• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Silicon photomultiplier based scintillator thermal neutron detector for China Spallation Neutron Source(CSNS)

    2023-10-11 07:55:10XiuPingYue岳秀萍ZhiFuZhu朱志甫BinTang唐彬ChangHuang黃暢QianYu于潛ShaoJiaChen陳少佳XiuKuWang王修庫HongXu許虹ShiHuiZhou周詩慧XiaoJieCai蔡小杰HaoYang楊浩ZhiYongWan萬志勇ZhiJiaSun孫志嘉andYunTaoLiu劉云濤
    Chinese Physics B 2023年9期
    關鍵詞:楊浩

    Xiu-Ping Yue(岳秀萍), Zhi-Fu Zhu(朱志甫), Bin Tang(唐彬), Chang Huang(黃暢), Qian Yu(于潛),Shao-Jia Chen(陳少佳), Xiu-Ku Wang(王修庫), Hong Xu(許虹), Shi-Hui Zhou(周詩慧),Xiao-Jie Cai(蔡小杰), Hao Yang(楊浩), Zhi-Yong Wan(萬志勇),Zhi-Jia Sun(孫志嘉), and Yun-Tao Liu(劉云濤)

    1Engineering Research Center of Nuclear Technology Application,East China University of Technology,Ministry of Education,Nanchang 330013,China

    2Spallation Neutron Source Science Center,Dongguan 523803,China

    3Zhengzhou University of Technology,Zhengzhou 450044,China

    4Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China

    5Lanzhou University,Lanzhou 730000,China

    6Institute of Modern Physics,Chinese Academy of Sciences,Lanzhou 730000,China

    7Zhengzhou University,Zhengzhou 450001,China

    8Southwest University of Science and Technology,Mianyang 621002,China

    Keywords: neutron detector, silicon photomultipliers (SiPMs), 6LiF/ZnS(Ag), China Spallation Neutron Source(CSNS)

    1.Introduction

    Neutron scattering technology has been widely used in condensed matter physics, chemistry, life sciences, materials science, and other fields as an ideal probe for studying the structural and dynamic properties of matter.[1,2]The Chinese Spallation Neutron Source (CSNS) successfully produced its first neutron beam on August 28, 2017.It has been running steadily since March,2018.[3]According to the construction plan of neutron instruments, the energy-resolved imaging spectrometer (ERNI) will be installed in 2022.ERNI is a combined facility of neutron imaging and neutron diffraction that can provide strong penetration, high resolution, andin-situlossless imaging characterization.The instrument can be used to characterize and analyze the internal microstructure,defects,morphology,and stress of a device,as well as for online studies of the internal dynamic processes of materials and devices.In addition, it can also provide key data support for the simulation and modeling of practical applications and running systems,and time-of-flight(TOF)techniques can be used by ERNI for energy-selective imaging applications.The ERNI is based on Bragg-edge imaging,supplemented by conventional neutron imaging and neutron diffraction, with a neutron diffraction sensitivity area of larger than 4 m2and a sample-to-detector distance of 2 m.According to the physical design of the ERNI, the performance of the neutron detector must fulfill the parameters listed in Table 1.

    Table 1.Main parameters of the detector modules for ERNI.

    Owing to its high detection efficiency and steady performance, the3He tube is widely used in various neutron spectrometers.However, because of the shortage of3He gas, and consequently its high price,there is an urgent need to develop other types of neutron detectors to replace the3He tubes.[4,5]Scintillator neutron detectors have gradually replaced3He tubes in many neutron instruments because of their unique advantages including high detection efficiency, fast time response, goodn/γdiscrimination, and ease of fabrication in large areas, such as that of IMAT (ISIS),[6]TAKUMI (JPARC),[7]POWGEN(SNS),[8]and EMD(CSNS).

