• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氧原子吸附調控藍磷/石墨烯異質結構的肖特基勢壘

    2023-10-19 11:47:08段汪洋程悅桓胡吉松馬新國
    無機化學學報 2023年10期
    關鍵詞:肖特基理學院勢壘

    段汪洋 程悅桓 胡吉松 馬新國 裴 玲*,

    (1湖北工業(yè)大學理學院,武漢 430068)

    (2湖北省能源光電器件與系統(tǒng)工程技術研究中心,武漢 430068)

    (3華中科技大學光學與電子信息學院,武漢 430068)

    0 Introduction

    Phosphene has attracted attention due to its extremely high carrier mobility.It has an excellent performance in the fields of electrocatalysis[1],photovoltaic power generation[2],energy storage[3]and transistors[4].Besides,it is a strong candidate for the next generation of nano-electronic devices.There are theoretically 9 forms of phosphorene monolayer,includingα-P (black phosphorus)andβ-P(blue phosphorus,BP)[5].Based onη-P andθ-P among them,five new and dynamically stable phosphene heteromers were discovered[6],single crystal violet phosphorus has also been synthesized[7].Phosphorus atoms in a single-layer phosphorene interact with each other through covalent interaction and form a six-membered ring,which is in the form of folds and layers.The layers are combined by van der Waals forces.It′s noteworthy that single-layer blue phosphorus has the same stability as the most stable black phosphorus,has a carrier mobility similar to graphene,and exhibits a wider band gap than them,so it can be used to fabricate transistors[8-9].In recent years,fieldeffect transistors(FETs)based on monolayer blue phosphorus were reported,which showed a high on/off ratio exceeding 350 due to the low contact resistance between the metallic and semiconducting nanoribbons[10-11].Therefore,the development of FETs based on phosphorene will be a trend of electronic devices in the future.

    In a device with phosphorene as the channel,a Schottky barrier is often formed at the interface of metal electrodes and phosphorene,which would reduce the carrier injection efficiency[10].In order to explain and address these issues,for example,five representative metal systems such as Au(111),Ag(111),Al(111),Co(111),Sc(0001)[12]and graphene (Gr) heterojunction[13]have been employed to reduce the Schottky barrier height (SBH).Although much research in FETs based on phosphorene has been done,another remarkable fact is that most of them are n-type FETs (n-FETs),and the fabrication of p-type FETs (p-FETs) remains a great challenge.The conducting channel of a FET transports electrons or holes,which depends on whether the SBH is smaller relative to the conduction band minimum (CBM) or the valence band maximum (VBM),respectively,after the Fermi levels of metals and semiconductors are in equilibrium[14].However,due to the complicated interface interaction of the metal/semiconductor,the ideal metal-semiconductor interface is difficult to obtain for the inevitable chemical disorder and Fermi pinning[15-17].Another crucial case according to theoretical calculations is that the p-type Schottky contact appears at the interface with Pd and Sc,BP monolayer forms n-type Schottky contact with Au,Ag and Al,whereas,there are some differences in the Lateral Schottky barrier of the BP transistors with metal electrodes[10-12].On the whole,these studies show that it is relatively difficult to design phosphorene/metal contacts with a low SBH,which limits the development of phosphorene-based FETs.

    As experiments and theories improve by leaps and bounds,much research has been carried out to solve this problem.What is known to us is that twodimensional (2D) materials enjoy numerous exceptional advantages over conventional materials on a quantum scale,for instance,graphene has lower losses and higher carrier mobility[18].Recently,it was accounted for that a heterostructure can be changed from a n-type Schottky contact to a p-type Schottky contact with increasing of compressive strain[19].Afterwards,Li et al.[13]affirmed that the electric field was compelling to tune the Schottky barrier for the BP/Gr interface,which can change the n-type into the p-type.Thus,graphene can be used as a low-resistance contact material to replace noble metals.And it is noteworthy that,Liang et al.reported a high-performance anisotropic graphene/black phosphorus heterostructure with promising potential applications in electronic devices[20-22].These achievements provide ideas for us to tune the Schottky barrier of the BP/Gr heterostructures by Odoped.In this work,first-principles calculations on the BP/Gr heterostructures with different concentrations of the O-doped at the interface were performed to explore the interface interaction and electronic properties.Additionally,the charge density difference and work function were used to check the redistribution of interfacial charges and determine the type and height of the Schottky barrier.

    1 Calculation methods and models

    All calculations were performed using Ultrasoft Pseudopotentials (USP) and using the Generalized Gradient Approximation (GGA)-Perdew Burke Ernzerhof (PBE)[23]form based on the CASTEP[24]implementation of the Generalized Gradient Approximation in Density Functional Theory (DFT) exchange and association.In the USP calculations,a mixed semi-empirical solution of the Grimme[25]and Ortmann-Bechstedt-Schmidt (OBS)[26]schemes is provided to introduce the correct description of van der Waals (vdW) interactions.The dispersion-corrected total energyEtotis represented asEtot=EKS-DFT+EvdW,whereEKS-DFTis the normal Kohn-Sham DFT energy andEvdWis the dispersion correction.In general,semiempirical methods are often used to balance the cost of dispersion terms in firstprinciples calculations with the need to improve nonbonded interactions in the standard DFT descriptions[27].The selected valence atomic configurations are 2s22p2for C,2s22p4for O,and 3s23p3for P.All models were geometrically optimized using the BFGS algorithm,the cutoff energy was set to 350 eV,and the Monkhorst-Packkmesh of 3×3×1 was used[28].The selfconvergence precision was 2.0×10-5eV per atom,the interatomic force field convergence precision was 0.5 eV·nm-1,the maximum stress was 0.1 GPa,and the maximum displacement was set to 2.0×10-4nm.

