• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Model Predictive Control Algorithm Based on Biological Regulatory Mechanism and Operational Research

    2023-10-21 03:09:48JinyingYangYongjunZhangTanjuYildirimandJiaweiZhang
    IEEE/CAA Journal of Automatica Sinica 2023年11期
    關鍵詞:速裁溫情審判

    Jinying Yang, Yongjun Zhang, Tanju Yildirim, and Jiawei Zhang

    Dear Editor,

    This letter presents an intelligent model predictive control algorithm inspired by biological regulatory mechanism and operational research.In terms of overall architecture, based on biological regulatory system and operational research theory, priority factor module and central coordination module are innovatively added on the basis structure of heuristic dynamic programming to carry out overall regulation of the system.In internal structure, the neural network is integrated with the biofeedback mechanism, and a new multi-level feedback neural network that can obtain more feedback information is proposed.The network is applied to the model network, action network and critic network of the algorithm.The convergence speed is greatly improved and the predictive control speed for nonlinear timevarying systems is improved on the premise of ensuring the control accuracy.The effectiveness and superiority of the proposed algorithm in prediction and control are verified by experiment.

    Related work: With the increasing nonlinearity and timely variation of the process control target, in order to meet the control requirements of complex controlled objects, some control algorithms inspired by computer technology have been developed.In 1978, Testudet al.[1] proposed the model predictive control algorithm (MPC)and established the concept of rolling time domain optimization.MPC have been widely used in various fields due to its good applicability and robustness, scholars from all over the world have produced a variety of MPC.According to the structural model, MPC can be roughly divided into non-parametric model prediction [2], [3],predictive control based on adaptive control theory [4]-[6], and predictive control based on structural design [7]-[10].With the development of science, the increasingly complex controlled objects make it difficult for traditional MPC to accurately control nonlinear and timevarying uncertain system.Zhanget al.[11], [12] combined MPC with other structures, such as neural network and load observer to improve the response speed and robustness of the algorithm.However, these algorithms are still in the theoretical simulation stage and need to be validated in practice.Yanget al.[13] used the distributed MPC to regulate the Yellow River Basin, and the control effect is stable.But, the model needs to set parameters such as river area in advance, which are difficult to measure.Islam applied the MPC to the flood control of Ukai dam in India, and the algorithm could predict the flood and implement the corresponding control strategy [14].Nevertheless, the system model was fixed and was not suitable for time-varying systems.The relevant research on the MPC in the biological regulatory mechanism and operational research has not gained adequate attention, which is one of the current research motivations.The algorithm proposed in this letter does not need to obtain the system’s physical parameters, it only needs the data of the controlled variables and related variables, and over time, the algorithm can update the model to avoid model mismatch.

    The main contributions can be summarized as follows.1) A new intelligent MPC, called a biological-inspired intelligent heuristic dynamic programming (Bio-int-HDP), is proposed by integrating biological regulatory mechanisms and operational decision.2) The ultra-short feedback mechanism of the endocrine system and operational decision is innovatively incorporated into a neural network and algorithm’s new modules, its convergence speed and predictive control speed for nonlinear time-varying systems is increased by improving the structure of such neural network and algorithm’s modules.3)The Bio-int-HDP is applied to addressing a real-world challenge-regulating a multi-tributary system.Simulation demonstrates that the algorithm can successfully achieve high-precision, real-time flow controls in the upper tributaries of the Murray River, which provides an effective and accurate flood warning and control method for the flood prone multi-tributary area.

    Proposed model prediction control:

    Overall structure of algorithm: Considering that the system is controlled by multiple variables, based on the heuristic dynamic programming (HDP), the priority factor module is introduced to optimize the systems control process based on the operational research decision theory, and the priority factor is adjusted based on a biological system’s regulation mechanism.At the same time, inspired by the biological central nervous system, the central coordination module is introduced to make real-time correction to each module according to the deviation between the output value and the set value.The system structure diagram of the Bio-int-HDP is shown in Fig.1.The dotted box part in Fig.1 is the overall structure of the Bio-int-HDP.The model network module acts as the prediction model part of the controller.The action network module and the priority factor module act as the rolling optimization part of the controller.The critic network module acts as the feedback correction part of the controller.At the same time, the central coordination module coordinates the whole system according to the ultra-short feedback mechanism, making the predictive control more rapid, stable and accurate.Structural of multi-level feedback neural network: The traditional neural network only adjusts the parameters through the deviation between the output value and the real value.The feedback data is less, the convergence speed and accuracy of the network is not satisfactory.The ultra-short feedback mechanism of hormone regulation refers to the rapid regulation of gland hormone concentration on gland secretion, which can regulate the secretion of hormone before the regular feedback action.