    Many scintillator detectors used in neutron spectrometers utilize multi-anode photomultiplier tubes(MA-PMT)for photoelectric conversion.And the signals from the PMT are processed by traditional discrete readout electronics with large volume and high power consumption.[9,10]The main detector of the general purpose powder diffractometer (GPPD) in CSNS is the self-developed large-area scintillation detector array with a position resolution of 4 mm×4 mm and a thermal neutron detection efficiency of more than 45%@2 ?A.[11]All indicators fulfill the requirements of the spectrometer.But this large-area scintillator detector array has poor detection efficiency uniformity.[3]Although the MA-PMT has stable performance and high gain, it has some problems, such as poor uniformity of the gain between each working unit,high working voltage, large volume, and poor resistance to magnetic field interference.In recent years, SiPMs have attracted increasing attention owing to their high single-photon resolution, ease of integration, and low operating voltage.[12–14]In this work, to achieve excellent detector performance such as low cost, small dead area, and good uniformity of detection efficiency,the SiPM is used instead of the MA-PMT for photoelectric conversion.A self-designed ASIC electronics has also been developed for the new detector system.

    In this study, we developed a detector prototype with a neutron sensitive area of 50 mm×200 mm using SiPMs for photoelectronic conversion and using ASIC electronics for signal process and readout.The performances of the detector,such as dark count rate, detection efficiency, position resolution, and maximum count rate, were tested in neutron beam 20#at the CSNS.

    2.Detector prototype structure

    2.1.Detector working principle

    6LiF/ZnS(Ag)is a commonly used neutron sensitive scintillator screen.The incident neutrons react with neutronsensitive materials6Li in the scintillation screen to produceαparticles and tritium nuclei.Secondary particles deposit energy and emit photons in the scintillation material.The ZnS scintillation material is a polycrystalline powder with a particle size of tens of microns, which has high luminous efficiency forαparticles,low sensitivity toγ,and a highn/γratio.According to our previous test of different6LiF/ZnS(Ag)screens and the manufacturer’s recommendation,[15]scintillator screens with the following characteristics are chosen: the ratio of the masses of6LiF to ZnS(Ag)is 1:2, and the screen thickness sets to 400 μm.[16,17]The luminescence spectrum is 400 nm–600 nm with its peak at 412 nm.Using transverse or longitudinal arrangements of light collecting fibers to reduce the number of readout electronics channels for the pixel type detector is a common practice for position-sensitive detector.The wavelength-shifting fiber (WLSF) array is designed here to reduce the number of readout electronics channels from tens of thousands down to a few hundred for 3 mm pixel size.Through the research of the detectors for the GPPD,the WLSF from kuraray with 1 mm diameter(Y-11(200)MS)is still suitable.[11,18]Considering that each end of two 1 mmdiameter WLSFs needs to be coupled to the SiPM entrance window,the effective working area of the SiPM device needs to be about 3 mm×3 mm.The MicroFC-30035 SiPM from Sensl is adopted.[19]

    After amplification,filtering,and shaping by the readout electronics,the optical signal detected by the SiPM is fed into the data acquisition system based on a field programmable gate array (FPGA).The data are analyzed by online and offline programs to obtain the position and time information of the incident neutrons.

    The detection efficiency of the scintillation screen depends on the energy deposition and photon emission probability of the neutrons in the scintillation screen.Because of the opaque of the6LiF/ZnS screen, the scintillator screens are designed to tilt to increase the path of incidence neutrons without increasing the emission path of the scintillating photons.This could improve the detection efficiency effectively.The simulation results are shown in Fig.1 by GEANT4 for different tilt angles of the6LiF/ZnS screen.With a decrease in the angle between the scintillation screen and the incident neutron, the detection efficiency of the scintillation screen gradually increases.At an incidence angle of 20°, the nuclear reaction conversion efficiency of the 400 μm thickness6LiF/ZnS screen can reach 78%at the neutron wavelength of 1 ?A.Therefore,we change the traditional vertical neutron incidence structure and design the detector as a tilt incidence structure.According to the physical design of ERNI,the sensitive area of the detector is 200 mm×50 mm, and the sensitive area will be equipped with 64 inclined6LiF/ZnS (Ag)scintillation screens.Considering the limits of the mechanical design when optimizing neutron absorption efficiency, minimum dead area and maximum light collection and the space needed for two 1 mm diameter WLSFs arrangement in each pixel, the tilt angle of the detector scintillation screen is determined to be 17°.This structure defines the 3 mm×50 mm pixel size and 64 pixel channels.A schematic design of the detector head part is shown in Fig.2.

