• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氰基橋聯(lián)鐵鈷鏈狀配合物的結(jié)構(gòu)與磁性

    2023-10-19 11:47:06類延瑞朱海浪周仁和
    無機化學學報 2023年10期
    關(guān)鍵詞:鏈狀仁和大連理工大學

    類延瑞 朱海浪 黃 杰 周仁和 劉 濤

    (大連理工大學精細化工國家重點實驗室,智能材料化工前沿科學中心,大連 116024)

    0 Introduction

    Molecular magnetic bistability[1-2]refers to the phenomenon where a molecule can exist in two distinct spin states that can be interconverted by external stimuli such as light,heat,pressure,and magnetic or electric fields[3-9].This spin transition is generally mediated by metal-to-metal charge transfer (MMCT)between different metal sites or spin crossover (SCO) on a single metal site,which involves the redistribution ofd-electrons in response to appropriate crystal field environments[4,9].As the two spin states can represent the binary states of 0 and 1,the magnetic bistable molecular materials offer significant potential for the realization of high-density information devices at the molecular level[10].In addition,they also hold promise in molecular switching devices and sensors,which could lead to the development of spintronic devices[11]and quantum computing,offering improved performance and a wider range of functionalities[12].

    As one of the well-known magnetic bistable systems,a considerable number of charge transfer coupled spin transition (CTCST) compounds have been documented.Among them,the building block strategy of cyanide-bridged metals has been demonstrated to be effective in fabricating CTCST compounds[4,13-16].One of the most typical systems of such compounds is the Prussian blue analogue (PBA)[17],which has a general formula of AnM1p[M2(CN)6]q·xH2O (A is a monovalent cation;M1and M2are redox-active metal ions with variable valence states).In 1996,Hashimoto and Sato et al.[1]initially reported the phenomenon of light - induced charge transfer in Co-Fe PBA systems,which stimulated extensive research on PBA analogues.In the early stages,the research focused on 3D grid structures,exploring the charge transfer behavior between metals by regulating vacancies and the number of alkali ions in the structures[18-20].Subsequently,researchers became interested in low-dimensional cyanide-bridged compounds[21-23]since these systems can precisely regulate the coordination environment of metal ions via ligands,thereby promoting complete charge transfer behaviors and increasing solubility,thus facilitating investigations of their structures and physicochemical properties.Notably,the tricyanoferrate (Ⅲ) building blocks can coordinate with metal ions to form lowdimensional compounds due to their unique conical structure.When appropriate ancillary ligands were applied,the redox potential of metal ions can be tuned to allow the occurrence of intermetallic charge transfer[18,24-25].The reported low-dimensional MMCT compounds using tricyanoferrate(Ⅲ)building blocks [Fe(Tp)(CN)3]-(Tp=tris(pyrazolyl)borate)have generated significant interest for MMCT-switched magnetism and other properties.For example,the 1D Fe—Co chain assembled by [Fe(Tp)(CN)3]-and a chiral ligand Pabn[26]showed the light-induced MMCT and conductivity conversion.The combination of asymmetric ancillary ligand and [Fe(Tp)(CN)3]-resulted in a light-induced single-chain magnet with large coercivity values[27-29].One can note that these functional cyanide-bridged MMCT systems usually contain solvent molecules and counterions.And the guest molecules and anions can influence charge transfer behavior[30-34]and the corresponding properties above-mentioned.For example,recently reported trinuclear {FeⅢ2FeⅡ} complexes[35]exhibit solvent-induced spin transition behavior and wide thermal hysteresis.The tetranuclear {FeⅢ2CoⅡ2}complexes[14]composed of [Fe(PzTp) (CN)3]-(PzTp=tetrakis(pyrazolyl)borate) revealed how different anions play a significant role in MMCT behavior by controlling intermolecular interactions.Therefore,understanding the roles of solvent and counterion effects on the MMCT behavior is crucial in manipulating the charge transfer more accurately and switching the physical properties more effectively.In light of this concern,we designed and synthesized two complexes (Scheme 1)composed of the asymmetric ligand Bzi and the tricyanoferrate (Ⅲ) building block [Fe(PzTp) (CN)3]-,namely [Fe(PzTp)(CN)3]2[Co(Bzi)4]2(ClO4)2·H2O (1) and[Fe(PzTp)(CN)3]2[Co(Bzi)2]·CH3OH (2).The effects of counterions and crystallizing solvents on the structures and properties of the complexes were studied.

    Scheme 1 Self-assembly processes of complexes 1 and 2

    1 Experimental

    1.1 Materials

    All chemical reagents were obtained from commercial suppliers and used without further purification.Tricyanoferrate (Ⅲ) building blocks (Bu4N) [Fe(PzTp)(CN)3],(Bu4N=tetrabutylammonium) and asymmetric ligand Bzi were synthesized according to the literature procedures[36-37].The physical measurements and detailed crystallographic data can be found in the Supporting information(Table S1-S6,Fig.S1-S17).

    1.2 Synthesis of complex 1

    Single crystals of 1 were synthesized by the liquid diffusion method.An aqueous solution containing Co(ClO4)2·xH2O (0.005 mmol,1.273 mg) was placed at the bottom of a clean test tube.Then a mixed solvent of methanol and water (1∶1,V/V,2.5 mL) was layered as the middle buffer.Finally,the methanol solution containing tricyanoferrate (Ⅲ) building blocks (Bu4N)[Fe(PzTp)(CN)3] (0.005 mmol,3.275 mg) and Bzi (0.02 mmol,3.4 mg) was placed on the top of the tube.The top of the tube was sealed and left for two months to obtain dark green block crystals.The yield based on Co(ClO4)2·xH2O was about 61%.Elemental analysis calculated for C118H106B2Cl2Co2Fe2N38O9(%): C 56.19,H 4.23,N 21.10;Found(%):C 56.05,H 4.26,N 20.17.

