• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氧原子吸附調控藍磷/石墨烯異質結構的肖特基勢壘

    2023-10-19 11:47:08段汪洋程悅桓胡吉松馬新國
    無機化學學報 2023年10期
    關鍵詞:肖特基理學院勢壘

    段汪洋 程悅桓 胡吉松 馬新國 裴 玲*,

    (1湖北工業(yè)大學理學院,武漢 430068)

    (2湖北省能源光電器件與系統(tǒng)工程技術研究中心,武漢 430068)

    (3華中科技大學光學與電子信息學院,武漢 430068)

    0 Introduction

    Phosphene has attracted attention due to its extremely high carrier mobility.It has an excellent performance in the fields of electrocatalysis[1],photovoltaic power generation[2],energy storage[3]and transistors[4].Besides,it is a strong candidate for the next generation of nano-electronic devices.There are theoretically 9 forms of phosphorene monolayer,includingα-P (black phosphorus)andβ-P(blue phosphorus,BP)[5].Based onη-P andθ-P among them,five new and dynamically stable phosphene heteromers were discovered[6],single crystal violet phosphorus has also been synthesized[7].Phosphorus atoms in a single-layer phosphorene interact with each other through covalent interaction and form a six-membered ring,which is in the form of folds and layers.The layers are combined by van der Waals forces.It′s noteworthy that single-layer blue phosphorus has the same stability as the most stable black phosphorus,has a carrier mobility similar to graphene,and exhibits a wider band gap than them,so it can be used to fabricate transistors[8-9].In recent years,fieldeffect transistors(FETs)based on monolayer blue phosphorus were reported,which showed a high on/off ratio exceeding 350 due to the low contact resistance between the metallic and semiconducting nanoribbons[10-11].Therefore,the development of FETs based on phosphorene will be a trend of electronic devices in the future.

    In a device with phosphorene as the channel,a Schottky barrier is often formed at the interface of metal electrodes and phosphorene,which would reduce the carrier injection efficiency[10].In order to explain and address these issues,for example,five representative metal systems such as Au(111),Ag(111),Al(111),Co(111),Sc(0001)[12]and graphene (Gr) heterojunction[13]have been employed to reduce the Schottky barrier height (SBH).Although much research in FETs based on phosphorene has been done,another remarkable fact is that most of them are n-type FETs (n-FETs),and the fabrication of p-type FETs (p-FETs) remains a great challenge.The conducting channel of a FET transports electrons or holes,which depends on whether the SBH is smaller relative to the conduction band minimum (CBM) or the valence band maximum (VBM),respectively,after the Fermi levels of metals and semiconductors are in equilibrium[14].However,due to the complicated interface interaction of the metal/semiconductor,the ideal metal-semiconductor interface is difficult to obtain for the inevitable chemical disorder and Fermi pinning[15-17].Another crucial case according to theoretical calculations is that the p-type Schottky contact appears at the interface with Pd and Sc,BP monolayer forms n-type Schottky contact with Au,Ag and Al,whereas,there are some differences in the Lateral Schottky barrier of the BP transistors with metal electrodes[10-12].On the whole,these studies show that it is relatively difficult to design phosphorene/metal contacts with a low SBH,which limits the development of phosphorene-based FETs.

    As experiments and theories improve by leaps and bounds,much research has been carried out to solve this problem.What is known to us is that twodimensional (2D) materials enjoy numerous exceptional advantages over conventional materials on a quantum scale,for instance,graphene has lower losses and higher carrier mobility[18].Recently,it was accounted for that a heterostructure can be changed from a n-type Schottky contact to a p-type Schottky contact with increasing of compressive strain[19].Afterwards,Li et al.[13]affirmed that the electric field was compelling to tune the Schottky barrier for the BP/Gr interface,which can change the n-type into the p-type.Thus,graphene can be used as a low-resistance contact material to replace noble metals.And it is noteworthy that,Liang et al.reported a high-performance anisotropic graphene/black phosphorus heterostructure with promising potential applications in electronic devices[20-22].These achievements provide ideas for us to tune the Schottky barrier of the BP/Gr heterostructures by Odoped.In this work,first-principles calculations on the BP/Gr heterostructures with different concentrations of the O-doped at the interface were performed to explore the interface interaction and electronic properties.Additionally,the charge density difference and work function were used to check the redistribution of interfacial charges and determine the type and height of the Schottky barrier.

    1 Calculation methods and models

    All calculations were performed using Ultrasoft Pseudopotentials (USP) and using the Generalized Gradient Approximation (GGA)-Perdew Burke Ernzerhof (PBE)[23]form based on the CASTEP[24]implementation of the Generalized Gradient Approximation in Density Functional Theory (DFT) exchange and association.In the USP calculations,a mixed semi-empirical solution of the Grimme[25]and Ortmann-Bechstedt-Schmidt (OBS)[26]schemes is provided to introduce the correct description of van der Waals (vdW) interactions.The dispersion-corrected total energyEtotis represented asEtot=EKS-DFT+EvdW,whereEKS-DFTis the normal Kohn-Sham DFT energy andEvdWis the dispersion correction.In general,semiempirical methods are often used to balance the cost of dispersion terms in firstprinciples calculations with the need to improve nonbonded interactions in the standard DFT descriptions[27].The selected valence atomic configurations are 2s22p2for C,2s22p4for O,and 3s23p3for P.All models were geometrically optimized using the BFGS algorithm,the cutoff energy was set to 350 eV,and the Monkhorst-Packkmesh of 3×3×1 was used[28].The selfconvergence precision was 2.0×10-5eV per atom,the interatomic force field convergence precision was 0.5 eV·nm-1,the maximum stress was 0.1 GPa,and the maximum displacement was set to 2.0×10-4nm.

