• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The ChatGPT After: Building Knowledge Factories for Knowledge Workers with Knowledge Automation

    2023-10-21 03:10:02ByYutongWangXiaoWangSeniorXingxiaWangJingYangOliverKwanLingxiLiSeniorFeiYueWang
    IEEE/CAA Journal of Automatica Sinica 2023年11期

    By Yutong Wang ,,, Xiao Wang , Senior,, Xingxia Wang , Jing Yang ,Oliver Kwan , Lingxi Li , Senior,, Fei-Yue Wang ,,

    Introduction

    The big hit of ChatGPT makes it imperative to contemplate the practical applications of big or foundation models [1]—[5].However, as compared to conventional models, there is now an increasingly urgent need for foundation intelligence of foundation models for real-world industrial applications.To this end, here we would like to address the issues related to building knowledge factories with knowledge machines for knowledge workers by knowledge automation, that would effectively integrate the advanced foundation models, scenarios engineering, and human-oriented operating systems (HOOS)technologies for managing digital, robotic, and biological knowledge workers, and enabling decision-making, resource coordination, and task execution through three operational modes of autonomous, parallel, and expert/emergency, to achieve intelligent production meeting the goal of “6S”:Safety,Security,Sustainability,Sensitivity,Service,and Smartness [6]—[10].

    Being a generative AI language model, ChatGPT [11]—[14]adheres to the “Big Problems, Big Models” paradigm [5].Its training data consists of Common Crawl, a vast collection of textual data from web pages,books,articles,and other publicly available resources, which makes it proficient in addressing general queries.While ChatGPT is trained on a vast array of topics, its depth of knowledge on highly specialized subjects might not match that of dedicated experts in a specific field.It does not have the capability to analyze real-time data or trends either.In view of this, we must advocate a “Small Problems,Big Models”paradigm,training big models[2]with multimodal data from extremely specific subjects.In this way,widely applying these big models in factories for workers during production and other crucial scenarios, we could solve domain-specific queries, and enable real-time analysis of data with continuous learning ability.

    Nonetheless, given that small problems should and have traditionally been resolved with small models, why are large models needed? If so, do we have sufficient data to train big models for small problems? In reality, and especially in the current trend, a small problem must be solved together with many surrounding other small problems.Therefore,today we have to address those small problems deeply in vertical and widely in horizontal, thus the need for domain-specific foundation models and the source of big data for their training.Those special big models offer the capacity to holistically evaluate and generate effective and comprehensive solutions for small problems.

    Furthermore, we need to structure and organize a new ecosystem to coordinate biological workers, robotic workers,and digital workers for future smart production [15], [16], specifically by building knowledge factories with knowledge machines for knowledge automation.We also need to design corresponding operational processes and assign proper roles for those three types of knowledge workers, so they can work together synergistically and efficiently.Let us address those important issues in the following sections.

    Essential Elements of Knowledge Factories

    Aiming at knowledge automation [17], the essential elements for knowledge factories include business big models,scenarios engineering, and HOOS.The schematic diagram of the collaboration of these elements in knowledge factories is shown in Fig.1.

    ? Business big models.Knowledge factories [1], [4]—[7]would involve three types of workers: digital workers,robotic workers, and biological workers, as described in the next section.Business big models are the key technology that assists biological workers and drives digital and robotic workers to execute operational tasks more efficiently and intelligently.They are the cognitive knowledge bases storing domain knowledge and skills for production.Essentially, a knowledge worker itself is a foundation model for special functions in a knowledge factory, and interaction among knowledge workers with business big models is an important issue to be addressed.Note that the theory and method of parallel cognition[18]should be useful in constructing business big models by facilitating the design of efficient Q&A sessions among various knowledge workers and business big models.

    Fig.1.The collaboration of essential elements for knowledge factories.

    ? Scenarios engineering.Traditional feature engineeringbased deep learning has achieved the state-of-the-art(SOTA) performance.However, these algorithms are implemented without the in-depth consideration of interpretability, security, and sustainability.Thus, it is impossible to apply these SOTA algorithms to real-world factories directly.In knowledge factories, scenarios engineering [19] can be seen as the integration of industrial scenarios and operations within a certain temporal and spatial range, where a trustworthy aritificial intelligence model could be established by intelligence&index(I&I),calibration & certification (C&C), and verification &validation(V&V).Through the effective use of scenarios engineering,knowledge factories should achieve the goal of “6S” [20], [21].

