• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    二維鎳配位聚合物(Ni-CP)和Ag@Ni-CP肖特基結(jié)的制備及其光催化降解陽離子染料

    2023-10-19 11:47:14馬志虎任宜霞王智香張美麗王記江
    關(guān)鍵詞:肖特基延安大學(xué)化工學(xué)院

    馬志虎 任宜霞 王智香 張美麗 王記江

    (陜西省化學(xué)反應(yīng)工程重點(diǎn)實(shí)驗(yàn)室,新能源新功能材料實(shí)驗(yàn)室,延安大學(xué)化學(xué)與化工學(xué)院,延安 716000)

    Metal-organic coordination polymers (M-CPs)have attracted wide attention from researchers due to their regulatory structural features and wide application prospects,such as photocatalytic degradation,fluorescent probes,electronic materials,gas adsorption and storage,and chemical sensing[1-3].With the development of industry,especially the dyeing and printing of the textile industry,more than 8000 organic dyes have been used to form the basis of environmental pollution.In recent years,more and more attention has been paid to contaminant-degraded materials[4-7].It has been found that semiconductors play an important role in environmental treatment.As a new type of semiconductor,M-CPs are favored for their large specific surface area,adjustable structure,highly ordered porosity,and uniform metal sites[8-11].The photocatalytic activity of semiconductors depends largely on three factors:adsorption behavior,photo-response region,and separation efficiency of electron-hole pairs[12-14].So it is very important to study the three factors.Because M-CPs have larger porosity and specific surface area,but the separation efficiency of electron and hole and the oxidation efficiency of photo-generated carriers are not particularly remarkable,the semiconductor and metal can form a Schottky barrier at the interface by doping non-metal or transition metal[15-19].Under the excitation of light,the efficiency of charge carrier separation and transition can be enhanced leading to the decrease of carrier recombination rate and the improvement of photocatalysis performance.Using precious metals such as silver,platinum,gold,and palladium as electron acceptors,the photoinduced hole/electron pair separation facilitates the interfacial charge transfer process[14,20-21].In general,AgNO3is commonly used as an electronic collector for semiconductor materials,enabling photoelectrons to jump from the n-type M-CPs conduction band (CB),which in turn returns to the Ag[22-24].Because of its Schottky barrier,the separation efficiency of electrons and holes is increased,and the oxidative nature of the holes can either directly degrade the dye or produce ·OH to degrade the dye,the design of a composite Ag@M-CP structure is exciting,thus facilitating interface electron transfer,reducing the composition of carriers on the semiconductor surface and improving the photocatalytic efficiency of M-CPs[25-31].

    In this study,a new Ni-CP and its monodisperse silver nanoparticles loaded product Ag@Ni-CP were prepared by a simple photoreduction method.With methylene blue (MB),basic fuchsin (BF),and rhodamine B (RhB) as the target pollutants,the photocatalytic degradation of three dyes was carried out.In addition,the relationship between the photocatalytic activity and morphology,band structure,and silver content was also discussed.The results show that Ag@Ni-CP has good photocatalytic activity,high stability,and easy recovery.

    1 Experimental

    1.1 Materials and methods

    All chemicals were purchased for direct use without further purification.Scanning electron microscopy(SEM) and energy dispersive spectroscopy (EDS) were performed by the German ZEISS Sigma 300 instrument.X-ray photoelectron spectroscopy (XPS) was carried out with a Thermo Scientific K-Alpha+instrument.Thermal stability was measured on a Hitachi TG/DTA7200 thermogravimetric analyzer.The fluorescence spectrum was determined by an F-7100 fluorescence spectrophotometer at room temperature.UV absorption was studied by a Shimadzu UV-2550 spectrophotometer.Powder X-ray diffraction (PXRD) patterns were obtained using an XRD - 7000 Advance X-ray powder diffractometer,working voltage: 40 kV,working current: 40 mA,source of radiation: CuKα,wavelength: 0.154 nm.Scan range: 5°-60°.The photocatalytic degradation experiments were carried out using an XP A-7 photocatalytic reactor.Mott-Schottky measurements were carried out at a CHI660E Electrochemical station.FTIR was carried out with a Thermo Scientific Nicolet iS50.

    1.2 Synthesis of [Ni(DDB)0.5(2,2′-bipy)(H2O)]·H2O(Ni-CP)

    A mixture of Ni(Ac)2·4H2O (0.024 g),H4DDB(0.022 g),and 2,2′-bipy (0.032 g) was added into a mixed solvent of 2 mL water,and 0.5 mL isopropanol,then stirred for 30 min at room temperature and placed in a Teflon-lined autoclave (25 mL) for 72 h at 160 ℃.After filtration and drying in the air,some green block crystals were obtained (Yield: 44% based on Ni).Elemental analysis Calcd.for C21H17N2NiO7(% ): C 53.89,H 3.66,N 5.99.Found(%): C 53.67,H 3.38,N 5.72.IR (KBr,cm-1): 3 667(w),3 597(w),3 390(s),1 611(s),1 493(s),1 441(s),1 352(s),1 199(s),975(s),763(s).