    Before exploring the performance of the BP/Gr heterojunction,we optimized the lattice constants of BP (space group:P3m1;a1=b1=0.327 nm) and graphene (space group:P6/mmm;a2=b2=0.247 nm),which were consistent with the previous theory similar to the experimental data (BP:a1=b1=0.338 nm[29-30],GR:a2=b2=0.246 nm[31]).BP monolayer is a novel two-dimensional semiconductor material with a monolayer thickness of 0.124 nm.We used blue phosphorus with 3×3×1 supercells and graphene with 4×4×1 supercells to construct heterojunctions,and established a vacuum layer of no less than 1.5 nm along thez-direction for the separation period images to isolate the slab as the boundary condition.In this structure,1-3 O atoms are adsorbed inside the interface of BP/Gr heterojunction,and the structure for different doping concentrations is shown in Fig.1.For simplicity,the BP/Gr heterojunctions with O concentration (O/P ratio) of 0%,5.56%,11.11%,and 16.67% are denoted as BP/Gr,BP/Gr-1O,BP/Gr-2O,BP/Gr-3O.The lattice mismatch ratio is defined asσ=|a1-a2|/a1,wherea1anda2are the lattice constants of blue phosphorus and graphene,respectively.Table 1 shows that the lattice mismatch ratio of the model is 0.714%,a low 5% of required[27].It was found that the structure was severely distorted,with the increasing of concentration of adsorbed oxygen atoms on the blue phosphorus surface in the interface.Wavy graphene can be stretched to about 30%,because 2D materials can withstand very strong stretching and squeezing[32].

    Table 1 Mismatch energies and cohesive energies of BP/Gr heterojunctions with different proportions of the O-doped

    Fig.1 Side views of BP/Gr heterostructures with different proportions of the doped O after geometric optimization:(a)BP/Gr-1O;(b)BP/Gr-2O;(c)BP/Gr-3O

    2 Results and discussion

    2.1 Interface stability

    The interfacial formation energies of heterojunctions at different interlayer distancesdare calculated by using two dispersion correction methods,respectively.The interfacial formation energy of heterojunctions can be calculated as

    whereE(BP/Gr),E(BP) andE(Gr) represent the total energies of the interface,the BP sheet and Gr sheet,respectively[33-35].Fig.2 shows that the most stable interlayer distance obtained by the Grimme dispersion correction method is 0.34 nm,while the most stable interlayer distance obtained by the OBS dispersion correction method is about 0.32 nm or 0.34 nm.This result is consistent with the results for 0.34 nm,which is similar to the previous theoretical and experimental results[19,36].

    Fig.2 Distance and interface formation energy of heterojunctions interlayer calculated by two dispersion correction methods

    The interlayer interactions of a heterostructure have a huge impact on electronic structure.In order to obtain a stable geometrical structure of BP/Gr heterostructures,the interfacial cohesive energy between BP sheet and Gr is expressed as:

    whereE(BP/Gr),E(BP) andE(Gr) represent the relaxed BP/Gr heterostructure,the total energy of isolated BP and Gr,respectively.Sis the planar region in the interface.From the Eq.3,the negative value of the interface cohesive energy corresponds to the stable interaction between interlayers,and the obtained lower value represents more stable interface geometry.Table 1 shows that the interface cohesive energies of the BP/Gr heterostructures range from -1.4 to -10.6 eV·nm-2,and they can form stable interfacial contacts.

    The lattice mismatch energy of the BP/Gr heterojunction under strain can be estimated as:

    whereE(BP)a′andE(Gr)a′are the total energies of isolated BP and isolated Gr,respectively,with the same lattice constanta′ of the BP/Gr heterojunction.E(BP)a1andE(GR)a2are the total energies of isolated BP and isolated Gr,after free-geometric relaxation,respectively[37].In addition,S represents the junction area.Table 1 shows that the mismatch energies of the BP/Gr heterostructures with different doping of O atoms range from 0.3 to 11.9 eV·nm-2.The mismatch energies are positive and grow with the increase of the dopant number of O atoms.It shows that the interface structures are deformed to some extent with the dopant of O atoms.

    On the surface of the BP monolayer,three types of high symmetry adsorption sites exist: (i) A sites over a P atom; (ii) B sites over the second layer of a P atom;(iii)C sites above the center of three P atoms;as shown in Fig.3.To investigate the favorable adsorption sites,the adsorption energies of O atoms on different sites were calculated.Due to the thermodynamic stability of structures,the atomic chemical potential generally selects the energy of a single atom in a simple substance.Therefore,the chemical potential of O2molecules in a 1 nm3cubic vacuum unit cell is selected,the O=O bond length is 0.124 nm after optimization,and the energy of a single O atom is -434.03 eV.The adsorption energies between O atoms and the BP monolayer are -2.164 eV for the A site,-1.16 eV for the B site,and-1.126 eV for the C site.The adsorption energy of the O atom at the A site is more negative than the B site and C site,and it is indicated that the A site is the most stable O atom adsorption site.