    ? HOOS.The primary function of HOOS[22],which is an upgraded version of management and computer operating systems, is to set up task priority, allocate human resources,and make interruptions.With the help of HOOS,workers in the knowledge factories could communicate and cooperate more efficiently, thus greatly reducing the laborious and tedious works and related physical and mental loads to biological workers.Many research on conventional and smart operating systems can be used in HOOS design and implementation [23]—[25].

    The Knowledge Workforce:Digital, Robotic, and Biological Workers

    Knowledge workforce in knowledge factories is categorized into three primary classes: digital workers, robotic workers,and biological workers.The interplay of these worker types in knowledge factories is illustrated in Fig.2.Biological workers are real humans, while robotic workers [26] are designed to aid biological humans in performing complex physical-world tasks, and digital workers are introduced to serve as virtual representations of both biological and robotic workers.The role and function of digital workers encompass facilitating human-machine interactions, coordinating tasks, conducting computational experiments, and other activities that broaden the scopes of both biological and robotic workers [27].

    The advancements in foundation model technologies,exemplified by tools like ChatGPT,should accelerate the integration of digital workers in knowledge factories [12], [28].Digital,robotic,and biological workers interact,align,and collaborate under the DAOs (Decentralized Autonomous Organizations and Decentralized Autonomous Operations) framework [17],[29].The various elements of physical, social, and cyber spaces interact with each other through digital workers to ensure the completion of required tasks under distributed,decentralized, autonomous, automated, organized, and orderly working environments.

    In knowledge factories, digital workers should be the primary source of workforce, facilitating the synergy between biological and robotic workers by automating task distribution and process creation.In our current design, at least 80% of the total workforce should consist of digital workers.Robotic workers,responsible mainly for physical tasks,should make up no more than 15% of the workforce.Biological workers are responsible for decision-making and emergency intervention and should be less than 5%of the total workforce.Knowledge factory utilizes HOOS to achieve interaction and collaboration among three types of knowledge workers.By leveraging the majority of digital and robotic workers, knowledge factories boost efficiency, lessen the strain on biological workers, save resources, and promote sustainable production.

    Fig.2.The knowledge workforce in knowledge factories.

    The Process for Knowledge Automation: APeM

    The process for knowledge automation involves three distinct working modes: autonomous modes (AM), parallel modes (PM), and expert/emergency modes (EM), collectively known as APeM.These modes play various roles in the workflow of knowledge factories, as described in Fig.3.AM represents the ultimate concept of unmanned factories.AM should be the primary mode of operations, accounting for over 80% of the production process, requiring mainly the involvement of digital and robotic workers.PM should be activated in fewer than 15% of cases, providing remote access for human experts to resolve any unforeseen issues or failures that arise during production.If an issue persists even after PM deployment, the corresponding production process switches to EM, which accounts for less than 5% of the time,where experts or emergency teams are dispatched to the site to resolve the problem directly.Once the issue is rectified, the production process reverts to PM, monitored remotely for a set duration, and then transitioned back to AM.

    Fig.3.The process for knowledge automation: APeM.

    In general, PM should address unpredictable and rare longtail issues in most of production processes.These issues might involve unexpected defects in a production chain or an equipment malfunction.Using this mode, experts can manipulate robotic workers and identify problematic areas through anomaly detection and diagnosis during remote access operations.Nonetheless, some production challenges elude solutions via PM, especially if the data is not accessible by industrial sensors or robotic workers, or if robotic workers cannot emulate specific human actions.In such cases,the data in actual factories should be collected and labeled,and related scenarios need to be recalibrated.Big models undergo iterative retraining as new data is introduced, and perform verification and validation to ensure the revised models are up to par.Knowledge acquisition and refinement will then be achieved as modes are toggled.

    Conclusion Remarks

    This article presents the framework of building knowledge factories with knowledge machines for knowledge automation by knowledge workers.Equipped with domain-specific big models, digital and robotic workers would assist biological workers to perform decision-making, resource coordination,and task execution.Through knowledge processing under AM,PM,and EM,big models are iteratively optimized and verified through scenarios engineering and acquire new knowledge and refine its knowledge base.

    Current big models lack the ability to defend against malicious attacks, as well as the capability to reason about complex problems.In the future, for trustworthy and explainable knowledge factories, it is essential to incorporate federated intelligence and smart contracts technologies in constructing and training big models to ensure their safety, security, sustainability, privacy, and reliability.

