• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Containment-Based Multiple PCC Voltage Regulation Strategy for Communication Link and Sensor Faults

    2023-10-21 03:10:08MeinaZhaiQiuyeSunRuiWangandHuaguangZhang
    IEEE/CAA Journal of Automatica Sinica 2023年11期

    Meina Zhai , Qiuye Sun ,,, Rui Wang , and Huaguang Zhang ,,

    Abstract—The distributed AC microgrid (MG) voltage restoration problem has been extensively studied.Still, many existing secondary voltage control strategies neglect the co-regulation of the voltage at the point of common coupling (PCC) in the AC multi-MG system (MMS).When an MMS consists of sub-MGs connected in series, power flow between the sub-MGs is not possible if the PCC voltage regulation relies on traditional consensus control objectives.In addition, communication faults and sensor faults are inevitable in the MMS.Therefore, a resilient voltage regulation strategy based on containment control is proposed.First, the feedback linearization technique allows us to deal with the nonlinear distributed generation (DG) dynamics, where the PCC regulation problem of an AC MG is transformed into an output feedback tracking problem for a linear multi-agent system (MAS) containing nonlinear dynamics.This process is an indispensable pre-processing in control algorithm design.Moreover, considering the unavailability of full-state measurements and the potential faults present in the sensors, a novel follower observer is designed to handle communication faults.Based on this, a controller based on containment control is designed to achieve voltage regulation.In regulating multiple PCC voltages to a reasonable upper and lower limit, a voltage difference exists between sub-MGs to achieve power flow.In addition, the secondary control algorithm avoids using global information of directed communication network and fault boundaries for communication link and sensor faults.Finally, the simulation results verify the performance of the proposed strategy.

    I.INTRODUCTION

    AN microgrid (MG) is a small generation, distribution, and consumption system consisting of a collection of distributed power sources, energy storage systems, energy conversion devices, monitoring and protection devices, and loads[1].The control structure of an MG is generally divided into three layers: bottom control, secondary control, and tertiary control.An essential function of the secondary control level is restoring the MGs’ voltage [2].

    Secondary control can be categorized as centralized, distributed, or decentralized based on the communication method employed.Centralized control enables complex control with high accuracy and speed, making it suitable for small-scale MGs [3].However, a single point of failure can lead to global control paralysis and reduced reliability.Decentralized control offers fast response time and high reliability but typically lacks accurate global information, resulting in lower control accuracy, susceptibility to interference, stability issues, and limited ability to achieve complex global control objectives[4].Distributed control, leverages communication between neighboring DGs to achieve consensus through mutual information exchange [5], [6].It utilizes a distributed local controller approach instead of a central controller, thus avoiding the single point of failure [7]–[9].The underlying multi-agent system (MAS) consensus algorithm enables each DG to indirectly share global information by communicating only with its neighbors.Reference [10] demonstrates the application of distributed fixed-time and prescribed-time consensus control in the domains of mobile robots and smart grids.Recently, it has become the primary implementation method for secondary control in MGs [11]–[13].In [14], a distributed consensus protocol is developed to solve the accurate reactive,harmonic and unbalanced power-sharing problems in MG.Consensus-based distributed finite-time regulators are proposed in [15] to coordinate active, frequency and output voltage in islanded MGs.In [16], the problem of distributed secondary control of isolated AC MGs in the presence of external disturbances is studied.However, the secondary control strategies [12]–[16] are based on the premise that the components and communication are perfect.

    In practical situations, electrical components such as actuators and sensors may experience failures [17]–[19].Two distributed control schemes were proposed by [20], [21], respectively, with fault tolerance for various potential faults in sensors and actuators, thus ensuring voltage and frequency regulation of the closed-loop system.Our previous study [22] proposed a fully distributed event-triggered fault-tolerant secondary control method based on information about neighboring distributed generation (DGs).Each DG requires only local information about itself and its neighbors.To achieve AC MG load voltage regulation, [23] proposed an active fault-tolerant event-driven strategy with unknown actuator faults under discrete communication.However, existing fault-tolerant control strategies applied to MGs generally assume that the communication links are ideal [20]–[23].The communication between DGs is applied in free space, which is susceptible to physical variations in the communication channel and noise from other sources or channel manipulation from hostile nodes [24], [25].To achieve high reliability of MG, resilient control of communication failures has become a critical control issue.Distributed control schemes for implementing frequency/voltage restoration and proportional power sharing considering the communication delay problem are proposed in [26].In [27], a distributed noise-resistant secondary control is proposed for restoring the output voltage and frequency of DG inverter with additive noise.In [28], output voltage and frequency regulation in scenarios where the communication network suffers from both communication delays and switching topologies are investigated.Reference [29] addresses the challenges of current sharing and voltage restoration in islanded DC MGs under heterogeneous communication delays and denial of service (DoS) attacks, providing a novel solution for the first time.This work tackles the complex issues arising from communication delays and cyber-attacks, ensuring efficient and reliable operation of MGs.Inspired by [30], [31], some valuable results were obtained in MG output voltage and frequency restoration control, in the presence of communication failures [24].