    Fig.3 Structures(a)top view,(b)side view and(c)adsorption energy of three sites

    2.2 Energy band structure

    To understand the vdW interaction on the electronic structure of the interface,we investigated the energy band structures of BP/Gr heterostructures after the geometries were fully relaxed.The energy band structure of the BP/Gr heterostructure was calculated using the GGA - PBE formalism along the path ofM(0 0.5 0)-K(-1/3 2/3 0)-G(0 0 0),as shown in Fig.4.By means of comparative analysis,Fig.4a and 4b present the energy band structure of the isolated BP monolayer and graphene,respectively.As accounts show,the BP monolayer has an indirect band gap of 1.83 eV at the high symmetryKpoint,which is similar to the results obtained by previous researchers[38-39].Besides,the band gap of 2.1 eV for the BP monolayer is obtained by the HSE06 method.Therefore,the GGAPBE formalism is used in subsequent calculations.Fig.4b shows that the Dirac points appears at theKpoints,because of the (bonding)πbands and (antibonding)π* bands of graphene cross at theKpoints.This indicates that graphene is a gapless semiconductor and maintains its metallic character,consistent with previous theoretical findings[40].

    Fig.4 Energy band structures of(a)monolayer BP with the HSE06 method,(b)monolayer BP with the GGA-PBE method,(c)graphene and(d)BP/Gr heterostructure

    It can be seen that due to the large equilibrium interlayer distance (0.34 nm) of the BP/Gr heterostructure,the Dirac-cone of graphene and the indirect band gap of BP monolayer still remain unchanged,as shown in Fig.4c.Compared with the band structures of isolated BP monolayer and graphene,the overall shape of the band structure of the BP/Gr heterostructure appears to be a simple sum of each component.Notably,theπandπ* bands separate and form a small bandgap of 7 meV.This may be due to the breaking of structural symmetry and asymmetric potentials[41].The band gap of monolayer BP in contact with graphene hardly changes,indicating the existence of weak vdW interaction between different layers,and maintaining its inherently excellent electronic properties.

    To realize more efficient logic devices based on phosphorene,it is necessary to fabricate n-type and ptype FETs with low SBH.According to the Schottky-Mott model at the metal/semiconductor interface[42],the n-type Schottky barrier height (n-SBH) is defined by the energy difference between the CBM level and the Fermi level.Likewise,the p - type Schottky barrier height(p-SBH)can also be expressed as the energy difference between the VBM level and the Fermi level.Therefore,it is worth noting that the sum of n-SBH and p-SBH is equal to the band gap of the BP monolayer in the interface,namely,|n-SBH|+|p-SBH|=Eg(BP),as shown in Fig.4c.Obviously,the pristine BP/Gr interface here has an n-SBH of 0.39 eV,which is basically consistent with other results.Here,we constructed BP/Gr heterostructures with different ratios of oxygen dopants to explore the effect of oxygen doping on the electronic properties of the interface.Fig.5 presents the energy band structures of BP/Gr heterostructures with different concentrations of the O doped inside the interface.We can clearly see a slight change in the band shape of the heterostructure,but an obvious change in the type and height of the Schottky barrier.

    Fig.5 Energy band structure of BP/Gr heterostructures with different proportions of the O atom doped:(a)0%;(b)5.56%;(c)11.11%;(d)16.67%

    As the concentration of O doped (O/P ratio,nO/nP)increases from 0% to 16.67% in the interface,the Fermi level of graphene decreases relatively gradually.The energy level of the BP monolayer shift upward gradually,as shown in Fig.5a-5d.The total density of states (TDOS) and partial density of states (PDOS) of the BP/Gr heterostructure with O atoms doped were calculated,as shown in Fig.S1 (Supporting information).Fig.S1a-S1d show that the PDOS of graphene remains not change.In addition,O doped makes the P3pstates of the BP layer move to the left,and the movement is reduced when three O atoms are doped.It can be seen that the deeply effect of O doped on the electronic properties.

    A Schottky barrier is formed at this interface between graphene and BP monolayer.The SBH of the BP/Gr heterostructure was quantitatively characterized,and the changes of CBM,VBM and band gap with the doping ratio of O atoms were investigated.Fig.6 shows the dependence of SBH on O atoms doped,which suggests that the Schottky barrier can be tuned by the doped concentration of O atoms.When the dopant concentration is 0%,the Fermi level is closer to the CBM of BP and farther away from its VBM,with a p-SBH of-1.44 eV and an n-SBH of 0.39 eV.With the increase in the concentration of the O dopant inside the interface,the CBM of BP moves downward to the Fermi level,meanwhile the VBM first moves downwards and then moves upwards gradually.It is worth noting that O doped reduces both n-SBH and |p-SBH|,but with the increase of O doped concentration,n-SBH keeps at a low value,while |p-SBH| reduces.When the proportion of the interfacial selenium dopant is increased from 5.56% to 16.67%,the n-SBH of this system is almost unchanged,and the p-SBH is changed from -1.64 eV to -1.48 eV.Therefore,the Schottky barrier of BP/Gr heterostructure can be tuned by O atoms doped.

    Fig.6 Dependence of SBH on different concentrations of the O atoms doped inside the layer

    2.3 Work function

    In order to investigate the effect of O atoms doped on the Schottky barrier height at different concentrations,the work functions of BP monolayer,graphene and the BP/Gr heterostructures have been calculated.The work function is defined as follows:

    whereEvacis the energy of a stationary electron in the vacuum near the surface andEFis the Fermi level.On the basis of Eq.4,the calculated work functions for BP monolayer,graphene,BP/Gr heterostructure,BP/Gr-1O,BP/Gr-2O and BP/Gr-3O are 5.99 eV,4.12 eV,4.34 eV,3.92 eV,4.02 eV and 4.09 eV,respectively.The presence of a potential difference of 12.55 eV in the heterojunction results in a strong electrostatic field at the interface,which facilitates the separation of electron and hole pairs,as shown in Fig.7 and Fig.S2.The type and height of the Schottky barrier depends on the position of the CBM and VBM at the Fermi level,therefore,they can also be modulated with changes in the work function.However,due to the mechanism of Fermi-level pinning at the BP/graphene interface,the p-orbital of the phosphorus atoms fixes the Fermi level close to the conduction band,leading to an n-type Schottky barrier[19,43].