    ACKNOWLEDGMENT

    This work was partially supported by the Science and Technology Development Fund of Macau SAR (0050/2020/A1).

    aaaaa片日本免费| 精品久久久久久久毛片微露脸| 久久久久九九精品影院| 成人18禁在线播放| 亚洲国产日韩欧美精品在线观看 | 欧美日韩国产亚洲二区| 欧美绝顶高潮抽搐喷水| 日韩欧美精品v在线| 久久久国产精品麻豆| 又黄又粗又硬又大视频| 色播亚洲综合网| eeuss影院久久| 高潮久久久久久久久久久不卡| 色精品久久人妻99蜜桃| 搡老岳熟女国产| 亚洲av不卡在线观看| 夜夜看夜夜爽夜夜摸| 国产亚洲精品久久久com| 国产视频一区二区在线看| 18禁黄网站禁片免费观看直播| 日韩欧美精品免费久久 | 叶爱在线成人免费视频播放| 久久久久精品国产欧美久久久| 国产欧美日韩一区二区三| 久久久久久久亚洲中文字幕 | 老司机在亚洲福利影院| 午夜精品久久久久久毛片777| 久久欧美精品欧美久久欧美| 国产精品美女特级片免费视频播放器| 午夜福利高清视频| 首页视频小说图片口味搜索| www日本黄色视频网| 国产亚洲精品综合一区在线观看| 99在线人妻在线中文字幕| 天天一区二区日本电影三级| 男人和女人高潮做爰伦理| av天堂在线播放| 99热这里只有精品一区| 国产精品av视频在线免费观看| 蜜桃久久精品国产亚洲av| 他把我摸到了高潮在线观看| 亚洲人成伊人成综合网2020| 日韩欧美三级三区| 国产精品一区二区免费欧美| 俄罗斯特黄特色一大片| 亚洲精品在线美女| 亚洲人成电影免费在线| av天堂在线播放| 亚洲欧美精品综合久久99| 成人三级黄色视频| 黄色丝袜av网址大全| 亚洲专区中文字幕在线| 午夜精品在线福利| 在线视频色国产色| 亚洲av不卡在线观看| 麻豆国产97在线/欧美| av女优亚洲男人天堂| 国产三级中文精品| 日韩欧美在线二视频| 久久精品夜夜夜夜夜久久蜜豆| 国产午夜精品论理片| 啪啪无遮挡十八禁网站| 中文亚洲av片在线观看爽| 夜夜夜夜夜久久久久| 欧美黄色片欧美黄色片| 欧美高清成人免费视频www| 母亲3免费完整高清在线观看| 欧美最新免费一区二区三区 | 日韩欧美国产在线观看| 精品久久久久久久毛片微露脸| 成人特级黄色片久久久久久久| a在线观看视频网站| 99热只有精品国产| 亚洲成人精品中文字幕电影| 在线观看免费视频日本深夜| 搞女人的毛片| 国产精品99久久99久久久不卡| 网址你懂的国产日韩在线| 又黄又爽又免费观看的视频| 香蕉久久夜色| 丁香六月欧美| 国产精品电影一区二区三区| 日韩欧美国产在线观看| 淫妇啪啪啪对白视频| 精品一区二区三区人妻视频| 亚洲av第一区精品v没综合| 免费搜索国产男女视频| 久久久久性生活片| 日韩有码中文字幕| 亚洲av五月六月丁香网| 免费看日本二区| 欧美zozozo另类| 久久久久久国产a免费观看| 久久精品国产亚洲av香蕉五月| 欧美又色又爽又黄视频| 亚洲av二区三区四区| 日韩欧美在线乱码| 级片在线观看| 精品无人区乱码1区二区| 欧美黑人巨大hd| 国模一区二区三区四区视频| 母亲3免费完整高清在线观看| 最近视频中文字幕2019在线8| 九九久久精品国产亚洲av麻豆| 老汉色∧v一级毛片| 91九色精品人成在线观看| 日韩欧美国产在线观看| 国内精品久久久久久久电影| 欧美在线一区亚洲| 亚洲国产欧美人成| 最新中文字幕久久久久| 成人特级黄色片久久久久久久| 久久国产精品人妻蜜桃| 99久久精品国产亚洲精品| 