    1.3 Synthesis of Ag@Ni-CP

    Ag@Ni-CP was prepared by the photo-reduction method.By magnetic stirring,the powder of Ni-CP was distributed in the water,and the right amount of AgNO3was added to obtain a suspension.Then the suspension was irradiated for 3 h using a 500 W xenon arc lamp at ambient temperature,and light below 450 nm was cut off using a cut-off filter.The Ag@Ni-CP powder was washed with water to remove NO3-and dried in a vacuum at 60 ℃for 12 h and in the air for 2 h.To study the effect of silver content on the photocatalytic activity of Ni-CP,the content of silver added during photoreduction was 10%-150% based on the molar amount of Ni-CP (Fig.S1,Supporting information).When the reference percentage of Ag reached 60%,the optimal degradation rate was achieved,so we selected Ag60%@Ni-CP as the aim Ag-loaded product,named Ag@Ni-CP.The other two representatives (Ag30%@Ni-CP and Ag40%@Ni-CP)were used for comparison.

    1.4 Crystal structure determination

    Single crystals with suitable sizes of Ni-CP were synthesized hydrothermally and selected.Single crystal diffraction data were performed on a Bruker SMART APEX CCD diffractometer equipped with graphite monochromatic MoKαradiation (λ=0.071 073 nm).All data were corrected for LP factors and empirical absorption,and these structures were solved by the direct method of SHELXS,and the non-hydrogen atomic coordinates and each anisotropic temperature factor were refined by the full matrix least squares methodF2.The hydrogen atoms were set at the calculation position and the crystal structure was plotted with Diamond 3.1 software.The crystallographic information of Ni-CP is provided in Table 1.The selected bond lengths and angles are listed in Table S1.

    Table 1 Crystallographic data of Ni-CP

    CCDC:2201522,Ni-CP.

    1.5 Photocatalytic experiments of Ni - CP and Ag@Ni-CP

    The photocatalytic experiment was carried out in the photocatalytic reactor,using a xenon lamp (500 W)as the light source,and the organic pollutants were MB,BF,and RhB,and then the xenon lamp of the photocatalytic reactor was turned on,rotated,and stirred.After an interval of 30 min,centrifugation was carried out in the centrifuge for 5 min,and the upper solution was put into the UV-Vis spectrometer to determine and analyze MB (λ=664 nm),BF (λ=543 nm),RhB (λ=554 nm) concentrations.The measurements were repeated until the pollutant degradation rate reached close to 100%.

    2 Results and discussion

    2.1 Crystal structure of Ni-CP

    Single crystal X-ray diffraction analysis exhibits Ni-CP possesses a 2D wavy brick-wall network.The central nickel ion is situated in a six-coordinated octahedral geometry encircled by three oxygen atoms(O1A,O3,and O4) from two DDB4-ligands,two nitrogen atoms (N1 and N2) from one chelated 2,2′-bipy molecule,and one coordinated water molecule (O5),in which O5 and N2 atoms act as the axis atoms,and the other four atoms form the plane of the quadrilateral(Fig.1a).The V-type meta-carboxylate from one benzene ring of DDB4-ligands inμ2-bridged and chelated mode link the adjacent Ni2+ions into the 1D wavy chain (Fig.1b).By theμ4coordination mode (Fig.S1),the DDB4-ligands connect the 1D wavy chains to the 2D wavy brick-wall network(Fig.1c).

    Fig.1 (a)Coordination environment of Ni2+ion in Ni-CP;(b)1D wavy chain;(c)2D network structure

    Then the H-bonds among water molecules and the carboxyl oxygen atoms (O5…O2:0.273 3 nm,O5…O7:0.272 0 nm,O7…O2: 0.295 4 nm,O7…O4: 0.278 0 nm)andπ-stacking interactions between the near 2,2′-bipy molecules (the face-to-face distance is 0.353 3 nm)build 3D supramolecular structure in common.

    2.2 Thermal stability of Ni-CP

    To study the thermal stability of Ni-CP,the thermogravimetry curve was measured in air (Fig S2).From the curve,we find that the first weight loss occurred from 75 to 167 ℃with a weight loss rate of 7.68%,which could be attributed to the loss of all coordination and lattice water molecules (Calcd.7.70 %).After a small platform,the second weight loss process was from 331 to 391℃due to the collapse of the Ni-CP skeleton.

    2.3 PXRD analysis

    After measuring the single crystal diffraction to get crystal structure,the PXRD patterns were tested at room temperature to detect the purity of the Ni-CP powder.As shown in Fig.S3,the measured patterns of Ni-CP were compared with the simulated ones from the crystal structure data.Their positions of the diffraction peaks were almost coincident,indicating the powder of high purity and good crystallinity.After the photocatalytic oxidation of the dye,the powder was filtered and collected for PXRD and FTIR,as shown in Fig.S3 and S4.The position of the diffraction peak did not change,indicating that the Ni-CP has good stability during photocatalytic degradation.

    2.4 XPS analysis

    The chemical composition characterization of Schottky structures of Ag@Ni-CP was identified by XPS.The full XPS spectrum of Ag@Ni-CP is shown in Fig.2a,calibrating the corresponding binding energy according to the C1s(284.8eV) component signal (wrt)(Fig.2b).In the XPS spectrum of the sample,in addition to the typical N and O signals,the bimodal signals at 374.2 and 367.7 eV can be attributed to Ag3d,and by comparing it with the XPS electron binding energy comparison table,the valence state of Ag was 0,which means that there is an Ag primitive material on top of Ni-CP through XPS (Fig.2c).The peak at 855.4 eV can be attributed to Ni2p(Fig.2d) by comparing Ni to a valence state of +2,which is consistent with CCD testing.