    Fig.1.Neutron conversion efficiency of scintillation screens at various tilt angles at different wavelengths.

    Fig.2.Schematic design of the detector head part for the traditional vertical neutron incidence structure(left)and the tilt incidence structure(right).

    2.2.Detector prototype

    The detector prototype is a one-dimensional detector with the striped pixels (3 mm×5 mm).Two longitudinally distributed 1 mm-diameter WLSFs are placed on the surface of the scintillation screen to absorb the photons emitted by the scintillation screen in each pixel.In addition, each pixel is optically isolated by an aluminum film to prevent optical crosstalk between adjacent channels.And the four end faces of the two optical fibers are coupled to the sensitive surface of the SiPM by a specially designed couple base.The detector prototype has 64 pixels and 128 WLSFs.The structural diagram of the detector is shown in Fig.3.

    Fig.3.Design of the detector structure.

    The detector prototype picture is shown in Fig.4.The detector has 64 electronic channels, and two 32-array SiPMs with a unit sensitive area of 3 mm×3 mm are used for the photoelectric signal conversion.We have designed a fixture for coupling optical fiber with the SiPM.The couple base of the WLSFs and SiPMs has 32 holes with a diameter of 3 mm.After grinding, the two optical fibers of each pixel of the detector will be placed in the small hole of the fixture in order.Four fiber ends in each hole are directly coupled to the SiPM array.

    Fig.4.Detector prototype picture.

    3.ASIC electronics

    The electronic system of the detector collects the weak electrical signal output from the SiPMs, discriminates, amplifies, reshapes, and performs analog-to-digital conversion,data compression, and packaging.Finally, the neutron event data are transformed to the computer for analysis and calculation.The data acquisition system is divided into preamplification and data acquisition circuit systems.Figure 5 shows the block diagram of the electronics.The preamplifier circuit system includes an IHEP SiPM ASIC chip,circuit protection,power management,chip address configuration,DAC configuration,DAC scale,signal detection rectification,internal clock configuration modules, and an adaptation network.The ASIC chip is used to amplify, shape, filter, and discriminate the analog signal.The DAC configuration module can adjust the threshold value of the discriminator and also adjust the width limit value of the filter to reduce the dark noise from the SiPMs.The preamp circuit converts the analog signal to a digital signal and sends it to the data-acquisition system.The data acquisition system is primarily controlled by an FPGA.The FPGA controls the charge measurement,temperature sensing,analog-to-digital conversion,and finally uploads the data packet to the computer.Figure 6 shows the picture of the readout electronics board.

    Radiation source tests of the detector system in the laboratory were carried out to verify the performance of the readout electronics.A241Am alpha source was positioned on one pixel of the detector.The signal out from electronics was monitored by an oscilloscope.The test results are shown in Fig.7.After the pre-amplification circuit,the signal was quite smooth, which aided in the subsequent identification of the signals and noise.The width of the signal pulse was less than 3 μs and its rising time was less than 200 ns.It is quite easy to distinguish from the noise of the SiPM.

    Fig.5.Electronics block diagram.

    Fig.6.The picture of the readout electronics board.

    Fig.7.Oscilloscope observed alpha signal.

    4.Performance of the detector prototype

    4.1.Noise of the detector

    Most of the noise in the detector system comes from the SiPMs.Because the SiPM is a semiconductor-based photoelectric conversion device, it is very sensitive to temperature changes.In future engineering applications of the detector,the detector will work in a light-avoid space.The heat dissipation of the electronics board changes the space temperature.These changes will affect the performance of the SiPM,such as the gain and the dark count rate.With the increase of the temperature,the phonon vibration increases in the SiPM.The kinetic energy loss of avalanche carriers increases due to the increase in scattering collision,and the gain of the SiPM decreases with the increase in temperature.In contrast,the dark count rate of the SiPM increases with the increase of temperature.Because of the semiconductor characteristics, the carriers increase at higher temperatures.