久久香蕉国产精品| 久久精品国产清高在天天线| 国产真人三级小视频在线观看| 久久久久久九九精品二区国产| 少妇高潮的动态图| 香蕉久久夜色| 国产亚洲精品综合一区在线观看| 亚洲精品一卡2卡三卡4卡5卡| 我的老师免费观看完整版| 国产三级在线视频| 国产精品,欧美在线| 麻豆国产97在线/欧美| 天美传媒精品一区二区| 国产精华一区二区三区| 一进一出抽搐gif免费好疼| 中文字幕人成人乱码亚洲影| 亚洲欧美日韩无卡精品| 国产一区二区在线观看日韩 | 国产精品日韩av在线免费观看| 国产国拍精品亚洲av在线观看 | 色视频www国产| 制服人妻中文乱码| 精品久久久久久久人妻蜜臀av| 黄色成人免费大全| 亚洲av五月六月丁香网| 久久久久亚洲av毛片大全| 午夜影院日韩av| av国产免费在线观看| 床上黄色一级片| 夜夜爽天天搞| 精品熟女少妇八av免费久了| 亚洲成a人片在线一区二区| 国产色爽女视频免费观看| 欧美精品啪啪一区二区三区| 欧美三级亚洲精品| 人人妻,人人澡人人爽秒播| 久久久成人免费电影| 九九热线精品视视频播放| 夜夜爽天天搞| 国产淫片久久久久久久久 | 岛国视频午夜一区免费看| 嫩草影院精品99| 男插女下体视频免费在线播放| 1024手机看黄色片| 午夜福利成人在线免费观看| 精品一区二区三区av网在线观看| 午夜日韩欧美国产| 黄色成人免费大全| 国产av在哪里看| 久久中文看片网| 一个人免费在线观看的高清视频| 18美女黄网站色大片免费观看| 国产真实乱freesex| 亚洲av不卡在线观看| 麻豆一二三区av精品| 老司机在亚洲福利影院| 亚洲精品在线观看二区| 亚洲激情在线av| 免费看美女性在线毛片视频| av女优亚洲男人天堂| 国产色爽女视频免费观看| 欧美乱色亚洲激情| 国产老妇女一区| 国产三级在线视频| АⅤ资源中文在线天堂| 欧美成人性av电影在线观看| 国产美女午夜福利| 男女那种视频在线观看| 欧美乱色亚洲激情| 人人妻,人人澡人人爽秒播| 十八禁网站免费在线| 夜夜爽天天搞| 桃色一区二区三区在线观看| 午夜免费男女啪啪视频观看 | 中文字幕精品亚洲无线码一区| 日韩亚洲欧美综合| 日本黄色片子视频| 亚洲av成人精品一区久久| 手机成人av网站| 久久精品人妻少妇| 久久久久久久久大av| 观看美女的网站| 欧美日韩一级在线毛片| 天堂影院成人在线观看| 一级毛片高清免费大全| 欧美区成人在线视频| 亚洲成人中文字幕在线播放| 成年女人永久免费观看视频| 久久九九热精品免费| 亚洲久久久久久中文字幕| 欧美日本视频| 日韩欧美 国产精品| 日韩欧美三级三区| 69av精品久久久久久| 操出白浆在线播放| 一本精品99久久精品77| 成人永久免费在线观看视频| 欧美日韩亚洲国产一区二区在线观看| 天堂影院成人在线观看| 久久伊人香网站| 成人欧美大片| 日本黄色视频三级网站网址| 国产91精品成人一区二区三区| 一个人观看的视频www高清免费观看| 女警被强在线播放| 国产精品一区二区免费欧美| 老熟妇乱子伦视频在线观看| www日本黄色视频网| 偷拍熟女少妇极品色| 国产成人aa在线观看| 国产高清videossex| 免费无遮挡裸体视频| 国产三级中文精品| 国产av不卡久久| 九九久久精品国产亚洲av麻豆| 欧美性感艳星| 午夜激情福利司机影院| 高潮久久久久久久久久久不卡| 在线观看免费视频日本深夜| 男女下面进入的视频免费午夜| 超碰av人人做人人爽久久 | 亚洲成a人片在线一区二区| 啦啦啦韩国在线观看视频| 国产精品亚洲一级av第二区| 色在线成人网| 午夜福利免费观看在线| 熟女人妻精品中文字幕| 精品久久久久久久久久免费视频| 