    However, the resilience regulation of point of common coupling (PCC) voltage in multi-MG systems (MMSs) under communication link and sensor faults remains an unexplored area of research.Existing methods have several limitations that need to be addressed: 1) Previous works [12], [13], [15],[16], [20]–[22], [24], [26]–[28] primarily focused on restoring the output voltage of each DG unit to its nominal value.However, the co-regulation of PCC voltage in MMS is even more critical than regulating the DG output voltage.It is necessary to develop a reasonable system model that reflects the interaction effects between the communication-based PCC voltage control protocol and the DG units in the MMS.2)Using the conventional consensus tracking method to control the PCC voltages collectively at the reference value would result in no voltage difference between the sub-MGs, thus hindering the power flow between them.Therefore, it is necessary to design reasonable control objectives that address the co-regulation problem of PCC voltages.3) Furthermore, the PCC voltage regulation problem addressed in this paper is an output feedback tracking problem after feedback linearization.However, the reference-based state observer proposed in previous works [24], [30] is not applicable due to the challenges of full-state unmeasurability and sensor failures.Moreover,the directional communication network and the parameters related to communication and sensor failures are unknown,adding further complexity to the resilient control problem.

    Based on the above limitations, we study the AC MG containment-based secondary voltage regulation control with communication link and sensor faults.The main contributions of this paper are summarized as follows:

    1) Unlike the traditional consensus-based voltage regulation problem [12], [13], [15], [16], [20]–[22], [24], [26]–[28],we introduce the control objective of containment control in this paper.The reason is that it is impossible to achieve power flow between sub-MGs if multiple PCC voltages are controlled collectively at the reference value.Therefore, a containment-based distributed controller is proposed to balance the conflicting objectives of voltage regulation and power flow.This controller makes the PCC voltage control within a reasonable range while there is a voltage difference to achieve power flow.

    2) Unlike the output voltage regulation problem [12], [13],[15], [16], [20]–[22], [24], [26]–[28], our goal is the regulation problem of the PCC voltage.The feedback linearization technique allows us to deal with nonlinear DG dynamics.Thus, the PCC voltage regulation problem of the AC MG is transformed into a distributed output feedback tracking problem of a linear MAS with nonlinear dynamics.This transformation is an indispensable preprocessing in the design of the control algorithm.

    3) The leader-based observer in [27] and [30], [31] is unavailable due to thexifull-state unmeasurability and sensor fault problems.Therefore, we designed a novel adaptive follower-based observer to handle communication and sensor faults, avoiding the use of global information of directed communication network and fault-related parameters.

    The outline of this paper is given below.Section II gives the modeling framework to transform the PCC regulation problem of an AC PCC into a distributed output feedback tracking problem with linear MASs containing unknown nonlinear dynamics.In Section III, some problem statements are made.In Section IV, the main results are established, and a resilient voltage regulation strategy based on containment control is built.Then, Section V verifies the effectiveness of the proposed control method.Section VI concludes this paper.

    Notations:LetIN∈RN×Nrepresent theidentitymatrix,λmax(?)representthe maximumeigenvalueof “? ”, //·//represent the Euclidean norm of vector “·” , diag{a1,...,aN} represent a diagonal matrix, col{a1,a2,...,aN} be a column vector,and ? represent the Kronecker product.

    II.MODELING FRAMEWORK

    Considering an MMS containingNsub-MGs, this paper considers the regulation problem of multi-PCC voltages.A sub-MG consists of DGs.The dynamic model of the DG includes droop control, inner-loop voltage and current control,LC filter, containment-based voltage secondary control, and line model, as shown in Fig.1.

    The droop controller dynamics are

    Fig.1.Block diagram of an inverter-based DG.

    where ωiis the angular frequency of the DG dictated by the primary control,is the reference value for the output voltage magnitude that is provided for the internal voltage control loop of the DG, ωniandVniare the frequency and the voltage input,mPiandnQiare the droop coefficients,PiandQiare measured active and reactive power at terminals ofith inverter, respectively.

    The power controller dynamics are

    where ωciis the cutoff frequency of the low-pass filters used in measuring power.vodi,voqiandiodi,ioqidenote the direct and quadrature components of the output voltagevoiand currentioi, respectively, of theith inverter.

    The voltage and current controller dynamics are

    The output LC filter and connector dynamics are

    whereRiis filter resistance.vidi,viqiare output components of the current controller.vbdi,vbqiare the components of the PCC voltage.Lci,Rciare inductance, resistance ofthe line between the PCCandtheinverteroutput, respectively.

    The nonlinear dynamic model of the AC MG in a compact form is

    where the state vector is

    andJi=[ωcom,vbdi,vbqi].Detailed expressions forfi(zi),gi(zi),andki(zi) can be extracted from (1)-(4).Moreover,di(zi) is set tovodi.yiis set tovbdi.vlirepresents the voltage of the line between the PCC and the inverter output.