    Fig.7 Calculated electrostatic potentials for(a)BP/Gr heterostructure,(b)BP/Gr-1O,(c)BP/Gr-2O,(d)BP/Gr-3O and(e)plots of the O concentration on the work function tunability of BP/Gr heterostructures with O atoms doped inside the interface

    To understand how the Fermi level of the BP/Gr heterostructures varies with the concentration of O atoms doped,the work function of BP/Gr heterostructures has been calculated.As shown in Fig.7,the doping of O reduces the work function of the heterojunction,but with the increase of the dopant concentration,the work function of the heterojunction gradually increases.This trend is similar to that of the Schottky barrier.Therefore,the more the curve changes,the more pronounced the adjustment will be,which is exactly what we need to achieve.Obviously,in this modulation case,a lower p-SBH can be obtained by further increasing the concentration of oxygen dopant in the interface,which will facilitate the fabrication of low-power and high-performance p-FETs.

    2.4 Mechanism of tuning the Schottky barrier

    The formation of heterostructures can alter the electrical properties of heterostructures and BP monolayer or graphene,due to interlayer interactions and interfacial charge redistribution.Therefore,we calculated the three-dimensional (3D) charge density difference,revealing the interlayer charge transfer and separation between the BP monolayer and the graphene surface.And the 3D charge density differences of BP/Gr heterostructures with different concentrations of the O doped at the interface were also calculated,as shown in Fig.8.The charge density difference,Δρ=ρBP/Gr-ρBPρGr,is obtained by subtracting the electronic charge of the BP/Gr interface from that of the corresponding isolated BP monolayer and graphene.Here,ρBP/Gr,ρBPandρGrare the charge densities of the BP/Gr heterostructure,isolated BP monolayer and graphene.It can be seen that the charges of BP and graphene at the interface are redistributed by forming electron depletion(yellow areas) and accumulation (blue areas) in the space with respect to isolated BP and graphene.The surface of the BP layer gathers more negative charges to enhance its work function and the graphene layer gathers positive charges,which leads to the formation of a built-in electric field at the interface.Combined with the calculation results of state density,mismatch energy and cohesion energy,after the adsorption of O atoms by heterojunction,the influence of O atoms on the valence band is more obvious,and with the increase of O adsorption concentration,the mismatch energy gradually increases and the cohesion energy gradually decreases,and the system becomes more and more stable.

    Fig.8 Top and side view of the 3D charge density difference for(a)BP/Gr heterostructure,(b)BP/Gr-1O,(c)BP/Gr-2O,(d)BP/Gr-3O;(e)Planar electron density differences along the z direction of BP/Gr heterostructures with different concentrations of the O adsorption doped inside the interface,in which positive and negative values represent electron accumulation and depletion in the space with respect to isolated BP and graphene,respectively

    In order to quantitatively analyze the redistribution of interfacial charges at the interface,the planar averaged charge density differences along thezdirection of BP/Gr heterostructures are calculated,as shown in Fig.8e.The positive values indicate electron accumulation,while the negative values represent the depletion of electrons.The distribution of interfacial charges depends on the concentration of the O dopant.Before adsorption doping,electrons are transferred from graphene to BP.After adsorption doping,the electron transfer situation is torsional,with the concentration of the O dopant inside the interface increasing,the interlayer vdW force has been strengthened,and the interlayer distance between BP and graphene have been shortened,progressively,leading to more electron transfer from BP layer to the graphene.

    The results of Mulliken population analysis show that the charge transfer and redistribution inside and outside the interface varies with O atoms doped.After adsorption,the average Mulliken population of P atoms(BP) increases from 0.052e to 0.146e with the increase in the concentration of the O doped inside the interface.The electron transfer from the BP monolayer to the O atoms,which causes the Fermi level of the heterostructure to move downward.The increase in the number of transferred electrons in the interlayer leads to a transition from the n-SBH to p-SBH,which is consistent with the analysis of the work function.Moreover,more electrons are transferred from P to O.It turned out that larger Mulliken populations of P,C and O atoms inside the interface are found which produce a great interface interaction between two constituents,which is in agreement with the calculated cohesive energy mentioned above.It can be considered that the redistribution of the interfacial charge leads to the shift in Fermi level,and thus determines the type and height of the Schottky barrier.