    The change in the performance of the SiPMs will directly lead to the inaccuracy and unreliability of the neutron test.The curve of gain versus temperature and the curve of gain versus voltage of the SiPM were measured, which showed to guide the design of temperature drift compensation module.The temperature compensation coefficient of the SiPM was calculated to be 21.3 mV/°C, which is the same as the factory instruction.Using the temperature compensation coefficient,we developed an FPGA-based temperature compensation module.The working temperature of the SiPM was measured in real time using a temperature sensor welded on the SiPM and then fed back to the FPGA on the electronic board.The gain can be compensated by adjusting the working voltage of the SiPMs.

    Fig.8.SiPM noise counting at different temperatures.

    With the action of a temperature compensation module,we tested the noise count rate of the detector prototype at different temperatures, as shown in Fig.8.Although the gain of the SiPMs was stable, the dark noise counts still increase when the temperature rose.The dark noise counts were below 0.5 s-1·pixel-1in the temperature ranging from 20°C to 30°C,which means the working environment temperature should be maintained below 30°C.A cooling fan was installed in the light-avoid area to keep the temperature of the SiPM between 26°C–28°C.

    4.2.Detection efficiency

    A3He counting tube(20 atm)is used as the primary comparison tool for testing the detection efficiency of the detector.The neutron detection efficiency of the detector to be tested at different neutron wavelengths can be obtained by normalizing the counting of the detector prototype with that of the3He tube.The detection efficiency of the detector prototype can be calculated by

    whereNSDandN3Heare the total counts for the scintillator detector and standard3He tube neutrons,respectively.η3Heis the detection efficiency of a standard3He tube.Figure 9 shows a block diagram of the testing principle.Because the neutron wavelength distribution of BL20 is wide, a mica (0010)(008) monochromator is used to extract neutrons at specific wavelengths and reduce the neutron intensity.When the angle between the mica monochromator and the neutron beam is 45°,the neutrons of a specific wavelength can be extracted.A standard3He tube (252315, LND) with a pressure of 20 atm and a diameter of 1 inch is used to measure the incident neutron intensity from a shielded slit with a width of 1 mm.The standard3He tube is then removed, and the neutron intensity is measured using a prototype detector under the same conditions.

    Figure 10 shows the TOF spectra of the3He tube and the detector prototype.It can be clearly observed that the flight time interval of the characteristic peaks at different wavelengths in the TOF spectra of both the3He tube and the detector correspond to each other.The TOF-to-neutron wavelength conversion can be obtained from

    whereLandtare the distance of the detector from the center of the target station and the TOF time,respectively.The inset of Fig.10 shows the characteristic peaks of the3He tube and the detector at a neutron wavelength of 2.87 ?A.From Fig.10,we can observe that the characteristic peak of the detector is shifted to the right relative to that of the3He tube.As shown in Fig.9, the detector prototype is located behind the3He tube.So the distance from the center of the target station to the scintillator detector is longer.According to Eq.(2),under the same neutron wavelength, the distance is proportional to the time.Based on the difference in the peak value, we calculate that the distance between the3He tube and detector is 3 cm,which is consistent with the actual distance.In addition, it can be observed in the illustration that the pulse width of the characteristic peak of the3He tube is larger than that of the detector.This is because the diameter of the standard3He tube we adopted is 1 inch(25 mm),so the flight distance migration of neutrons in the3He tube is greater than that of neutrons in the scintillator detector (10 mm).Therefore, we can say that the wavelength resolution of the scintillator detector is higher than that of the3He tube.

    Fig.9.Schematic of the detection efficiency test principle.

    Fig.10.TOF spectrum of the 3He counter and detector.The inset shows the characteristic peak of the 3He tube and detector when the neutron wavelength is 2.87 ?A.

    We tested the detection efficiency at three different positions in the sensitive area of the detector prototype.The detection efficiency of the3He tube reached 100% at 2.87 ?A wavelength and 99.8% at 1.59 ?A.The detection efficiencies of three pixels of the scintillator detector at different neutron wavelengths were calculated, as shown in Fig.11.The highest detection efficiencies of the pixel are 63.3%at 1.59 ?A and 68%at 2.39 ?A.The detection efficiencies of each pixel are not exactly the same.This is caused by the small difference in the process of making the detector.There are some differences in each WLSF and in the flatness of each scintillator screen.The coupling between the WLSF and the SiPM is also slightly different.By simple nonlinear fitting, the detection efficiencies of the three pixels are found to be all higher than 40%at 1 ?A,which fulfill the requirements of the ERNI.In the following work, we will measure and optimize the detection efficiency and non-uniformity of the detector.By adjusting the readout electron threshold of each pixel, the neutron counting uniformity of each pixel is optimized to more than 90%.On this basis, the non-uniformity of detection efficiency has little influence on the stress test results of the sample.