    Fig.2 (a)Survey,(b)C1s,(c)Ag3d,and(d)Ni2p XPS spectra of Ag@Ni-CP

    2.5 SEM of Ni-CP and Ag@Ni-CP

    To study the morphology of the samples,the SEM images of Ni - CP (Fig.3a and 3b) and Ag@Ni-CP(Fig.3c and 3d) have been obtained,showing their same stick-like morphology.Some small prominent particles of about 200 nm were observed on the surface of the Ni-CP stick as shown in Fig.3c and 3d.It indicates that the silver nanoparticles are highly dispersed on the Ni-CP surface,which is consistent with the XPS results.To further confirm the successful deposition of silver on the Ni-CP surface,the electron image,the elemental mapping image,and the EDS layered image were analyzed (Fig.3e-3i).As we can see from the diagram,the silver elements are well-distributed(Fig.3i),and the mapping shows that the elements are evenly distributed.Finally,an EDS layered image displays the location relationship between elements,further confirming that Ag particles are deposited on Ni-CP(Fig.S4).

    Fig.3 (a,b)SEM images of Ni-CP;(c,d)SEM images of Ag@Ni-CP;(e-i)EDS element mappings of Ag@Ni-CP

    2.6 Photocatalytic activities

    To study the photocatalytic activities of Ni-CP and Ag@Ni-CP,the luminous intensities were measured at room temperature first.Inhibition of the e-/h+recombination can prolong carrier life and thus improve interfacial charge transfer efficiency.For Ag@Ni- CP,Ag nanoparticles act as traps for photoelectrons in Ni-CP Schottky junction assemblies,which means that the Ag@Ni-CP Schottky junction can enhance photocatalytic activity.Photochemical measurements were made to study the activity differences among the catalysts.The photoluminescence (PL) spectra showed the lowest luminescence intensity of Ag@Ni-CP (Fig.4a),and the lower intensity usually indicates a lower photoluminescence carrier recombination rate.As shown in Fig.4b,Ag@Ni-CP had the highest photocurrent effect,which means an increase in the separation rate of electrons excited from the valence band to the conduction band.From the Nyquist plots of different electrodes (Fig.4c),Ag@Ni-CP had the shortest diameter and the highest slope line,which reflects the ion diffusion resistance caused by the porous structure in the active material.The cross-validation of the above three examples discovers that the best photocatalyst is Ag@Ni-CP.The degradation of BF with the three materials also indicates that the most effective degradation catalyst is Ag@Ni-CP (Fig.4d).Thus,it is concluded that photogenerated electrons can be efficiently transported to the Schottky junction interface,and it is expected to show the highest efficiency in photocatalytic applications.

    Fig.4 (a)PL spectra,(b)transient photocurrent response,and(c)Nyquist plots of different materials;(d)Photocatalytic degradation of BF by Schottky junction formed with Ag@Ni-CP in different Ag proportions

    In photocatalysis,the photoinduced reaction usually plays a dominant role near the catalyst′s surface.To evaluate the photocatalytic effect of the synthesized Ag@Ni-CP Schottky structure under visible light,three dyes (MB,RhB,and BF) were selected as typical cationic organic pollutant models frequently released from the textile manufacturing industry.The photocatalytic activity of Ag@Ni-CP of the Schottky structure and its kinetics for the degradation of dyes in visible light is shown in Fig.5.In this study,self-degradation (dark degradation) of dyes was found to be negligible in the absence or presence of a catalyst in the dark.BF,MB,and RhB aqueous solutions were catalyzed and degraded by Ag@Ni-CP as photocatalysts,respectively (Fig.5a-5c).It can be observed that after photocatalytic degradation at different intervals under visible light,the maximum absorption characteristic peaks of 547 nm(BF),553 nm (RhB),and 664 nm (MB) gradually decreased with time,and the degradation rates of MB,RhB,and BF reached 99%,99%,and 96% after 60 min of degradation,respectively,which shows that Ag@Ni-CP has a good photocatalytic degradation effect on MB,BF,and RhB systems in visible light.

    Fig.5 UV-Vis absorption spectra of(a)BF,(b)RhB,and(c)MB systems after visible illumination with Ag@Ni-CP photocatalyst;(d)Linear fitting diagram of photocatalytic degradation kinetics for various catalysts;(e)Photoreaction rate constants(k)of BF,RhB,and MB in the presence of various catalysts

    The experimental data were accorded with a firstorder model with the following formula: -ln(c/c0)=kt(c0is the initial concentration of dye at the time of irradiation,cis the residual concentration of pigment in solution after irradiation time,kandtare the photocatalytic degradation rate constants and light duration,respectively).By converting the photocatalytic degradation data,the linear relation between -ln(c/c0) andtcould be obtained,and the slope of the linear fitting curve wask(Fig.5d).Ag@Ni-CP showed a higher photocatalytic reaction rate for MB,BF,and RhB,and the rate constants for MB,BF,and RhB were 0.012,0.006,and 0.001 8 min-1,respectively (Fig.5f).It is shown that the Schottky system with Ag@Ni-CP has good photocatalytic properties for MB,BF,and RhB for Agdeposition on the surface of Ni-CP to form Schottky junction.The comparative analysis of the degradation of different dyes by different materials is shown in Table 2.Compared with other CPs-based degradation materials,our material can quickly achieve a high degradation rate,which is a very effective photocatalytic degradation material.