    Fig.1.Structure diagram of the Bio-int-HDP predictive control system.

    Based on the ultra-short feedback regulation mechanism, the structure of a BP neural network is improved.The structure of the improved network is shown in Fig.2.The improved neural network adds feedback information within and between layers, which enables the network to quickly perceive the internal information and improves the convergence speed and accuracy.In the Bio-int-HDP,the model network module, the action network module and the critic network module all choose the improved biological neural network.

    Calculation of the proposed algorithm:

    Model network module: The forward calculation of the module is divided into five steps

    whereMmis the input variable,Wm1is the weight matrix from input layer to hidden layer,Wm2is the weight matrix from hidden layer to output layer,mh1is the inactive value of hidden layer,mh2is the activated value of hidden layer, andx?(k+1) is the pre-output,x(k+1) is the final output,αm1andαm2are the priority factors regulated by the priority factor module, and?mis the optimization coefficient.

    Fig.2.Structure of a three-layer self-feedback BP neural network.

    Gradient descent method is used to adjust the weight matrix of the module.The error of the model network module is defined as

    whereempis the error between the real value and the predicted value,andxp(k+1) is the real value of the system at the next moment.After forward calculation, the value of the weight matrix is adjusted according to following formulas:

    wherelmp∈ (0, 1) is the learning rate of the module.In the process of system operation,lmpwill be regulated in real time by the central coordination module according to different states of the system.

    Action network module: The forward calculation of the module is divided into four steps

    wherex(k) is the input of the module,Wa1is the weight matrix from input layer to hidden layer,Wa2is the weight matrix from hidden layer to output layer,ah1is the inactive value of the hidden layer,ah2is the activated value of the hidden layer,?is the pre-output,uis the final output,αa1andαa2are the priority factors regulated by the priority factor module, and?ais the optimization coefficient.

    The goal of the module is to minimize the system performance index?, and the gradient descent method is used to adjust the weights.

    wherelap∈(0,1) is the learning rate of the module.In the process of system operation,lapwill be regulated in real time by the central coordination module according to different states of the system.

    Critic network module: The forward calculation of the module is divided into three steps

    wherexis the input,Wc1is the weight matrix from the input layer to the hidden layer,Wc2is the weight matrix from the hidden layer to the output layer,ch1is the inactivated value of the hidden layer,ch2is the activated value of the hidden layer,Jis the performance index andαcis the feedback coefficient of the hidden layer.

    The objective function is the error function as follow:

    The goal of the module is to minimize the following formula:

    The gradient descent method is used to adjust the weights:

    wherelc∈ (0, 1) is the learning rate of the module.In the process of system operation,lcwill be real-time regulated by the central collaborative module according to different system states.

    Priority factor module: Priority factor module adjusts priority factors according to the importance of each variable, so as to improve the overall control effect of the control system.Priority factor module firstly obtains the average value of each input variable of the module as follow:

    “速裁”而不“濫裁”,法律兼顧溫情,李凌說:“法槌敲響的那一刻對社會應該有一種警醒和指引,達到法律效果與社會效果的統(tǒng)一。一起案件的審判,不應該僅僅只是為了把人‘關進去’。”

    Calculate the variance of each variable

    Calculate the covariance of variable and controlled variable

    Finally, obtain the correlation coefficient between each variable and the controlled variable

    According to the ultra-short feedback regulation rule of biological regulation mechanism, priority factors can be adjusted in real time.

    that,

    The priority factorsαm1,αm2,αa1,αa2are real-time regulated along with system control according to (29)-(35).

    Central coordination module: In the traditional HDP, the learning rates are fixed values selected by experience.However, learning rate has the corresponding optimal value according to the different state.Based on the regulation mechanism of biological hormone secretion,the central coordination module adjusts the learning rate according to the control deviation of the control system, so as to improve the overall control effect.

    whereαis the difference between the output value of action network module and the set value,βmis the basic learning rate of model network module andamis the constant coefficient of model network module learning rate.f(α) can be written as

    so that,

    whereδ1is constant whenα≥ 0, andδ2is constant whenα< 0.