    Fig.11.Detection efficiencies of different pixels at different neutron wavelengths.

    4.3.Max count rate

    The neutron signal measured by the scintillator detector based on ZnS/6LiF has long optical attenuation,and the pulse width of the signal is generally approximately 10 μs with slow luminescent component.The application of this type of scintillator detector is limited by its low count rate.Through the optimization by the self-designed readout electronics,the slow component of the neutron signal larger than 2 μs is eliminated.We tested the max count rate of the detector by adjusting the slit length which was placed in the neutron exit hole to control the neutron flux.The detector was placed in the straight direction of the beam line, and a boron-containing aluminum plate with different slit lengths were placed in front of the detector.The counting rate curve can be obtained when the slits changed,as shown in Fig.12.The counting rate of the detector increased linearly with increasing slit length.When the slit length larger than 20 mm,the counting rate of the detector increased in nonlinearity.When the slit length was greater than 80 mm, the counting rate reached 459 kHz which is nearly saturation.Through linearly fitting of the counting-rate vs.slit length,we obtained that the highest linear counting rate is about 247 kHz when the slit length is 20 mm.

    Fig.12.Counting rate test results.The inset shows the counting rate increases linearly with the slit length when the slit length is less than 20 mm.

    4.4.Spatial resolution

    According to the requirements of ERNI,the pixel size of the detector prototype was designed to be 3 mm×50 mm.A boron–aluminum plate with 1 mm wide slit was used to test the spatial resolution of the detector.The position resolution test results for the detector are shown in Fig.13.It can be seen that one irradiated peak is clearly resolved.The small neutron counts in the adjacent pixels were caused by the poor neutron collimation.Since each pixel is optically isolated,the spatial resolution corresponds to the detector pixel size.The minimum spatial resolution of the detector in the horizontal direction is 3 mm.

    Fig.13.Results of position resolution test.

    5.Preliminary engineering design of the detector for ERNI application

    Figure 14 shows the picture of two kinds of detector units which contains six and four small detector modules respectively.These units will be fixed on a mechanical support frame to form an arc structure with a radius of 2 m.All the units will be placed in the shell of a boron-containing aluminum plate to protect from light and neutron radiation.Each detector module in the unit consists of 64 pixels with a size of 3 mm×50 mm.All detector units are mounted on a bank bracket according to the laser positioning data.

    Fig.14.Preliminary engineering design of the detector for ERNI.

    6.Conclusion

    We developed a scintillator neutron detector prototype for the ERNI based on a6LiF/ZnS (Ag) scintillation screen and SiPM array.The neutron signal was processed by a selfdesigned electronics based on the ASIC chip and FPGA.The prototype of the detector was tested in neutron beam 20#of the CSNS.The test results showed that the position resolution of the detector was 3 mm,the max count rate was 247 kHz,and the detection efficiency was greater than 40% at 1 ?A neutron wavelength.The test results showed that the detector fulfilled the requirements of the ERNI.This detector prototype could be a good working unit for the array splicing structure for the ERNI.We will start the mass production of the nearly 400 detector units for future installation in the ERNI.AcknowledgmentsProject supported by the National Natural Science Foundation of China(Grant Nos.11875273,U1832111,61964001,and 12275049), the Science Foundation of Guangdong Province of China (Grant No.2020B1515120025), the Neutron Physics Laboratory Funding of China Academy of Engineering Physics (Grant No.2018BC03), the General Project of Jiangxi Province Key Research and Development Program (Grant No.20212BBG73012), the Key Scientific Research Projects of Henan Higher Education Institutions(Grant Nos.23A490002 and 24A490001), and the Engineering Research Center of Nuclear Technology Application (Grant No.HJSJYB2021-4).

