大全电影3 | 精品一品国产午夜福利视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久网色| 美女高潮到喷水免费观看| 可以免费在线观看a视频的电影网站| 亚洲欧美精品综合一区二区三区| av有码第一页| 一级毛片电影观看| av天堂在线播放| 中亚洲国语对白在线视频| 日日爽夜夜爽网站| 精品人妻在线不人妻| av福利片在线| 亚洲欧美精品综合一区二区三区| 国产午夜精品久久久久久| 18禁黄网站禁片午夜丰满| 成人三级做爰电影| 久久人妻av系列| 高清欧美精品videossex| 变态另类成人亚洲欧美熟女 | 精品国产国语对白av| 欧美日韩国产mv在线观看视频| www日本在线高清视频| 侵犯人妻中文字幕一二三四区| 少妇 在线观看| 久久婷婷成人综合色麻豆| 嫩草影视91久久| 欧美精品高潮呻吟av久久| 99国产精品免费福利视频| 亚洲av日韩在线播放| 日本vs欧美在线观看视频| 久久ye,这里只有精品| 在线十欧美十亚洲十日本专区| 大型黄色视频在线免费观看| 精品一品国产午夜福利视频| 啦啦啦 在线观看视频| 国产福利在线免费观看视频| 国产熟女午夜一区二区三区| 精品午夜福利视频在线观看一区 | 黄色怎么调成土黄色| 午夜两性在线视频| 精品一区二区三卡| 午夜福利在线免费观看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 啦啦啦在线免费观看视频4| 少妇 在线观看| 午夜福利视频在线观看免费| 99精品欧美一区二区三区四区| 日韩熟女老妇一区二区性免费视频| 久久99一区二区三区| 免费观看a级毛片全部| 精品熟女少妇八av免费久了| 操美女的视频在线观看| 黄色丝袜av网址大全| 亚洲欧美一区二区三区久久| 男人舔女人的私密视频| 十八禁网站网址无遮挡| 国产成人精品无人区| 精品久久久久久电影网| 亚洲国产中文字幕在线视频| 久久99热这里只频精品6学生| 757午夜福利合集在线观看| 丝袜在线中文字幕| 成年动漫av网址| 亚洲人成77777在线视频| 亚洲av日韩在线播放| 99久久国产精品久久久| 欧美大码av| 成人永久免费在线观看视频 | 电影成人av| bbb黄色大片| 熟女少妇亚洲综合色aaa.| 一级毛片精品| 精品福利观看| 国产野战对白在线观看| 亚洲久久久国产精品| 久久久久久久久久久久大奶| 成人国语在线视频| 色综合婷婷激情| 国产无遮挡羞羞视频在线观看| h视频一区二区三区| 亚洲精品自拍成人| 久久精品国产99精品国产亚洲性色 | 夫妻午夜视频| 国产高清国产精品国产三级| 在线十欧美十亚洲十日本专区| 男人舔女人的私密视频| 日本黄色日本黄色录像| 无人区码免费观看不卡 | 亚洲av成人不卡在线观看播放网| 精品人妻在线不人妻| a在线观看视频网站| 91老司机精品| 黄网站色视频无遮挡免费观看| 亚洲av美国av| 99久久精品国产亚洲精品| 妹子高潮喷水视频| 国产黄色免费在线视频| 成年版毛片免费区| 狠狠狠狠99中文字幕| 热re99久久国产66热| 国产伦理片在线播放av一区| 久久久精品94久久精品| 国产真人三级小视频在线观看| 精品久久久久久电影网| 999久久久国产精品视频| 免费人妻精品一区二区三区视频| 9热在线视频观看99| 久久人妻福利社区极品人妻图片| 亚洲国产欧美网| www.999成人在线观看| 成人18禁在线播放| 999久久久国产精品视频| 国产免费福利视频在线观看| 美女扒开内裤让男人捅视频| 岛国在线观看网站| 国产真人三级小视频在线观看| a级毛片在线看网站| 一区二区三区乱码不卡18| 亚洲熟妇熟女久久| 淫妇啪啪啪对白视频| 国产免费av片在线观看野外av| 欧美一级毛片孕妇| 欧美av亚洲av综合av国产av| e午夜精品久久久久久久| 国产高清视频在线播放一区| 日本av免费视频播放| 亚洲五月色婷婷综合| 男女免费视频国产| 欧美国产精品va在线观看不卡| 99精国产麻豆久久婷婷| netflix在线观看网站| 国产精品九九99| 精品一区二区三区av网在线观看 | 久久这里只有精品19| 国产高清视频在线播放一区| 免费观看a级毛片全部| 一区二区三区激情视频| 嫁个100分男人电影在线观看| 国产精品1区2区在线观看. | 