    The learning rate of critic network modulelccan be written as

    wheref(α) is shown in (37),βcis the basic learning rate of the critic network module,αcis the constant coefficient of the critic network module learning rate.

    The learning rate of action network modulelacan be written as

    υ1is constant whenρX?Y≥ 0, andυ2is constant whenρX?Y< 0.

    wheref(α) is shown in (37),βais the basic learning rate of the action network module,aais the constant coefficient of the learning rate for the action network module.

    An illustrative example: In order to verify the predictive control effect of the Bio-int-HDP in a nonlinear time-varying system, the upper tributaries of the Murray River as shown in Fig.3 is selected as the research objects.

    Fig.3.Simplified diagram of relationship between rivers.

    After pretreatment of relevant watershed data, six groups of data were selected as input based on correlation coefficients: the flowBc(k-1) and levelBcl(k-1) of Bringenbrong, the flowPc(k-1) and levelPcl(k-1) of Pinegrove, the flowJc(k-1) and levelJcl(k-2) of Jingellic.The flowJc(k) was selected as output.A total of 3000 sets of data were selected as training data, and 300 sets of data were selected as test data.The flow prediction curve is shown in Fig.4,and the comparison of flow prediction is shown in Table 1.It can be seen that compared with the Bio-int-HDP, both self-feedback BP and BP have a large deviation in predicting the flow.The above results show that the prediction model in the algorithm can predict the future flow well and meet the requirement of predictive control.

    Fig.4.Comparison of prediction effect.

    Table 1.Comparison of Flow Prediction

    In this letter, Bio-int-HDP is compared with internal model control(IMC) and HDP.The results are shown in Fig.5.The end of the algorithm optimization process should satisfy one of the following termination criteria.1) The iteration number has reached the maximum generation number.2) The fitness value of global best solution is smaller than the set value, which is called iteration convergence.Based on the above termination criteria, the training time of the three algorithms is statistically analyzed under the same termination criteria.In order to eliminate the data contingency, the single point training time of three algorithms was carried out for 50 simulation experiments, and the averaged results are shown in Table 2.

    It can be seen that the Bio-int-HDP responds quickly to the predictive control requirements of complex time-varying systems and is regulated in a timely manner.Therefore, Bio-int-HDP is a new intelligent algorithm superior to traditional MPC.

    Conclusions: This letter proposed a model predictive control algorithm based on biological regulatory mechanism and operational research decision, called Bio-int-HDP.The structure of the neural network and HDP is improved by introducing a biological regulation theory and operational research decision theory.Experimental results show that the Bio-int-HDP can respond quickly to the predictive control requirements of complex time-varying systems and regulate in a timely manner.The algorithm has potential in flood warning and control since Bio-int HDP has higher prediction and control accuracy in multi-tributary watershed flow prediction and control.Due to the complexity of the actual system and difficulty in obtaining data,future research will focus on methods to reduce the amount of data and the complexity of controlled objects while ensuring the high accuracy and applicability of the algorithm.

    Fig.5.Comparison of control effect.

    Table 2.Comparison of Forecast Controller’s Training Time

    Acknowledgments: This work was supported by the National Natural Science Foundation of China (U21A20483).