    Table 2 Comparative analysis of dye degradation by different photocatalysts

    2.7 Photocatalytic mechanism

    To analyze the photocatalytic degradation mechanism of Ni-CP and Ag@Ni-CP,we measured the UVVis diffuse reflectance spectra at room temperature.As shown in Fig.6a,the band gap energy was calculated from the Kubelka-Munk equation:αhν=(hν-Eg)1/2.The linear portion of the absorption line extrapolates that the energy band gap (Eg) of Ni-CP,Ag30%@Ni-CP,Ag40%@Ni-CP,and Ag@Ni-CP were 2.90,2.94,2.97,and 3.17 eV,respectively,showing their potential semiconductor properties.

    Fig.6 (a)UV-Vis diffuse reflectance spectra of Ni-CP and Ag-loaded Ni-CPs;(b)Mott-Schottky curve of Ag@Ni-CP;(c)Mechanism diagram;(d)Effect of scavenger on dye degradation photocatalyzed by Ag@Ni-CP

    Mott-Schottky curves were obtained at 800,1 000,and 1 200 Hz in 0.5 mol·L-1Na2SO4electrolyte for Ag@Ni-CP.The flat band potential of the semiconductor was calculated by the Mott-Schottky curve.Fig.6b shows the positive slope at three different frequencies,indicating that the semiconductor is a typical n-type semiconductor.Based on the following equation:ENHE=EAg/AgCl+0.059pH-0.197,(EAg/AgCl=0.197 V at 25 ℃)[14],theEfbvalue relative to the standard hydrogen electrode (NHE) was deduced from the tangent line by a potential of -0.51 eV,and theECBwas 0.2 eV lower than theEfb[15-16],soECBis -0.31 eV.The valence band(EVB) of Ag@Ni-CP could be calculated as 2.86 eV according to the formula ofEg=EVB-ECB.

    After the above analysis,the photocatalytic mechanism of Ag@Ni-CP of the activation products could be proposed (Fig.6c).Under simulated illumination,the activated valence band electrons of Ag@Ni-CP are excited to the conduction band to form a photoelectronhole pair.The valence bandEVBis 2.86 eV,producing·OH.The photo-generated holes in the valence band have an affinity for the adsorbed dye molecules,which can directly oxidize the dye molecules and eventually degrade to small intermediates or final products.Active substances can effectively degrade organic pollutants.These active substances include superoxide radicals (·O2-),hole (h+),and hydroxyl (·OH) radicals.Because different photocatalysts have different band structures and phase compositions,the degraded active substances may change.Thus,to elucidate the mechanism of photocatalytic activity of Ag@Ni-CP and assess the contribution of active substances,free radical trapping experiments for active substances were carried out usingp-benzoquinone (BQ),EDTA-2Na andtert-butyl alcohol (TBA) as superoxide radicals ·O2-,h+and ·OH radicals scavengers,respectively,and BF as the dye(Fig.6d).The results showed that the addition of different scavengers inhibited the degradation of BF in various degrees.Adding EDTA-2Na,the degradation rate dropped from 96% to 40%.The degradation rate of BF decreased from 96%to 85%after adding TBA.By adding BQ,the degradation rate did not change significantly.The above results show that the h+plays a crucial role in the photocatalytic degradation of BF,and ·OH can affect the degradation process,thanking for the formation of Schottky junctions that prolong the lifetime of photocarriers.

    Based on these experimental results,a possible mechanism was proposed to obtain superior photocatalytic activity for composite Ag@Ni-CP.XPS results suggest that Schottky junctions may form at the interface between Ni-CP and Ag,where electrons are excited from the VB to the CB of Ni-CP by simulated sunlight,leaving holes in the VB.The photoelectrons in Ni-CP can be further trapped by the Schottky junction and then transferred to Ag,where the Schottky junction effectively prevents the photoelectrons from returning to the holes in the VB of Ni-CP and further prevents the re-assembly of the photoelectrons and the holes.Subsequently,OH-reacted with h+to form ·OH.h+with strong oxidation can also respond with dyes to degrade dyes to inorganic molecules or CO2and H2O.The mechanism is summarized as follows:

    e-+Ag+→Ag

    Ni-CP+hν→Ni-CP(h+)+Ni-CP(e-)

    H2O →H++OH

    OH-+h+→·OH

    ·OH+dye →CO2+H2O

    h++dye →CO2+H2O

    3 Conclusions

    We have successfully prepared a 2D waved network nickel(Ⅱ)coordination polymer (Ni-CP) based on 1,4-di(3,5-dicarboylphenoxy) benzene and 2,2′-bipyridine and its Ag-loaded product (Ag@Ni-CP) by light reduction method.Photocatalytic degradation investigation discovers the Ag@Ni-CP possessed excellent degradation ability for cationic dyes MB,BF,and RhB with a degradation rate of 99%,96%,and 99% in 60 min,respectively.The photocatalytic mechanism shows that h+plays a key role,and ·OH can have a slight effect on the degradation process of Ag@Ni-CP for MB,BF,and RhB.Mechanism analysis evaluates that the electrons in Ni-CP are trapped by the Schottky junction and transferred to Ag,which prevents the photoelectrons from flowing back to Ni-CP.This study provides a new idea for photo-reduction of coordination polymers to prepare composite catalysts and photocatalytic degradation.

