• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    二維鎳配位聚合物(Ni-CP)和Ag@Ni-CP肖特基結(jié)的制備及其光催化降解陽離子染料

    2023-10-19 11:47:14馬志虎任宜霞王智香張美麗王記江
    關(guān)鍵詞:肖特基延安大學(xué)化工學(xué)院

    馬志虎 任宜霞 王智香 張美麗 王記江

    (陜西省化學(xué)反應(yīng)工程重點(diǎn)實(shí)驗(yàn)室,新能源新功能材料實(shí)驗(yàn)室,延安大學(xué)化學(xué)與化工學(xué)院,延安 716000)

    Metal-organic coordination polymers (M-CPs)have attracted wide attention from researchers due to their regulatory structural features and wide application prospects,such as photocatalytic degradation,fluorescent probes,electronic materials,gas adsorption and storage,and chemical sensing[1-3].With the development of industry,especially the dyeing and printing of the textile industry,more than 8000 organic dyes have been used to form the basis of environmental pollution.In recent years,more and more attention has been paid to contaminant-degraded materials[4-7].It has been found that semiconductors play an important role in environmental treatment.As a new type of semiconductor,M-CPs are favored for their large specific surface area,adjustable structure,highly ordered porosity,and uniform metal sites[8-11].The photocatalytic activity of semiconductors depends largely on three factors:adsorption behavior,photo-response region,and separation efficiency of electron-hole pairs[12-14].So it is very important to study the three factors.Because M-CPs have larger porosity and specific surface area,but the separation efficiency of electron and hole and the oxidation efficiency of photo-generated carriers are not particularly remarkable,the semiconductor and metal can form a Schottky barrier at the interface by doping non-metal or transition metal[15-19].Under the excitation of light,the efficiency of charge carrier separation and transition can be enhanced leading to the decrease of carrier recombination rate and the improvement of photocatalysis performance.Using precious metals such as silver,platinum,gold,and palladium as electron acceptors,the photoinduced hole/electron pair separation facilitates the interfacial charge transfer process[14,20-21].In general,AgNO3is commonly used as an electronic collector for semiconductor materials,enabling photoelectrons to jump from the n-type M-CPs conduction band (CB),which in turn returns to the Ag[22-24].Because of its Schottky barrier,the separation efficiency of electrons and holes is increased,and the oxidative nature of the holes can either directly degrade the dye or produce ·OH to degrade the dye,the design of a composite Ag@M-CP structure is exciting,thus facilitating interface electron transfer,reducing the composition of carriers on the semiconductor surface and improving the photocatalytic efficiency of M-CPs[25-31].

    In this study,a new Ni-CP and its monodisperse silver nanoparticles loaded product Ag@Ni-CP were prepared by a simple photoreduction method.With methylene blue (MB),basic fuchsin (BF),and rhodamine B (RhB) as the target pollutants,the photocatalytic degradation of three dyes was carried out.In addition,the relationship between the photocatalytic activity and morphology,band structure,and silver content was also discussed.The results show that Ag@Ni-CP has good photocatalytic activity,high stability,and easy recovery.

    1 Experimental

    1.1 Materials and methods

    All chemicals were purchased for direct use without further purification.Scanning electron microscopy(SEM) and energy dispersive spectroscopy (EDS) were performed by the German ZEISS Sigma 300 instrument.X-ray photoelectron spectroscopy (XPS) was carried out with a Thermo Scientific K-Alpha+instrument.Thermal stability was measured on a Hitachi TG/DTA7200 thermogravimetric analyzer.The fluorescence spectrum was determined by an F-7100 fluorescence spectrophotometer at room temperature.UV absorption was studied by a Shimadzu UV-2550 spectrophotometer.Powder X-ray diffraction (PXRD) patterns were obtained using an XRD - 7000 Advance X-ray powder diffractometer,working voltage: 40 kV,working current: 40 mA,source of radiation: CuKα,wavelength: 0.154 nm.Scan range: 5°-60°.The photocatalytic degradation experiments were carried out using an XP A-7 photocatalytic reactor.Mott-Schottky measurements were carried out at a CHI660E Electrochemical station.FTIR was carried out with a Thermo Scientific Nicolet iS50.

    1.2 Synthesis of [Ni(DDB)0.5(2,2′-bipy)(H2O)]·H2O(Ni-CP)

    A mixture of Ni(Ac)2·4H2O (0.024 g),H4DDB(0.022 g),and 2,2′-bipy (0.032 g) was added into a mixed solvent of 2 mL water,and 0.5 mL isopropanol,then stirred for 30 min at room temperature and placed in a Teflon-lined autoclave (25 mL) for 72 h at 160 ℃.After filtration and drying in the air,some green block crystals were obtained (Yield: 44% based on Ni).Elemental analysis Calcd.for C21H17N2NiO7(% ): C 53.89,H 3.66,N 5.99.Found(%): C 53.67,H 3.38,N 5.72.IR (KBr,cm-1): 3 667(w),3 597(w),3 390(s),1 611(s),1 493(s),1 441(s),1 352(s),1 199(s),975(s),763(s).