    Then, by feedback linearization, we have

    It is difficult to obtain the value ofv˙bdiin practice, the design of the control algorithm using onlyvbdiinstead ofxi,wherexiis translated from (7) as follows:

    Remark 1: Unlike the traditional output voltagevodiregulation problem in [12], [13], [15], [16], [20]–[22], [24],[26]–[28], we address the PCC voltagevbdiregulation problem for AC MGs.Moreover, due to thexifull-state unmeasurability, the state-based controller cannot achievevbdiregulation.In the input-output feedback linearization (7), repeated differentiation concerning time generates the direct relationship between the dynamics ofvbdi(or equivalentlyyi) and the control inputVni.Thevbdiregulation problem is transformed into a distributed output feedback tracking problem with linear MAS, where the system contains nonlinear dynamicsv¨li.Moreover, an appropriate auxiliary controlleruiis designed so thatvbdiregulation is achieved usingVni.The design of controlleruidepends on state observerx?i, while the design ofx?idepends onvbdi.

    The containment-based voltage controller for each sub-MGs bound voltages within a reasonable range.The virtual leaders serve as the upper and lower boundaries of the specified voltage, as follows:

    III.PROBLEM STATEMENT

    Assumption 1: The communication topology between the PCC terminals of the sub-MG is directed.At least one virtual leader’s dynamics is directed to all sub-MG’s PCC terminals.

    Assumption 1 is the basic standard assumption of MASs containment control.

    In this paper, the faults are modeled as follows:

    1) The communication links faults:

    2) The sensors faults:

    wherehiis the unknown sensor fault.

    Assumption 2: The communication link faults,i=1,2,...,N,j=1,2,...,N+2, and their derivatives are bounded but unknown.The signs ofaˉi jare the same to those ofai j,respectively.

    Assumption 3: The time derivative of sensor fault is bounded, i.e.,

    Remark 2: An MG includes multiple power sources, actuators, sensors, and communication networks.Actuator faults can adversely affect the stability and performance of the MG.These faults can result in erroneous decision making and operation, impacting the effectiveness of the MG’s energy management and overall operation.Sensor faults can lead to inaccurate sensing and collection of environmental and energy data within the MG.This, in turn, affects the system’s dispatch and control strategy.Furthermore, communication among DGs in the MG occurs wirelessly and is susceptible to physical changes in the communication channel, noise interference from other sources, or malicious manipulation by hostile nodes.In this paper, we focus on sensor and communication fault issues.Assumption 2 guarantees the boundedness of the considered communication link faults and their derivatives, found in [30].Assumption 3 ensures the boundedness of the sensor derivatives, found in [18].

    Then, L (t) is defined as

    The dynamic model of theith agent is

    Remark 3: The reference-based state observer in [30] is unavailable due to thexifull-state unmeasurability and sensor fault issues.Moreover, the boundaries of the fault-related parameters of the directed communication network and the communication and sensors are unknown.Therefore, we next design a new adaptive follower-based observer to handle communication and sensor faults.

    IV.MAIN RESULT

    The purpose of this section is to co-regulate the PCC voltagevbdi,i=1,2,...,Nin an MMS to a given region.Besides,from the practical needs of the power system, the proposed secondary control protocol does not depend on the global information of the directed communication network and the boundary of the fault factor.We design a containment-based secondary voltage strategy for communication link and sensor faults for a MMS, as shown in Fig.2.For simplicity, only one DG is shown in each sub-MG.

    where

    Let the observer controlleriin (17) be

    Fig.2.Block diagram of an MMS and the proposed containment-based secondary voltage regulation strategy for communication link and sensor faults.

    where

    Define ? =col{?1(t),?2(t),...,?N(t)}, then

    Remark 4: It can be seen from Fig.2 that power cannot flow between DGs if the PCC voltagesvbdi,i=1,2,...,Nare controlled at their nominal value.Therefore, this paper introduces the control objective of containment control.On this basis, a secondary voltage regulation strategy based on containment control is proposed.The strategy limits each PCC voltagevbdito a reasonable range while having a voltage difference between sub-MGs to allow power flow.

    Then,

    It is easy to obtain

    where

    Theorem 1: Suppose Assumptions 1-3 hold, and there exist appropriate χm,m=1,2,3,4,5,11,12.P>0, Γ >0, M >0,R,GandLare with appropriate dimensions such that

    where

    Proof: Consider the following Lyapunov function candidate:

    where

    Taking the derivative ofV1, from (26) and (31), we obtain that

    and

    Applying (41)-(45) to (40), for any positive constants χ6and χ7, one can obtain that

    Then,

    Next, taking the derivative ofV2, from (20) and (21), we obtain that

    Then,

    From (23) and (24), we obtain //?//≤//(t)////?//.Define Kmas the lower bound of K(t).For any positive constant χ8,we obtain

    By Lemma 2, the minimum eigenvalue of N(t) is denoted by λ0, it follows:

    Moreover, for any positive constants χ11and χ12, it is easy to get

    and

    Sincesi>0 is sufficiently large such thatsi≥maxi=1,2,...,N{ki}holds, we obtain

    It follows from (48)-(57) that (49) satisfies:

    and

    Furthermore,

    Then,

    where

    Thereforeη,,?,?and?can converge exponentially to the following bounded set:

    Remark 5: In this paper, communication faults parameters are usually time-varying.When using the Lyapunov method,the derivatives of the parameters associated with the Laplace matrix must be introduced.Therefore, matrixBis not required in the observer controlleru?iand its adaptive rate ?idesign.