    猜你喜歡
    楊浩
    南京信息工程大學藝術學院書法作品選登
    平凡人生 絢麗篇章
    ——記兵團勞動模范楊浩
    兵團工運(2019年9期)2019-12-13 00:08:28
    討債也犯罪嗎
    故事會(2019年5期)2019-03-05 04:51:34
    紀實
    河南電力(2017年9期)2017-11-29 14:06:15
    拼爸
    啄木鳥(2016年6期)2016-05-31 13:53:35
    以司法辦案的質效檢驗司法公信力——訪秦皇島市人民檢察院黨組書記、檢察長楊浩
    楊浩涌:創(chuàng)業(yè)者要學會造勢和借勢
    金色年華(2016年10期)2016-02-28 01:41:48
    銷售與市場·渠道版(2016年1期)2016-02-23 22:13:28
    楊浩涌談“如果”
    百億美金背后的命運——楊浩涌:百億美金背后的命運
    www.色视频.com| 亚洲国产欧美人成| av国产免费在线观看| 在线观看一区二区三区激情| 三级经典国产精品| 免费观看的影片在线观看| 国产免费福利视频在线观看| 成人二区视频| 久久久久久久久大av| 午夜免费观看性视频| 国产综合精华液| 精品人妻熟女av久视频| 国产精品精品国产色婷婷| 国产毛片a区久久久久| videos熟女内射| 51国产日韩欧美| 国产成人福利小说| 婷婷色麻豆天堂久久| 国产午夜精品一二区理论片| 国产久久久一区二区三区| 国产亚洲一区二区精品| 午夜免费鲁丝| 日韩三级伦理在线观看| 免费av不卡在线播放| 日韩一区二区视频免费看| 精品一区二区三区视频在线| 日本一二三区视频观看| 91久久精品国产一区二区成人| 日日啪夜夜撸| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品国产色婷婷电影| 日韩大片免费观看网站| 日本wwww免费看| 91午夜精品亚洲一区二区三区| 99久久精品一区二区三区| 亚洲内射少妇av| 亚洲精品国产成人久久av| 汤姆久久久久久久影院中文字幕| 国产一区二区三区综合在线观看 | 波多野结衣巨乳人妻| 大码成人一级视频| 亚洲av在线观看美女高潮| 高清av免费在线| 精品一区二区三卡| 免费观看无遮挡的男女| 男人舔奶头视频| 日韩成人伦理影院| 97精品久久久久久久久久精品| 99热国产这里只有精品6| 97精品久久久久久久久久精品| 一级毛片久久久久久久久女| 免费观看在线日韩| 欧美日韩亚洲高清精品| 少妇的逼好多水| 精品国产一区二区三区久久久樱花 | 人妻一区二区av| 自拍偷自拍亚洲精品老妇| 欧美成人精品欧美一级黄| 精品人妻熟女av久视频| 毛片一级片免费看久久久久| 国产一区亚洲一区在线观看| 国产白丝娇喘喷水9色精品| 国产爽快片一区二区三区| 成年人午夜在线观看视频| 免费不卡的大黄色大毛片视频在线观看| 国产欧美日韩精品一区二区| 亚洲欧美日韩卡通动漫| 三级国产精品欧美在线观看| 高清午夜精品一区二区三区| 国产av码专区亚洲av| 久久亚洲国产成人精品v| 欧美极品一区二区三区四区| 51国产日韩欧美| 一级毛片久久久久久久久女| 亚洲av二区三区四区| 日韩一区二区三区影片| 一级毛片我不卡| 日韩伦理黄色片| 欧美高清性xxxxhd video| 国产黄a三级三级三级人| 肉色欧美久久久久久久蜜桃 | 国产午夜福利久久久久久| 涩涩av久久男人的天堂| 男人爽女人下面视频在线观看| 精品午夜福利在线看| 国产高清三级在线| 亚洲精品成人av观看孕妇| 少妇人妻久久综合中文| 午夜免费观看性视频| 