    1.3 Synthesis of Ag@Ni-CP

    Ag@Ni-CP was prepared by the photo-reduction method.By magnetic stirring,the powder of Ni-CP was distributed in the water,and the right amount of AgNO3was added to obtain a suspension.Then the suspension was irradiated for 3 h using a 500 W xenon arc lamp at ambient temperature,and light below 450 nm was cut off using a cut-off filter.The Ag@Ni-CP powder was washed with water to remove NO3-and dried in a vacuum at 60 ℃for 12 h and in the air for 2 h.To study the effect of silver content on the photocatalytic activity of Ni-CP,the content of silver added during photoreduction was 10%-150% based on the molar amount of Ni-CP (Fig.S1,Supporting information).When the reference percentage of Ag reached 60%,the optimal degradation rate was achieved,so we selected Ag60%@Ni-CP as the aim Ag-loaded product,named Ag@Ni-CP.The other two representatives (Ag30%@Ni-CP and Ag40%@Ni-CP)were used for comparison.

    1.4 Crystal structure determination

    Single crystals with suitable sizes of Ni-CP were synthesized hydrothermally and selected.Single crystal diffraction data were performed on a Bruker SMART APEX CCD diffractometer equipped with graphite monochromatic MoKαradiation (λ=0.071 073 nm).All data were corrected for LP factors and empirical absorption,and these structures were solved by the direct method of SHELXS,and the non-hydrogen atomic coordinates and each anisotropic temperature factor were refined by the full matrix least squares methodF2.The hydrogen atoms were set at the calculation position and the crystal structure was plotted with Diamond 3.1 software.The crystallographic information of Ni-CP is provided in Table 1.The selected bond lengths and angles are listed in Table S1.

    Table 1 Crystallographic data of Ni-CP

    CCDC:2201522,Ni-CP.

    1.5 Photocatalytic experiments of Ni - CP and Ag@Ni-CP

    The photocatalytic experiment was carried out in the photocatalytic reactor,using a xenon lamp (500 W)as the light source,and the organic pollutants were MB,BF,and RhB,and then the xenon lamp of the photocatalytic reactor was turned on,rotated,and stirred.After an interval of 30 min,centrifugation was carried out in the centrifuge for 5 min,and the upper solution was put into the UV-Vis spectrometer to determine and analyze MB (λ=664 nm),BF (λ=543 nm),RhB (λ=554 nm) concentrations.The measurements were repeated until the pollutant degradation rate reached close to 100%.

    2 Results and discussion

    2.1 Crystal structure of Ni-CP

    Single crystal X-ray diffraction analysis exhibits Ni-CP possesses a 2D wavy brick-wall network.The central nickel ion is situated in a six-coordinated octahedral geometry encircled by three oxygen atoms(O1A,O3,and O4) from two DDB4-ligands,two nitrogen atoms (N1 and N2) from one chelated 2,2′-bipy molecule,and one coordinated water molecule (O5),in which O5 and N2 atoms act as the axis atoms,and the other four atoms form the plane of the quadrilateral(Fig.1a).The V-type meta-carboxylate from one benzene ring of DDB4-ligands inμ2-bridged and chelated mode link the adjacent Ni2+ions into the 1D wavy chain (Fig.1b).By theμ4coordination mode (Fig.S1),the DDB4-ligands connect the 1D wavy chains to the 2D wavy brick-wall network(Fig.1c).

    Fig.1 (a)Coordination environment of Ni2+ion in Ni-CP;(b)1D wavy chain;(c)2D network structure

    Then the H-bonds among water molecules and the carboxyl oxygen atoms (O5…O2:0.273 3 nm,O5…O7:0.272 0 nm,O7…O2: 0.295 4 nm,O7…O4: 0.278 0 nm)andπ-stacking interactions between the near 2,2′-bipy molecules (the face-to-face distance is 0.353 3 nm)build 3D supramolecular structure in common.

    2.2 Thermal stability of Ni-CP

    To study the thermal stability of Ni-CP,the thermogravimetry curve was measured in air (Fig S2).From the curve,we find that the first weight loss occurred from 75 to 167 ℃with a weight loss rate of 7.68%,which could be attributed to the loss of all coordination and lattice water molecules (Calcd.7.70 %).After a small platform,the second weight loss process was from 331 to 391℃due to the collapse of the Ni-CP skeleton.

    2.3 PXRD analysis

    After measuring the single crystal diffraction to get crystal structure,the PXRD patterns were tested at room temperature to detect the purity of the Ni-CP powder.As shown in Fig.S3,the measured patterns of Ni-CP were compared with the simulated ones from the crystal structure data.Their positions of the diffraction peaks were almost coincident,indicating the powder of high purity and good crystallinity.After the photocatalytic oxidation of the dye,the powder was filtered and collected for PXRD and FTIR,as shown in Fig.S3 and S4.The position of the diffraction peak did not change,indicating that the Ni-CP has good stability during photocatalytic degradation.

    2.4 XPS analysis

    The chemical composition characterization of Schottky structures of Ag@Ni-CP was identified by XPS.The full XPS spectrum of Ag@Ni-CP is shown in Fig.2a,calibrating the corresponding binding energy according to the C1s(284.8eV) component signal (wrt)(Fig.2b).In the XPS spectrum of the sample,in addition to the typical N and O signals,the bimodal signals at 374.2 and 367.7 eV can be attributed to Ag3d,and by comparing it with the XPS electron binding energy comparison table,the valence state of Ag was 0,which means that there is an Ag primitive material on top of Ni-CP through XPS (Fig.2c).The peak at 855.4 eV can be attributed to Ni2p(Fig.2d) by comparing Ni to a valence state of +2,which is consistent with CCD testing.