    猜你喜歡
    速裁溫情審判
    氤氳的溫情,混沌的大美
    中國美術(2021年4期)2021-10-30 19:23:57
    速裁程序中法官職能論
    法大研究生(2020年1期)2020-07-22 06:06:10
    惠州惠陽:檢法聯(lián)動適用速裁程序辦理案件
    方圓(2019年20期)2019-02-16 14:51:00
    基層法院未入額法官向小額速裁側重調配模式的構想
    法大研究生(2017年1期)2017-04-10 08:55:26
    我國刑事速裁程序的構建
    七十年前那場文明的審判
    消失中的審判
    政法論叢(2015年5期)2015-12-04 08:46:28
    未來審判
    小說月刊(2015年10期)2015-04-23 08:51:45
    溫情美文兩則
    小說月刊(2014年1期)2014-04-23 09:00:01
    溫情故事兩篇
    小說月刊(2014年4期)2014-04-23 08:52:25
    亚洲色图 男人天堂 中文字幕| 嫩草影院精品99| av视频在线观看入口| 真人一进一出gif抽搐免费| 亚洲av电影不卡..在线观看| 国产精品亚洲美女久久久| 亚洲全国av大片| 亚洲精品色激情综合| 18禁美女被吸乳视频| 成人av在线播放网站| 久久热在线av| 国产精品久久久久久久电影 | 欧美在线黄色| 国产高清视频在线观看网站| 最近在线观看免费完整版| 欧美另类亚洲清纯唯美| 日韩精品中文字幕看吧| 一区福利在线观看| 中亚洲国语对白在线视频| 欧美成人免费av一区二区三区| 熟女少妇亚洲综合色aaa.| 人人妻人人看人人澡| 成人av一区二区三区在线看| 天堂√8在线中文| 男人的好看免费观看在线视频 | 日本精品一区二区三区蜜桃| 国产欧美日韩一区二区精品| 高潮久久久久久久久久久不卡| 又紧又爽又黄一区二区| 久久婷婷人人爽人人干人人爱| av视频在线观看入口| 免费在线观看亚洲国产| 成人18禁在线播放| 国产精品一区二区免费欧美| 桃红色精品国产亚洲av| 香蕉国产在线看| 欧美3d第一页| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品国产一区二区精华液| 国产aⅴ精品一区二区三区波| 黄色丝袜av网址大全| 啦啦啦观看免费观看视频高清| netflix在线观看网站| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av片天天在线观看| 亚洲国产精品合色在线| 日本黄大片高清| 欧美又色又爽又黄视频| 午夜a级毛片| 久久久久久久久久黄片| videosex国产| 亚洲黑人精品在线| 国产精品久久久久久人妻精品电影| 婷婷亚洲欧美| 国产精品久久久久久精品电影| 69av精品久久久久久| 中出人妻视频一区二区| 777久久人妻少妇嫩草av网站| 日韩精品免费视频一区二区三区| 俺也久久电影网| 一本精品99久久精品77| 两个人的视频大全免费| 琪琪午夜伦伦电影理论片6080| 丝袜人妻中文字幕| 久久午夜综合久久蜜桃| 亚洲成人久久性| 国产高清视频在线观看网站| 国产成人一区二区三区免费视频网站| 久久精品国产综合久久久| 亚洲精品在线观看二区| 国产成人精品无人区| 婷婷丁香在线五月| 欧美不卡视频在线免费观看 | 欧美日韩亚洲国产一区二区在线观看| 亚洲欧洲精品一区二区精品久久久| 天天一区二区日本电影三级| 亚洲中文字幕一区二区三区有码在线看 | 久久婷婷人人爽人人干人人爱| 亚洲国产欧美一区二区综合| 国产aⅴ精品一区二区三区波| 日本黄色视频三级网站网址| 国产一区二区激情短视频| 午夜精品久久久久久毛片777| 亚洲国产中文字幕在线视频| 国产精品1区2区在线观看.