日韩有码中文字幕| 女人被躁到高潮嗷嗷叫费观| 男人操女人黄网站| 蜜桃国产av成人99| 成人手机av| 少妇 在线观看| 国产精品久久久久久人妻精品电影 | 制服人妻中文乱码| 亚洲视频免费观看视频| 亚洲欧洲精品一区二区精品久久久| 精品一品国产午夜福利视频| av网站在线播放免费| 精品亚洲成国产av| 久久久久久亚洲精品国产蜜桃av| 色在线成人网| 国产精品亚洲av一区麻豆| 午夜免费成人在线视频| 夜夜夜夜夜久久久久| 欧美+亚洲+日韩+国产| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩亚洲高清精品| 最黄视频免费看| 黄色 视频免费看| 欧美乱妇无乱码| 日韩中文字幕欧美一区二区| 日韩大码丰满熟妇| 日本黄色视频三级网站网址 | 国产在线精品亚洲第一网站| 99国产精品免费福利视频| 9色porny在线观看| 亚洲,欧美精品.| 成人18禁高潮啪啪吃奶动态图| 久久久精品免费免费高清| 亚洲国产中文字幕在线视频| av视频免费观看在线观看| 一级片'在线观看视频| 国产xxxxx性猛交| 欧美一级毛片孕妇| 成年动漫av网址| 免费久久久久久久精品成人欧美视频| 精品人妻在线不人妻| 夫妻午夜视频| a级片在线免费高清观看视频| 搡老乐熟女国产| 国产不卡av网站在线观看| 一级毛片电影观看| 久久毛片免费看一区二区三区| 在线播放国产精品三级| 亚洲成人国产一区在线观看| 黄色怎么调成土黄色| 亚洲精品美女久久久久99蜜臀| 青青草视频在线视频观看| 亚洲久久久国产精品| 黄色怎么调成土黄色| 日本黄色日本黄色录像| 一级毛片精品| 成年人免费黄色播放视频| 一级毛片电影观看| 在线观看www视频免费| 午夜精品国产一区二区电影| 69av精品久久久久久 | 日韩 欧美 亚洲 中文字幕| 久久精品亚洲av国产电影网| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品美女久久av网站| 大码成人一级视频| 纯流量卡能插随身wifi吗| 一级片免费观看大全| av电影中文网址| 国产欧美日韩精品亚洲av| 欧美中文综合在线视频| 999精品在线视频| 色精品久久人妻99蜜桃| 免费在线观看视频国产中文字幕亚洲| 18禁国产床啪视频网站| 国产成人免费观看mmmm| 亚洲精品国产区一区二| 亚洲精品自拍成人| 欧美人与性动交α欧美软件| 日本精品一区二区三区蜜桃| 久久久久国产一级毛片高清牌| 另类精品久久| 一夜夜www| 大片免费播放器 马上看| 在线永久观看黄色视频| 日韩一卡2卡3卡4卡2021年| 中文亚洲av片在线观看爽 | 午夜福利免费观看在线| 制服人妻中文乱码| 国产一区有黄有色的免费视频| 国产欧美日韩一区二区精品| 欧美性长视频在线观看| 日韩 欧美 亚洲 中文字幕| 美女主播在线视频| 岛国在线观看网站| 叶爱在线成人免费视频播放| 国产成人免费无遮挡视频| 欧美激情 高清一区二区三区| 久久精品亚洲精品国产色婷小说| 国产精品九九99| 国产aⅴ精品一区二区三区波| 啦啦啦免费观看视频1| 亚洲国产av新网站| 美女视频免费永久观看网站| 国产黄色免费在线视频| 成年人午夜在线观看视频| 人人妻人人澡人人爽人人夜夜| 国产成人av激情在线播放| 久久精品国产亚洲av香蕉五月 | 可以免费在线观看a视频的电影网站| 亚洲 国产 在线| 后天国语完整版免费观看| 欧美成人午夜精品| 男女之事视频高清在线观看| 精品久久久精品久久久| 欧美精品人与动牲交sv欧美| 激情视频va一区二区三区| 国产欧美日韩综合在线一区二区| 无遮挡黄片免费观看| 国产男女内射视频| 精品国产乱码久久久久久小说| 麻豆av在线久日| 丰满少妇做爰视频| 久久久久精品人妻al黑| 人人妻人人添人人爽欧美一区卜| 丁香欧美五月| 久久久精品国产亚洲av高清涩受| 欧美日韩亚洲高清精品| 如日韩欧美国产精品一区二区三区| 午夜两性在线视频| 午夜福利在线观看吧| 亚洲中文日韩欧美视频| 1024香蕉在线观看| 国产亚洲午夜精品一区二区久久| 国产精品影院久久| 国产黄频视频在线观看| 久久精品亚洲熟妇少妇任你| 久久久精品免费免费高清| 成人国语在线视频| 久久久久久久大尺度免费视频| 麻豆国产av国片精品| 另类精品久久| 