    Remark 6: Designing adaptive output feedback tracking protocols is more challenging due to the asymmetric Laplacian matrix of the directed graph.The adaptive gain ?iis used to estimate the eigenvalue information of the asymmetric Laplacian matrix associated with the directed graph.If the existing methods in [27] and [31] are used, the adaptive parameter ?iis updated by ?i=(t)PBBT P?i(t).It is easy to see the parameter ?iwill increase monotonically.To avoid this phenomenon, a σ-modification technique is introduced in(20).

    Remark 7: We introduce dynamic coupling gains ?iandυito avoid global information and information related to the fault parameters.These gains are updated in dependence on the relative error ?i(t).

    V.SIMULATION RESULTS

    This section aims to demonstrate the feasibility and effectiveness of the proposed resilient PCC voltage regulation strategy based on containment and output feedback and the resilience of the strategy under communication faults and sensor faults.For this purpose, we have simulated in the MATLAB/Simulink software environment for the MG shown in Fig.3.The MMS is tested with a combination of four sub-MGs.For simplicity, each sub-MG consists of only one DG.Table I provides the parameters of DGs, lines and loads in Fig.3.It is assumed that the DGs communicate with each other through the directed topology shown in Fig.4.DG#1,DG#4 receive information fromvref1,vref2, respectively.Then, after calculation, it is possible to obtainxˉ=col{222.8571,211.4286,228.5714,234.2857}.

    Fig.3.The example MG test system.

    TABLE I SPECIFICATIONS OF THE MG TEST SYSTEM

    Fig.4.The considered communication structure.

    This case scenario examines the capability of the proposed resilient voltage regulation approach after islanding att=0.0 s.For this purpose, the following four test scenarios were performed:

    1) Att=0.4 s, the containment-based PCC voltage regulation secondary control cuts in.

    2) Att=0.7 s, MG #4 was disconnected.

    3) Att=1 s, MG #4 was reconnected.

    4) Att=1.3 s, load # 1 cuts off 5 0%.

    5) Att=1.6 s, 50% of load #1 is restored to its original value.

    Solving (33) gives a solution

    Fig.5.The PCC voltages , i =1,2,...,4.

    To verify the effectiveness of the containment-based PCC regulation algorithm in an MMS, the algorithm initially relies on only primary control to maintain voltage stability by adjusting the droop factor.As shown in Fig.5, the primary control successfully achieves voltage stability and provides a timely response.However, operation in differential mode causes the voltage to deviate from the nominal value.Therefore, introducing a designed regulation control layer is crucial for the cooperative regulation of PCC voltages in an MMS.After the secondary control algorithm is activated whent=0.4 s, it is observed that the PCC voltages are regulated into a convex packet formed by reference valuesvref1,vref2,thus, the voltage is restored within a reasonable range while a voltage difference exists between the PCC voltages to achieve the power flow between the MGs.Att=0.7 s andt=1.0 s,the PCC voltages fluctuate due to the separation and subsequent reconnection of the sub-MGs.The voltage quickly returns to its original value, indicating that the regulation strategy effectively maintains voltage stability.Similarly, att=1.3 s andt=1.6 s, the proposed PCC voltage regulation strategy effectively restores the desired voltage level after the load is temporarily disconnected and converted.In addition,Figs.6-9 indicate the corresponding output voltage, controller, and active and reactive power changes, further illustrating the effectiveness of the voltage regulation proposed in this paper.

    Fig.6.Output terminal voltage, i =1,2,...,4.

    Fig.7.The controllers , i =1,2,...,4.

    In summary, the effectiveness of the containment-based PCC voltage regulation strategy proposed in this study is verified under load shifting and plugging scenarios, providing a reliable means to ensure the stable operation of the MG system.

    Fig.8.The active power Pi, i =1,2,...,4.

    Fig.9.The reactive power Qi, i =1,2,...,4.

    VI.CONCLUSIONS

    This paper has proposed a containment-based AC MG secondary control strategy to regulate the PCC voltage.Unlike previous voltage regulation strategies, the applied feedback linearization transforms the PCC voltage regulation control into a distributed output feedback tracking problem of a linear MAS with nonlinear dynamics.If multiple PCC voltages are set to return to the reference voltage collectively, it will not be possible to perform power flow between sub-MGs.Therefore,the idea of containment control is introduced.The control objective is to restore to a reasonable range while there is a voltage difference between PCC voltages.In addition, network communication between DGs and sensor failures in DGs are unavoidable.A novel resilient fault-tolerant control algorithm with output feedback based on state observer has proposed to achieve communication resilience while avoiding the effects of sensor failures.At the same time, it avoids the global information of the directed communication network and fault parameters related to applications.