| 国产精品av视频在线免费观看| 男女之事视频高清在线观看| 色av中文字幕| 久久国产精品影院| 久久久久久国产a免费观看| 午夜老司机福利片| 熟妇人妻久久中文字幕3abv| 99re在线观看精品视频| 18美女黄网站色大片免费观看| 亚洲欧洲精品一区二区精品久久久| 亚洲中文字幕日韩| 欧美性猛交黑人性爽| 免费搜索国产男女视频| 国产高清videossex| 久久香蕉精品热| 色综合亚洲欧美另类图片| 夜夜爽天天搞| 午夜久久久久精精品| 日韩中文字幕欧美一区二区| a级毛片a级免费在线| 欧美3d第一页| 久久香蕉精品热| 十八禁网站免费在线| 欧美成狂野欧美在线观看| 国产探花在线观看一区二区| 亚洲乱码一区二区免费版| 成在线人永久免费视频| 成熟少妇高潮喷水视频| 不卡一级毛片| 国产一区二区三区在线臀色熟女| 欧美另类亚洲清纯唯美| 午夜视频精品福利| 99在线人妻在线中文字幕| av视频在线观看入口| 欧美国产日韩亚洲一区| 色哟哟哟哟哟哟| 久久久久久国产a免费观看| av片东京热男人的天堂| 在线a可以看的网站| 香蕉av资源在线| 毛片女人毛片| 中文字幕高清在线视频| 亚洲成人精品中文字幕电影| 亚洲精华国产精华精| 精品第一国产精品| 国产亚洲精品第一综合不卡| 一级毛片女人18水好多| 在线a可以看的网站| 波多野结衣高清作品| 亚洲人与动物交配视频| 老司机深夜福利视频在线观看| 久久国产乱子伦精品免费另类| 亚洲aⅴ乱码一区二区在线播放 | 亚洲国产欧美人成| 人妻久久中文字幕网| 精品不卡国产一区二区三区| 91成年电影在线观看| 午夜老司机福利片| 成人国产综合亚洲| 亚洲熟妇熟女久久| 狂野欧美激情性xxxx| 国产精品99久久99久久久不卡| 亚洲,欧美精品.| 欧美日韩福利视频一区二区| 亚洲最大成人中文| 黄片小视频在线播放| 日韩有码中文字幕| 777久久人妻少妇嫩草av网站| 欧美黄色片欧美黄色片| 国产精品亚洲av一区麻豆| 午夜激情av网站| 日本精品一区二区三区蜜桃| 精品欧美一区二区三区在线| 悠悠久久av| 亚洲九九香蕉| 婷婷丁香在线五月| 精品一区二区三区视频在线观看免费| 成在线人永久免费视频| 精品第一国产精品| 人人妻,人人澡人人爽秒播| 岛国在线免费视频观看| 国产精品野战在线观看| 少妇人妻一区二区三区视频| 香蕉国产在线看| 老鸭窝网址在线观看| 这个男人来自地球电影免费观看| 免费观看精品视频网站| 久久久久亚洲av毛片大全| av视频在线观看入口| 九色国产91popny在线| 国内少妇人妻偷人精品xxx网站| 18禁在线播放成人免费| 精品久久久久久久久久久久久| av在线蜜桃| 我要搜黄色片| 亚洲天堂国产精品一区在线| 久久99蜜桃精品久久| 毛片一级片免费看久久久久| 日日摸夜夜添夜夜添av毛片| 欧美日韩精品成人综合77777| 久久韩国三级中文字幕| 中文字幕av在线有码专区| av免费观看日本| 午夜老司机福利剧场| 欧美变态另类bdsm刘玥| 国产私拍福利视频在线观看| 一级av片app| 久久精品91蜜桃| 青春草亚洲视频在线观看| 青春草国产在线视频 | 国产精品一区二区三区四区久久| 久久精品久久久久久久性| 国产高清不卡午夜福利| 99九九线精品视频在线观看视频| 国产乱人偷精品视频| 日本-黄色视频高清免费观看| 有码 亚洲区| 晚上一个人看的免费电影| 变态另类成人亚洲欧美熟女| 国产精品精品国产色婷婷| 国产片特级美女逼逼视频| 尤物成人国产欧美一区二区三区| 国产一区二区三区av在线 | 午夜福利高清视频| 久久6这里有精品| 日韩大尺度精品在线看网址| 亚洲美女视频黄频| 国产亚洲欧美98| 中文亚洲av片在线观看爽| 中国国产av一级| 中文在线观看免费www的网站| 久久久久久久久久久免费av| 欧美一区二区国产精品久久精品| 