    Fig.2 (a)Survey,(b)C1s,(c)Ag3d,and(d)Ni2p XPS spectra of Ag@Ni-CP

    2.5 SEM of Ni-CP and Ag@Ni-CP

    To study the morphology of the samples,the SEM images of Ni - CP (Fig.3a and 3b) and Ag@Ni-CP(Fig.3c and 3d) have been obtained,showing their same stick-like morphology.Some small prominent particles of about 200 nm were observed on the surface of the Ni-CP stick as shown in Fig.3c and 3d.It indicates that the silver nanoparticles are highly dispersed on the Ni-CP surface,which is consistent with the XPS results.To further confirm the successful deposition of silver on the Ni-CP surface,the electron image,the elemental mapping image,and the EDS layered image were analyzed (Fig.3e-3i).As we can see from the diagram,the silver elements are well-distributed(Fig.3i),and the mapping shows that the elements are evenly distributed.Finally,an EDS layered image displays the location relationship between elements,further confirming that Ag particles are deposited on Ni-CP(Fig.S4).

    Fig.3 (a,b)SEM images of Ni-CP;(c,d)SEM images of Ag@Ni-CP;(e-i)EDS element mappings of Ag@Ni-CP

    2.6 Photocatalytic activities

    To study the photocatalytic activities of Ni-CP and Ag@Ni-CP,the luminous intensities were measured at room temperature first.Inhibition of the e-/h+recombination can prolong carrier life and thus improve interfacial charge transfer efficiency.For Ag@Ni- CP,Ag nanoparticles act as traps for photoelectrons in Ni-CP Schottky junction assemblies,which means that the Ag@Ni-CP Schottky junction can enhance photocatalytic activity.Photochemical measurements were made to study the activity differences among the catalysts.The photoluminescence (PL) spectra showed the lowest luminescence intensity of Ag@Ni-CP (Fig.4a),and the lower intensity usually indicates a lower photoluminescence carrier recombination rate.As shown in Fig.4b,Ag@Ni-CP had the highest photocurrent effect,which means an increase in the separation rate of electrons excited from the valence band to the conduction band.From the Nyquist plots of different electrodes (Fig.4c),Ag@Ni-CP had the shortest diameter and the highest slope line,which reflects the ion diffusion resistance caused by the porous structure in the active material.The cross-validation of the above three examples discovers that the best photocatalyst is Ag@Ni-CP.The degradation of BF with the three materials also indicates that the most effective degradation catalyst is Ag@Ni-CP (Fig.4d).Thus,it is concluded that photogenerated electrons can be efficiently transported to the Schottky junction interface,and it is expected to show the highest efficiency in photocatalytic applications.

    Fig.4 (a)PL spectra,(b)transient photocurrent response,and(c)Nyquist plots of different materials;(d)Photocatalytic degradation of BF by Schottky junction formed with Ag@Ni-CP in different Ag proportions

    In photocatalysis,the photoinduced reaction usually plays a dominant role near the catalyst′s surface.To evaluate the photocatalytic effect of the synthesized Ag@Ni-CP Schottky structure under visible light,three dyes (MB,RhB,and BF) were selected as typical cationic organic pollutant models frequently released from the textile manufacturing industry.The photocatalytic activity of Ag@Ni-CP of the Schottky structure and its kinetics for the degradation of dyes in visible light is shown in Fig.5.In this study,self-degradation (dark degradation) of dyes was found to be negligible in the absence or presence of a catalyst in the dark.BF,MB,and RhB aqueous solutions were catalyzed and degraded by Ag@Ni-CP as photocatalysts,respectively (Fig.5a-5c).It can be observed that after photocatalytic degradation at different intervals under visible light,the maximum absorption characteristic peaks of 547 nm(BF),553 nm (RhB),and 664 nm (MB) gradually decreased with time,and the degradation rates of MB,RhB,and BF reached 99%,99%,and 96% after 60 min of degradation,respectively,which shows that Ag@Ni-CP has a good photocatalytic degradation effect on MB,BF,and RhB systems in visible light.

    Fig.5 UV-Vis absorption spectra of(a)BF,(b)RhB,and(c)MB systems after visible illumination with Ag@Ni-CP photocatalyst;(d)Linear fitting diagram of photocatalytic degradation kinetics for various catalysts;(e)Photoreaction rate constants(k)of BF,RhB,and MB in the presence of various catalysts

    The experimental data were accorded with a firstorder model with the following formula: -ln(c/c0)=kt(c0is the initial concentration of dye at the time of irradiation,cis the residual concentration of pigment in solution after irradiation time,kandtare the photocatalytic degradation rate constants and light duration,respectively).By converting the photocatalytic degradation data,the linear relation between -ln(c/c0) andtcould be obtained,and the slope of the linear fitting curve wask(Fig.5d).Ag@Ni-CP showed a higher photocatalytic reaction rate for MB,BF,and RhB,and the rate constants for MB,BF,and RhB were 0.012,0.006,and 0.001 8 min-1,respectively (Fig.5f).It is shown that the Schottky system with Ag@Ni-CP has good photocatalytic properties for MB,BF,and RhB for Agdeposition on the surface of Ni-CP to form Schottky junction.The comparative analysis of the degradation of different dyes by different materials is shown in Table 2.Compared with other CPs-based degradation materials,our material can quickly achieve a high degradation rate,which is a very effective photocatalytic degradation material.