    Before exploring the performance of the BP/Gr heterojunction,we optimized the lattice constants of BP (space group:P3m1;a1=b1=0.327 nm) and graphene (space group:P6/mmm;a2=b2=0.247 nm),which were consistent with the previous theory similar to the experimental data (BP:a1=b1=0.338 nm[29-30],GR:a2=b2=0.246 nm[31]).BP monolayer is a novel two-dimensional semiconductor material with a monolayer thickness of 0.124 nm.We used blue phosphorus with 3×3×1 supercells and graphene with 4×4×1 supercells to construct heterojunctions,and established a vacuum layer of no less than 1.5 nm along thez-direction for the separation period images to isolate the slab as the boundary condition.In this structure,1-3 O atoms are adsorbed inside the interface of BP/Gr heterojunction,and the structure for different doping concentrations is shown in Fig.1.For simplicity,the BP/Gr heterojunctions with O concentration (O/P ratio) of 0%,5.56%,11.11%,and 16.67% are denoted as BP/Gr,BP/Gr-1O,BP/Gr-2O,BP/Gr-3O.The lattice mismatch ratio is defined asσ=|a1-a2|/a1,wherea1anda2are the lattice constants of blue phosphorus and graphene,respectively.Table 1 shows that the lattice mismatch ratio of the model is 0.714%,a low 5% of required[27].It was found that the structure was severely distorted,with the increasing of concentration of adsorbed oxygen atoms on the blue phosphorus surface in the interface.Wavy graphene can be stretched to about 30%,because 2D materials can withstand very strong stretching and squeezing[32].

    Table 1 Mismatch energies and cohesive energies of BP/Gr heterojunctions with different proportions of the O-doped

    Fig.1 Side views of BP/Gr heterostructures with different proportions of the doped O after geometric optimization:(a)BP/Gr-1O;(b)BP/Gr-2O;(c)BP/Gr-3O

    2 Results and discussion

    2.1 Interface stability

    The interfacial formation energies of heterojunctions at different interlayer distancesdare calculated by using two dispersion correction methods,respectively.The interfacial formation energy of heterojunctions can be calculated as

    whereE(BP/Gr),E(BP) andE(Gr) represent the total energies of the interface,the BP sheet and Gr sheet,respectively[33-35].Fig.2 shows that the most stable interlayer distance obtained by the Grimme dispersion correction method is 0.34 nm,while the most stable interlayer distance obtained by the OBS dispersion correction method is about 0.32 nm or 0.34 nm.This result is consistent with the results for 0.34 nm,which is similar to the previous theoretical and experimental results[19,36].

    Fig.2 Distance and interface formation energy of heterojunctions interlayer calculated by two dispersion correction methods

    The interlayer interactions of a heterostructure have a huge impact on electronic structure.In order to obtain a stable geometrical structure of BP/Gr heterostructures,the interfacial cohesive energy between BP sheet and Gr is expressed as:

    whereE(BP/Gr),E(BP) andE(Gr) represent the relaxed BP/Gr heterostructure,the total energy of isolated BP and Gr,respectively.Sis the planar region in the interface.From the Eq.3,the negative value of the interface cohesive energy corresponds to the stable interaction between interlayers,and the obtained lower value represents more stable interface geometry.Table 1 shows that the interface cohesive energies of the BP/Gr heterostructures range from -1.4 to -10.6 eV·nm-2,and they can form stable interfacial contacts.

    The lattice mismatch energy of the BP/Gr heterojunction under strain can be estimated as:

    whereE(BP)a′andE(Gr)a′are the total energies of isolated BP and isolated Gr,respectively,with the same lattice constanta′ of the BP/Gr heterojunction.E(BP)a1andE(GR)a2are the total energies of isolated BP and isolated Gr,after free-geometric relaxation,respectively[37].In addition,S represents the junction area.Table 1 shows that the mismatch energies of the BP/Gr heterostructures with different doping of O atoms range from 0.3 to 11.9 eV·nm-2.The mismatch energies are positive and grow with the increase of the dopant number of O atoms.It shows that the interface structures are deformed to some extent with the dopant of O atoms.

    On the surface of the BP monolayer,three types of high symmetry adsorption sites exist: (i) A sites over a P atom; (ii) B sites over the second layer of a P atom;(iii)C sites above the center of three P atoms;as shown in Fig.3.To investigate the favorable adsorption sites,the adsorption energies of O atoms on different sites were calculated.Due to the thermodynamic stability of structures,the atomic chemical potential generally selects the energy of a single atom in a simple substance.Therefore,the chemical potential of O2molecules in a 1 nm3cubic vacuum unit cell is selected,the O=O bond length is 0.124 nm after optimization,and the energy of a single O atom is -434.03 eV.The adsorption energies between O atoms and the BP monolayer are -2.164 eV for the A site,-1.16 eV for the B site,and-1.126 eV for the C site.The adsorption energy of the O atom at the A site is more negative than the B site and C site,and it is indicated that the A site is the most stable O atom adsorption site.