久久精品国产鲁丝片午夜精品| 久久热精品热| 欧美成人a在线观看| 麻豆一二三区av精品| 亚洲美女视频黄频| 又爽又黄无遮挡网站| 欧美三级亚洲精品| 校园人妻丝袜中文字幕| 一级毛片aaaaaa免费看小| 久久人人精品亚洲av| 一级毛片我不卡| 国产伦理片在线播放av一区 | 蜜桃亚洲精品一区二区三区| 男女啪啪激烈高潮av片| 日本欧美国产在线视频| 日韩,欧美,国产一区二区三区 | 久久午夜亚洲精品久久| 一个人看的www免费观看视频| 久久久精品94久久精品| 丝袜喷水一区| 国产一区二区在线观看日韩| 少妇熟女欧美另类| 成年女人看的毛片在线观看| av卡一久久| 国产伦精品一区二区三区四那| 亚洲欧美成人综合另类久久久 | 看黄色毛片网站| 亚洲av.av天堂| 夜夜夜夜夜久久久久| 亚洲国产高清在线一区二区三| 一个人免费在线观看电影| 国内精品久久久久精免费| avwww免费| 在线免费观看不下载黄p国产| 久久久久久久久久久免费av| 69人妻影院| 久久这里有精品视频免费| 26uuu在线亚洲综合色| 51国产日韩欧美| av天堂中文字幕网| 99国产精品一区二区蜜桃av| 搞女人的毛片| 九九热线精品视视频播放| 精品久久久久久久久久久久久| 亚洲自拍偷在线| 麻豆国产av国片精品| 国产白丝娇喘喷水9色精品| 舔av片在线| 国产av不卡久久| 女的被弄到高潮叫床怎么办| 欧美又色又爽又黄视频| 可以在线观看的亚洲视频| 在线a可以看的网站| 国产黄色小视频在线观看| av专区在线播放| 亚洲av.av天堂| 99久国产av精品| 亚洲激情五月婷婷啪啪| 欧美色视频一区免费| 国语自产精品视频在线第100页| 青春草亚洲视频在线观看| 亚洲在线观看片| 亚洲欧美成人综合另类久久久 | 国产伦一二天堂av在线观看| 国产视频首页在线观看| 国产激情偷乱视频一区二区| 国产高清视频在线观看网站| 国产精品麻豆人妻色哟哟久久 | 亚洲精品乱码久久久久久按摩| 亚洲va在线va天堂va国产| 精品久久久久久久人妻蜜臀av| 色综合亚洲欧美另类图片| 麻豆av噜噜一区二区三区| 悠悠久久av| 性色avwww在线观看| 日韩,欧美,国产一区二区三区 | 久久久久性生活片| 日韩欧美 国产精品| 18禁在线无遮挡免费观看视频| 内射极品少妇av片p| 欧美性猛交黑人性爽| 国内精品久久久久精免费| 美女国产视频在线观看| 精品99又大又爽又粗少妇毛片| 蜜臀久久99精品久久宅男| 99在线视频只有这里精品首页| 人体艺术视频欧美日本| 亚洲高清免费不卡视频| 国产黄片美女视频| 91在线精品国自产拍蜜月| 18+在线观看网站| 99在线人妻在线中文字幕| 国产 一区 欧美 日韩| 精品久久久久久久久亚洲| 人妻系列 视频| 成人毛片a级毛片在线播放| 午夜福利视频1000在线观看| 日本黄色视频三级网站网址| 好男人视频免费观看在线| 少妇熟女aⅴ在线视频| 欧美性感艳星| 日韩成人伦理影院| 狂野欧美激情性xxxx在线观看| 成人综合一区亚洲| 国产男人的电影天堂91| 午夜激情福利司机影院| 夜夜看夜夜爽夜夜摸| 少妇猛男粗大的猛烈进出视频 | 一区二区三区四区激情视频 | 午夜福利在线观看吧| 久久鲁丝午夜福利片| 一级二级三级毛片免费看| 精品久久久久久久人妻蜜臀av| 亚洲国产欧洲综合997久久,| 啦啦啦观看免费观看视频高清| 99久久中文字幕三级久久日本| 久久精品国产亚洲av天美| 精华霜和精华液先用哪个| 成年免费大片在线观看| 村上凉子中文字幕在线| 麻豆精品久久久久久蜜桃| 日韩av不卡免费在线播放| 国产淫片久久久久久久久| 日本-黄色视频高清免费观看| 久久午夜福利片| 白带黄色成豆腐渣| 毛片一级片免费看久久久久| av天堂中文字幕网| 高清毛片免费观看视频网站| 你懂的网址亚洲精品在线观看 | 