    Table 2 Comparative analysis of dye degradation by different photocatalysts

    2.7 Photocatalytic mechanism

    To analyze the photocatalytic degradation mechanism of Ni-CP and Ag@Ni-CP,we measured the UVVis diffuse reflectance spectra at room temperature.As shown in Fig.6a,the band gap energy was calculated from the Kubelka-Munk equation:αhν=(hν-Eg)1/2.The linear portion of the absorption line extrapolates that the energy band gap (Eg) of Ni-CP,Ag30%@Ni-CP,Ag40%@Ni-CP,and Ag@Ni-CP were 2.90,2.94,2.97,and 3.17 eV,respectively,showing their potential semiconductor properties.

    Fig.6 (a)UV-Vis diffuse reflectance spectra of Ni-CP and Ag-loaded Ni-CPs;(b)Mott-Schottky curve of Ag@Ni-CP;(c)Mechanism diagram;(d)Effect of scavenger on dye degradation photocatalyzed by Ag@Ni-CP

    Mott-Schottky curves were obtained at 800,1 000,and 1 200 Hz in 0.5 mol·L-1Na2SO4electrolyte for Ag@Ni-CP.The flat band potential of the semiconductor was calculated by the Mott-Schottky curve.Fig.6b shows the positive slope at three different frequencies,indicating that the semiconductor is a typical n-type semiconductor.Based on the following equation:ENHE=EAg/AgCl+0.059pH-0.197,(EAg/AgCl=0.197 V at 25 ℃)[14],theEfbvalue relative to the standard hydrogen electrode (NHE) was deduced from the tangent line by a potential of -0.51 eV,and theECBwas 0.2 eV lower than theEfb[15-16],soECBis -0.31 eV.The valence band(EVB) of Ag@Ni-CP could be calculated as 2.86 eV according to the formula ofEg=EVB-ECB.

    After the above analysis,the photocatalytic mechanism of Ag@Ni-CP of the activation products could be proposed (Fig.6c).Under simulated illumination,the activated valence band electrons of Ag@Ni-CP are excited to the conduction band to form a photoelectronhole pair.The valence bandEVBis 2.86 eV,producing·OH.The photo-generated holes in the valence band have an affinity for the adsorbed dye molecules,which can directly oxidize the dye molecules and eventually degrade to small intermediates or final products.Active substances can effectively degrade organic pollutants.These active substances include superoxide radicals (·O2-),hole (h+),and hydroxyl (·OH) radicals.Because different photocatalysts have different band structures and phase compositions,the degraded active substances may change.Thus,to elucidate the mechanism of photocatalytic activity of Ag@Ni-CP and assess the contribution of active substances,free radical trapping experiments for active substances were carried out usingp-benzoquinone (BQ),EDTA-2Na andtert-butyl alcohol (TBA) as superoxide radicals ·O2-,h+and ·OH radicals scavengers,respectively,and BF as the dye(Fig.6d).The results showed that the addition of different scavengers inhibited the degradation of BF in various degrees.Adding EDTA-2Na,the degradation rate dropped from 96% to 40%.The degradation rate of BF decreased from 96%to 85%after adding TBA.By adding BQ,the degradation rate did not change significantly.The above results show that the h+plays a crucial role in the photocatalytic degradation of BF,and ·OH can affect the degradation process,thanking for the formation of Schottky junctions that prolong the lifetime of photocarriers.

    Based on these experimental results,a possible mechanism was proposed to obtain superior photocatalytic activity for composite Ag@Ni-CP.XPS results suggest that Schottky junctions may form at the interface between Ni-CP and Ag,where electrons are excited from the VB to the CB of Ni-CP by simulated sunlight,leaving holes in the VB.The photoelectrons in Ni-CP can be further trapped by the Schottky junction and then transferred to Ag,where the Schottky junction effectively prevents the photoelectrons from returning to the holes in the VB of Ni-CP and further prevents the re-assembly of the photoelectrons and the holes.Subsequently,OH-reacted with h+to form ·OH.h+with strong oxidation can also respond with dyes to degrade dyes to inorganic molecules or CO2and H2O.The mechanism is summarized as follows:

    e-+Ag+→Ag

    Ni-CP+hν→Ni-CP(h+)+Ni-CP(e-)

    H2O →H++OH

    OH-+h+→·OH

    ·OH+dye →CO2+H2O

    h++dye →CO2+H2O

    3 Conclusions

    We have successfully prepared a 2D waved network nickel(Ⅱ)coordination polymer (Ni-CP) based on 1,4-di(3,5-dicarboylphenoxy) benzene and 2,2′-bipyridine and its Ag-loaded product (Ag@Ni-CP) by light reduction method.Photocatalytic degradation investigation discovers the Ag@Ni-CP possessed excellent degradation ability for cationic dyes MB,BF,and RhB with a degradation rate of 99%,96%,and 99% in 60 min,respectively.The photocatalytic mechanism shows that h+plays a key role,and ·OH can have a slight effect on the degradation process of Ag@Ni-CP for MB,BF,and RhB.Mechanism analysis evaluates that the electrons in Ni-CP are trapped by the Schottky junction and transferred to Ag,which prevents the photoelectrons from flowing back to Ni-CP.This study provides a new idea for photo-reduction of coordination polymers to prepare composite catalysts and photocatalytic degradation.