    Fig.3 Structures(a)top view,(b)side view and(c)adsorption energy of three sites

    2.2 Energy band structure

    To understand the vdW interaction on the electronic structure of the interface,we investigated the energy band structures of BP/Gr heterostructures after the geometries were fully relaxed.The energy band structure of the BP/Gr heterostructure was calculated using the GGA - PBE formalism along the path ofM(0 0.5 0)-K(-1/3 2/3 0)-G(0 0 0),as shown in Fig.4.By means of comparative analysis,Fig.4a and 4b present the energy band structure of the isolated BP monolayer and graphene,respectively.As accounts show,the BP monolayer has an indirect band gap of 1.83 eV at the high symmetryKpoint,which is similar to the results obtained by previous researchers[38-39].Besides,the band gap of 2.1 eV for the BP monolayer is obtained by the HSE06 method.Therefore,the GGAPBE formalism is used in subsequent calculations.Fig.4b shows that the Dirac points appears at theKpoints,because of the (bonding)πbands and (antibonding)π* bands of graphene cross at theKpoints.This indicates that graphene is a gapless semiconductor and maintains its metallic character,consistent with previous theoretical findings[40].

    Fig.4 Energy band structures of(a)monolayer BP with the HSE06 method,(b)monolayer BP with the GGA-PBE method,(c)graphene and(d)BP/Gr heterostructure

    It can be seen that due to the large equilibrium interlayer distance (0.34 nm) of the BP/Gr heterostructure,the Dirac-cone of graphene and the indirect band gap of BP monolayer still remain unchanged,as shown in Fig.4c.Compared with the band structures of isolated BP monolayer and graphene,the overall shape of the band structure of the BP/Gr heterostructure appears to be a simple sum of each component.Notably,theπandπ* bands separate and form a small bandgap of 7 meV.This may be due to the breaking of structural symmetry and asymmetric potentials[41].The band gap of monolayer BP in contact with graphene hardly changes,indicating the existence of weak vdW interaction between different layers,and maintaining its inherently excellent electronic properties.

    To realize more efficient logic devices based on phosphorene,it is necessary to fabricate n-type and ptype FETs with low SBH.According to the Schottky-Mott model at the metal/semiconductor interface[42],the n-type Schottky barrier height (n-SBH) is defined by the energy difference between the CBM level and the Fermi level.Likewise,the p - type Schottky barrier height(p-SBH)can also be expressed as the energy difference between the VBM level and the Fermi level.Therefore,it is worth noting that the sum of n-SBH and p-SBH is equal to the band gap of the BP monolayer in the interface,namely,|n-SBH|+|p-SBH|=Eg(BP),as shown in Fig.4c.Obviously,the pristine BP/Gr interface here has an n-SBH of 0.39 eV,which is basically consistent with other results.Here,we constructed BP/Gr heterostructures with different ratios of oxygen dopants to explore the effect of oxygen doping on the electronic properties of the interface.Fig.5 presents the energy band structures of BP/Gr heterostructures with different concentrations of the O doped inside the interface.We can clearly see a slight change in the band shape of the heterostructure,but an obvious change in the type and height of the Schottky barrier.

    Fig.5 Energy band structure of BP/Gr heterostructures with different proportions of the O atom doped:(a)0%;(b)5.56%;(c)11.11%;(d)16.67%

    As the concentration of O doped (O/P ratio,nO/nP)increases from 0% to 16.67% in the interface,the Fermi level of graphene decreases relatively gradually.The energy level of the BP monolayer shift upward gradually,as shown in Fig.5a-5d.The total density of states (TDOS) and partial density of states (PDOS) of the BP/Gr heterostructure with O atoms doped were calculated,as shown in Fig.S1 (Supporting information).Fig.S1a-S1d show that the PDOS of graphene remains not change.In addition,O doped makes the P3pstates of the BP layer move to the left,and the movement is reduced when three O atoms are doped.It can be seen that the deeply effect of O doped on the electronic properties.

    A Schottky barrier is formed at this interface between graphene and BP monolayer.The SBH of the BP/Gr heterostructure was quantitatively characterized,and the changes of CBM,VBM and band gap with the doping ratio of O atoms were investigated.Fig.6 shows the dependence of SBH on O atoms doped,which suggests that the Schottky barrier can be tuned by the doped concentration of O atoms.When the dopant concentration is 0%,the Fermi level is closer to the CBM of BP and farther away from its VBM,with a p-SBH of-1.44 eV and an n-SBH of 0.39 eV.With the increase in the concentration of the O dopant inside the interface,the CBM of BP moves downward to the Fermi level,meanwhile the VBM first moves downwards and then moves upwards gradually.It is worth noting that O doped reduces both n-SBH and |p-SBH|,but with the increase of O doped concentration,n-SBH keeps at a low value,while |p-SBH| reduces.When the proportion of the interfacial selenium dopant is increased from 5.56% to 16.67%,the n-SBH of this system is almost unchanged,and the p-SBH is changed from -1.64 eV to -1.48 eV.Therefore,the Schottky barrier of BP/Gr heterostructure can be tuned by O atoms doped.

    Fig.6 Dependence of SBH on different concentrations of the O atoms doped inside the layer

    2.3 Work function

    In order to investigate the effect of O atoms doped on the Schottky barrier height at different concentrations,the work functions of BP monolayer,graphene and the BP/Gr heterostructures have been calculated.The work function is defined as follows:

    whereEvacis the energy of a stationary electron in the vacuum near the surface andEFis the Fermi level.On the basis of Eq.4,the calculated work functions for BP monolayer,graphene,BP/Gr heterostructure,BP/Gr-1O,BP/Gr-2O and BP/Gr-3O are 5.99 eV,4.12 eV,4.34 eV,3.92 eV,4.02 eV and 4.09 eV,respectively.The presence of a potential difference of 12.55 eV in the heterojunction results in a strong electrostatic field at the interface,which facilitates the separation of electron and hole pairs,as shown in Fig.7 and Fig.S2.The type and height of the Schottky barrier depends on the position of the CBM and VBM at the Fermi level,therefore,they can also be modulated with changes in the work function.However,due to the mechanism of Fermi-level pinning at the BP/graphene interface,the p-orbital of the phosphorus atoms fixes the Fermi level close to the conduction band,leading to an n-type Schottky barrier[19,43].