    校园春色视频在线观看| 国产精品亚洲一级av第二区| 五月伊人婷婷丁香| 嫩草影院精品99| 高清毛片免费观看视频网站| 日韩欧美在线二视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲一区二区三区色噜噜| 香蕉av资源在线| 欧美性猛交╳xxx乱大交人| 别揉我奶头~嗯~啊~动态视频| 国产大屁股一区二区在线视频| 直男gayav资源| 赤兔流量卡办理| 日韩欧美在线乱码| 老熟妇仑乱视频hdxx| 99热只有精品国产| 91久久精品国产一区二区成人| 亚洲美女搞黄在线观看 | 亚洲精品粉嫩美女一区| 精品欧美国产一区二区三| 精品人妻一区二区三区麻豆 | 国产69精品久久久久777片| a级一级毛片免费在线观看| 亚洲色图av天堂| 一级a爱片免费观看的视频| 听说在线观看完整版免费高清| 能在线免费观看的黄片| 美女被艹到高潮喷水动态| 亚洲第一区二区三区不卡| 久久中文看片网| 久久午夜福利片| 亚洲avbb在线观看| 小说图片视频综合网站| 亚洲激情在线av| 日本 欧美在线| 精品久久久久久成人av| 国语自产精品视频在线第100页| 中文字幕人成人乱码亚洲影| 亚洲精华国产精华精| 蜜桃久久精品国产亚洲av| 99国产精品一区二区三区| 最好的美女福利视频网| 噜噜噜噜噜久久久久久91| 精品欧美国产一区二区三| 夜夜躁狠狠躁天天躁| 国产精品久久久久久久电影| 美女黄网站色视频| 麻豆成人午夜福利视频| 99久久99久久久精品蜜桃| 91字幕亚洲| 久久久久久国产a免费观看| 久久久国产成人免费| 天堂网av新在线| 亚洲第一区二区三区不卡| 欧美黑人欧美精品刺激| 男插女下体视频免费在线播放| 精品人妻一区二区三区麻豆 | 日本一本二区三区精品| 亚洲 欧美 日韩 在线 免费| 亚州av有码| 亚洲成av人片免费观看| 精品久久久久久久人妻蜜臀av| 99久久久亚洲精品蜜臀av| 国产欧美日韩精品亚洲av| 国产真实乱freesex| 啦啦啦观看免费观看视频高清| 欧美日韩黄片免| www.999成人在线观看| 午夜精品在线福利| 99久久99久久久精品蜜桃| av在线观看视频网站免费| 中文字幕熟女人妻在线| 两人在一起打扑克的视频| 韩国av一区二区三区四区| 久久人人精品亚洲av| 国内毛片毛片毛片毛片毛片| 又爽又黄无遮挡网站| 内射极品少妇av片p| 午夜福利18| 日本免费a在线| 久久草成人影院| 日本熟妇午夜| 精品一区二区免费观看| 午夜福利视频1000在线观看| 精品久久久久久久人妻蜜臀av| 国产精品影院久久| 搡老妇女老女人老熟妇| 久久久久精品国产欧美久久久| 女同久久另类99精品国产91| 深夜精品福利| bbb黄色大片| 色综合婷婷激情| 国产野战对白在线观看| 欧美黑人巨大hd| 黄色丝袜av网址大全| 国产亚洲精品久久久久久毛片| 久久中文看片网| 1024手机看黄色片| 成人永久免费在线观看视频| 男女做爰动态图高潮gif福利片| 精品久久久久久久末码| 欧美最黄视频在线播放免费| 国产午夜精品久久久久久一区二区三区 | avwww免费| 精品免费久久久久久久清纯| 又黄又爽又刺激的免费视频.| 色哟哟哟哟哟哟| 久久精品综合一区二区三区| 国产亚洲欧美98| 欧美日韩瑟瑟在线播放| 深夜精品福利| 国产单亲对白刺激| 一级黄色大片毛片| 精品久久国产蜜桃| 99热6这里只有精品| 好看av亚洲va欧美ⅴa在| 日韩中字成人| 给我免费播放毛片高清在线观看| 国产激情偷乱视频一区二区| 精华霜和精华液先用哪个| 久久亚洲真实| 国产精品野战在线观看| av国产免费在线观看| 久久午夜福利片| 夜夜躁狠狠躁天天躁| 嫩草影视91久久| 搡老妇女老女人老熟妇| 天堂网av新在线| 久久欧美精品欧美久久欧美| 久久午夜福利片| 国产色婷婷99| 欧美+亚洲+日韩+国产| 搡老妇女老女人老熟妇| 国产色婷婷99| eeuss影院久久| 免费搜索国产男女视频| 丁香六月欧美| 男人舔女人下体高潮全视频| 精品人妻熟女av久视频| 免费无遮挡裸体视频| 国产高清激情床上av| 一本久久中文字幕| 丁香六月欧美| 成人毛片a级毛片在线播放| 国产精品爽爽va在线观看网站| 极品教师在线视频| 我的老师免费观看完整版| 国产私拍福利视频在线观看| 欧美黑人巨大hd| 99热6这里只有精品| 麻豆一二三区av精品| 日本黄色视频三级网站网址| 少妇人妻一区二区三区视频| 色噜噜av男人的天堂激情| 哪里可以看免费的av片| 