    1.3 Synthesis of complex 2

    The synthesis of 2 was similar to that of 1 by use of Co(NO3)2·xH2O instead of Co(ClO4)2·xH2O.Crimson long strips of crystals were obtained after about six weeks.The yield based on Co(NO3)2·xH2O was about 51%.Elemental analysis calculated for C53H48B2CoFe2N26O(%): C 50.63,H 3.85,N 28.96; Found(%): C 51.12,H 3.41,N 28.74.

    CCDC: 2247684,1-120K; 2247683,2-120K;2247682,2-190K; 2247686,2-225K; 2247685,2-desolvated.

    2 Results and discussion

    2.1 Structure characterization

    2.1.1 Crystal structure of 1

    The coordination polymer 1 was synthesized by the reaction of (Bu4N) [Fe(PzTp) (CN)3],Bzi,and Co(ClO4)2·xH2O in a methanol-water mixture.The single crystals were obtained after staying solution in the dark for a few weeks.Due to the instability,attempts to collect X-ray diffraction data at higher temperatures were not performed.The dark green 1 crystallizes in a triclinic space groupat 120 K.The phase purity was confirmed by powder X-ray diffraction (PXRD)(Fig.S4) measurements.As shown in Fig.1,the cobalt center is located in a distorted octahedral environment.It can be verified by continuous symmetry measurements using the SHAPE program,which is similar to previously reported results.Cobalt ions are connected by tricyanoferrate building blocks,forming square -wave type chains along thec-axis.As shown in Fig.S1c,the stacking between chains is tight,but there are no obvious intra-chain or inter-chainπ…πinteractions.It should be noted that two free ClO4-ions are located in the lattice void,which plays a role in balancing the positive charges of the chain.In addition,hydrogen - bonding interactions between the solvent molecule and the free terminal cyanide groups are also observed,which may play a role in mediating the MMCT behavior.The asymmetric unit contains three crystallographically independent Co (Co1,Co2,and Co3)ions and two Fe(Fe1 and Fe2)ions(Fig.1a).Complex 1 comprises cyanide-bridged alternating Fe-Co square-wave type chains along thec-axis (Fig.S1b).Within the chain,two of the three cyanide groups in the [Fe(PzTp)(CN)3]-unit bridge two Co ions to form an alternating zigzag chain [Co1—NC—Fe1—CN—Co2—NC—Fe2—CN—Co3].In 1,the Co ions adopt a distorted octahedral coordination geometry with four nitrogen atoms from four Bzi and two nitrogen atoms from tricyanoferrate.At 120 K,the average Co1—N,Co2—N,and Co3—N bond lengths are 0.192 8,0.192 2,and 0.192 3 nm,respectively.All of them are typical of lowspin (LS) Co (Ⅲ)ions.The iron ion also locates in a distorted octahedral coordination environment that is composed of three nitrogen atoms from the PzTp ligand and three cyanide carbon atoms.Fe1—C and Fe1—N bond lengths are 0.187 6(4)and 0.200 9(3)nm,respectively,and the Fe2—C and Fe2—N bond lengths are 0.186 1(4) and 0.201 1(3) nm,respectively,which are in the range of character of the LS FeⅡspecies.

    Fig.1 (a)Asymmetric unit of complex 1;(b)Square-wave type chain structure of 1

    2.1.2 Crystal structure of 2

    To investigate how solvent molecules and anions affect the crystal structure and magnetic properties.Complex 2 was synthesized in different solvents by changing the metal salts of Co(NO3)2·xH2O.Singlecrystal X-ray diffraction data for 2 was collected at 120 K.The phase purity was confirmed by PXRD (Fig.S5)measurement.2 crystallizes in the triclinic space groupP1.The cobalt center is located in an octahedral environment and is interconnected by tricyanoferrate to form a double zigzag chain skeleton [Co1—NC—Fe1—CN—Co2—NC—Fe2] along thea-axis (Fig.2b).2 shows a double zigzag chain structure.From thea-axis direction,all the cobalt ions fall in a straight line,and the iron ions in the building block form two planes located on both sides of the cobalt sites (Fig.2c),which is different from the structure of 1.In addition,lattice voids between the adjacent chains adopt a small amount of methanol solvent molecules.Thermogravimetric (TG) analysis shows that there exists one methanol molecule in the symmetric unit (Fig.S3).As shown in Fig.2a,the asymmetric unit contains two crystallographically independent Fe (Fe1 and Fe2)ions and two crystallographically independent Co (Co1 and Co2)ions.Each cobalt ion center is linked to four tricyanoferrate building blocks at the equatorial position,and the rest coordinating sites are coordinated with two Bzi ligands to form octahedral coordination.In contrast,each cobalt center in the asymmetric unit of complex 1 is linked to four Bzi ligands at the equatorial position and then connected to two building blocks.In complex 2,the average Co1—N and Co2—N bond lengths are 0.190 7 and 0.190 6 nm at 120 K,respectively.They are both typical for the LS Co(Ⅲ)ions.The Fe1—C and Fe1—N bond lengths are 0.189 7(4) and 0.198 7(3)nm,respectively,and the Fe2—C and Fe2—N bond lengths are 0.191 1(3) and 0.197 7(3) nm at 120 K,respectively,which are in the typical range for the LS FeⅡspecies.Single-crystal X-ray diffraction data for 2 at 190 and 225 K were also collected to investigate the effect of crystalline solvents on the structure and magnetic properties.The average Co1—N and Co2—N bond lengths are 0.211 7 and 0.211 2 nm at 190 K,0.212 0 and 0.211 6 nm at 225 K,respectively.Detailed crystallographic data are listed in Table S1.