    Fig.7 Calculated electrostatic potentials for(a)BP/Gr heterostructure,(b)BP/Gr-1O,(c)BP/Gr-2O,(d)BP/Gr-3O and(e)plots of the O concentration on the work function tunability of BP/Gr heterostructures with O atoms doped inside the interface

    To understand how the Fermi level of the BP/Gr heterostructures varies with the concentration of O atoms doped,the work function of BP/Gr heterostructures has been calculated.As shown in Fig.7,the doping of O reduces the work function of the heterojunction,but with the increase of the dopant concentration,the work function of the heterojunction gradually increases.This trend is similar to that of the Schottky barrier.Therefore,the more the curve changes,the more pronounced the adjustment will be,which is exactly what we need to achieve.Obviously,in this modulation case,a lower p-SBH can be obtained by further increasing the concentration of oxygen dopant in the interface,which will facilitate the fabrication of low-power and high-performance p-FETs.

    2.4 Mechanism of tuning the Schottky barrier

    The formation of heterostructures can alter the electrical properties of heterostructures and BP monolayer or graphene,due to interlayer interactions and interfacial charge redistribution.Therefore,we calculated the three-dimensional (3D) charge density difference,revealing the interlayer charge transfer and separation between the BP monolayer and the graphene surface.And the 3D charge density differences of BP/Gr heterostructures with different concentrations of the O doped at the interface were also calculated,as shown in Fig.8.The charge density difference,Δρ=ρBP/Gr-ρBPρGr,is obtained by subtracting the electronic charge of the BP/Gr interface from that of the corresponding isolated BP monolayer and graphene.Here,ρBP/Gr,ρBPandρGrare the charge densities of the BP/Gr heterostructure,isolated BP monolayer and graphene.It can be seen that the charges of BP and graphene at the interface are redistributed by forming electron depletion(yellow areas) and accumulation (blue areas) in the space with respect to isolated BP and graphene.The surface of the BP layer gathers more negative charges to enhance its work function and the graphene layer gathers positive charges,which leads to the formation of a built-in electric field at the interface.Combined with the calculation results of state density,mismatch energy and cohesion energy,after the adsorption of O atoms by heterojunction,the influence of O atoms on the valence band is more obvious,and with the increase of O adsorption concentration,the mismatch energy gradually increases and the cohesion energy gradually decreases,and the system becomes more and more stable.

    Fig.8 Top and side view of the 3D charge density difference for(a)BP/Gr heterostructure,(b)BP/Gr-1O,(c)BP/Gr-2O,(d)BP/Gr-3O;(e)Planar electron density differences along the z direction of BP/Gr heterostructures with different concentrations of the O adsorption doped inside the interface,in which positive and negative values represent electron accumulation and depletion in the space with respect to isolated BP and graphene,respectively

    In order to quantitatively analyze the redistribution of interfacial charges at the interface,the planar averaged charge density differences along thezdirection of BP/Gr heterostructures are calculated,as shown in Fig.8e.The positive values indicate electron accumulation,while the negative values represent the depletion of electrons.The distribution of interfacial charges depends on the concentration of the O dopant.Before adsorption doping,electrons are transferred from graphene to BP.After adsorption doping,the electron transfer situation is torsional,with the concentration of the O dopant inside the interface increasing,the interlayer vdW force has been strengthened,and the interlayer distance between BP and graphene have been shortened,progressively,leading to more electron transfer from BP layer to the graphene.

    The results of Mulliken population analysis show that the charge transfer and redistribution inside and outside the interface varies with O atoms doped.After adsorption,the average Mulliken population of P atoms(BP) increases from 0.052e to 0.146e with the increase in the concentration of the O doped inside the interface.The electron transfer from the BP monolayer to the O atoms,which causes the Fermi level of the heterostructure to move downward.The increase in the number of transferred electrons in the interlayer leads to a transition from the n-SBH to p-SBH,which is consistent with the analysis of the work function.Moreover,more electrons are transferred from P to O.It turned out that larger Mulliken populations of P,C and O atoms inside the interface are found which produce a great interface interaction between two constituents,which is in agreement with the calculated cohesive energy mentioned above.It can be considered that the redistribution of the interfacial charge leads to the shift in Fermi level,and thus determines the type and height of the Schottky barrier.