国产成人精品久久二区二区91| 丰满少妇做爰视频| 99在线人妻在线中文字幕 | 女人精品久久久久毛片| 老熟妇仑乱视频hdxx| 电影成人av| 亚洲自偷自拍图片 自拍| 美女高潮到喷水免费观看| 黄色a级毛片大全视频| 一本一本久久a久久精品综合妖精| 国产成人免费无遮挡视频| 免费女性裸体啪啪无遮挡网站| 久久国产精品影院| 人人妻人人澡人人看| 国产日韩欧美在线精品| 人人澡人人妻人| 90打野战视频偷拍视频| 成年版毛片免费区| 99精品久久久久人妻精品| 亚洲国产毛片av蜜桃av| 黑人欧美特级aaaaaa片| 国产精品一区二区在线观看99| 一边摸一边抽搐一进一出视频| 久久午夜亚洲精品久久| 丝袜喷水一区| av天堂久久9| 久久精品人人爽人人爽视色| 曰老女人黄片| av福利片在线| 国产又色又爽无遮挡免费看| 一级毛片女人18水好多| 久久精品国产亚洲av高清一级| 午夜两性在线视频| 免费不卡黄色视频| 国产av一区二区精品久久| 一级毛片精品| 人成视频在线观看免费观看| 午夜视频精品福利| 一级片'在线观看视频| 天堂动漫精品| 99国产精品一区二区三区| 国产精品偷伦视频观看了| 女人高潮潮喷娇喘18禁视频| 国产人伦9x9x在线观看| 国产男女超爽视频在线观看| av免费在线观看网站| 中文字幕人妻熟女乱码| 精品国产一区二区三区四区第35| 看免费av毛片| 99国产精品一区二区蜜桃av | 高清视频免费观看一区二区| 又黄又粗又硬又大视频| 国产色视频综合| 亚洲成人免费av在线播放| 国产人伦9x9x在线观看| 黄色视频,在线免费观看| 亚洲精品成人av观看孕妇| 国产麻豆69| 国产精品国产av在线观看| 亚洲av片天天在线观看| 亚洲精华国产精华精| 三上悠亚av全集在线观看| 一级片'在线观看视频| 99在线人妻在线中文字幕 | 国产主播在线观看一区二区| 在线观看免费高清a一片| 久久久久久久久久久久大奶| 中文字幕制服av| 99热网站在线观看| 在线观看人妻少妇| 亚洲人成伊人成综合网2020| 久久精品国产a三级三级三级| 18禁黄网站禁片午夜丰满| 久久久久久人人人人人| 精品熟女少妇八av免费久了| 纯流量卡能插随身wifi吗| 99热国产这里只有精品6| 激情视频va一区二区三区| 桃红色精品国产亚洲av| 建设人人有责人人尽责人人享有的| 天天操日日干夜夜撸| 在线十欧美十亚洲十日本专区| 成人亚洲精品一区在线观看| 女性被躁到高潮视频| 成人手机av| 日韩欧美国产一区二区入口| 久久这里只有精品19| 伊人久久大香线蕉亚洲五| 免费不卡黄色视频| 少妇精品久久久久久久| 亚洲伊人久久精品综合| 亚洲精品久久成人aⅴ小说| 国产激情久久老熟女| 久久国产精品男人的天堂亚洲| 欧美另类亚洲清纯唯美| 久久精品国产亚洲av香蕉五月 | 久久午夜综合久久蜜桃| 精品乱码久久久久久99久播| 我的亚洲天堂| 老司机影院毛片| 下体分泌物呈黄色| 黄片大片在线免费观看| 亚洲精品国产区一区二| 别揉我奶头~嗯~啊~动态视频| 天天躁夜夜躁狠狠躁躁| 亚洲成a人片在线一区二区| 欧美在线黄色| 伦理电影免费视频| 亚洲精品美女久久av网站| 亚洲av成人一区二区三| 亚洲av日韩在线播放| 精品国产超薄肉色丝袜足j| 国产精品美女特级片免费视频播放器 | svipshipincom国产片| 久久天堂一区二区三区四区| 亚洲欧美日韩高清在线视频 | 日日夜夜操网爽| 天天添夜夜摸| 一边摸一边抽搐一进一出视频| 老鸭窝网址在线观看| 久热爱精品视频在线9| 欧美日韩一级在线毛片| 91成人精品电影| 亚洲欧洲日产国产| 欧美变态另类bdsm刘玥| 久久99热这里只频精品6学生| 国产av精品麻豆| 水蜜桃什么品种好| 亚洲人成电影观看| 久久久久久久大尺度免费视频| 如日韩欧美国产精品一区二区三区| 精品亚洲乱码少妇综合久久| 成人三级做爰电影| www.999成人在线观看| 超碰成人久久| 中文欧美无线码| 日韩成人在线观看一区二区三区| 黑人猛操日本美女一级片| 1024香蕉在线观看| 女人久久www免费人成看片| 在线十欧美十亚洲十日本专区| 制服诱惑二区| 丁香欧美五月| 我的亚洲天堂| 久久人妻熟女aⅴ| 国产一区二区三区视频了| 热99re8久久精品国产| 新久久久久国产一级毛片| 亚洲国产中文字幕在线视频|