    Fig.2 (a)Asymmetric unit of complex 2;(b)Double zigzag chain structure of 2;(c)Packing diagram viewed along the a-axis of 2;(d)Packing diagram viewed along the c-axis of 2

    2.2 Magnetic property

    Temperature-variable magnetic susceptibility measurements were performed to probe the charge transfer behaviors in these complexes.As shown in Fig.3,for complex 1,theχMTvalue remained around 0.10 cm3·mol-1·K from 2 to 350 K,corresponding to diamagnetic FeⅡLS—CN—CoⅢLSlinkages.When further heated,theχMTvalue rapidly increased to 3.34 cm3·mol-1·K at 368 K and reached 6.29 cm3·mol-1·K at 371 K (T1/2↑=368 K).TheχMTvalue at 400 K was 6.27 cm3·mol-1·K,which was close to the value of 6.67 cm3·mol-1·K expected for magnetically isolated two FeⅢLS(S=1/2) and two CoⅡHS(S=3/2) ions.It suggests that about 94% of {FeⅡLS—CN—CoⅢLS} units underwent intermetallic charge transfer at this stage.Upon decreasing temperature,theχMTvalue decreased rapidly to 3.47 cm3·mol-1·K at 357 K.Then it reached a plateau value of about 0.11 cm3·mol-1·K with an 11 K-wide thermal hysteresis loop upon cooling.In addition,the isothermal field-dependent magnetization data for 1 was collected in a direct current (dc) field up to 5 T at 2 K (Fig.S9).The isothermal magnetization curve at 2 K increased slowly to 0.032Nβat 50 kOe,confirming the diamagnetic character of the {FeⅡLS—CN—CoⅢLS} unit.Differential scanning calorimetry (DSC)was performed under an N2atmosphere to verify the driving force of MMCT.As shown in Fig.S6,the DSC curves exhibited an endothermic peak in the heating mode,with the onset and maximum temperatures ofTon=362.5 K andTmax=368.0 K,respectively.TheTmaxwas consistent withT1/2↑=368 K,accompanied by enthalpy and entropy changes of ΔHm=90.33(3) kJ·mol-1and ΔSm=250.91(6) J·mol-1·K-1,respectively.In addition,an exothermic peak was recorded in the cooling mode,withTon=364.9 K,Tmax=360 K,ΔHm=91.23(3)kJ·mol-1and ΔSm=253.42(6)J·mol-1·K-1.Peak temperature was also close toT1/2↓=357 K.The distinct endothermic/exothermic peaks and the 8 K-width thermal hysteresis indicated a first-order phase transition and significant entropy changes suggested that MMCT is an entropy-driven process.

    Fig.3 Temperature dependence observed for the χMT values of 1(a)and 2(b)under a dc field of 5 000 Oe(1)and 1 000 Oe(2)

    Complex 2 exhibited an interesting two-step spin transition.The purple curve in Fig.3b showed that theχMTvalue below 100 K was about 1.39 cm3·mol-1·K,while the theoreticalχMTvalue of 2 in a low spin state was about 0.58 cm3·mol-1·K,suggesting the existence of high-spin(HS)Co(Ⅱ)ions.Upon heating,theχMTvalue increased to 1.91 cm3·mol-1·K at 180 K.The theoreticalχMTvalue of the {FeⅢLS—CN—CoⅡHS—NC—FeⅢLS}state of complex 2 was 4.32 cm3·mol-1·K.Based on the changes inχMTvalue,about 44% {FeⅡLS—CN—CoⅢLS—NC—FeⅢLS} units underwent the intermetallic charge transfer at this stage.When the temperature continued to increase to 210 K,theχMTvalue rapidly reached 4.12 cm3·mol-1·K,which was close to the theoretical value of 4.32 cm3·mol-1·K,indicating that about 95.4% {FeⅡLS—CN—CoⅢLS—NC—FeⅢLS} units underwent the intermetallic charge transfer and transformed into the {FeⅢLS—CN—CoⅡHS—NC—FeⅢLS}state.During the cooling process,theχMTvalue decreased rapidly to 2.06 cm3·mol-1·K at 190 K.A thermal hysteresis of 12 K was produced.Subsequently,the value ofχMTdecreased to 1.58 cm3·mol-1·K at 150 K.Further decreasing the temperature resulted in the decrease ofχMTvalue to 1.3 cm3·mol-1·K and produced a thermal hysteresis of about 30 K.2 exhibited a rare two-step charge transfer behavior.In the first step,the transition temperatures wereT1/2↑=183 K,T1/2↓=154 K; in the second step,the transition temperatures wereT1/2↑=204 K,T1/2↓=192 K.Remarkably,we observed the first step of spin transition behavior disappeared when 2 continued to be heated to 300 K (green curve in Fig.3b),possibly due to the loss of some solvents during the heating process.In addition,the TG curve of 2 (Fig.S3) showed a loss of solvents at 305 K,with a mass loss of 3.87%.Therefore,we collected the temperature-variable magnetic susceptibility for 2-desolvated.As shown in the blue curve in Fig.3b,theχMTvalues of 3.42 cm3·mol-1·K remained nearly constant from 30 to 150 K,then slowly increased to 4.12 cm3·mol-1·K at 198 K and reached a plateau value of 4.25 cm3·mol-1·K at 203 K.Corresponding to highspin {FeⅢLS—CN—CoⅡHS—NC—FeⅢLS} states.It indicates that the solvent molecules can greatly influence the charge transfer behavior of 2.It is noted that 2 exhibited higherχMTvalues below 10 K,which can be attributed to the intramolecular ferromagnetic coupling between the remaining FeⅢLSand CoⅡHSions.

    Variable-temperature infrared spectra were collected to probe the charge transfer behavior.For complex 1,twoνCNabsorption bands at around 2 117 and 2 154 cm-1were observed at 400 K (Fig.4a).The band at 2 117 cm-1can be ascribed toνCNmodes for the nonbridging cyanide groups of [FeⅢ(PzTp)(CN)3]-,and the other is attributed toνCNmodes for the bridging cyanide groups of FeⅢLS—C≡N—CoⅡHSlinkages.As the temperature decreased,two new bands appeared,corresponding to the non-bridgingνCNmodes of [FeⅡ(PzTp)(CN)3]2-(2 064 cm-1) and the bridgingνCNmodes of FeⅡLS—C≡N—CoⅢLS(2 102 cm-1) linkages.Meanwhile,as the temperature was lowered,intensities of the non-bridgingνCNmodes of [FeⅢ(PzTp)(CN)3]-and the bridgingνCNmodes of the FeⅢLS—C≡N—CoⅡHSlinkages were reduced to disappear.These results established the MMCT behavior in 1.For complex 2,twoνCNabsorption bands at around 2 122 and 2 160 cm-1were also observed at 250 K (Fig.4b).It can be ascribed toνCNmodes for the non-bridging cyanide groups of [FeⅢ(PzTp)(CN)3]-and the bridging cyanide groups of FeⅢLS—C≡N—CoⅡHSlinkages,respectively.At the cooling process,threeνCNabsorption bands at around 2 064,2 101,and 2 199 cm-1were enhanced gradually,which can be ascribed toνCNmodes for the non-bridging cyanide groups of [FeⅡ(PzTp)(CN)3]2-and the bridging cyanide groups of FeⅢLS—C≡N—CoⅢLSand FeⅡLS—C≡N—CoⅢLSlinkages.These also probed the MMCT behavior in 2.