    3 Conclusions

    In summary,the microscopic mechanisms of interface interactions by O adsorption doped and their influence on the electronic structures of the BP/Gr heterostructure have been investigated by DFT calculations in detail.The vdW forces between BP and graphene overcome the energy mismatch,and make the heterostructure bind tightly.Moreover,the intra-interface O adsorption doped has a great influence on the interlayer interaction and electronic properties.In addition,the height of the Schottky barrier can be tuned by O adsorption doped inside the interface.With the increase in the concentration of the O doped inside the interface,the p - SBH transforms from -1.64 eV to-1.48 eV.Especially,a smaller p-type Schottky barrier can be achieved with the increase of the concentration of O adsorption doped,which is a significant requirement for a highly efficient hole transfer at the interface.By analyzing the work function and charge density difference,it is confirmed that the redistribution of interfacial charges leads to the shift of the Fermi level,and then determines the height of the Schottky barrier in the BP/Gr heterostructure.In summary,our results reveal that asymmetric O adsorption doped is quite a promising strategy to tune the Schottky barrier of the BP-based heterostructure.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    肖特基理學院勢壘
    昆明理工大學理學院學科簡介
    昆明理工大學理學院簡介
    場發(fā)射ZrO/W肖特基式場發(fā)射陰極研究進展
    電子制作(2018年12期)2018-08-01 00:47:46
    西安航空學院專業(yè)介紹
    ———理學院
    溝道MOS 勢壘肖特基(TMBS)和超級勢壘整流器
    電子制作(2017年19期)2017-02-02 07:08:45
    勢壘邊界對共振透射的影響
    熔合勢壘形狀的唯像研究
    威廉·肖特基的機器人夢助硅谷崛起
    世界科學(2014年8期)2014-02-28 14:58:28
    英飛凌推出第五代1200 V thinQ!TM碳化硅肖特基二極管
    熔合勢壘厚度對熔合截面的影響
    精品第一国产精品| 麻豆av在线久日| 黄色一级大片看看| 亚洲中文av在线| av有码第一页| 波野结衣二区三区在线| 国产探花极品一区二区| 久久精品aⅴ一区二区三区四区 | 国产精品免费视频内射| 久久久久精品性色| 一级a爱视频在线免费观看| 侵犯人妻中文字幕一二三四区| 亚洲一区中文字幕在线| 热99国产精品久久久久久7| 99久久精品国产国产毛片| 色播在线永久视频| 嫩草影院入口| 久久人人爽av亚洲精品天堂| 一区二区三区四区激情视频| 黑人欧美特级aaaaaa片| 熟女少妇亚洲综合色aaa.| 丰满乱子伦码专区| 男女边吃奶边做爰视频| 男女高潮啪啪啪动态图| 久久久久久久精品精品| 欧美少妇被猛烈插入视频| 亚洲欧洲日产国产| 搡老乐熟女国产| 中国国产av一级| 丰满迷人的少妇在线观看| 国产精品.