    3 Conclusions

    In summary,the microscopic mechanisms of interface interactions by O adsorption doped and their influence on the electronic structures of the BP/Gr heterostructure have been investigated by DFT calculations in detail.The vdW forces between BP and graphene overcome the energy mismatch,and make the heterostructure bind tightly.Moreover,the intra-interface O adsorption doped has a great influence on the interlayer interaction and electronic properties.In addition,the height of the Schottky barrier can be tuned by O adsorption doped inside the interface.With the increase in the concentration of the O doped inside the interface,the p - SBH transforms from -1.64 eV to-1.48 eV.Especially,a smaller p-type Schottky barrier can be achieved with the increase of the concentration of O adsorption doped,which is a significant requirement for a highly efficient hole transfer at the interface.By analyzing the work function and charge density difference,it is confirmed that the redistribution of interfacial charges leads to the shift of the Fermi level,and then determines the height of the Schottky barrier in the BP/Gr heterostructure.In summary,our results reveal that asymmetric O adsorption doped is quite a promising strategy to tune the Schottky barrier of the BP-based heterostructure.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    肖特基理學院勢壘
    昆明理工大學理學院學科簡介
    昆明理工大學理學院簡介
    場發(fā)射ZrO/W肖特基式場發(fā)射陰極研究進展
    電子制作(2018年12期)2018-08-01 00:47:46
    西安航空學院專業(yè)介紹
    ———理學院
    溝道MOS 勢壘肖特基(TMBS)和超級勢壘整流器
    電子制作(2017年19期)2017-02-02 07:08:45
    勢壘邊界對共振透射的影響
    熔合勢壘形狀的唯像研究
    威廉·肖特基的機器人夢助硅谷崛起
    世界科學(2014年8期)2014-02-28 14:58:28
    英飛凌推出第五代1200 V thinQ!TM碳化硅肖特基二極管
    熔合勢壘厚度對熔合截面的影響
    少妇裸体淫交视频免费看高清| 亚洲天堂国产精品一区在线| 成人精品一区二区免费| 嫩草影院精品99| 久久精品夜夜夜夜夜久久蜜豆| 看十八女毛片水多多多| 青春草视频在线免费观看| 干丝袜人妻中文字幕| 一本一本综合久久| 国产男人的电影天堂91| 色在线成人网| av在线观看视频网站免费| 精品一区二区三区人妻视频| 成人高潮视频无遮挡免费网站| 国产aⅴ精品一区二区三区波| aaaaa片日本免费| 禁无遮挡网站| 免费观看的影片在线观看| 美女xxoo啪啪120秒动态图| 少妇裸体淫交视频免费看高清| 综合色丁香网| 亚洲av免费在线观看| 一级a爱片免费观看的视频| 亚洲精品一卡2卡三卡4卡5卡| 丝袜喷水一区| 欧美色欧美亚洲另类二区| 亚洲av熟女| 床上黄色一级片| 国产成人91sexporn| 亚洲精品成人久久久久久| 日日摸夜夜添夜夜添av毛片| 亚洲国产日韩欧美精品在线观看| 晚上一个人看的免费电影| 色视频www国产| 国产成人影院久久av| 日日干狠狠操夜夜爽| 国产亚洲91精品色在线| 国内揄拍国产精品人妻在线| 2021天堂中文幕一二区在线观| 老熟妇仑乱视频hdxx| 国产av在哪里看| 国产精品综合久久久久久久免费| 国产av在哪里看| 国产av在哪里看| 亚洲乱码一区二区免费版| av天堂在线播放| 小说图片视频综合网站| 你懂的网址亚洲精品在线观看 | 午夜福利成人在线免费观看| 岛国在线免费视频观看| 日日干狠狠操夜夜爽| 99riav亚洲国产免费| 国产黄色视频一区二区在线观看 | 亚洲内射少妇av| 成人漫画全彩无遮挡| 激情 狠狠 欧美| 精品国产三级普通话版| 久久久久国产网址| 乱码一卡2卡4卡精品| 在线看三级毛片| 91av网一区二区| 99久久精品热视频| 精品国产三级普通话版| 亚洲美女黄片视频| 久久人人精品亚洲av| 精品一区二区免费观看| 国产三级中文精品| 国内精品久久久久精免费| 在线观看美女被高潮喷水网站| АⅤ资源中文在线天堂| 精品久久久久久久久av| 亚洲精品国产成人久久av| 欧美性猛交╳xxx乱大交人| 久久久久国内视频| 亚洲婷婷狠狠爱综合网| 一边摸一边抽搐一进一小说| 精品欧美国产一区二区三| av女优亚洲男人天堂| 久久精品国产亚洲网站| 女的被弄到高潮叫床怎么办| 色尼玛亚洲综合影院| 成人鲁丝片一二三区免费| 少妇裸体淫交视频免费看高清| 久久久成人免费电影| 日韩欧美一区二区三区在线观看| 大型黄色视频在线免费观看| 在线观看av片永久免费下载| 日韩精品青青久久久久久| 久久人人精品亚洲av| 久久热精品热| 国语自产精品视频在线第100页| 一级毛片aaaaaa免费看小| 欧美在线一区亚洲| av国产免费在线观看| avwww免费| 日韩一本色道免费dvd| 在线天堂最新版资源| 成人高潮视频无遮挡免费网站| 欧美绝顶高潮抽搐喷水| 九九在线视频观看精品| 日本五十路高清| 国产一区二区在线观看日韩| 精品久久久久久久久av| 六月丁香七月| 国产精品一二三区在线看| 国产精品永久免费网站| 成人精品一区二区免费| 亚洲成人av在线免费| 自拍偷自拍亚洲精品老妇| 日韩欧美三级三区| 亚洲婷婷狠狠爱综合网| 久久草成人影院| 天堂av国产一区二区熟女人妻| 久久久久免费精品人妻一区二区| 国产一区二区在线观看日韩| 99久国产av精品国产电影| 亚洲在线观看片| 精品福利观看| 2021天堂中文幕一二区在线观| 亚洲最大成人av| 桃色一区二区三区在线观看| 久久久久国产网址| 精品一区二区三区人妻视频| 麻豆国产97在线/欧美| 男女视频在线观看网站免费| 久久精品国产99精品国产亚洲性色| 91在线观看av| 国产一区二区三区av在线 | 六月丁香七月| 欧美潮喷喷水| 亚洲激情五月婷婷啪啪| av在线播放精品| 欧美国产日韩亚洲一区| 免费在线观看影片大全网站| 国产精品女同一区二区软件| 又爽又黄a免费视频| 欧美日韩一区二区视频在线观看视频在线 | 欧美另类亚洲清纯唯美| 国产午夜福利久久久久久| 99在线人妻在线中文字幕| 国产欧美日韩一区二区精品| 午夜日韩欧美国产| www日本黄色视频网| 成人午夜高清在线视频| 亚洲欧美日韩高清在线视频| 国产男靠女视频免费网站| 亚洲七黄色美女视频| 欧美高清性xxxxhd video| 国产精品亚洲一级av第二区| 女生性感内裤真人,穿戴方法视频| 久久精品夜色国产| 日韩精品中文字幕看吧| 久久久久久久久大av| 99久久精品国产国产毛片| 精品午夜福利视频在线观看一区| 一区二区三区四区激情视频 | 成人欧美大片| 真人做人爱边吃奶动态| 变态另类成人亚洲欧美熟女| 中文亚洲av片在线观看爽| 高清午夜精品一区二区三区 | 男人舔女人下体高潮全视频| 哪里可以看免费的av片| 成人特级av手机在线观看| 精品午夜福利在线看| 欧美一区二区国产精品久久精品| 日韩成人av中文字幕在线观看 | 成人高潮视频无遮挡免费网站| 又粗又爽又猛毛片免费看| 深夜精品福利| 亚洲欧美日韩高清专用| 日韩大尺度精品在线看网址| 伦理电影大哥的女人| 两个人视频免费观看高清| 国产女主播在线喷水免费视频网站 | 国产淫片久久久久久久久| 别揉我奶头 嗯啊视频| 欧美日本视频| 一进一出抽搐gif免费好疼| 国产私拍福利视频在线观看| 性插视频无遮挡在线免费观看| 老司机午夜福利在线观看视频| 欧美日本视频| 婷婷精品国产亚洲av在线| 九九热线精品视视频播放| 51国产日韩欧美| 午夜久久久久精精品| 久久亚洲国产成人精品v| 一级a爱片免费观看的视频| 亚洲欧美清纯卡通| 国产成人freesex在线 | 欧美激情国产日韩精品一区| 亚洲精品色激情综合| 97超级碰碰碰精品色视频在线观看| 免费无遮挡裸体视频| 99热网站在线观看| 一级av片app| 久久精品91蜜桃| 免费看美女性在线毛片视频| 人妻丰满熟妇av一区二区三区| 午夜影院日韩av| 中国美女看黄片| 国产在线男女| 日韩欧美一区二区三区在线观看| 亚洲精品456在线播放app| 精品熟女少妇av免费看| 一区二区三区四区激情视频 | 日韩欧美 国产精品| 超碰av人人做人人爽久久| 丝袜喷水一区| 国产真实伦视频高清在线观看| 一级毛片我不卡| 日韩成人伦理影院| 国产一区亚洲一区在线观看| 欧美成人免费av一区二区三区| 网址你懂的国产日韩在线| 日韩中字成人| 日本一二三区视频观看| 久久久久九九精品影院| 欧美不卡视频在线免费观看| 激情 狠狠 欧美| 在线看三级毛片| 国产亚洲精品综合一区在线观看| 日本黄色视频三级网站网址| 床上黄色一级片| 国产精品国产三级国产av玫瑰| 国产片特级美女逼逼视频| 国产高清视频在线观看网站| 色哟哟·www| 一级毛片久久久久久久久女| 18禁裸乳无遮挡免费网站照片| av在线播放精品| 淫秽高清视频在线观看| 