    Fig.4 Variable-temperature solid-state infrared spectroscopy of 1(a)and 2(b)at the near transition temperature

    Light-monitored magnetic susceptibility measurements were conducted to further explore the possible photo-responsive MMCT in complexes 1 and 2.Between 300 and 400 K,solid UV-Vis-NIR absorption spectra were recorded for 1.Spectral changes were observed at the bands approximately 500 and 800 nm(Fig.S12),which correspond to the {FeⅡLS—CN—CoⅢLS} and {FeⅢLS—CN—CoⅡHS} states,respectively.Based on the UV-Vis-NIR absorption spectra results,we chose 532 and 808 nm diode lasers to examine the photo-responsive characteristics of 1.Meanwhile,808 nm was selected based on the UV-Vis-NIR absorption spectra results of 2 (Fig.S13).As shown in Fig.5b,when 1 was irradiated with an 808 nm laser,theχMTvalue increased rapidly and reached a saturation value of 7.2 cm3·mol-1·K.The increase of magnetization demonstrated the occurrence of light-induced MMCT,corresponding to the transformation from low-spin{FeⅡLS—CN—CoⅢLS} to the metastable high-spin{FeⅢLS—CN—CoⅡHS} state.When the laser wavelength was changed to 532 nm,theχMTvalue of 1 experienced a gradual decrease from 7.2 to 1.3 cm3·mol-1·K after 175 min.The incomplete phase transition may be attributed to the partial overlap between the green light and the FeⅡ→CoⅢIVCT (intervalence charge transfer)band.It is noted that the interconversion between{FeⅢLS—CN—CoⅡHS} and {FeⅡLS—CN—CoⅢLS} spin states can be well repeated by alternating light irradiations of 808 and 532 nm,confirming the reversible light-induced MMCT.When 2 was irradiated with an 808 nm laser (Fig.S8),theχMTvalue increased slowly to 4.35 cm3·mol-1·K after 150 min.It also showed the light-induced MMCT behavior in 2.But it cannot be excited back to the initial state by other laser wavelengths for 2,which is consistent with its change in the UV-visible absorption spectrum.

    Fig.5 (a)Plots of χMT vs temperature of 1 and 2 irradiated at 808 and 532 nm at 5 000 Oe(1)and 1 000 Oe(2);(b)Plots of χMT vs time during cycles of successive irradiation at 808 nm(orange)and 532 nm(green)at 10 K of 1

    After the irradiation with 808 nm laser at 10 K for 2 h,complexes 1 and 2 were cooled down to the base temperature of 2 K.TheχMTvalues rapidly increased to 28.1 cm3·mol-1·K for 1 (orange curve in Fig.5a).After being irradiated by the 532 nm laser,only theχMTvalues of 1 increased to 1.8 cm3·mol-1·K at 2 K.During the heating process,theχMTvalues rapidly dropped to 5.8 cm3·mol-1·K at 17 K for 1,and finally returned to the thermodynamically stable {FeⅡLS—CN—CoⅢLS} state at 75 K.TheχMTvalues rapidly increased to 11.5 cm3·mol-1·K at 2 K and dropped to 5.3 cm3·mol-1·K for 2 at 11 K (blue curve in Fig.5a),then returned to {FeⅡLS—CN—CoⅢLS—NC—FeⅢLS}state at 150 K.The photomagnetic results confirmed that MMCT behavior could be excited by light irradiation and returned with thermal treatment.

    The disparate magnetic properties of complexes 1 and 2 should lie in their structures,which may arise from their different intermolecular interactions and crystal packings.For 1,there are significant hydrogen bonding interactions between solvent molecules and the free terminal cyanide groups.No significant hydrogen bonding interactions are observed in 2.This could affect the crystal field experienced by the iron center,as well as the redox potential of the iron center.This explains why 1 and 2 have different transition temperatures.Furthermore,the different charge transfer behaviors of 1 and 2 prior to light irradiation stem primarily from distinct coordination environments and intra -chain structures for 1 and 2.

    To further explore the influence of solvents on their charge transfer behavior,we collected X - ray diffraction data for 2 at temperatures ranging from 120 to 225 K.Detailed crystallographic data are presented in Table S1,and the structures of multiple temperatures for 2 were overlapped together to probe the trend of bond length and angle changes with temperature(Fig.6).The Co1—N and Co2—N bond lengths increase by 0.019 7 and 0.019 4 nm from 120 to 225 K,respectively.Meanwhile,the ∠N2—Co1—N3 decreases 1.21° and the ∠N5—Co2—N6 increases 1.31°.As for the Co—N≡C bond angles,the ∠C5—N2—Co1,∠C4—N5—Co2,and ∠C2—N6—Co2 decrease 2.9°,3.6°,and 3.5°,respectively.It indicates that the coordination environment of the cobalt center has changed.It is noted that the distortion degree of the octahedral field in the cobalt center is increased upon the heating process.The cobalt octahedron with a large distortion degree favors the high spin {FeⅢLS—CN—CoⅡHS—NC—FeⅢLS} state.This is consistent with the reported literature[14].In general,the parameter CShMMand∑M(M=Co,Fe) both can be used to evaluate the geometry deviation from the standard octahedron of the metal center (CShMMis analyzed by SHAPE software).For the Fe/Co charge-transfer systems,a smaller CShMMvalue favors the {FeⅡLS—CN—CoⅢLS—NC—FeⅢLS} state.From Table 1,the values of CShMCo1and CShMCo2increase by 0.029 and 0.018 from 120 to 225 K,respectively.And the values of∑Co1and∑Co2increase by 7.88 and 7.06,respectively.Based on these results,we think that the changes in the interaction between solvents and intra-chain molecules can modulate the degree of distortion of the[CoN6]octahedral and ligand fields around cobalt ions,resulting in different MMCT behaviors.