亚洲精华国产精华精| 免费看日本二区| 搡老熟女国产l中国老女人| 波野结衣二区三区在线| 精华霜和精华液先用哪个| 国产av不卡久久| 免费观看的影片在线观看| 别揉我奶头 嗯啊视频| 9191精品国产免费久久| 国产一级毛片七仙女欲春2| 搡老岳熟女国产| 国产亚洲欧美在线一区二区| 午夜老司机福利剧场| 精品日产1卡2卡| 色综合婷婷激情| 久久热精品热| 亚洲熟妇中文字幕五十中出| 一边摸一边抽搐一进一小说| xxxwww97欧美| 十八禁国产超污无遮挡网站| 亚洲一区二区三区不卡视频| 老熟妇仑乱视频hdxx| 国产精品久久久久久精品电影| 极品教师在线免费播放| 麻豆国产av国片精品| 精品久久久久久成人av| 成人永久免费在线观看视频| 身体一侧抽搐| 少妇被粗大猛烈的视频| 国产亚洲欧美在线一区二区| 一本一本综合久久| 国产高清三级在线| 三级男女做爰猛烈吃奶摸视频| 久久精品久久久久久噜噜老黄 | 免费黄网站久久成人精品 | 亚洲一区高清亚洲精品| 午夜福利在线观看免费完整高清在 | 亚洲欧美激情综合另类| 麻豆成人av在线观看| 亚洲精品粉嫩美女一区| 午夜久久久久精精品| 国产三级中文精品| 一个人观看的视频www高清免费观看| 午夜精品一区二区三区免费看| 日韩欧美精品v在线| 久久久久九九精品影院| 久久久久国产精品人妻aⅴ院| 男女床上黄色一级片免费看| 欧美极品一区二区三区四区| av在线观看视频网站免费| 午夜老司机福利剧场| 99久久精品一区二区三区| 国产av在哪里看| 黄色视频,在线免费观看| 高清毛片免费观看视频网站| 欧美极品一区二区三区四区| 久久精品国产亚洲av涩爱 | 久久精品综合一区二区三区| 日韩亚洲欧美综合| 亚洲第一电影网av| 亚洲色图av天堂| 久久国产乱子免费精品| a级毛片a级免费在线| 99精品久久久久人妻精品| 亚洲天堂国产精品一区在线| 亚洲av五月六月丁香网| 久久久成人免费电影| 亚洲欧美日韩高清专用| 国产欧美日韩精品一区二区| 成年女人看的毛片在线观看| avwww免费| 毛片一级片免费看久久久久 | 久久久国产成人免费| 国产色婷婷99| 一区二区三区激情视频| 欧美午夜高清在线| 中亚洲国语对白在线视频| 亚洲精品乱码久久久v下载方式| netflix在线观看网站| ponron亚洲| 亚洲内射少妇av| 给我免费播放毛片高清在线观看| 亚洲在线观看片| 国产高清视频在线播放一区| 国产亚洲欧美在线一区二区| 欧美黄色淫秽网站| 国内精品美女久久久久久| а√天堂www在线а√下载| 99热精品在线国产| 久久精品夜夜夜夜夜久久蜜豆| 国产精品美女特级片免费视频播放器| 精品国产亚洲在线| 成人无遮挡网站| 国产亚洲精品av在线| 欧美黑人欧美精品刺激| 日韩欧美国产在线观看| 国产高清激情床上av| 久久久久性生活片| 一区二区三区激情视频| 中国美女看黄片| 国产免费男女视频| a级毛片a级免费在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 性色avwww在线观看| 中文字幕高清在线视频| 天堂动漫精品| 午夜久久久久精精品| 18禁黄网站禁片免费观看直播| 日韩 亚洲 欧美在线| 精品不卡国产一区二区三区| 欧美在线一区亚洲| 人妻制服诱惑在线中文字幕| 免费看美女性在线毛片视频| 99久久99久久久精品蜜桃| 日本精品一区二区三区蜜桃| 观看免费一级毛片| 深夜a级毛片| 97热精品久久久久久| 国产aⅴ精品一区二区三区波| 国产老妇女一区| 成年女人永久免费观看视频| 国产v大片淫在线免费观看| 夜夜看夜夜爽夜夜摸| 国产精品自产拍在线观看55亚洲| 国产成人啪精品午夜网站| av在线蜜桃| 香蕉av资源在线| 免费搜索国产男女视频| 一本精品99久久精品77| 白带黄色成豆腐渣| 久久久久久久久久黄片| 国产成人欧美在线观看| 国产精品亚洲一级av第二区| 国产黄色小视频在线观看| 日韩欧美国产在线观看| av天堂在线播放| 国产精品久久久久久人妻精品电影| 黄色丝袜av网址大全| 色哟哟哟哟哟哟| 九九热线精品视视频播放| 国产69精品久久久久777片| 激情在线观看视频在线高清| 久久精品国产清高在天天线| 给我免费播放毛片高清在线观看| 国产亚洲精品综合一区在线观看| 午夜福利18| 夜夜爽天天搞| 日本一本二区三区精品| 91午夜精品亚洲一区二区三区 | 长腿黑丝高跟| 午夜激情欧美在线| 成人国产综合亚洲| 久久久久久久久大av| 狂野欧美白嫩少妇大欣赏| 欧美乱色亚洲激情| 