    Conflicts of interest:There are no conflicts to declare.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    肖特基延安大學(xué)化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    延安大學(xué)王必成教授書寫
    《延安大學(xué)學(xué)報(bào)(社會科學(xué)版)》征稿啟事
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    場發(fā)射ZrO/W肖特基式場發(fā)射陰極研究進(jìn)展
    電子制作(2018年12期)2018-08-01 00:47:46
    Research on the Application of English Reading Strategies for Junior High School Students
    溝道MOS 勢壘肖特基(TMBS)和超級勢壘整流器
    電子制作(2017年19期)2017-02-02 07:08:45
    無 題
    文苑(2016年17期)2016-11-26 12:40:05
    《化工學(xué)報(bào)》贊助單位
    一本一本久久a久久精品综合妖精| 久久午夜综合久久蜜桃| 777米奇影视久久| 日本av手机在线免费观看| 国产免费一区二区三区四区乱码| 狂野欧美激情性bbbbbb| 乱人伦中国视频| 亚洲视频免费观看视频| 欧美激情高清一区二区三区 | 最近手机中文字幕大全| 男女午夜视频在线观看| 9191精品国产免费久久| 成人黄色视频免费在线看| 波野结衣二区三区在线| 日韩视频在线欧美| 如何舔出高潮| 欧美 亚洲 国产 日韩一| 亚洲情色 制服丝袜| av又黄又爽大尺度在线免费看| 国产精品一国产av| 欧美精品人与动牲交sv欧美| 国产精品.久久久| 国产精品国产av在线观看| 91精品三级在线观看| 国产男女超爽视频在线观看| 在线观看免费午夜福利视频| 欧美国产精品一级二级三级| 亚洲自偷自拍图片 自拍| 飞空精品影院首页| 久久毛片免费看一区二区三区| 国产高清不卡午夜福利| 99精品久久久久人妻精品| 国产亚洲午夜精品一区二区久久| 99久久99久久久精品蜜桃| 97人妻天天添夜夜摸| 男人舔女人的私密视频| 久久av网站| 久久人妻熟女aⅴ| 十八禁人妻一区二区| 人人妻人人澡人人爽人人夜夜| 亚洲成人一二三区av| 国语对白做爰xxxⅹ性视频网站| 五月天丁香电影| 纯流量卡能插随身wifi吗| 日韩欧美一区视频在线观看| 精品酒店卫生间| 亚洲成人av在线免费| 久久天躁狠狠躁夜夜2o2o | 色网站视频免费| 视频在线观看一区二区三区| 午夜激情久久久久久久| av国产久精品久网站免费入址| 妹子高潮喷水视频| 一边摸一边抽搐一进一出视频| 国产日韩一区二区三区精品不卡| 亚洲综合精品二区| 男女边吃奶边做爰视频| 在线观看三级黄色| √禁漫天堂资源中文www| 国产成人91sexporn| 精品一区二区三区四区五区乱码 | 女性生殖器流出的白浆| 在线观看免费午夜福利视频| 丰满少妇做爰视频| 国产成人系列免费观看| 国产精品久久久久久人妻精品电影 | 日韩大码丰满熟妇| 人人妻人人添人人爽欧美一区卜| 美女国产高潮福利片在线看| 久热这里只有精品99| 人体艺术视频欧美日本| 中文字幕人妻熟女乱码| 黄色怎么调成土黄色| 水蜜桃什么品种好| 新久久久久国产一级毛片| 在线观看一区二区三区激情| 国产成人免费无遮挡视频| 国产成人91sexporn| 亚洲av日韩在线播放| 亚洲,欧美,日韩| 久久国产亚洲av麻豆专区| 亚洲精品,欧美精品| 一级毛片黄色毛片免费观看视频| 亚洲第一av免费看| 老司机深夜福利视频在线观看 | 亚洲精品美女久久久久99蜜臀 | 黄片小视频在线播放| 国产av码专区亚洲av| 亚洲av中文av极速乱| 操出白浆在线播放| 日本av手机在线免费观看| 侵犯人妻中文字幕一二三四区| 国产亚洲av片在线观看秒播厂| 成人亚洲精品一区在线观看| 亚洲色图 男人天堂 中文字幕| 一级毛片电影观看| 在现免费观看毛片| 久久国产精品男人的天堂亚洲| 国产探花极品一区二区| 黄片无遮挡物在线观看| 亚洲国产精品一区三区| 少妇人妻精品综合一区二区| 日韩一区二区视频免费看| 成人免费观看视频高清| 狠狠婷婷综合久久久久久88av| 日本wwww免费看| 天堂8中文在线网| 秋霞在线观看毛片| 久久毛片免费看一区二区三区| 永久免费av网站大全| 免费观看a级毛片全部| 久久精品国产亚洲av高清一级| 亚洲美女视频黄频| 色94色欧美一区二区| 亚洲少妇的诱惑av| 