老熟妇乱子伦视频在线观看| 在线视频色国产色| 国产一区二区三区在线臀色熟女| 亚洲人成电影免费在线| 国产成人a区在线观看| 白带黄色成豆腐渣| 亚洲美女黄片视频| 少妇人妻一区二区三区视频| 成年女人永久免费观看视频| 精品欧美国产一区二区三| 99热这里只有是精品50| 久久精品国产亚洲av涩爱 | 久久久久性生活片| 日日摸夜夜添夜夜添小说| 亚洲中文字幕一区二区三区有码在线看| 欧美在线黄色| 免费观看人在逋| 97超级碰碰碰精品色视频在线观看| 小蜜桃在线观看免费完整版高清| 久久精品人妻少妇| 国产一区二区激情短视频| 久久九九热精品免费| 欧洲精品卡2卡3卡4卡5卡区| 欧美精品啪啪一区二区三区| 久久人人精品亚洲av| 淫秽高清视频在线观看| tocl精华| 国产精品一区二区免费欧美| 熟女电影av网| 3wmmmm亚洲av在线观看| 夜夜爽天天搞| 成人亚洲精品av一区二区| 欧美日韩瑟瑟在线播放| 少妇人妻一区二区三区视频| 国产黄色小视频在线观看| www国产在线视频色| 内射极品少妇av片p| 久久国产乱子伦精品免费另类| 欧美性感艳星| 很黄的视频免费| 午夜日韩欧美国产| 午夜福利在线在线| 一个人免费在线观看的高清视频| 国产成人av教育| 18+在线观看网站| 欧美又色又爽又黄视频| 欧美一区二区国产精品久久精品| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品一区二区www| 欧美日本亚洲视频在线播放| 欧美日韩乱码在线| 国产精品久久电影中文字幕| 国产精品99久久99久久久不卡| 91麻豆精品激情在线观看国产| 给我免费播放毛片高清在线观看| 天堂网av新在线| 99国产极品粉嫩在线观看| 亚洲七黄色美女视频| 欧美日韩福利视频一区二区| 99久久综合精品五月天人人| 色av中文字幕| 国产aⅴ精品一区二区三区波| 18+在线观看网站| 国产乱人伦免费视频| av在线蜜桃| 日本与韩国留学比较| 国产高清激情床上av| 国产精品免费一区二区三区在线| 久久久久久久午夜电影| 免费搜索国产男女视频| 免费观看的影片在线观看| 亚洲国产色片| 欧美丝袜亚洲另类 | 天堂网av新在线| 国产av麻豆久久久久久久| 免费看光身美女| 在线观看免费视频日本深夜| 久久精品人妻少妇| av国产免费在线观看| 日韩欧美三级三区| 久久精品影院6| 91在线精品国自产拍蜜月 | 男女那种视频在线观看| 国产免费男女视频| 啦啦啦免费观看视频1| 欧美黑人巨大hd| 亚洲久久久久久中文字幕| 黄色日韩在线| 久久亚洲精品不卡| 国产亚洲av嫩草精品影院| 天堂网av新在线| 国内少妇人妻偷人精品xxx网站| 国产国拍精品亚洲av在线观看 | 国产又黄又爽又无遮挡在线| 波野结衣二区三区在线 | 一区二区三区免费毛片| 老司机福利观看| 欧美日韩综合久久久久久 | 在线观看免费午夜福利视频| 天堂av国产一区二区熟女人妻| 久久久久亚洲av毛片大全| 超碰av人人做人人爽久久 | 两性午夜刺激爽爽歪歪视频在线观看| 3wmmmm亚洲av在线观看| www.www免费av| 夜夜躁狠狠躁天天躁| 人人妻,人人澡人人爽秒播| 91在线精品国自产拍蜜月 | 国内揄拍国产精品人妻在线| 高清毛片免费观看视频网站| 免费观看精品视频网站| 欧美又色又爽又黄视频| 一夜夜www| 精品久久久久久成人av| 国产精品亚洲一级av第二区| 国产黄a三级三级三级人| 国产日本99.免费观看| 日韩国内少妇激情av| 色吧在线观看| bbb黄色大片| 欧美日本视频| 国产主播在线观看一区二区| 成人av在线播放网站| 国产探花极品一区二区| 国产免费一级a男人的天堂| 90打野战视频偷拍视频| 精品日产1卡2卡| 国产精品1区2区在线观看.