日韩欧美三级三区| 三级毛片av免费| 亚洲第一区二区三区不卡| 精品久久久久久久末码| 变态另类成人亚洲欧美熟女| 欧美成人一区二区免费高清观看| 国产精品98久久久久久宅男小说| 欧美成人a在线观看| 内射极品少妇av片p| 久久精品影院6| 成熟少妇高潮喷水视频| 搞女人的毛片| 免费人成在线观看视频色| 国产精品综合久久久久久久免费| 亚洲内射少妇av| 国产成人欧美在线观看| 亚洲人成网站在线播放欧美日韩| 久久精品影院6| 久久久国产成人精品二区| 日韩中文字幕欧美一区二区| or卡值多少钱| 丰满人妻熟妇乱又伦精品不卡| 久久久久久九九精品二区国产| 天美传媒精品一区二区| 国产又黄又爽又无遮挡在线| 91午夜精品亚洲一区二区三区 | 国产精品女同一区二区软件 | 午夜免费男女啪啪视频观看 | 欧美日韩国产亚洲二区| 哪里可以看免费的av片| 免费一级毛片在线播放高清视频| 波多野结衣高清作品| 又黄又爽又刺激的免费视频.| 高清日韩中文字幕在线| 直男gayav资源| 搡女人真爽免费视频火全软件 | 日韩欧美精品免费久久 | 亚洲人成电影免费在线| 亚洲专区中文字幕在线| 亚洲人成伊人成综合网2020| av天堂在线播放| 在线看三级毛片| 午夜免费成人在线视频| 又爽又黄无遮挡网站| 欧美日本亚洲视频在线播放| 中出人妻视频一区二区| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久成人av| 国产精品久久久久久精品电影| 国产精品永久免费网站| 色吧在线观看| 淫妇啪啪啪对白视频| 99热只有精品国产| 成人一区二区视频在线观看| 淫秽高清视频在线观看| 国产成+人综合+亚洲专区| 中文字幕熟女人妻在线| 老司机深夜福利视频在线观看| 18禁在线播放成人免费| 在线十欧美十亚洲十日本专区| 日日干狠狠操夜夜爽| 又黄又爽又免费观看的视频| 精品久久久久久久末码| 欧美三级亚洲精品| 精品一区二区三区视频在线| 午夜福利高清视频| 97超级碰碰碰精品色视频在线观看| 亚洲真实伦在线观看| 99热这里只有是精品在线观看 | 中文字幕人妻熟人妻熟丝袜美| 久久精品国产亚洲av香蕉五月| 国产精品永久免费网站| 欧美黑人欧美精品刺激| 国产伦精品一区二区三区四那| 久久精品综合一区二区三区| 国产午夜精品论理片| 日韩欧美免费精品| 国产白丝娇喘喷水9色精品| 久久亚洲真实| 久久精品91蜜桃| 午夜福利视频1000在线观看| 欧美一区二区精品小视频在线| 简卡轻食公司| 国产三级在线视频| 欧美另类亚洲清纯唯美| 久久久久久久久大av| 又黄又爽又刺激的免费视频.| 波多野结衣高清作品| 丁香六月欧美| 一级毛片久久久久久久久女| 成人国产综合亚洲| 俺也久久电影网| 日本黄大片高清| 99精品久久久久人妻精品| 久久精品人妻少妇| 久久精品国产99精品国产亚洲性色| 成人三级黄色视频| www.熟女人妻精品国产| 日本精品一区二区三区蜜桃| 中文字幕高清在线视频| 美女xxoo啪啪120秒动态图 | 简卡轻食公司| 色在线成人网| 99热这里只有精品一区| 国产精品免费一区二区三区在线| 欧美最黄视频在线播放免费| 极品教师在线免费播放| 白带黄色成豆腐渣| 久久九九热精品免费| 久久久久久九九精品二区国产| 很黄的视频免费| 日本与韩国留学比较| 色综合欧美亚洲国产小说| 久久精品国产亚洲av香蕉五月| 九色国产91popny在线| 国产精品一区二区三区四区久久| 麻豆一二三区av精品| 国内毛片毛片毛片毛片毛片| 国产白丝娇喘喷水9色精品| 俺也久久电影网| 每晚都被弄得嗷嗷叫到高潮| 中文字幕精品亚洲无线码一区| 国产亚洲精品久久久久久毛片| 岛国在线免费视频观看| 国产亚洲精品久久久久久毛片| 亚洲欧美清纯卡通| .国产精品久久| 嫩草影院新地址| 黄色一级大片看看| 国产亚洲精品久久久com| 在线观看av片永久免费下载| 欧美黄色淫秽网站| 国产精品亚洲美女久久久| 午夜亚洲福利在线播放| 国产老妇女一区| 国产真实乱freesex| av在线观看视频网站免费| 色av中文字幕| 免费电影在线观看免费观看| 亚洲中文日韩欧美视频| 国产一区二区三区视频了| av女优亚洲男人天堂| 国产爱豆传媒在线观看| 首页视频小说图片口味搜索| 男女做爰动态图高潮gif福利片| 淫妇啪啪啪对白视频| 亚洲av电影在线进入| 老司机深夜福利视频在线观看| 亚洲精华国产精华精| 身体一侧抽搐| 欧美黄色淫秽网站| 亚洲av.av天堂| 亚洲在线自拍视频| 