国产成人欧美| 亚洲国产精品999| 国产精品久久久久久人妻精品电影 | 丁香六月天网| 欧美日韩av久久| 久久久久网色| 亚洲 欧美一区二区三区| 又粗又硬又长又爽又黄的视频| 国产精品偷伦视频观看了| 一级,二级,三级黄色视频| 人妻一区二区av| 日本欧美视频一区| 国产一卡二卡三卡精品 | av福利片在线| 午夜免费鲁丝| 天堂俺去俺来也www色官网| 热99久久久久精品小说推荐| 国产精品偷伦视频观看了| 制服人妻中文乱码| 亚洲三区欧美一区| 欧美人与善性xxx| 久久99精品国语久久久| 黄片播放在线免费| 麻豆精品久久久久久蜜桃| 免费看不卡的av| 日韩av不卡免费在线播放| 欧美中文综合在线视频| 亚洲精品成人av观看孕妇| 久久婷婷青草| 一级片免费观看大全| 国产精品免费大片| 麻豆乱淫一区二区| 高清视频免费观看一区二区| 中文字幕人妻熟女乱码| 欧美日韩国产mv在线观看视频| 亚洲专区中文字幕在线 | 一级毛片我不卡| 99re6热这里在线精品视频| 蜜桃在线观看..| 亚洲欧美成人精品一区二区| 黄片小视频在线播放| 国产一区二区三区综合在线观看| 亚洲精品aⅴ在线观看| 在线观看三级黄色| 少妇人妻精品综合一区二区| 国产午夜精品一二区理论片| 亚洲一区二区三区欧美精品| 亚洲国产精品一区三区| 中文字幕制服av| 久久精品国产亚洲av涩爱| 国产 一区精品| 精品少妇久久久久久888优播| 热re99久久精品国产66热6| 亚洲,欧美,日韩| 欧美日韩视频精品一区| 国产免费视频播放在线视频| 精品国产露脸久久av麻豆| 亚洲av成人精品一二三区| 国产人伦9x9x在线观看| 国产男人的电影天堂91| 亚洲男人天堂网一区| 国产xxxxx性猛交| 国产xxxxx性猛交| 最近的中文字幕免费完整| 久久久精品区二区三区| 精品国产一区二区三区四区第35| 久久性视频一级片| 午夜久久久在线观看| 我要看黄色一级片免费的| 国产又爽黄色视频| 国产精品成人在线| 啦啦啦视频在线资源免费观看| 欧美亚洲日本最大视频资源| 国产淫语在线视频| 最新的欧美精品一区二区| 久久影院123| 欧美亚洲日本最大视频资源| 在线天堂最新版资源| 国产成人欧美在线观看 | 亚洲色图 男人天堂 中文字幕| 色视频在线一区二区三区| 中文字幕制服av| 久久女婷五月综合色啪小说| 成人手机av| 亚洲情色 制服丝袜| 亚洲av综合色区一区| 人人妻人人爽人人添夜夜欢视频| 国产精品一国产av| 人妻人人澡人人爽人人| 国产精品香港三级国产av潘金莲 | 美女主播在线视频| 久久97久久精品| 在现免费观看毛片| 黄色视频不卡| 欧美精品亚洲一区二区| 国产精品av久久久久免费| 亚洲精品美女久久久久99蜜臀 | 亚洲国产成人一精品久久久| 热re99久久精品国产66热6| 丰满饥渴人妻一区二区三| 黄色视频在线播放观看不卡| 欧美精品亚洲一区二区| 国产精品一区二区精品视频观看| 欧美日韩av久久| 侵犯人妻中文字幕一二三四区| 日韩一区二区三区影片| 欧美 日韩 精品 国产| 久久人人97超碰香蕉20202| 欧美成人午夜精品| 亚洲av综合色区一区| 老汉色∧v一级毛片| 久久人人97超碰香蕉20202| 国产精品香港三级国产av潘金莲 | 亚洲国产精品国产精品| 精品人妻一区二区三区麻豆| 在线观看一区二区三区激情| 久久婷婷青草| 国产欧美亚洲国产| 美女大奶头黄色视频| 天天操日日干夜夜撸| 永久免费av网站大全| 精品免费久久久久久久清纯 | 制服人妻中文乱码| 精品卡一卡二卡四卡免费| 欧美亚洲日本最大视频资源| 国产精品国产av在线观看| 精品人妻在线不人妻| 亚洲精品久久成人aⅴ小说| 午夜福利一区二区在线看| 两个人免费观看高清视频| 午夜免费男女啪啪视频观看| 日本欧美视频一区| 80岁老熟妇乱子伦牲交| 秋霞伦理黄片| 一边摸一边做爽爽视频免费| 老司机在亚洲福利影院| 丰满饥渴人妻一区二区三| 熟妇人妻不卡中文字幕| 男女午夜视频在线观看| 男人添女人高潮全过程视频| 久久精品aⅴ一区二区三区四区| 亚洲视频免费观看视频| 亚洲成av片中文字幕在线观看| 黄片小视频在线播放| 日韩,欧美,国产一区二区三区| 国产男女超爽视频在线观看| 日韩人妻精品一区2区三区| 亚洲激情五月婷婷啪啪| 人人妻人人澡人人看| 久久久久精品国产欧美久久久 | 大片免费播放器 马上看| 中文乱码字字幕精品一区二区三区| 九色亚洲精品在线播放| 性色av一级| 如何舔出高潮| 极品少妇高潮喷水抽搐| 自线自在国产av| 女人高潮潮喷娇喘18禁视频| 国产日韩欧美亚洲二区| 精品一品国产午夜福利视频| 精品人妻熟女毛片av久久网站| 色网站视频免费| 日韩一本色道免费dvd| 在线观看免费午夜福利视频| 少妇人妻久久综合中文| 国产亚洲午夜精品一区二区久久| 久久99热这里只频精品6学生| 