    Conflicts of interest:There are no conflicts to declare.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    肖特基延安大學(xué)化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    延安大學(xué)王必成教授書寫
    《延安大學(xué)學(xué)報(bào)(社會科學(xué)版)》征稿啟事
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    場發(fā)射ZrO/W肖特基式場發(fā)射陰極研究進(jìn)展
    電子制作(2018年12期)2018-08-01 00:47:46
    Research on the Application of English Reading Strategies for Junior High School Students
    溝道MOS 勢壘肖特基(TMBS)和超級勢壘整流器
    電子制作(2017年19期)2017-02-02 07:08:45
    無 題
    文苑(2016年17期)2016-11-26 12:40:05
    《化工學(xué)報(bào)》贊助單位
    免费黄色在线免费观看| 人人妻人人爽人人添夜夜欢视频 | 久久热精品热| 亚洲一区二区三区欧美精品 | 亚洲欧美中文字幕日韩二区| 色视频www国产| 亚洲精品一区蜜桃| 国产免费又黄又爽又色| 99re6热这里在线精品视频| 成人特级av手机在线观看| 欧美精品国产亚洲| 久久99蜜桃精品久久| 99久久九九国产精品国产免费| 亚洲国产成人一精品久久久| 亚洲av在线观看美女高潮| 男人狂女人下面高潮的视频| 精品久久久久久久人妻蜜臀av| 国产成人精品福利久久| 国产欧美亚洲国产| 精品酒店卫生间| 交换朋友夫妻互换小说| 亚洲成人中文字幕在线播放| 成人亚洲欧美一区二区av| 在线天堂最新版资源| 日韩av在线免费看完整版不卡| 亚洲成人中文字幕在线播放| 成人国产av品久久久| 国产精品一区www在线观看| 99久久精品国产国产毛片| a级毛色黄片| 美女高潮的动态| tube8黄色片| 中国美白少妇内射xxxbb| 亚洲国产日韩一区二区| 日韩,欧美,国产一区二区三区| 中文资源天堂在线| 性色avwww在线观看| av卡一久久| 最近的中文字幕免费完整| 亚洲成人一二三区av| 亚洲色图综合在线观看| 又粗又硬又长又爽又黄的视频| 国产真实伦视频高清在线观看| 国产有黄有色有爽视频| 丝瓜视频免费看黄片| 久久久久久久精品精品| 91午夜精品亚洲一区二区三区| 日日摸夜夜添夜夜添av毛片| 精品人妻一区二区三区麻豆| 久久精品国产亚洲av涩爱| 伊人久久国产一区二区| 99久国产av精品国产电影| 亚洲成人中文字幕在线播放| 偷拍熟女少妇极品色| 一级a做视频免费观看| 成人漫画全彩无遮挡| 夫妻午夜视频| 亚洲精品国产av成人精品| 国产精品久久久久久精品古装| 在线观看一区二区三区激情| 国产在线男女| 成人毛片60女人毛片免费| 国产一区二区三区av在线| 在线精品无人区一区二区三 | 国产探花在线观看一区二区| h日本视频在线播放| 欧美精品人与动牲交sv欧美| 亚洲av二区三区四区| 午夜福利在线观看免费完整高清在| 在线天堂最新版资源| 男的添女的下面高潮视频| 午夜福利视频精品| 身体一侧抽搐| 97人妻精品一区二区三区麻豆| 国产成人精品婷婷| 国产成人精品婷婷| 日韩亚洲欧美综合| 欧美成人精品欧美一级黄| 免费观看性生交大片5| 亚洲最大成人av| 少妇人妻精品综合一区二区| 边亲边吃奶的免费视频| 国产黄频视频在线观看| 91久久精品国产一区二区三区| 六月丁香七月| 亚洲精品日本国产第一区| 久久久久性生活片| 一个人观看的视频www高清免费观看| 久久影院123| 九九久久精品国产亚洲av麻豆| 成人免费观看视频高清| 国产精品99久久久久久久久| 久久精品人妻少妇| 看十八女毛片水多多多| 99久久人妻综合| 在线亚洲精品国产二区图片欧美 | 亚洲成色77777| 又爽又黄a免费视频| 国产精品蜜桃在线观看| 18禁动态无遮挡网站| 国产精品一二三区在线看| 在线观看国产h片| 黄片wwwwww| 午夜免费观看性视频| 看黄色毛片网站| 久久久欧美国产精品| 日韩电影二区| 久久久久久久久久久丰满| 高清在线视频一区二区三区| 国产亚洲一区二区精品| 观看免费一级毛片| 80岁老熟妇乱子伦牲交| 尤物成人国产欧美一区二区三区| 联通29元200g的流量卡| 精品视频人人做人人爽| 青春草国产在线视频| 