久久久| 免费日韩欧美在线观看| 日韩免费高清中文字幕av| 色哟哟·www| 少妇被粗大猛烈的视频| 久久人妻熟女aⅴ| 寂寞人妻少妇视频99o| 精品福利永久在线观看| 亚洲欧美精品自产自拍| 欧美精品一区二区大全| 日本午夜av视频| 少妇被粗大猛烈的视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲综合色惰| 国产成人91sexporn| 成年女人毛片免费观看观看9 | 国产成人91sexporn| 久久久国产一区二区| 欧美日韩视频高清一区二区三区二| 在线观看美女被高潮喷水网站| 精品少妇久久久久久888优播| 一区二区三区四区激情视频| 少妇猛男粗大的猛烈进出视频| 午夜福利视频精品| 精品久久久精品久久久| 我要看黄色一级片免费的| 下体分泌物呈黄色| 国产成人欧美| 亚洲国产精品国产精品| 午夜福利视频在线观看免费| 男女无遮挡免费网站观看| 深夜精品福利| 久久精品熟女亚洲av麻豆精品| 亚洲精华国产精华液的使用体验| 精品人妻熟女毛片av久久网站| 波野结衣二区三区在线| 一级片免费观看大全| 如日韩欧美国产精品一区二区三区| 亚洲av成人精品一二三区| 亚洲综合色网址| www.熟女人妻精品国产| 最近中文字幕高清免费大全6| 黄色毛片三级朝国网站| 久久精品夜色国产| 国产一级毛片在线| 国产在线一区二区三区精| 久久精品熟女亚洲av麻豆精品| 18禁国产床啪视频网站| 国产一区二区三区综合在线观看| 亚洲av电影在线进入| 成年美女黄网站色视频大全免费| 美女大奶头黄色视频| 国产精品偷伦视频观看了| 日韩制服骚丝袜av| 一级片'在线观看视频| 有码 亚洲区| 国产人伦9x9x在线观看 | 久久精品熟女亚洲av麻豆精品| 午夜福利,免费看| 亚洲人成77777在线视频| 最近最新中文字幕大全免费视频 | 美女视频免费永久观看网站| 狠狠精品人妻久久久久久综合| 一二三四在线观看免费中文在| 国产欧美亚洲国产| 久久久久久久久久久免费av| 男女啪啪激烈高潮av片| 日韩不卡一区二区三区视频在线| 少妇人妻精品综合一区二区| 一边摸一边做爽爽视频免费| 国产亚洲一区二区精品| 国产精品国产三级国产专区5o| 极品少妇高潮喷水抽搐| 欧美激情 高清一区二区三区| 美女高潮到喷水免费观看| 九草在线视频观看| 色网站视频免费| 这个男人来自地球电影免费观看 | 搡女人真爽免费视频火全软件| 各种免费的搞黄视频| 国产一区二区 视频在线| 黑人欧美特级aaaaaa片| 97在线视频观看| 亚洲综合色网址| 免费观看无遮挡的男女| av女优亚洲男人天堂| 久久精品久久久久久久性| 欧美 日韩 精品 国产| 青春草视频在线免费观看| 美女高潮到喷水免费观看| 午夜福利在线观看免费完整高清在| 国产黄频视频在线观看| 视频区图区小说| 高清av免费在线| 国产综合精华液| 综合色丁香网| 777久久人妻少妇嫩草av网站| 亚洲av在线观看美女高潮| 国产成人午夜福利电影在线观看| 亚洲精品美女久久av网站| 黄频高清免费视频| 亚洲人成电影观看| 美女国产视频在线观看| av又黄又爽大尺度在线免费看| 91在线精品国自产拍蜜月| 午夜福利影视在线免费观看| 少妇熟女欧美另类| 久久精品国产a三级三级三级| av视频免费观看在线观看| 十八禁网站网址无遮挡| 狠狠婷婷综合久久久久久88av| 国产福利在线免费观看视频| 亚洲人成电影观看| 又粗又硬又长又爽又黄的视频| 在线观看美女被高潮喷水网站| 亚洲婷婷狠狠爱综合网| av电影中文网址| 国产乱来视频区| 久久精品国产鲁丝片午夜精品| 国产成人午夜福利电影在线观看| 叶爱在线成人免费视频播放| 一级,二级,三级黄色视频| 久久精品国产自在天天线| 各种免费的搞黄视频| 黑人欧美特级aaaaaa片| 一本大道久久a久久精品| 亚洲五月色婷婷综合| 老熟女久久久| 久久精品国产亚洲av涩爱| 亚洲成色77777| 91国产中文字幕| 国产精品人妻久久久影院| 国产人伦9x9x在线观看 | 亚洲伊人色综图| 少妇被粗大的猛进出69影院| 久久人妻熟女aⅴ| 免费播放大片免费观看视频在线观看| 欧美另类一区| 亚洲欧美清纯卡通| 久久久精品区二区三区| 国产精品久久久av美女十八| 国产精品.久久久| 丝袜人妻中文字幕| 亚洲精品国产一区二区精华液| 精品卡一卡二卡四卡免费| 精品少妇一区二区三区视频日本电影 | 午夜福利在线免费观看网站| 视频在线观看一区二区三区| 亚洲av福利一区| 日本av手机在线免费观看| 亚洲欧美一区二区三区国产| 久久久a久久爽久久v久久| 久久久久久久久久人人人人人人| 国产极品粉嫩免费观看在线| 国产人伦9x9x在线观看 | 欧美日韩综合久久久久久| 91午夜精品亚洲一区二区三区| 亚洲综合色惰| 一区福利在线观看| 视频在线观看一区二区三区| 亚洲熟女精品中文字幕| 国产亚洲欧美精品永久| 久久久久网色| 国产亚洲精品第一综合不卡| 日韩熟女老妇一区二区性免费视频| 国产成人精品无人区| 黑人猛操日本美女一级片| 一本大道久久a久久精品| 亚洲精品一区蜜桃| 国产成人精品福利久久| 国产 一区精品| 多毛熟女@视频| 在现免费观看毛片| 亚洲精品一区蜜桃| 捣出白浆h1v1| 精品人妻偷拍中文字幕| 欧美日韩一级在线毛片| 一边亲一边摸免费视频| 啦啦啦在线免费观看视频4| 9热在线视频观看99| 亚洲国产精品国产精品| 日韩一区二区视频免费看| 色94色欧美一区二区| 亚洲一码二码三码区别大吗| 一区在线观看完整版| 久久久久国产一级毛片高清牌| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美清纯卡通| 国产欧美日韩一区二区三区在线| 少妇被粗大的猛进出69影院| 狠狠婷婷综合久久久久久88av| 久久青草综合色| 最近手机中文字幕大全| 国产成人精品一,二区| 午夜福利在线免费观看网站| 日韩av在线免费看完整版不卡| 高清av免费在线| 我要看黄色一级片免费的| 久久精品国产a三级三级三级| av有码第一页| 欧美人与性动交α欧美精品济南到 | 