一本久久中文字幕| 午夜爱爱视频在线播放| 国产大屁股一区二区在线视频| 人人妻人人澡人人爽人人夜夜 | 久久久国产成人免费| 成人鲁丝片一二三区免费| 成人永久免费在线观看视频| 日本-黄色视频高清免费观看| av免费在线看不卡| 成人漫画全彩无遮挡| 一本久久中文字幕| 丝袜喷水一区| 久久人人精品亚洲av| 久久久色成人| 国产精品电影一区二区三区| 亚洲精品一区av在线观看| 欧美激情在线99| 国内久久婷婷六月综合欲色啪| 国产男靠女视频免费网站| 少妇裸体淫交视频免费看高清| 大又大粗又爽又黄少妇毛片口| 在线观看66精品国产| 我要看日韩黄色一级片| 亚洲av不卡在线观看| 日本免费一区二区三区高清不卡| 国产亚洲91精品色在线| 国产高清三级在线| 国产不卡一卡二| 草草在线视频免费看| 亚洲精品久久国产高清桃花| 免费av观看视频| 深夜a级毛片| 精品人妻熟女av久视频| 国产亚洲精品综合一区在线观看| 国产成人福利小说| 特大巨黑吊av在线直播| 最好的美女福利视频网| 最近中文字幕高清免费大全6| 波多野结衣巨乳人妻| 插逼视频在线观看| 卡戴珊不雅视频在线播放| 美女 人体艺术 gogo| 免费观看在线日韩| 国产高清不卡午夜福利| av专区在线播放| 少妇丰满av| 亚洲精品日韩在线中文字幕 | 简卡轻食公司| 给我免费播放毛片高清在线观看| 99热这里只有精品一区| 亚洲精品一卡2卡三卡4卡5卡| 美女免费视频网站| 国产精品日韩av在线免费观看| av女优亚洲男人天堂| 中文在线观看免费www的网站| 欧美三级亚洲精品| 热99在线观看视频| 黄色视频,在线免费观看| 啦啦啦啦在线视频资源| 日韩一区二区视频免费看| 久久精品人妻少妇| 国产私拍福利视频在线观看| 亚洲七黄色美女视频| 免费看av在线观看网站| av天堂中文字幕网| 午夜福利在线观看吧| 尤物成人国产欧美一区二区三区| 小说图片视频综合网站| 成人亚洲欧美一区二区av| 三级男女做爰猛烈吃奶摸视频| 春色校园在线视频观看| 日本欧美国产在线视频| 亚洲欧美精品综合久久99| 黄色欧美视频在线观看| 成人特级黄色片久久久久久久| 久久久成人免费电影| 亚洲精品粉嫩美女一区| 性插视频无遮挡在线免费观看| 精品人妻一区二区三区麻豆 | 日本黄色视频三级网站网址| 久久人人精品亚洲av| 久久久久久大精品| 男人狂女人下面高潮的视频| 亚洲性久久影院| 热99在线观看视频| 亚洲精品久久国产高清桃花| 麻豆一二三区av精品| 自拍偷自拍亚洲精品老妇| 日韩成人av中文字幕在线观看 | 国产午夜精品久久久久久一区二区三区 | 女人被狂操c到高潮| 此物有八面人人有两片| 日韩 亚洲 欧美在线| 毛片女人毛片| 99在线人妻在线中文字幕| 69人妻影院| 国产淫片久久久久久久久| 国产精品电影一区二区三区| 精品人妻视频免费看| 欧美性猛交黑人性爽| 中出人妻视频一区二区| 91狼人影院| 身体一侧抽搐| 热99在线观看视频| 日本免费a在线| 91在线精品国自产拍蜜月| 性欧美人与动物交配| 国产精品久久久久久久久免| 精品福利观看| 亚洲av成人av| 日韩亚洲欧美综合| 国产精品人妻久久久久久| 亚洲中文字幕日韩| 22中文网久久字幕| 亚洲美女视频黄频| 亚洲七黄色美女视频| 国产 一区 欧美 日韩| 三级男女做爰猛烈吃奶摸视频| 寂寞人妻少妇视频99o| 欧美xxxx黑人xx丫x性爽| 午夜免费男女啪啪视频观看 | 我要搜黄色片| 亚洲国产日韩欧美精品在线观看| 长腿黑丝高跟| 看片在线看免费视频| 免费不卡的大黄色大毛片视频在线观看 | 欧美另类亚洲清纯唯美| 欧美最黄视频在线播放免费| 91午夜精品亚洲一区二区三区| 亚洲熟妇中文字幕五十中出| 日韩欧美免费精品| av卡一久久| 日产精品乱码卡一卡2卡三| 此物有八面人人有两片| 一个人免费在线观看电影| 老司机影院成人| 久久精品国产亚洲网站| av在线亚洲专区| 免费看a级黄色片| 欧美在线一区亚洲| 亚洲欧美精品综合久久99| 日韩国内少妇激情av| 久久久久久久久大av| 免费在线观看成人毛片| 久久久久久久久久成人| 欧美性猛交黑人性爽| 级片在线观看| 色在线成人网| 国产美女午夜福利| 日韩精品青青久久久久久| 午夜老司机福利剧场| av福利片在线观看| а√天堂www在线а√下载| 久久精品国产亚洲av涩爱 | 亚洲熟妇中文字幕五十中出| 直男gayav资源| 久久精品国产亚洲av香蕉五月| 成人性生交大片免费视频hd| 亚洲精品亚洲一区二区| 免费在线观看成人毛片| 中文字幕久久专区| 精品午夜福利在线看| 青春草视频在线免费观看| 最新中文字幕久久久久| 国内久久婷婷六月综合欲色啪| 亚洲精品在线观看二区| aaaaa片日本免费| 小说图片视频综合网站| 久久国内精品自在自线图片| 国产免费一级a男人的天堂| 免费人成视频x8x8入口观看| 国产亚洲精品久久久久久毛片| 亚洲av一区综合| 国产精品99久久久久久久久| 长腿黑丝高跟| 国产精品不卡视频一区二区| 欧美性感艳星| 欧美潮喷喷水| 日韩欧美免费精品| 日韩一区二区视频免费看| 亚洲最大成人av| 国产精品99久久久久久久久| 日韩强制内射视频| 内射极品少妇av片p| 色噜噜av男人的天堂激情| 亚洲人成网站在线播| 亚洲美女视频黄频| 亚洲一区高清亚洲精品| 人人妻人人澡欧美一区二区| 熟女人妻精品中文字幕| 国产午夜精品久久久久久一区二区三区 | 黄片wwwwww| 