97热精品久久久久久| 69人妻影院| 女人十人毛片免费观看3o分钟| 久久久国产一区二区| 国产国拍精品亚洲av在线观看| 中国国产av一级| 校园人妻丝袜中文字幕| 亚洲最大成人av| 男女国产视频网站| 大陆偷拍与自拍| 中文天堂在线官网| 国产极品天堂在线| 亚洲熟女精品中文字幕| 亚洲天堂av无毛| 国产老妇女一区| 国产伦精品一区二区三区四那| 成人午夜精彩视频在线观看| 国产伦理片在线播放av一区| 成人欧美大片| 日韩,欧美,国产一区二区三区| 亚洲av中文字字幕乱码综合| 看十八女毛片水多多多| 午夜福利在线观看免费完整高清在| 国产午夜福利久久久久久| 久久精品国产亚洲av天美| 亚洲不卡免费看| 国产成人a∨麻豆精品| 久久6这里有精品| 麻豆久久精品国产亚洲av| 亚洲av欧美aⅴ国产| 九色成人免费人妻av| 热99国产精品久久久久久7| 亚洲国产成人一精品久久久| 日韩欧美一区视频在线观看 | 亚洲精品456在线播放app| 久久久久久久久久久丰满| 国产爽快片一区二区三区| 99视频精品全部免费 在线| 免费看光身美女| 亚洲三级黄色毛片| 成人一区二区视频在线观看| 国产欧美日韩一区二区三区在线 | 久久精品国产a三级三级三级| 亚洲国产欧美在线一区| 亚洲欧美一区二区三区黑人 | 观看免费一级毛片| 黄色欧美视频在线观看| 久久久精品免费免费高清| av.在线天堂| 美女国产视频在线观看| 在现免费观看毛片| 99热全是精品| 别揉我奶头 嗯啊视频| 午夜精品一区二区三区免费看| 女人被狂操c到高潮| 99热6这里只有精品| 精品久久久久久久末码| 男女边吃奶边做爰视频| 好男人在线观看高清免费视频| 如何舔出高潮| 婷婷色av中文字幕| 国产精品伦人一区二区| 伊人久久国产一区二区| 久久精品国产鲁丝片午夜精品| 午夜激情久久久久久久| 夫妻午夜视频| 国产综合精华液| 一级黄片播放器| 免费看不卡的av| www.av在线官网国产| 精华霜和精华液先用哪个| 超碰av人人做人人爽久久| 大片免费播放器 马上看| 国产美女午夜福利| 久久精品国产亚洲av天美| 丝袜脚勾引网站| 丰满少妇做爰视频| 国产成人aa在线观看| 男人爽女人下面视频在线观看| 国产高清国产精品国产三级 | 久久久国产一区二区| 夜夜看夜夜爽夜夜摸| 搞女人的毛片| 日韩中字成人| 听说在线观看完整版免费高清| 一级av片app| 亚洲国产精品999| 十八禁网站网址无遮挡 | 男人和女人高潮做爰伦理| 亚洲天堂国产精品一区在线| 国产精品一区二区在线观看99| 黄色日韩在线| 亚洲精品日韩av片在线观看| 国产精品女同一区二区软件| 综合色丁香网| 国精品久久久久久国模美| 99久久九九国产精品国产免费| 亚洲欧美日韩东京热| 国产有黄有色有爽视频| 69av精品久久久久久| 国产欧美另类精品又又久久亚洲欧美| 大陆偷拍与自拍| 黄色一级大片看看| 欧美激情久久久久久爽电影| 久久精品人妻少妇| 99热网站在线观看| 波多野结衣巨乳人妻| 国产精品秋霞免费鲁丝片| 国内精品美女久久久久久| 寂寞人妻少妇视频99o| 免费看a级黄色片| 国产亚洲5aaaaa淫片| 五月伊人婷婷丁香| 爱豆传媒免费全集在线观看| 一区二区三区四区激情视频| 成人亚洲精品av一区二区| 久久精品久久久久久久性| 亚洲av国产av综合av卡| 2021天堂中文幕一二区在线观| 国内少妇人妻偷人精品xxx网站| 两个人的视频大全免费| 国产午夜精品久久久久久一区二区三区| 久久精品综合一区二区三区| 天美传媒精品一区二区| 国产无遮挡羞羞视频在线观看| 欧美人与善性xxx| 别揉我奶头~嗯~啊~动态视频 | www日本在线高清视频| 婷婷色av中文字幕| 亚洲精品aⅴ在线观看| 日韩中文字幕欧美一区二区 | 午夜免费男女啪啪视频观看| 亚洲欧美精品自产自拍| 亚洲精品乱久久久久久| 久久久久久久大尺度免费视频| 午夜福利免费观看在线| 超色免费av| 青春草亚洲视频在线观看| 亚洲精品av麻豆狂野| 在线 av 中文字幕| 亚洲欧美日韩另类电影网站| 大码成人一级视频| 亚洲精品国产区一区二| 久久久久久久久久久久大奶| 伦理电影免费视频| 麻豆精品久久久久久蜜桃| 你懂的网址亚洲精品在线观看| 国产精品欧美亚洲77777| 久久人人97超碰香蕉20202| 欧美黑人欧美精品刺激| 精品一区二区三区四区五区乱码 | 成人午夜精彩视频在线观看| 亚洲一区二区三区欧美精品| 中文乱码字字幕精品一区二区三区| 亚洲精品一二三| 18禁国产床啪视频网站| 十分钟在线观看高清视频www| 欧美 亚洲 国产 日韩一| 国产xxxxx性猛交| 国产欧美日韩综合在线一区二区| www日本在线高清视频| 搡老岳熟女国产| 精品国产一区二区久久| 一边摸一边抽搐一进一出视频| 国产淫语在线视频| 