    Table 1 Main structural parameters for 2 at different temperaturesa

    Fig.6 Overlap diagrams of the structures of 2 at different temperatures centered on Co2

    3 Conclusions

    In this study,we report the synthesis of two chain complexes,denoted as 1 and 2,using anionic substitution in the methanol-water system.Detailed investigations of the structural and magnetic properties revealed that complex 1 exhibited thermal and light-induced charge transfer behavior,while complex 2 exhibited thermal and solvent-induced two-step spin transition behavior.Structural studies suggest that the different photomagnetic properties of 1 and 2 may be attributed to hydrogen bonding interactions between the solvent molecules and free terminal cyanide groups.Our findings demonstrate that the guest solvent molecules can also significantly modulate the metal-to-metal charge transfer (MMCT) through intermolecular interactions.Moreover,uncoordinated anions can modulate the molecular structure and MMCT by affecting the crystallographic environment of the complexes.These results provide valuable insights into the precise modulation of charge transfer.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    鏈狀仁和大連理工大學
    小學之花春浪漫 仁和文化育桃李
    小學時代(2020年23期)2020-12-13 10:34:22
    大腸桿菌對鏈狀彎殼藻生長特性的影響
    再議仁和拒付退單案
    中國外匯(2019年16期)2019-11-16 09:27:46
    Research on the Globalization of English in the Internet era
    大東方(2019年1期)2019-09-10 20:30:40
    天下仁和初露直銷鋒芒
    偽隨機碼掩蔽的擴頻信息隱藏
    鏈狀卡塔型苯圖的反強迫數(shù)
    一維鏈狀均苯三酸Co(Ⅱ)配合物的水熱合成及晶體結(jié)構(gòu)研究
    應用化工(2014年1期)2014-08-16 13:34:08
    苯并三氮唑-1-氧基乙酸、4,4′-聯(lián)吡啶構(gòu)筑的一維鏈狀銅配合物的水熱合成及晶體結(jié)構(gòu)
    中泰化學與大連理工大學簽署戰(zhàn)略合作框架協(xié)議
    中國氯堿(2014年11期)2014-02-28 01:05:06
    亚洲av日韩在线播放| 欧美久久黑人一区二区| 一本色道久久久久久精品综合| 亚洲人成电影免费在线| tube8黄色片| 国产淫语在线视频| 亚洲国产欧美日韩在线播放| 最新的欧美精品一区二区| 精品国产乱码久久久久久小说| 最新的欧美精品一区二区| 欧美亚洲 丝袜 人妻 在线| 波多野结衣一区麻豆| 成人黄色视频免费在线看| 极品人妻少妇av视频| 大码成人一级视频| www.精华液| 国产aⅴ精品一区二区三区波| 欧美大码av| 美女福利国产在线| 亚洲专区字幕在线| 亚洲va日本ⅴa欧美va伊人久久| 国产老妇伦熟女老妇高清| 亚洲成人免费av在线播放| 国产精品.久久久| a在线观看视频网站| www.