人妻久久中文字幕网| av天堂在线播放| 免费看日本二区| 日本成人三级电影网站| 久久久久久久久久黄片| 成人鲁丝片一二三区免费| 欧美日韩国产亚洲二区| 91av网一区二区| 午夜爱爱视频在线播放| 91在线观看av| 精品人妻视频免费看| 久久久久久大精品| 亚洲天堂国产精品一区在线| 久久精品91蜜桃| 国产精品女同一区二区软件| 人妻久久中文字幕网| 国产伦一二天堂av在线观看| av在线老鸭窝| 在线a可以看的网站| 免费高清视频大片| 啦啦啦啦在线视频资源| 白带黄色成豆腐渣| 国产精品三级大全| 日韩亚洲欧美综合| 日韩欧美在线乱码| 免费观看精品视频网站| 我的老师免费观看完整版| 最后的刺客免费高清国语| 成人欧美大片| eeuss影院久久| 成年免费大片在线观看| 网址你懂的国产日韩在线| 国产精品女同一区二区软件| 午夜久久久久精精品| avwww免费| 亚洲成人久久爱视频| 永久网站在线| 久久久久久大精品| 一级毛片aaaaaa免费看小| 亚洲美女黄片视频| videossex国产| 不卡视频在线观看欧美| 国产爱豆传媒在线观看| 精品久久久久久久末码| 赤兔流量卡办理| 国产高清视频在线观看网站| 最新在线观看一区二区三区| 免费无遮挡裸体视频| 国产黄色小视频在线观看| 老女人水多毛片| 亚洲欧美成人综合另类久久久 | 老司机福利观看| 国产精品无大码| 最后的刺客免费高清国语| 免费无遮挡裸体视频| 欧美精品国产亚洲| 又黄又爽又刺激的免费视频.| 一区二区三区高清视频在线| 国产精品久久久久久精品电影| 亚洲国产精品成人综合色| 亚洲三级黄色毛片| 国产成年人精品一区二区| 麻豆av噜噜一区二区三区| 此物有八面人人有两片| 一区二区三区免费毛片| 亚洲最大成人中文| 成年女人永久免费观看视频| 午夜精品一区二区三区免费看| av天堂在线播放| 国产黄色视频一区二区在线观看 | 久久韩国三级中文字幕| 国产日本99.免费观看| 国内精品美女久久久久久| 日日干狠狠操夜夜爽| 亚洲性久久影院| 精品久久久久久久久av| 精品一区二区三区av网在线观看| 免费看a级黄色片| 日本撒尿小便嘘嘘汇集6| 亚洲电影在线观看av| 免费高清视频大片| 亚洲内射少妇av| 亚洲欧美中文字幕日韩二区| 免费av不卡在线播放| 天堂√8在线中文| 精品久久久久久久久久久久久| 欧美+亚洲+日韩+国产| 熟女人妻精品中文字幕| 午夜视频国产福利| 国产一区二区亚洲精品在线观看| 成熟少妇高潮喷水视频| 3wmmmm亚洲av在线观看| 精品一区二区三区视频在线| 午夜福利在线在线| 狂野欧美白嫩少妇大欣赏| 精品国产三级普通话版| 特大巨黑吊av在线直播| 哪里可以看免费的av片| 国产毛片a区久久久久| 免费观看人在逋| 成年女人看的毛片在线观看| 成人二区视频| 看非洲黑人一级黄片| 午夜精品一区二区三区免费看| 波多野结衣高清作品| 精品少妇黑人巨大在线播放 | 亚洲国产精品成人综合色| 亚洲一区二区三区色噜噜| 欧美丝袜亚洲另类| 国产高潮美女av| 色av中文字幕| 亚洲美女黄片视频| 亚洲人成网站高清观看| 精品免费久久久久久久清纯| 少妇熟女aⅴ在线视频| 国产欧美日韩一区二区精品| 免费在线观看影片大全网站| 中文字幕免费在线视频6| 国产一区二区亚洲精品在线观看| 日韩一区二区视频免费看| 毛片一级片免费看久久久久| 国产爱豆传媒在线观看| 最近手机中文字幕大全| 国产精品一区二区三区四区免费观看 | 欧美一区二区国产精品久久精品| 国产视频内射| 日产精品乱码卡一卡2卡三| 给我免费播放毛片高清在线观看| 熟女电影av网| 国产高清有码在线观看视频| 伦精品一区二区三区| 99热网站在线观看| 亚洲va在线va天堂va国产| 亚洲av二区三区四区| 噜噜噜噜噜久久久久久91| 日日摸夜夜添夜夜添av毛片| 久久久久久伊人网av| 国产av一区在线观看免费| 99久久中文字幕三级久久日本| 啦啦啦啦在线视频资源| 97超视频在线观看视频| 国内精品久久久久精免费| 69人妻影院| 亚洲精品一卡2卡三卡4卡5卡| aaaaa片日本免费| 免费不卡的大黄色大毛片视频在线观看 | 亚洲美女搞黄在线观看 | 国产精品99久久久久久久久| 日日摸夜夜添夜夜爱| 又粗又爽又猛毛片免费看| 最近在线观看免费完整版| 成人国产麻豆网| 亚洲中文日韩欧美视频| 中文字幕熟女人妻在线| 国产极品精品免费视频能看的| 国产精品伦人一区二区| 一a级毛片在线观看| a级一级毛片免费在线观看| 久久久久国内视频| 国产精品一区二区性色av| 内地一区二区视频在线| 久久这里只有精品中国| 久久久精品大字幕| 免费搜索国产男女视频| 国产高清不卡午夜福利| 国产真实乱freesex| 一级黄色大片毛片| 一级黄片播放器| 美女黄网站色视频| 成人综合一区亚洲| 亚洲精品影视一区二区三区av| 久久欧美精品欧美久久欧美| 性欧美人与动物交配| 免费av毛片视频| 蜜桃亚洲精品一区二区三区| 亚洲自偷自拍三级| 美女被艹到高潮喷水动态| 女人十人毛片免费观看3o分钟| 日本-黄色视频高清免费观看| 亚洲欧美清纯卡通| eeuss影院久久| 国产单亲对白刺激| 亚洲国产欧洲综合997久久,| 亚洲av二区三区四区| 久久久久九九精品影院| 老熟妇仑乱视频hdxx| 国产aⅴ精品一区二区三区波| 国产高清视频在线观看网站| 日韩,欧美,国产一区二区三区 | 久久久久久国产a免费观看|