亚洲伊人久久精品综合| 9热在线视频观看99| 欧美黑人精品巨大| 五月开心婷婷网| 黑人猛操日本美女一级片| 老司机靠b影院| 久久国产精品大桥未久av| 视频区图区小说| 亚洲综合精品二区| av视频免费观看在线观看| 最新在线观看一区二区三区 | 综合色丁香网| 18禁观看日本| av福利片在线| 美女福利国产在线| 精品酒店卫生间| 精品国产一区二区三区久久久樱花| 交换朋友夫妻互换小说| 尾随美女入室| 久久久国产精品麻豆| 黄频高清免费视频| 国产精品成人在线| 大片电影免费在线观看免费| 毛片一级片免费看久久久久| 91精品国产国语对白视频| 热re99久久国产66热| 一本久久精品| 久久久久国产精品人妻一区二区| 欧美亚洲日本最大视频资源| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久精品人妻al黑| 18禁裸乳无遮挡动漫免费视频| 色婷婷久久久亚洲欧美| 成人亚洲欧美一区二区av| 男女高潮啪啪啪动态图| 久久久久久免费高清国产稀缺| 国产av码专区亚洲av| 国产亚洲午夜精品一区二区久久| 丰满迷人的少妇在线观看| 亚洲av综合色区一区| 国产男女超爽视频在线观看| 日本色播在线视频| 一边亲一边摸免费视频| 最近手机中文字幕大全| av片东京热男人的天堂| 国产日韩欧美亚洲二区| 伦理电影大哥的女人| 精品一区二区免费观看| 免费黄网站久久成人精品| 最近中文字幕2019免费版| 亚洲成国产人片在线观看| 亚洲欧美清纯卡通| 90打野战视频偷拍视频| 国产高清国产精品国产三级| 99久久人妻综合| 国产欧美日韩综合在线一区二区| 成年人午夜在线观看视频| 看十八女毛片水多多多| 我的亚洲天堂| 天天躁夜夜躁狠狠躁躁| 男人操女人黄网站| 国产精品熟女久久久久浪| 国产伦理片在线播放av一区| 日本vs欧美在线观看视频| 老司机影院成人| 亚洲图色成人| 国产精品一国产av| 夜夜骑夜夜射夜夜干| 久久狼人影院| 精品国产乱码久久久久久小说| 99久久综合免费| 国产色婷婷99| 十分钟在线观看高清视频www| 一区二区三区激情视频| 久久亚洲国产成人精品v| 亚洲av男天堂| 婷婷色综合www| 无遮挡黄片免费观看| 欧美精品一区二区免费开放| 老司机靠b影院| 亚洲av电影在线进入| 国产成人免费无遮挡视频| tube8黄色片| 久久精品亚洲av国产电影网| 两个人看的免费小视频| 成年动漫av网址| 1024视频免费在线观看| 中文乱码字字幕精品一区二区三区| 捣出白浆h1v1| 一区在线观看完整版| 老司机靠b影院| 男女下面插进去视频免费观看| 国产成人免费观看mmmm| 丝袜在线中文字幕| 精品福利永久在线观看| 女性被躁到高潮视频| 久久女婷五月综合色啪小说| 极品人妻少妇av视频| 极品少妇高潮喷水抽搐| 亚洲精品视频女| 久久国产亚洲av麻豆专区| 日韩欧美一区视频在线观看| 国产 一区精品| 欧美国产精品一级二级三级| 国产精品99久久99久久久不卡 | 日本午夜av视频| xxxhd国产人妻xxx| 狠狠精品人妻久久久久久综合| 精品国产一区二区三区久久久樱花| 亚洲欧洲日产国产| 少妇人妻精品综合一区二区| 满18在线观看网站| 亚洲av电影在线观看一区二区三区| 久久久精品免费免费高清| 国产欧美日韩综合在线一区二区| 国产深夜福利视频在线观看| 欧美精品一区二区免费开放| 自线自在国产av| 天天添夜夜摸| 国产片内射在线| 免费黄网站久久成人精品| 日韩av在线免费看完整版不卡| 久热爱精品视频在线9| 成人免费观看视频高清| 18在线观看网站| 亚洲精品在线美女| 国产成人精品无人区| 九色亚洲精品在线播放| 狠狠婷婷综合久久久久久88av| 咕卡用的链子| 亚洲国产精品999| 最近最新中文字幕免费大全7| 亚洲欧美色中文字幕在线| 在线观看免费日韩欧美大片| 欧美成人午夜精品| 亚洲av欧美aⅴ国产| 黄色怎么调成土黄色| 国产一区二区三区综合在线观看| 搡老乐熟女国产| 精品少妇黑人巨大在线播放| 多毛熟女@视频| 亚洲精品成人av观看孕妇| 十八禁人妻一区二区| 精品卡一卡二卡四卡免费| 亚洲成色77777| 人人妻人人添人人爽欧美一区卜| 亚洲av在线观看美女高潮| 少妇的丰满在线观看| 婷婷成人精品国产| 国产精品秋霞免费鲁丝片| 啦啦啦啦在线视频资源| 欧美在线一区亚洲| 日韩一区二区三区影片| 中文字幕另类日韩欧美亚洲嫩草| av在线播放精品| 伊人久久大香线蕉亚洲五| 90打野战视频偷拍视频| 黄片播放在线免费| 妹子高潮喷水视频| 日韩,欧美,国产一区二区三区| 日本wwww免费看| 亚洲国产欧美网| 在线观看一区二区三区激情| a级毛片在线看网站| 日韩av免费高清视频| 一级a爱视频在线免费观看| 十八禁人妻一区二区| 亚洲国产精品成人久久小说| 成人免费观看视频高清| 丁香六月欧美| 日韩视频在线欧美| 黄片播放在线免费| 亚洲男人天堂网一区| 久久韩国三级中文字幕| 久久鲁丝午夜福利片| 日韩中文字幕视频在线看片| 精品亚洲成a人片在线观看| 国产黄频视频在线观看| www.