2021少妇久久久久久久久久久| 777久久人妻少妇嫩草av网站| 国产精品久久久久久精品古装| 91成人精品电影| 一区福利在线观看| 深夜精品福利| 精品国产露脸久久av麻豆| 在线观看免费日韩欧美大片| 亚洲av男天堂| 日本av手机在线免费观看| 久久97久久精品| 国产成人av激情在线播放| av国产精品久久久久影院| 热re99久久国产66热| 久久97久久精品| av国产久精品久网站免费入址| 免费在线观看视频国产中文字幕亚洲 | 国产熟女欧美一区二区| 男女床上黄色一级片免费看| 国产一卡二卡三卡精品 | 国产成人精品福利久久| 久久鲁丝午夜福利片| 不卡视频在线观看欧美| 日本黄色日本黄色录像| 美女脱内裤让男人舔精品视频| 一级毛片黄色毛片免费观看视频| 51午夜福利影视在线观看| 男女免费视频国产| 最近中文字幕2019免费版| 人妻一区二区av| 无遮挡黄片免费观看| 国产精品久久久久久精品古装| 麻豆乱淫一区二区| 婷婷色av中文字幕| 老汉色∧v一级毛片| 欧美日韩国产mv在线观看视频| 久久久久国产精品人妻一区二区| 香蕉国产在线看| 婷婷成人精品国产| 亚洲欧洲国产日韩| 看非洲黑人一级黄片| 成人影院久久| 一级黄片播放器| 一区二区日韩欧美中文字幕| 丝袜美腿诱惑在线| 成人国产麻豆网| 久久精品久久精品一区二区三区| 久久久久久免费高清国产稀缺| 熟女av电影| 这个男人来自地球电影免费观看 | 极品少妇高潮喷水抽搐| 亚洲精品美女久久av网站| 99久久精品国产亚洲精品| av国产久精品久网站免费入址| 婷婷色av中文字幕| 欧美黄色片欧美黄色片| 国产成人精品久久久久久| 精品久久久久久电影网| 最近中文字幕高清免费大全6| 亚洲精品第二区| 午夜福利一区二区在线看| 午夜福利网站1000一区二区三区| 亚洲伊人久久精品综合| 看免费av毛片| 少妇人妻精品综合一区二区| 91成人精品电影| 少妇人妻精品综合一区二区| 国产精品香港三级国产av潘金莲 | 大香蕉久久网| 国产极品粉嫩免费观看在线| 午夜免费鲁丝| 一区二区三区激情视频| 久久精品aⅴ一区二区三区四区| 男的添女的下面高潮视频| 久久久久精品国产欧美久久久 | 99久久人妻综合| 国产欧美亚洲国产| 国产精品成人在线| 久久久精品94久久精品| 一本大道久久a久久精品| 亚洲成人免费av在线播放| 国产成人精品福利久久| 免费观看a级毛片全部| 中国国产av一级| 大片免费播放器 马上看| 国产精品免费视频内射| av在线老鸭窝| 美女高潮到喷水免费观看| 夫妻性生交免费视频一级片| 国产黄色免费在线视频| 1024视频免费在线观看| 亚洲一级一片aⅴ在线观看| 夜夜骑夜夜射夜夜干| 韩国精品一区二区三区| av有码第一页| 美女主播在线视频| 校园人妻丝袜中文字幕| 韩国高清视频一区二区三区| 美女中出高潮动态图| 狠狠婷婷综合久久久久久88av| 一区二区av电影网| 欧美日韩国产mv在线观看视频| 免费黄频网站在线观看国产| 人人妻人人澡人人爽人人夜夜| 亚洲av男天堂| 一二三四在线观看免费中文在| 精品人妻在线不人妻| 欧美亚洲 丝袜 人妻 在线| 天堂8中文在线网| 国产亚洲一区二区精品| 捣出白浆h1v1| av福利片在线| 在线观看免费高清a一片| 人人妻,人人澡人人爽秒播 | 亚洲专区中文字幕在线 | 国产男人的电影天堂91| 国产片特级美女逼逼视频| 久久久精品免费免费高清| 高清黄色对白视频在线免费看| 一本—道久久a久久精品蜜桃钙片| 最近手机中文字幕大全| 少妇精品久久久久久久| 国产成人精品久久久久久| av网站在线播放免费| 欧美精品亚洲一区二区| 久久久精品免费免费高清| 最新的欧美精品一区二区| 我的亚洲天堂| 亚洲国产成人一精品久久久| 久久鲁丝午夜福利片| 极品人妻少妇av视频| 色婷婷久久久亚洲欧美| 久久狼人影院| 大香蕉久久成人网| netflix在线观看网站| 一区福利在线观看| 青草久久国产| 卡戴珊不雅视频在线播放| 日日啪夜夜爽| 精品福利永久在线观看| svipshipincom国产片| 性色av一级| 香蕉丝袜av| 亚洲国产欧美在线一区| a 毛片基地| 尾随美女入室| 一区二区av电影网| 精品卡一卡二卡四卡免费| 国产亚洲精品第一综合不卡| 人体艺术视频欧美日本| 少妇人妻久久综合中文| 国语对白做爰xxxⅹ性视频网站| 极品少妇高潮喷水抽搐| 国产女主播在线喷水免费视频网站| 欧美少妇被猛烈插入视频| 妹子高潮喷水视频| 亚洲中文av在线| 国产97色在线日韩免费| 亚洲自偷自拍图片 自拍| 精品人妻一区二区三区麻豆| 国产福利在线免费观看视频| 最新在线观看一区二区三区 | 中文字幕另类日韩欧美亚洲嫩草| 一级片免费观看大全| 天美传媒精品一区二区| 国产乱人偷精品视频| 久久免费观看电影| 国精品久久久久久国模美| 