中文字幕熟女人妻在线| 国语自产精品视频在线第100页| 毛片女人毛片| 欧美日本亚洲视频在线播放| 国产av一区在线观看免费| 九色成人免费人妻av| 成人永久免费在线观看视频| 日韩欧美精品免费久久 | 成年免费大片在线观看| 日韩欧美一区二区三区在线观看| 成人欧美大片| 国产高清有码在线观看视频| 999久久久精品免费观看国产| 国产中年淑女户外野战色| 久久精品国产自在天天线| 真实男女啪啪啪动态图| 黄色视频,在线免费观看| h日本视频在线播放| 精品欧美国产一区二区三| 国产野战对白在线观看| 午夜久久久久精精品| 欧美日韩中文字幕国产精品一区二区三区| 美女cb高潮喷水在线观看| 日韩人妻高清精品专区| 欧美另类亚洲清纯唯美| 国产av不卡久久| 91九色精品人成在线观看| 亚洲五月天丁香| 国产高潮美女av| 国产人妻一区二区三区在| 国产一区二区三区视频了| 禁无遮挡网站| 亚洲精品在线美女| 亚洲欧美清纯卡通| 我的老师免费观看完整版| 男插女下体视频免费在线播放| 成年女人看的毛片在线观看| 国产亚洲精品久久久com| 免费在线观看影片大全网站| 久9热在线精品视频| 一区二区三区高清视频在线| 国产人妻一区二区三区在| 午夜免费成人在线视频| 夜夜夜夜夜久久久久| 欧美又色又爽又黄视频| 国产精品美女特级片免费视频播放器| 动漫黄色视频在线观看| 最近在线观看免费完整版| 国产乱人视频| 两人在一起打扑克的视频| 亚洲欧美日韩无卡精品| 欧美日韩亚洲国产一区二区在线观看| 热99在线观看视频| 日本三级黄在线观看| 亚洲,欧美精品.| 日韩大尺度精品在线看网址| 亚洲精品粉嫩美女一区| 在线国产一区二区在线| 我要搜黄色片| 黄色一级大片看看| 97热精品久久久久久| 999久久久精品免费观看国产| 简卡轻食公司| 最好的美女福利视频网| 欧美成人免费av一区二区三区| 久久99热这里只有精品18| 老女人水多毛片| 亚洲熟妇中文字幕五十中出| 少妇的逼水好多| 国产精品精品国产色婷婷| 小蜜桃在线观看免费完整版高清| 欧美日韩中文字幕国产精品一区二区三区| 精品久久久久久久久久久久久| 久久中文看片网| 国产精品电影一区二区三区| a级毛片a级免费在线| 国产伦一二天堂av在线观看| 国产精品久久久久久人妻精品电影| 全区人妻精品视频| 熟女人妻精品中文字幕| 欧美日本亚洲视频在线播放| 国产久久久一区二区三区| 丰满人妻一区二区三区视频av| 99精品在免费线老司机午夜| 俄罗斯特黄特色一大片| 99久久九九国产精品国产免费| 亚洲精品影视一区二区三区av| 全区人妻精品视频| 99在线视频只有这里精品首页| 午夜福利高清视频| 亚洲精品456在线播放app | 一级a爱片免费观看的视频| 色尼玛亚洲综合影院| www.999成人在线观看| 韩国av一区二区三区四区| 免费搜索国产男女视频| 动漫黄色视频在线观看| 简卡轻食公司| 亚洲精品在线观看二区| 中出人妻视频一区二区| 一区福利在线观看| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣高清作品| 亚洲国产日韩欧美精品在线观看| 91在线精品国自产拍蜜月| 小说图片视频综合网站| 午夜精品久久久久久毛片777| 自拍偷自拍亚洲精品老妇| 日韩欧美在线二视频| 亚洲国产欧洲综合997久久,| 亚洲国产日韩欧美精品在线观看| 毛片一级片免费看久久久久 | 老司机深夜福利视频在线观看| 51午夜福利影视在线观看| 国产精品98久久久久久宅男小说| 18禁裸乳无遮挡免费网站照片| 亚洲一区二区三区色噜噜| 精品熟女少妇八av免费久了| 日韩欧美国产一区二区入口| 亚洲精品456在线播放app | 国产主播在线观看一区二区| 99久久成人亚洲精品观看| 色吧在线观看| 脱女人内裤的视频| 我要看日韩黄色一级片| 老司机深夜福利视频在线观看| 中亚洲国语对白在线视频| 欧美日韩黄片免| 色视频www国产| 亚洲片人在线观看| 一本精品99久久精品77| 女生性感内裤真人,穿戴方法视频| 特级一级黄色大片| 一边摸一边抽搐一进一小说| 老熟妇仑乱视频hdxx| 一级av片app| 高清日韩中文字幕在线| 99久久精品一区二区三区| 狠狠狠狠99中文字幕| 久久精品91蜜桃| 免费在线观看成人毛片| 一区福利在线观看| 天堂网av新在线| 欧美一区二区亚洲| 小说图片视频综合网站| 热99re8久久精品国产| 丁香欧美五月| 淫妇啪啪啪对白视频| 18禁在线播放成人免费| 国产老妇女一区| 无人区码免费观看不卡|