亚洲精品美女久久久久99蜜臀 | 妹子高潮喷水视频| 免费少妇av软件| 亚洲成人av在线免费| 久久久久精品久久久久真实原创| 在线观看美女被高潮喷水网站| 免费观看性生交大片5| videossex国产| 狠狠精品人妻久久久久久综合| 在线精品无人区一区二区三| 亚洲av欧美aⅴ国产| 免费久久久久久久精品成人欧美视频| 一二三四在线观看免费中文在| 两个人免费观看高清视频| 老鸭窝网址在线观看| 亚洲美女视频黄频| xxxhd国产人妻xxx| 午夜精品国产一区二区电影| 18禁国产床啪视频网站| 日韩av不卡免费在线播放| 一级毛片电影观看| 最近的中文字幕免费完整| 日韩在线高清观看一区二区三区| 日韩av不卡免费在线播放| 国产人伦9x9x在线观看 | 亚洲精品视频女| 丰满迷人的少妇在线观看| 久久人人97超碰香蕉20202| 久久久国产精品麻豆| 亚洲精品视频女| 欧美日韩视频高清一区二区三区二| 如何舔出高潮| 黄色配什么色好看| 久久这里只有精品19| 夜夜骑夜夜射夜夜干| 亚洲欧美色中文字幕在线| 永久网站在线| xxx大片免费视频| 下体分泌物呈黄色| 日韩在线高清观看一区二区三区| 青草久久国产| 人人澡人人妻人| 水蜜桃什么品种好| 久久国产精品男人的天堂亚洲| 亚洲av欧美aⅴ国产| 91久久精品国产一区二区三区| 黄网站色视频无遮挡免费观看| 亚洲国产日韩一区二区| 亚洲美女视频黄频| 夜夜骑夜夜射夜夜干| 亚洲国产看品久久| 1024视频免费在线观看| www.熟女人妻精品国产| 在现免费观看毛片| 精品少妇久久久久久888优播| 国产麻豆69| 精品少妇久久久久久888优播| 如何舔出高潮| 人人妻人人澡人人爽人人夜夜| 搡女人真爽免费视频火全软件| 午夜老司机福利剧场| 亚洲精品一区蜜桃| 亚洲欧美精品自产自拍| 欧美国产精品一级二级三级| 少妇人妻精品综合一区二区| 亚洲国产精品999| 99热国产这里只有精品6| 欧美日韩国产mv在线观看视频| 欧美av亚洲av综合av国产av | 精品福利永久在线观看| 亚洲欧洲日产国产| 热re99久久精品国产66热6| 亚洲中文av在线| av片东京热男人的天堂| 国产片特级美女逼逼视频| 日韩一区二区视频免费看| av在线观看视频网站免费| 中文字幕av电影在线播放| 免费黄频网站在线观看国产| 亚洲国产精品一区二区三区在线| 黑人猛操日本美女一级片| 超碰97精品在线观看| 大陆偷拍与自拍| www.熟女人妻精品国产| 18禁观看日本| 肉色欧美久久久久久久蜜桃| 99九九在线精品视频| 国产亚洲午夜精品一区二区久久| 欧美国产精品va在线观看不卡| 赤兔流量卡办理| 免费观看a级毛片全部| 一区二区三区乱码不卡18| 另类亚洲欧美激情| 电影成人av| 亚洲精品国产一区二区精华液| 国产精品国产三级国产专区5o| 久久久久久久久久久免费av| 菩萨蛮人人尽说江南好唐韦庄| 国产片特级美女逼逼视频| 人妻一区二区av| 精品久久久久久电影网| a 毛片基地| 亚洲男人天堂网一区| 国产一区二区在线观看av| 亚洲精品日本国产第一区| 亚洲国产精品999| 色婷婷av一区二区三区视频| 国产老妇伦熟女老妇高清| 人人妻人人爽人人添夜夜欢视频| 美女主播在线视频| 一区二区三区乱码不卡18| 久久精品aⅴ一区二区三区四区 | 视频区图区小说| av不卡在线播放| 午夜福利乱码中文字幕| 69精品国产乱码久久久| 天天躁日日躁夜夜躁夜夜| 午夜福利乱码中文字幕| 一区二区三区精品91| 高清不卡的av网站| 少妇精品久久久久久久| 天天躁夜夜躁狠狠久久av| 日韩成人av中文字幕在线观看| 精品亚洲乱码少妇综合久久| 日韩av不卡免费在线播放| 我的亚洲天堂| 一级爰片在线观看| 国产精品无大码| 性色avwww在线观看| 成年动漫av网址| 国产黄频视频在线观看| 午夜老司机福利剧场| 国产又色又爽无遮挡免| 一区二区av电影网| 777久久人妻少妇嫩草av网站| 99re6热这里在线精品视频| 各种免费的搞黄视频| 丰满饥渴人妻一区二区三| 你懂的网址亚洲精品在线观看| 国产视频首页在线观看| 女人高潮潮喷娇喘18禁视频| av在线观看视频网站免费| 在线观看免费高清a一片| 一区二区日韩欧美中文字幕| 精品一区二区免费观看| 少妇 在线观看| 成人亚洲欧美一区二区av| 丰满迷人的少妇在线观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲av中文av极速乱| 丝袜美足系列| 亚洲视频免费观看视频| 成人国语在线视频| 韩国av在线不卡| 岛国毛片在线播放| 午夜久久久在线观看| 日日啪夜夜爽| 久久久亚洲精品成人影院| 好男人视频免费观看在线| 亚洲精品一二三| 精品国产一区二区久久| 亚洲av免费高清在线观看| 久久久久久久久久久免费av| 成人影院久久| 男女午夜视频在线观看| 街头女战士在线观看网站| 五月天丁香电影| 中文字幕人妻丝袜一区二区 | 国产高清国产精品国产三级| 一个人免费看片子| 制服诱惑二区| 国产精品99久久99久久久不卡 | 亚洲av日韩在线播放| 91精品伊人久久大香线蕉| 18+在线观看网站| 精品久久蜜臀av无| 亚洲国产欧美日韩在线播放| 欧美精品一区二区大全| 午夜福利视频精品| 日韩在线高清观看一区二区三区| 18禁裸乳无遮挡动漫免费视频| 亚洲国产成人一精品久久久| 日产精品乱码卡一卡2卡三| 女性被躁到高潮视频| 国产有黄有色有爽视频| 国产1区2区3区精品| 考比视频在线观看| 