| 美女高潮喷水抽搐中文字幕| 精品无人区乱码1区二区| 国产亚洲精品综合一区在线观看| 国产精品香港三级国产av潘金莲| 欧美成狂野欧美在线观看| 可以在线观看毛片的网站| 男女午夜视频在线观看| a在线观看视频网站| 99久久精品一区二区三区| 少妇人妻一区二区三区视频| 最后的刺客免费高清国语| 少妇的逼水好多| 亚洲成人中文字幕在线播放| 天天躁日日操中文字幕| 久久久久久久亚洲中文字幕 | 国产精品综合久久久久久久免费| 草草在线视频免费看| 成年人黄色毛片网站| 亚洲午夜理论影院| 精品国产三级普通话版| 日韩亚洲欧美综合| 欧美乱色亚洲激情| 亚洲,欧美精品.| 蜜桃亚洲精品一区二区三区| 在线观看66精品国产| 天堂动漫精品| 久久精品国产99精品国产亚洲性色| 一级黄色大片毛片| 国产国拍精品亚洲av在线观看 | 一区二区三区国产精品乱码| 一a级毛片在线观看| 在线观看免费午夜福利视频| 网址你懂的国产日韩在线| 老汉色av国产亚洲站长工具| 国产69精品久久久久777片| 岛国在线观看网站| 国产欧美日韩一区二区三| bbb黄色大片| 国产成+人综合+亚洲专区| 免费av毛片视频| 欧美色欧美亚洲另类二区| 欧美不卡视频在线免费观看| 亚洲熟妇熟女久久| www国产在线视频色| 在线天堂最新版资源| 国内毛片毛片毛片毛片毛片| 丰满人妻熟妇乱又伦精品不卡| 三级国产精品欧美在线观看| 成人午夜高清在线视频| 婷婷丁香在线五月| 久久精品国产亚洲av涩爱 | 午夜精品一区二区三区免费看| 国产三级在线视频| 一本久久中文字幕| 99久久99久久久精品蜜桃| 男女做爰动态图高潮gif福利片| 99精品久久久久人妻精品| 少妇高潮的动态图| 亚洲av日韩精品久久久久久密| 熟女少妇亚洲综合色aaa.| 成人av一区二区三区在线看| 亚洲欧美日韩卡通动漫| 99精品在免费线老司机午夜| 一区福利在线观看| 狂野欧美白嫩少妇大欣赏| 变态另类成人亚洲欧美熟女| 国产国拍精品亚洲av在线观看 | 国内精品一区二区在线观看| 国产精品一区二区三区四区久久| 老司机福利观看| 国产精品影院久久| 国产99白浆流出| 香蕉久久夜色| 亚洲精品美女久久久久99蜜臀| 美女高潮的动态| 午夜两性在线视频| 国产黄色小视频在线观看| 怎么达到女性高潮| 色噜噜av男人的天堂激情| 可以在线观看的亚洲视频| 欧美日韩精品网址| 精品久久久久久久毛片微露脸| 99久久成人亚洲精品观看| 久久人人精品亚洲av| 午夜福利视频1000在线观看| 亚洲最大成人中文| 亚洲国产欧美人成| 高清在线国产一区| 村上凉子中文字幕在线| 亚洲最大成人手机在线| 网址你懂的国产日韩在线| 舔av片在线| 中文字幕久久专区| 五月伊人婷婷丁香| 久99久视频精品免费| 欧美最新免费一区二区三区 | 神马国产精品三级电影在线观看| 最后的刺客免费高清国语| 国产免费男女视频| 亚洲精品国产精品久久久不卡| 国产精品久久电影中文字幕| 精品人妻1区二区| 久久九九热精品免费| 免费无遮挡裸体视频| 超碰av人人做人人爽久久 | 999久久久精品免费观看国产| 免费人成视频x8x8入口观看| 欧美乱码精品一区二区三区| 天堂√8在线中文| av黄色大香蕉| 亚洲成人中文字幕在线播放| 亚洲成人久久爱视频| 久久香蕉精品热| 男女视频在线观看网站免费| 国产伦一二天堂av在线观看| 国产av不卡久久| 国产成人av激情在线播放| 精品国产三级普通话版| 午夜激情福利司机影院| 亚洲国产高清在线一区二区三| 91久久精品国产一区二区成人 | 