免费少妇av软件| 大香蕉久久成人网| 日韩欧美精品免费久久| 两个人免费观看高清视频| 中文字幕人妻熟女乱码| 热99国产精品久久久久久7| 两个人免费观看高清视频| 精品久久久久久电影网| 亚洲国产精品成人久久小说| 99国产精品免费福利视频| 成人国产av品久久久| 一级片'在线观看视频| 丰满饥渴人妻一区二区三| 成人亚洲欧美一区二区av| 国产精品一区二区在线不卡| 亚洲国产精品国产精品| 欧美精品一区二区大全| av卡一久久| 亚洲精品一二三| 国产精品秋霞免费鲁丝片| 狂野欧美激情性bbbbbb| 19禁男女啪啪无遮挡网站| 色综合欧美亚洲国产小说| 欧美成人精品欧美一级黄| 精品福利永久在线观看| 午夜福利视频精品| 蜜桃在线观看..| 日本wwww免费看| 一边摸一边做爽爽视频免费| 性高湖久久久久久久久免费观看| √禁漫天堂资源中文www| 人人妻,人人澡人人爽秒播 | 国产色婷婷99| 精品国产一区二区久久| 美女视频免费永久观看网站| av网站免费在线观看视频| 美女福利国产在线| av视频免费观看在线观看| 最新在线观看一区二区三区 | 国产日韩一区二区三区精品不卡| 亚洲伊人色综图| 成人手机av| 亚洲一区中文字幕在线| 亚洲成色77777| 国产成人av激情在线播放| 精品视频人人做人人爽| 国产精品秋霞免费鲁丝片| 日韩中文字幕欧美一区二区 | av.在线天堂| av在线播放精品| 国产又色又爽无遮挡免| 亚洲一级一片aⅴ在线观看| 三上悠亚av全集在线观看| 这个男人来自地球电影免费观看 | www.av在线官网国产| 伦理电影免费视频| 欧美在线黄色| 久久精品久久久久久噜噜老黄| 狂野欧美激情性bbbbbb| 国产熟女欧美一区二区| 青青草视频在线视频观看| 亚洲国产看品久久| 亚洲av成人精品一二三区| 激情视频va一区二区三区| 成人毛片60女人毛片免费| 午夜91福利影院| 欧美激情极品国产一区二区三区| 精品一区在线观看国产| 搡老岳熟女国产| 色婷婷av一区二区三区视频| 亚洲精品国产区一区二| 纵有疾风起免费观看全集完整版| 99久久99久久久精品蜜桃| 国产一区二区三区综合在线观看| 丰满乱子伦码专区| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久精品久久久久真实原创| 国产乱来视频区| 成人毛片60女人毛片免费| 咕卡用的链子| 国产在线免费精品| 欧美日韩视频高清一区二区三区二| 久热这里只有精品99| 国产精品亚洲av一区麻豆 | 如日韩欧美国产精品一区二区三区| 国产精品99久久99久久久不卡 | 超碰成人久久| 色网站视频免费| 久久 成人 亚洲| 亚洲国产精品999| 国产精品一区二区在线不卡| 精品国产一区二区三区四区第35| 最新在线观看一区二区三区 | 国产成人av激情在线播放| 精品国产一区二区三区四区第35| 精品一区二区三区四区五区乱码 | 青春草亚洲视频在线观看| 日韩电影二区| 亚洲成国产人片在线观看| 亚洲精品国产区一区二| 日韩大码丰满熟妇| 最近的中文字幕免费完整| 美女大奶头黄色视频| 国产精品嫩草影院av在线观看| 美女高潮到喷水免费观看| 两个人看的免费小视频| 考比视频在线观看| 国产精品 欧美亚洲| 精品人妻一区二区三区麻豆| 日本色播在线视频| 另类精品久久| 一级,二级,三级黄色视频| a 毛片基地| 满18在线观看网站| 99久国产av精品国产电影| 香蕉丝袜av| 精品国产国语对白av| 九草在线视频观看| 欧美中文综合在线视频| 国产一级毛片在线| 久久性视频一级片| 亚洲五月色婷婷综合| 男女下面插进去视频免费观看| 99九九在线精品视频| 午夜福利免费观看在线| 91精品伊人久久大香线蕉| 午夜福利,免费看| 青青草视频在线视频观看| 亚洲,欧美精品.| 久久ye,这里只有精品| 亚洲第一青青草原| 国产日韩一区二区三区精品不卡| 欧美黄色片欧美黄色片| 成人18禁高潮啪啪吃奶动态图| 久久久精品免费免费高清| 2018国产大陆天天弄谢| 男女无遮挡免费网站观看| 成人三级做爰电影| 精品视频人人做人人爽| 啦啦啦在线观看免费高清www| 午夜福利视频在线观看免费| 精品一区二区免费观看| 十八禁高潮呻吟视频| 七月丁香在线播放| tube8黄色片| 色综合欧美亚洲国产小说| 欧美精品高潮呻吟av久久| 午夜久久久在线观看| 欧美人与善性xxx| 日本爱情动作片www.在线观看| 精品人妻熟女毛片av久久网站| 黄色怎么调成土黄色| 亚洲久久久国产精品| 综合色丁香网| 久久鲁丝午夜福利片| 中文字幕av电影在线播放| 午夜福利免费观看在线| 亚洲婷婷狠狠爱综合网| 你懂的网址亚洲精品在线观看| 最近手机中文字幕大全| 大话2 男鬼变身卡| 老司机在亚洲福利影院| a级毛片在线看网站| 麻豆精品久久久久久蜜桃| 日韩一本色道免费dvd|