在线观看三级黄色| 亚洲少妇的诱惑av| 日本午夜av视频| 少妇人妻精品综合一区二区| 日韩熟女老妇一区二区性免费视频| 国产一区二区 视频在线| 亚洲一级一片aⅴ在线观看| 建设人人有责人人尽责人人享有的| 久久免费观看电影| 女性被躁到高潮视频| 精品国产露脸久久av麻豆| 午夜免费鲁丝| 欧美老熟妇乱子伦牲交| 日韩大片免费观看网站| 亚洲图色成人| 亚洲人成电影观看| 春色校园在线视频观看| 亚洲欧美成人精品一区二区| 午夜久久久在线观看| 97在线人人人人妻| 26uuu在线亚洲综合色| 免费看av在线观看网站| 超色免费av| 黄色视频在线播放观看不卡| 免费黄色在线免费观看| 久久精品国产综合久久久| 亚洲,欧美,日韩| av一本久久久久| 免费少妇av软件| 精品一区二区免费观看| 久久久久久人妻| 少妇被粗大猛烈的视频| 亚洲国产成人一精品久久久| av免费观看日本| 一区二区三区激情视频| 亚洲成av片中文字幕在线观看 | 黄片无遮挡物在线观看| 最近的中文字幕免费完整| 亚洲av日韩在线播放| 亚洲国产最新在线播放| 看十八女毛片水多多多| 久久综合国产亚洲精品| 国产淫语在线视频| 久久久久国产一级毛片高清牌| 日日啪夜夜爽| 亚洲美女视频黄频| 18禁动态无遮挡网站| 午夜av观看不卡| 国产精品蜜桃在线观看| 一区二区三区精品91| 侵犯人妻中文字幕一二三四区| 国产av码专区亚洲av| xxxhd国产人妻xxx| 欧美黄色片欧美黄色片| 伦理电影免费视频| 秋霞伦理黄片| 啦啦啦在线观看免费高清www| 老女人水多毛片| 亚洲av男天堂| 涩涩av久久男人的天堂| 亚洲综合色惰| 免费黄网站久久成人精品| 两性夫妻黄色片| 亚洲国产色片| 永久免费av网站大全| 2021少妇久久久久久久久久久| 99精国产麻豆久久婷婷| 嫩草影院入口| 免费高清在线观看日韩| 欧美日韩国产mv在线观看视频| 久久女婷五月综合色啪小说| 王馨瑶露胸无遮挡在线观看| 精品人妻熟女毛片av久久网站| 制服人妻中文乱码| 黄片小视频在线播放| 国产激情久久老熟女| 日韩欧美一区视频在线观看| 啦啦啦在线观看免费高清www| 免费少妇av软件| 高清av免费在线| 久久国产精品男人的天堂亚洲| 午夜激情久久久久久久| 国产色婷婷99| 18禁裸乳无遮挡动漫免费视频| 亚洲第一av免费看| 中国三级夫妇交换| 极品少妇高潮喷水抽搐| 成人国语在线视频| 一级爰片在线观看| 亚洲综合色网址| 国产免费又黄又爽又色| 亚洲国产欧美在线一区| 久久狼人影院| 丰满乱子伦码专区| 两个人免费观看高清视频| 亚洲欧洲日产国产| 赤兔流量卡办理| 久久午夜综合久久蜜桃| 亚洲在久久综合| av在线播放精品| 亚洲中文av在线| 日韩欧美精品免费久久| 国产熟女欧美一区二区| 一本久久精品| 制服丝袜香蕉在线| www日本在线高清视频| 边亲边吃奶的免费视频| 九色亚洲精品在线播放| 老鸭窝网址在线观看| 国产乱来视频区| 成人手机av| 国产精品国产三级国产专区5o| 制服诱惑二区| 国产爽快片一区二区三区| 久久久久精品久久久久真实原创| 成年av动漫网址| 菩萨蛮人人尽说江南好唐韦庄| 国产野战对白在线观看| 中文字幕色久视频| 天天影视国产精品| 国产男女内射视频| 少妇的逼水好多| 免费av中文字幕在线| 80岁老熟妇乱子伦牲交| 制服人妻中文乱码| 99国产精品免费福利视频| 日本爱情动作片www.在线观看| 国产精品.久久久| 国产在视频线精品| 国产有黄有色有爽视频| 在线 av 中文字幕| 这个男人来自地球电影免费观看 | 久久人人97超碰香蕉20202| 一区二区av电影网| 天天躁狠狠躁夜夜躁狠狠躁| 最近最新中文字幕免费大全7| 午夜影院在线不卡| 欧美国产精品一级二级三级| 国产成人一区二区在线| 中文字幕av电影在线播放| 午夜福利在线免费观看网站| 欧美 亚洲 国产 日韩一| 老鸭窝网址在线观看| 热re99久久精品国产66热6| 免费在线观看黄色视频的| 新久久久久国产一级毛片| 亚洲av福利一区| 80岁老熟妇乱子伦牲交| 黄片播放在线免费| 久久女婷五月综合色啪小说| 免费在线观看视频国产中文字幕亚洲 | 亚洲经典国产精华液单| 一级毛片我不卡| 人成视频在线观看免费观看| 免费黄色在线免费观看| 制服诱惑二区| 国产乱人偷精品视频| 可以免费在线观看a视频的电影网站 | 亚洲精品国产一区二区精华液| 国产成人午夜福利电影在线观看| 黄片播放在线免费| 夫妻性生交免费视频一级片| 欧美 亚洲 国产 日韩一| 久久久亚洲精品成人影院| 国产亚洲一区二区精品| 久久久久精品久久久久真实原创| 男女午夜视频在线观看| 国产亚洲欧美精品永久| 赤兔流量卡办理| 天堂8中文在线网| av有码第一页| 高清欧美精品videossex| 母亲3免费完整高清在线观看 | 欧美日本中文国产一区发布| 久久午夜福利片| 男的添女的下面高潮视频| 国产日韩欧美视频二区| 日韩中字成人| 男人舔女人的私密视频| 日韩av免费高清视频| 久久av网站| 亚洲婷婷狠狠爱综合网| 在线看a的网站| 久久精品久久久久久久性| 最新中文字幕久久久久| 亚洲国产毛片av蜜桃av| 97在线视频观看| 成年人免费黄色播放视频| 夜夜骑夜夜射夜夜干| 亚洲av中文av极速乱| 纯流量卡能插随身wifi吗| 久久久久久伊人网av| 久久精品aⅴ一区二区三区四区 | 国产精品久久久久久久久免| 亚洲av.av天堂| 久热这里只有精品99| 校园人妻丝袜中文字幕|