熟女人妻精品国产| 黄网站色视频无遮挡免费观看| 两个人免费观看高清视频| 高清黄色对白视频在线免费看| 国产精品亚洲av一区麻豆| 精品国产国语对白av| 成人特级黄色片久久久久久久 | 久久中文看片网| 最近最新免费中文字幕在线| 久久影院123| 麻豆成人av在线观看| 日韩欧美一区视频在线观看| 汤姆久久久久久久影院中文字幕| 精品一区二区三区av网在线观看 | 肉色欧美久久久久久久蜜桃| 久久久久国产一级毛片高清牌| 一本久久精品| 女人高潮潮喷娇喘18禁视频| 亚洲av日韩在线播放| 精品欧美一区二区三区在线| 九色亚洲精品在线播放| 亚洲视频免费观看视频| 国产欧美日韩一区二区精品| 亚洲国产欧美网| av线在线观看网站| 肉色欧美久久久久久久蜜桃| av又黄又爽大尺度在线免费看| 国产精品久久久久成人av| 新久久久久国产一级毛片| 日韩视频一区二区在线观看| 色综合欧美亚洲国产小说| 免费在线观看视频国产中文字幕亚洲| 日韩视频在线欧美| av网站免费在线观看视频| 午夜激情久久久久久久| 亚洲欧美日韩另类电影网站| 国产精品二区激情视频| 午夜老司机福利片| 又黄又粗又硬又大视频| 少妇被粗大的猛进出69影院| 亚洲五月婷婷丁香| 久久青草综合色| 丝袜在线中文字幕| 黑丝袜美女国产一区| 国产国语露脸激情在线看| 热re99久久国产66热| 成人国产一区最新在线观看| 国产一区二区三区在线臀色熟女 | 老汉色∧v一级毛片| 亚洲精品美女久久久久99蜜臀| 黄片大片在线免费观看| 午夜福利视频精品| 丁香欧美五月| 亚洲五月婷婷丁香| 亚洲中文日韩欧美视频| 日韩成人在线观看一区二区三区| 亚洲av欧美aⅴ国产| 一级片'在线观看视频| 国产老妇伦熟女老妇高清| 精品一品国产午夜福利视频| 成人手机av| 99精品在免费线老司机午夜| 亚洲成人免费av在线播放| 久久人妻熟女aⅴ| 777米奇影视久久| 手机成人av网站| 精品国产一区二区三区四区第35| 午夜福利在线免费观看网站| 日本a在线网址| 亚洲精品国产一区二区精华液| 91成年电影在线观看| 免费女性裸体啪啪无遮挡网站| 一进一出抽搐动态| 99久久国产精品久久久| 黄色a级毛片大全视频| 岛国在线观看网站| 美女午夜性视频免费| 国产男女超爽视频在线观看| 99热国产这里只有精品6| 国产男女内射视频| 一本大道久久a久久精品| 亚洲 国产 在线| 国产欧美亚洲国产| 国产精品成人在线| 国产单亲对白刺激| 在线观看免费高清a一片| 激情视频va一区二区三区| 在线观看免费视频网站a站| 女人久久www免费人成看片| 18禁美女被吸乳视频| 波多野结衣一区麻豆| 国产精品久久电影中文字幕 | 超色免费av| 日本vs欧美在线观看视频| √禁漫天堂资源中文www| 99久久99久久久精品蜜桃| www.999成人在线观看| 亚洲七黄色美女视频| 香蕉国产在线看| 亚洲成国产人片在线观看| 黄色毛片三级朝国网站| 久久国产精品影院| 免费少妇av软件| 国产精品久久久久久精品古装| 国产精品久久久久久精品电影小说| 一区福利在线观看| 久久精品国产亚洲av高清一级| 日韩中文字幕视频在线看片| 亚洲av成人一区二区三| 国产高清视频在线播放一区| 99精品欧美一区二区三区四区| a在线观看视频网站| 777米奇影视久久| 我要看黄色一级片免费的| 亚洲全国av大片| 天堂动漫精品| 久久精品成人免费网站| 性少妇av在线| 亚洲国产av新网站| 一级毛片电影观看| 黄色a级毛片大全视频| 欧美 亚洲 国产 日韩一| 蜜桃国产av成人99| 国产精品二区激情视频| cao死你这个sao货| 69精品国产乱码久久久| 熟女少妇亚洲综合色aaa.| 国产av国产精品国产| 老司机深夜福利视频在线观看| 国产亚洲一区二区精品| 日本欧美视频一区| 国产成人精品在线电影| 青草久久国产| 欧美大码av| 国产精品98久久久久久宅男小说| 中文字幕制服av| 亚洲精品国产精品久久久不卡| 首页视频小说图片口味搜索| 热re99久久精品国产66热6| 亚洲av日韩精品久久久久久密| 国产单亲对白刺激| 老司机靠b影院| 久久中文字幕一级| 久久国产精品人妻蜜桃| 国产日韩欧美亚洲二区| 欧美成狂野欧美在线观看| 亚洲成人手机| 国产欧美日韩一区二区三| 中文字幕人妻熟女乱码| av免费在线观看网站| 欧美日本中文国产一区发布| 人妻久久中文字幕网| 亚洲欧美激情在线| 少妇裸体淫交视频免费看高清 | 男女床上黄色一级片免费看| 777米奇影视久久| 动漫黄色视频在线观看| 亚洲七黄色美女视频| 久久热在线av| 国产在线观看jvid| 亚洲人成电影免费在线| 一二三四在线观看免费中文在| 欧美日本中文国产一区发布| 欧美日韩亚洲国产一区二区在线观看 | 精品欧美一区二区三区在线| 12—13女人毛片做爰片一| 免费观看人在逋| 制服人妻中文乱码| 亚洲国产毛片av蜜桃av| 两性夫妻黄色片| 精品国产国语对白av| 国产免费av片在线观看野外av| 99精品久久久久人妻精品| 欧美精品啪啪一区二区三区| 黄色视频不卡| 制服人妻中文乱码| 国产xxxxx性猛交| 亚洲色图 男人天堂 中文字幕| 高清欧美精品videossex| 精品乱码久久久久久99久播| 成人三级做爰电影| av天堂在线播放| 亚洲av国产av综合av卡| 成人永久免费在线观看视频 | 亚洲成人手机| 久久av网站| 亚洲免费av在线视频| 亚洲精品成人av观看孕妇| 五月开心婷婷网| 国产精品免费大片| 男女午夜视频在线观看| 99精品久久久久人妻精品| 亚洲一区中文字幕在线| 免费高清在线观看日韩| 亚洲欧美日韩高清在线视频 | 丰满迷人的少妇在线观看| 亚洲伊人色综图| 汤姆久久久久久久影院中文字幕| a级毛片黄视频| 啦啦啦 在线观看视频| 欧美另类亚洲清纯唯美| 午夜免费成人在线视频| 一区在线观看完整版| 成年人午夜在线观看视频| 在线天堂中文资源库| 亚洲国产中文字幕在线视频| 波多野结衣av一区二区av| 桃红色精品国产亚洲av| 9热在线视频观看99| 亚洲中文av在线| www.