99久久成人亚洲精品观看| 男女下面进入的视频免费午夜| 亚洲精品456在线播放app| 村上凉子中文字幕在线| 成人二区视频| 黄片wwwwww| 如何舔出高潮| 一区福利在线观看| 久久久久久久久久久丰满| 国内揄拍国产精品人妻在线| 久久精品国产鲁丝片午夜精品| 搡女人真爽免费视频火全软件| 国产91av在线免费观看| 国产一区二区在线观看日韩| 内地一区二区视频在线| 久久久成人免费电影| 一卡2卡三卡四卡精品乱码亚洲| www日本黄色视频网| 国产精品伦人一区二区| 在线观看一区二区三区| 99久久人妻综合| 久久婷婷人人爽人人干人人爱| 亚洲国产精品久久男人天堂| 丰满的人妻完整版| 日本一本二区三区精品| 九色成人免费人妻av| 亚洲丝袜综合中文字幕| 日韩强制内射视频| 久久久久免费精品人妻一区二区| 日本av手机在线免费观看| 内射极品少妇av片p| 校园人妻丝袜中文字幕| 色综合色国产| 欧美xxxx黑人xx丫x性爽| 欧美最新免费一区二区三区| 国产成人影院久久av| 在线观看免费视频日本深夜| 国产亚洲精品久久久com| 亚洲人成网站在线播放欧美日韩| 久久午夜亚洲精品久久| 午夜福利高清视频| 人妻系列 视频| 国产三级在线视频| 女的被弄到高潮叫床怎么办| 久久精品国产亚洲av香蕉五月| 晚上一个人看的免费电影| eeuss影院久久| 成年av动漫网址| 久久这里只有精品中国| 国内久久婷婷六月综合欲色啪| 免费av毛片视频| 日韩欧美国产在线观看| 亚洲熟妇中文字幕五十中出| a级一级毛片免费在线观看| 国产免费一级a男人的天堂| 久久久国产成人免费| ponron亚洲| 国产麻豆成人av免费视频| 亚洲激情五月婷婷啪啪| 美女高潮的动态| 97人妻精品一区二区三区麻豆| 午夜福利成人在线免费观看| 日韩欧美一区二区三区在线观看| 老女人水多毛片| 免费电影在线观看免费观看| 日韩视频在线欧美| 亚洲精品国产成人久久av| 久久亚洲国产成人精品v| 国产精品女同一区二区软件| 少妇高潮的动态图| 插阴视频在线观看视频| 两个人的视频大全免费| 国产日本99.免费观看| 国产极品天堂在线| 国产v大片淫在线免费观看| 国内揄拍国产精品人妻在线| 国产高清三级在线| 丰满乱子伦码专区| 免费看光身美女| 一个人观看的视频www高清免费观看| 成人亚洲欧美一区二区av| 给我免费播放毛片高清在线观看| 91久久精品电影网| 日本黄色片子视频| 一区福利在线观看| 亚洲在线自拍视频| or卡值多少钱| 中文字幕免费在线视频6| 精品一区二区免费观看| 亚洲人成网站高清观看| 97在线视频观看| 91狼人影院| 亚洲av熟女| 女同久久另类99精品国产91| 亚洲自拍偷在线| 美女cb高潮喷水在线观看| 麻豆久久精品国产亚洲av| 日韩 亚洲 欧美在线| 人人妻人人澡欧美一区二区| 午夜精品国产一区二区电影 | 免费在线观看成人毛片| 亚洲国产精品sss在线观看| 亚洲美女搞黄在线观看| 亚洲18禁久久av| 成人午夜精彩视频在线观看| 一个人免费在线观看电影| 免费无遮挡裸体视频| 最近手机中文字幕大全| 天天躁夜夜躁狠狠久久av| 亚洲一区高清亚洲精品| 99久久精品热视频| 国产探花在线观看一区二区| 欧美一区二区亚洲| 日韩国内少妇激情av| 国产高清有码在线观看视频| 欧美区成人在线视频| 国产真实乱freesex| 自拍偷自拍亚洲精品老妇| 亚洲av电影不卡..