自偷自拍.com| 看非洲黑人一级黄片| 久久久久人妻精品一区果冻| videos熟女内射| 在线观看免费午夜福利视频| 狂野欧美激情性bbbbbb| 看非洲黑人一级黄片| 亚洲精品在线美女| 免费不卡黄色视频| 丝瓜视频免费看黄片| 国产一区亚洲一区在线观看| 在线观看人妻少妇| 久久性视频一级片| 十八禁高潮呻吟视频| 亚洲精品久久久久久婷婷小说| 中文字幕制服av| 国产一区二区三区av在线| 久久久久国产精品人妻一区二区| 国产女主播在线喷水免费视频网站| 美国免费a级毛片| 国产熟女欧美一区二区| 亚洲综合精品二区| 久久鲁丝午夜福利片| 高清欧美精品videossex| 亚洲av电影在线进入| 一边摸一边抽搐一进一出视频| 狠狠婷婷综合久久久久久88av| 亚洲欧美一区二区三区国产| 日韩av在线免费看完整版不卡| 欧美 亚洲 国产 日韩一| 亚洲精品久久久久久婷婷小说| 欧美精品亚洲一区二区| 欧美日韩视频精品一区| 亚洲三区欧美一区| 日本wwww免费看| 一区二区三区激情视频| 日韩,欧美,国产一区二区三区| 欧美久久黑人一区二区| 韩国精品一区二区三区| 天天躁夜夜躁狠狠久久av| 一区二区三区四区激情视频| 国产成人一区二区在线| 国产成人91sexporn| 亚洲欧美激情在线| 性高湖久久久久久久久免费观看| 看免费av毛片| 国产午夜精品一二区理论片| 熟女少妇亚洲综合色aaa.| 18禁观看日本| 亚洲欧美成人综合另类久久久| 秋霞在线观看毛片| 免费高清在线观看视频在线观看| 婷婷色综合www| 中文字幕另类日韩欧美亚洲嫩草| 一本久久精品| 女性生殖器流出的白浆| 成人18禁高潮啪啪吃奶动态图| 亚洲人成网站在线观看播放| 午夜日韩欧美国产| 国产精品二区激情视频| 两个人看的免费小视频| 精品亚洲成a人片在线观看| 成人手机av| 丝袜美足系列| 黄色一级大片看看| 亚洲欧洲日产国产| 久久久久久人妻| av网站免费在线观看视频| av女优亚洲男人天堂| 国产精品二区激情视频| 国产亚洲欧美精品永久| 国产精品一二三区在线看| 久久久亚洲精品成人影院| 亚洲国产欧美网| 亚洲,欧美精品.| 激情五月婷婷亚洲| 999久久久国产精品视频| 大话2 男鬼变身卡| 校园人妻丝袜中文字幕| 国产又爽黄色视频| 国产欧美日韩综合在线一区二区| 国产爽快片一区二区三区| 日韩一本色道免费dvd| svipshipincom国产片| 秋霞伦理黄片| 香蕉国产在线看| www日本在线高清视频| av有码第一页| 国产高清国产精品国产三级| 国产日韩欧美视频二区| 19禁男女啪啪无遮挡网站| 午夜激情久久久久久久| 日韩精品免费视频一区二区三区| 日韩伦理黄色片| 一边摸一边做爽爽视频免费| 亚洲成人av在线免费| 亚洲婷婷狠狠爱综合网| 亚洲精华国产精华液的使用体验| 亚洲av男天堂| 麻豆乱淫一区二区| 国产av精品麻豆| 人人妻人人添人人爽欧美一区卜| 悠悠久久av| 久久久久国产一级毛片高清牌| 国产色婷婷99| 校园人妻丝袜中文字幕| 精品一品国产午夜福利视频| 观看av在线不卡| 晚上一个人看的免费电影| 亚洲av欧美aⅴ国产| 精品卡一卡二卡四卡免费| 国产精品久久久人人做人人爽| 亚洲精品国产色婷婷电影| 免费黄频网站在线观看国产| 91aial.com中文字幕在线观看| 悠悠久久av| 一级,二级,三级黄色视频| 亚洲欧美一区二区三区国产| 操美女的视频在线观看| 搡老岳熟女国产| 黄色毛片三级朝国网站| 久久国产精品大桥未久av| 久久韩国三级中文字幕| 最近中文字幕2019免费版| 国产成人免费无遮挡视频| 亚洲av国产av综合av卡| 久久久久久免费高清国产稀缺| 精品国产乱码久久久久久小说| 国产野战对白在线观看| 一级毛片 在线播放| 亚洲av综合色区一区| 精品国产乱码久久久久久小说| 精品国产国语对白av| av视频免费观看在线观看| 我的亚洲天堂| 欧美精品一区二区大全| 熟妇人妻不卡中文字幕| 亚洲精品国产色婷婷电影| 国产伦人伦偷精品视频| 丝袜在线中文字幕| 欧美少妇被猛烈插入视频| 在线天堂最新版资源| 婷婷色av中文字幕| √禁漫天堂资源中文www| 夫妻性生交免费视频一级片| 性色av一级| 国产激情久久老熟女| 最近中文字幕2019免费版| 国产精品久久久久久久久免| 激情五月婷婷亚洲| 男女之事视频高清在线观看 | 日韩 亚洲 欧美在线| 欧美精品一区二区大全| 精品人妻一区二区三区麻豆| 亚洲综合色网址| 成人亚洲欧美一区二区av|