精华液| 丝瓜视频免费看黄片| 视频在线观看一区二区三区| 老司机亚洲免费影院| 国产在线视频一区二区| 成人影院久久| 午夜福利乱码中文字幕| 色婷婷av一区二区三区视频| 国产高清视频在线播放一区| 国产黄频视频在线观看| 欧美精品亚洲一区二区| 51午夜福利影视在线观看| 精品国产乱子伦一区二区三区| 国产真人三级小视频在线观看| 亚洲人成电影免费在线| 国产无遮挡羞羞视频在线观看| 久久精品国产亚洲av高清一级| 亚洲精品av麻豆狂野| 久久精品国产亚洲av香蕉五月 | 91九色精品人成在线观看| 久久中文看片网| 亚洲国产欧美在线一区| 涩涩av久久男人的天堂| 久久久精品国产亚洲av高清涩受| 999久久久精品免费观看国产| 午夜精品久久久久久毛片777| 欧美 亚洲 国产 日韩一| 亚洲精品粉嫩美女一区| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩一区二区三| 少妇的丰满在线观看| 久久久久久久国产电影| 成人手机av| 老司机在亚洲福利影院| 亚洲国产精品一区二区三区在线| 久久精品亚洲精品国产色婷小说| 日韩视频一区二区在线观看| 精品少妇内射三级| 国产在线视频一区二区| 50天的宝宝边吃奶边哭怎么回事| 欧美老熟妇乱子伦牲交| 黑人猛操日本美女一级片| 精品亚洲成a人片在线观看| 亚洲色图 男人天堂 中文字幕| 午夜激情av网站| 叶爱在线成人免费视频播放| 9191精品国产免费久久| 性高湖久久久久久久久免费观看| av国产精品久久久久影院| 欧美变态另类bdsm刘玥| 亚洲avbb在线观看| 天天影视国产精品| 狂野欧美激情性xxxx| 亚洲全国av大片| 国产精品成人在线| 建设人人有责人人尽责人人享有的| 久久99一区二区三区| 黑人操中国人逼视频| 久久久久精品人妻al黑| 色视频在线一区二区三区| 大型黄色视频在线免费观看| 纵有疾风起免费观看全集完整版| 在线 av 中文字幕| 日韩熟女老妇一区二区性免费视频| 菩萨蛮人人尽说江南好唐韦庄| 久久久精品区二区三区| 桃红色精品国产亚洲av| 日韩中文字幕欧美一区二区| 国产免费福利视频在线观看| 中文字幕精品免费在线观看视频| 丝袜美腿诱惑在线| 午夜91福利影院| 啦啦啦 在线观看视频| 丰满迷人的少妇在线观看| 人妻 亚洲 视频| 91麻豆av在线| 日韩视频在线欧美| 一级片'在线观看视频| 久久久国产欧美日韩av| 亚洲国产av影院在线观看| 婷婷成人精品国产| 欧美成狂野欧美在线观看| 麻豆成人av在线观看| 啪啪无遮挡十八禁网站| 曰老女人黄片| 亚洲国产欧美一区二区综合| av免费在线观看网站| 99国产精品一区二区蜜桃av | videosex国产| 午夜免费成人在线视频| 一个人免费在线观看的高清视频| 午夜老司机福利片| 欧美精品啪啪一区二区三区| 他把我摸到了高潮在线观看 | 大片免费播放器 马上看| 丝袜喷水一区| 亚洲一区二区三区欧美精品| 精品少妇久久久久久888优播| av天堂在线播放| 这个男人来自地球电影免费观看| 欧美日韩国产mv在线观看视频| 久久亚洲精品不卡| 久久久国产欧美日韩av| 亚洲黑人精品在线| 久久精品国产综合久久久| 黄片小视频在线播放| 狂野欧美激情性xxxx| 成人av一区二区三区在线看| 国产福利在线免费观看视频| 国产成人啪精品午夜网站| 久久热在线av| 国产精品久久久久久精品古装| av网站免费在线观看视频| 天天躁日日躁夜夜躁夜夜| 蜜桃国产av成人99| 久久亚洲真实| 一本久久精品| 1024香蕉在线观看| 99久久精品国产亚洲精品| 麻豆乱淫一区二区| 国产免费av片在线观看野外av| 日韩中文字幕视频在线看片| 99国产极品粉嫩在线观看| 久久久久久久久久久久大奶| 美国免费a级毛片| 国产一区二区三区综合在线观看| 国产精品久久电影中文字幕 | 美国免费a级毛片| 国产三级黄色录像| 伦理电影免费视频| 亚洲av成人不卡在线观看播放网| 一级,二级,三级黄色视频| 精品少妇内射三级| 亚洲精品一二三| 国产成人欧美在线观看 | 欧美精品高潮呻吟av久久| 如日韩欧美国产精品一区二区三区| 一本大道久久a久久精品| 天堂动漫精品| 国产精品久久电影中文字幕 | 老熟妇仑乱视频hdxx| 成在线人永久免费视频| 久久热在线av| 日本五十路高清| 国产成人精品久久二区二区91| 久久人妻av系列| 人人妻,人人澡人人爽秒播| 欧美在线一区亚洲| 国产精品一区二区免费欧美| 每晚都被弄得嗷嗷叫到高潮| 91av网站免费观看| 久久人人爽av亚洲精品天堂| 悠悠久久av| 母亲3免费完整高清在线观看| 一级毛片精品| 日韩精品免费视频一区二区三区| 日本av免费视频播放| 丝袜美足系列| 少妇被粗大的猛进出69影院| 三级毛片av免费| 亚洲精品国产区一区二| 别揉我奶头~嗯~啊~动态视频| 日韩免费av在线播放| 国产国语露脸激情在线看| 精品高清国产在线一区| www.自偷自拍.com| 成人国语在线视频| 国产淫语在线视频| 久久影院123| 99re6热这里在线精品视频| 啦啦啦中文免费视频观看日本| 五月开心婷婷网| 王馨瑶露胸无遮挡在线观看| 狠狠狠狠99中文字幕| 午夜激情av网站| 汤姆久久久久久久影院中文字幕| 少妇粗大呻吟视频| 亚洲国产av影院在线观看| videos熟女内射| av又黄又爽大尺度在线免费看| 天天躁狠狠躁夜夜躁狠狠躁| 狂野欧美激情性xxxx| 精品视频人人做人人爽| 丰满迷人的少妇在线观看| 国产欧美日韩精品亚洲av| 国产精品电影一区二区三区 | 黄色片一级片一级黄色片| av线在线观看网站| 亚洲综合色网址| 久久精品aⅴ一区二区三区四区| 91大片在线观看| 99精品欧美一区二区三区四区| 啦啦啦在线免费观看视频4| 成人免费观看视频高清| 不卡av一区二区三区| 亚洲国产欧美一区二区综合| 蜜桃国产av成人99| 日本vs欧美在线观看视频| 