人人妻人人澡欧美一区二区| 一级作爱视频免费观看| 国产精品亚洲一级av第二区| 丝袜美腿在线中文| 久久精品国产亚洲av涩爱 | 日韩中文字幕欧美一区二区| 久久久久久久精品吃奶| 成人永久免费在线观看视频| 久久久精品欧美日韩精品| 国产欧美日韩精品一区二区| 天堂动漫精品| 九色国产91popny在线| 男女下面进入的视频免费午夜| 久久久国产成人精品二区| 不卡一级毛片| 好男人在线观看高清免费视频| 日韩中文字幕欧美一区二区| 亚洲精华国产精华精| 色老头精品视频在线观看| 日日干狠狠操夜夜爽| 香蕉久久夜色| 国产精品自产拍在线观看55亚洲| 天堂av国产一区二区熟女人妻| 长腿黑丝高跟| 99热这里只有是精品50| 日韩欧美三级三区| 亚洲第一电影网av| 搡女人真爽免费视频火全软件 | 美女高潮的动态| 亚洲精品一区av在线观看| 亚洲成a人片在线一区二区| 又粗又爽又猛毛片免费看| 日韩有码中文字幕| ponron亚洲| 国产成人av教育| 99国产极品粉嫩在线观看| 欧美日韩福利视频一区二区| 在线观看av片永久免费下载| 黄色片一级片一级黄色片| 日韩欧美国产一区二区入口| 国产精品美女特级片免费视频播放器| 1000部很黄的大片| 最近在线观看免费完整版| 国产免费一级a男人的天堂| 男人和女人高潮做爰伦理| 午夜福利高清视频| 亚洲成人久久爱视频| 欧美+亚洲+日韩+国产| 51国产日韩欧美| 三级国产精品欧美在线观看| 日韩亚洲欧美综合| 每晚都被弄得嗷嗷叫到高潮| 午夜精品久久久久久毛片777| 一区二区三区高清视频在线| 欧美成狂野欧美在线观看| 亚洲一区二区三区色噜噜| 国产精品嫩草影院av在线观看 | 亚洲狠狠婷婷综合久久图片| 国产亚洲精品综合一区在线观看| 美女高潮喷水抽搐中文字幕| 国产综合懂色| 亚洲精品美女久久久久99蜜臀| 精品人妻一区二区三区麻豆 | 亚洲人成网站在线播放欧美日韩| 在线观看美女被高潮喷水网站 | a级毛片a级免费在线| 久久伊人香网站| 丰满的人妻完整版| 可以在线观看的亚洲视频| 神马国产精品三级电影在线观看| 日韩高清综合在线| 又黄又爽又免费观看的视频| 精品久久久久久,| 婷婷丁香在线五月| 两个人的视频大全免费| 日本一二三区视频观看| 在线观看免费视频日本深夜| 国产精品日韩av在线免费观看| 真人做人爱边吃奶动态| 日本精品一区二区三区蜜桃| 中文字幕久久专区| 久久精品人妻少妇| 亚洲成a人片在线一区二区| 亚洲专区国产一区二区| 18禁裸乳无遮挡免费网站照片| 岛国在线观看网站| 国产精品精品国产色婷婷| 美女被艹到高潮喷水动态| 91av网一区二区| 日本撒尿小便嘘嘘汇集6| 女人高潮潮喷娇喘18禁视频| 在线观看免费午夜福利视频| 亚洲av成人不卡在线观看播放网| 俺也久久电影网| 真实男女啪啪啪动态图| 欧美午夜高清在线| 特大巨黑吊av在线直播| 男人舔女人下体高潮全视频| 国产精品美女特级片免费视频播放器| 搞女人的毛片| 久久久久久国产a免费观看| 人人妻人人看人人澡| 免费av毛片视频| 国产成人a区在线观看| 日本 av在线| 精品99又大又爽又粗少妇毛片 | www.www免费av| 99视频精品全部免费 在线| 超碰av人人做人人爽久久 | 在线天堂最新版资源| 日韩欧美免费精品| 一个人看的www免费观看视频| or卡值多少钱| 国产激情欧美一区二区| 久久精品影院6| 夜夜躁狠狠躁天天躁| 国产一区二区在线av高清观看| 黑人欧美特级aaaaaa片| 岛国视频午夜一区免费看| 99久久成人亚洲精品观看| 亚洲av美国av| 亚洲久久久久久中文字幕| 国产私拍福利视频在线观看| 特大巨黑吊av在线直播|