在线观看| 久久久久久久久久黄片| 久久久欧美国产精品| 国产黄片视频在线免费观看| 亚洲中文字幕日韩| 国产中年淑女户外野战色| 日本与韩国留学比较| 亚洲美女搞黄在线观看| 哪里可以看免费的av片| 特级一级黄色大片| 国产成人影院久久av| 日本免费一区二区三区高清不卡| 国产v大片淫在线免费观看| 日日撸夜夜添| 国产午夜精品一二区理论片| 91久久精品国产一区二区成人| 精品熟女少妇av免费看| 久久精品国产亚洲网站| 精品人妻视频免费看| 高清毛片免费看| 国产亚洲91精品色在线| 欧美激情国产日韩精品一区| 亚洲精品国产av成人精品| 中文字幕av成人在线电影| 男人狂女人下面高潮的视频| av免费在线看不卡| 免费av观看视频| 色播亚洲综合网| 久久精品91蜜桃| 久久久久性生活片| 精品一区二区免费观看| 波多野结衣巨乳人妻| 91在线精品国自产拍蜜月| 亚洲国产高清在线一区二区三| 少妇熟女欧美另类| 久久婷婷人人爽人人干人人爱| 国产精品电影一区二区三区| av视频在线观看入口| 亚洲欧美精品自产自拍| 成人鲁丝片一二三区免费| 久久久成人免费电影| 国产伦精品一区二区三区四那| 亚洲七黄色美女视频| 亚洲电影在线观看av| 国产日本99.免费观看| 久久精品国产亚洲av香蕉五月| 亚洲丝袜综合中文字幕| 国产高清有码在线观看视频| 身体一侧抽搐| 极品教师在线视频| 欧美精品国产亚洲| 国产精品不卡视频一区二区| 成人无遮挡网站| 日韩人妻高清精品专区| 国产91av在线免费观看| 国产黄a三级三级三级人| 亚洲在久久综合| 国产亚洲av嫩草精品影院| 自拍偷自拍亚洲精品老妇| 日韩欧美国产在线观看| 黄色视频,在线免费观看| 婷婷亚洲欧美| 精品人妻熟女av久视频| 午夜a级毛片| 成人一区二区视频在线观看| 久久6这里有精品| 12—13女人毛片做爰片一| 国产精品蜜桃在线观看 | 色视频www国产| 日日撸夜夜添| 亚洲无线观看免费| 亚洲五月天丁香| 在线观看av片永久免费下载| 成熟少妇高潮喷水视频| 少妇的逼好多水| 国产精品国产高清国产av| 在线免费十八禁| 日韩中字成人| 啦啦啦韩国在线观看视频| 日本爱情动作片www.在线观看| 午夜福利在线观看免费完整高清在 | 在线观看免费视频日本深夜| 国产日本99.免费观看| 亚洲av.av天堂| 日日摸夜夜添夜夜添av毛片| 午夜福利视频1000在线观看| 国产 一区精品| 国产色爽女视频免费观看| 九九热线精品视视频播放| av在线亚洲专区| 国产黄片视频在线免费观看| 永久网站在线| 老司机福利观看| 国产蜜桃级精品一区二区三区| 久久人妻av系列| 亚洲内射少妇av| 亚洲色图av天堂| 一进一出抽搐动态| 国产成人91sexporn| 欧美高清成人免费视频www| 99riav亚洲国产免费| 村上凉子中文字幕在线| 欧美一级a爱片免费观看看| 日本爱情动作片www.在线观看| 悠悠久久av| 欧洲精品卡2卡3卡4卡5卡区| 狂野欧美激情性xxxx在线观看| 99视频精品全部免费 在线| 成人鲁丝片一二三区免费| 国产精品一区二区三区四区久久| 久久久久国产网址| 国产精品久久久久久精品电影小说 | 黄片wwwwww| 成人午夜精彩视频在线观看| 欧美成人一区二区免费高清观看| 日本五十路高清| 男女那种视频在线观看| av在线播放精品| 久久久久久九九精品二区国产| 色尼玛亚洲综合影院| 成人漫画全彩无遮挡| 天堂中文最新版在线下载 | 成人毛片60女人毛片免费| 成年av动漫网址| 狂野欧美激情性xxxx在线观看| 成人特级黄色片久久久久久久| 国产v大片淫在线免费观看| 成年女人永久免费观看视频| 日本成人三级电影网站| 又爽又黄无遮挡网站| 精品久久久久久久久av| 国产精品一区二区在线观看99 | 嫩草影院精品99| 日本-黄色视频高清免费观看| 欧美成人免费av一区二区三区| 欧美一区二区国产精品久久精品| 美女脱内裤让男人舔精品视频 | 男女啪啪激烈高潮av片| 国产大屁股一区二区在线视频| or卡值多少钱| 日本黄大片高清| 亚洲国产精品久久男人天堂| 欧美一区二区亚洲| 国产高潮美女av| 又爽又黄a免费视频| 国产黄色小视频在线观看| 中文字幕av成人在线电影| 老女人水多毛片| 久久6这里有精品|