国产精品麻豆人妻色哟哟久久| 狂野欧美激情性xxxx| 日韩欧美一区视频在线观看| 人人妻人人添人人爽欧美一区卜| 90打野战视频偷拍视频| 在线十欧美十亚洲十日本专区| 夜夜爽天天搞| 亚洲精品在线美女| 极品人妻少妇av视频| 久久久国产欧美日韩av| 国产成人系列免费观看| 免费女性裸体啪啪无遮挡网站| 亚洲午夜理论影院| av有码第一页| 久久午夜综合久久蜜桃| 免费少妇av软件| 国产成人一区二区三区免费视频网站| 热re99久久精品国产66热6| 啪啪无遮挡十八禁网站| 高清欧美精品videossex| 视频区欧美日本亚洲| 人人澡人人妻人| av视频免费观看在线观看| 精品久久久久久电影网| 国产高清视频在线播放一区| 汤姆久久久久久久影院中文字幕| 97人妻天天添夜夜摸| 亚洲av第一区精品v没综合| 在线观看舔阴道视频| 五月开心婷婷网| 精品国内亚洲2022精品成人 | 十八禁高潮呻吟视频| 亚洲人成电影免费在线| 999精品在线视频| 香蕉国产在线看| 亚洲熟女毛片儿| av福利片在线| 欧美精品高潮呻吟av久久| 国产片内射在线| 99在线人妻在线中文字幕 | 天天躁狠狠躁夜夜躁狠狠躁| 国产人伦9x9x在线观看| 女人久久www免费人成看片| 国产精品久久久久成人av| 亚洲精品自拍成人| 18禁观看日本| 欧美日韩亚洲国产一区二区在线观看 | 国产深夜福利视频在线观看| 国产亚洲欧美精品永久| 精品人妻熟女毛片av久久网站| 天天躁日日躁夜夜躁夜夜| 母亲3免费完整高清在线观看| 亚洲精品国产区一区二| 一本色道久久久久久精品综合| 欧美变态另类bdsm刘玥| 久久国产亚洲av麻豆专区| 久久精品国产亚洲av高清一级| 亚洲成人免费电影在线观看| 成年人黄色毛片网站| 一区二区三区激情视频| 国产色视频综合| 啦啦啦视频在线资源免费观看| 国产aⅴ精品一区二区三区波| 十八禁网站网址无遮挡| 精品高清国产在线一区| 成人免费观看视频高清| 中文字幕av电影在线播放| 国产在线免费精品| 色综合婷婷激情| 俄罗斯特黄特色一大片| 欧美 亚洲 国产 日韩一| 久久久久久久精品吃奶| 下体分泌物呈黄色| 亚洲一码二码三码区别大吗| 国产精品熟女久久久久浪| 亚洲精品中文字幕一二三四区 | 人妻一区二区av| 9色porny在线观看| 久久中文看片网| 黄片播放在线免费| 久久久久精品人妻al黑| 99精品在免费线老司机午夜| 国产欧美亚洲国产| 中文字幕av电影在线播放| 日韩视频一区二区在线观看| 免费在线观看视频国产中文字幕亚洲| 久久亚洲真实| 久久久精品区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩亚洲高清精品| 欧美日韩一级在线毛片| 久久精品国产a三级三级三级| 欧美黄色淫秽网站| 国产一区有黄有色的免费视频| 国产成人一区二区三区免费视频网站| 12—13女人毛片做爰片一| 精品国产一区二区久久| 成人av一区二区三区在线看| 日韩大码丰满熟妇| 亚洲欧美激情在线| 嫁个100分男人电影在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久午夜亚洲精品久久| 飞空精品影院首页| 十分钟在线观看高清视频www| av欧美777| 国产高清videossex| 精品人妻熟女毛片av久久网站| 黄片播放在线免费| 99国产精品免费福利视频| 亚洲色图综合在线观看| 国产精品自产拍在线观看55亚洲 | 五月天丁香电影| av超薄肉色丝袜交足视频| 日韩一区二区三区影片| 后天国语完整版免费观看| 天天躁夜夜躁狠狠躁躁| 精品久久久久久电影网| 国产一区有黄有色的免费视频| 美女扒开内裤让男人捅视频| 国产精品国产av在线观看| 50天的宝宝边吃奶边哭怎么回事| 日本黄色日本黄色录像| 国产熟女午夜一区二区三区| 久久久久久免费高清国产稀缺| 中文欧美无线码| 999久久久精品免费观看国产| 如日韩欧美国产精品一区二区三区| 欧美亚洲日本最大视频资源| 精品熟女少妇八av免费久了| 久久精品国产a三级三级三级| 18禁裸乳无遮挡动漫免费视频| 天天影视国产精品| svipshipincom国产片| kizo精华| 国产av国产精品国产| 精品国产一区二区三区久久久樱花| 老司机亚洲免费影院| 色精品久久人妻99蜜桃| 国产亚洲一区二区精品| 久久这里只有精品19| 久久国产精品男人的天堂亚洲| 亚洲精品国产色婷婷电影| 亚洲精品美女久久av网站| netflix在线观看网站| 少妇裸体淫交视频免费看高清 | 免费看a级黄色片| 欧美成人免费av一区二区三区 | 国产日韩欧美亚洲二区| 一级片'在线观看视频| av视频免费观看在线观看| 午夜免费鲁丝| 久久国产精品大桥未久av| 久久久久网色| 国产精品偷伦视频观看了| 天天躁夜夜躁狠狠躁躁| 一本色道久久久久久精品综合| 国产av一区二区精品久久| 黄色怎么调成土黄色| 色94色欧美一区二区| 在线 av 中文字幕| 高清毛片免费观看视频网站 | 如日韩欧美国产精品一区二区三区| www.自偷自拍.com| 国产亚洲欧美精品永久| 欧美黄色片欧美黄色片| 男男h啪啪无遮挡| 69av精品久久久久久 | 亚洲av欧美aⅴ国产| 色综合欧美亚洲国产小说| 欧美黑人精品巨大| 国产片内射在线| 亚洲第一青青草原| 99国产精品99久久久久| 99国产综合亚洲精品| a级毛片黄视频| 国产成人影院久久av| 国产精品亚洲一级av第二区| 日本撒尿小便嘘嘘汇集6| 国产不卡av网站在线观看| 午夜福利视频精品| 成在线人永久免费视频|