男人爽女人下面视频在线观看| 中国国产av一级| 男女国产视频网站| 免费观看a级毛片全部| 永久网站在线| 中文字幕久久专区| 性插视频无遮挡在线免费观看| 日韩av在线免费看完整版不卡| 国产色爽女视频免费观看| 好男人视频免费观看在线| 亚洲欧美精品专区久久| 国产伦理片在线播放av一区| 国产精品久久久久久久久免| 啦啦啦中文免费视频观看日本| 精品久久久久久久久av| 日韩欧美 国产精品| 少妇的逼水好多| 麻豆成人午夜福利视频| 国产视频首页在线观看| 日韩不卡一区二区三区视频在线| 欧美高清成人免费视频www| 嘟嘟电影网在线观看| 少妇猛男粗大的猛烈进出视频 | 人妻少妇偷人精品九色| 国产精品久久久久久精品古装| 日韩欧美精品免费久久| 春色校园在线视频观看| 免费在线观看成人毛片| 日本黄色片子视频| 熟妇人妻不卡中文字幕| 国产69精品久久久久777片| 一本久久精品| 视频中文字幕在线观看| 在线观看国产h片| 啦啦啦中文免费视频观看日本| 久久6这里有精品| 一级毛片我不卡| 久久精品久久精品一区二区三区| 亚洲自偷自拍三级| 高清日韩中文字幕在线| 久久久久久伊人网av| 亚洲av福利一区| 狂野欧美激情性xxxx在线观看| 日韩成人av中文字幕在线观看| 亚洲婷婷狠狠爱综合网| 国产精品熟女久久久久浪| 亚洲最大成人手机在线| 亚洲国产精品成人久久小说| 日韩 亚洲 欧美在线| 美女内射精品一级片tv| 国产亚洲5aaaaa淫片| 亚洲欧美一区二区三区黑人 | 国产成人91sexporn| 内射极品少妇av片p| 国产欧美日韩一区二区三区在线 | 噜噜噜噜噜久久久久久91| 免费播放大片免费观看视频在线观看| eeuss影院久久| 男女边摸边吃奶| 夫妻性生交免费视频一级片| 黄色欧美视频在线观看| 亚洲婷婷狠狠爱综合网| 一区二区三区四区激情视频| 中国国产av一级| 日韩制服骚丝袜av| h日本视频在线播放| 日本一本二区三区精品| 99热全是精品| 亚洲精品久久午夜乱码| 少妇人妻 视频| 欧美区成人在线视频| 99re6热这里在线精品视频| 久热久热在线精品观看| 女的被弄到高潮叫床怎么办| 91精品国产九色| 韩国高清视频一区二区三区| 听说在线观看完整版免费高清| 国产精品秋霞免费鲁丝片| 亚洲一区二区三区欧美精品 | 亚洲精品自拍成人| 欧美三级亚洲精品| 九九在线视频观看精品| 日韩在线高清观看一区二区三区| 日日啪夜夜爽| 亚洲精品一二三| 国产精品国产av在线观看| 国产久久久一区二区三区| 国产 精品1| 国产免费视频播放在线视频| 久久久久久久久大av| 欧美日韩视频精品一区| 亚洲av中文av极速乱| 国产精品偷伦视频观看了| 九草在线视频观看| 免费黄频网站在线观看国产| 韩国av在线不卡| 一二三四中文在线观看免费高清| 午夜亚洲福利在线播放| 色婷婷久久久亚洲欧美| 建设人人有责人人尽责人人享有的 | 天天躁日日操中文字幕| 亚洲av电影在线观看一区二区三区 | 日本熟妇午夜| 九草在线视频观看| 中文资源天堂在线| 男人狂女人下面高潮的视频| 日韩av免费高清视频| 97超视频在线观看视频| 国产午夜精品久久久久久一区二区三区| 小蜜桃在线观看免费完整版高清| 国产欧美日韩一区二区三区在线 | 男人舔奶头视频| 国产精品福利在线免费观看| 午夜福利网站1000一区二区三区| 国产有黄有色有爽视频| 波野结衣二区三区在线| 成人欧美大片| 成人鲁丝片一二三区免费| 免费看日本二区| 人妻少妇偷人精品九色| 成人无遮挡网站| 成人漫画全彩无遮挡| 亚洲综合色惰| 亚洲天堂av无毛| 男女啪啪激烈高潮av片| 在线天堂最新版资源| 色5月婷婷丁香| 黄色一级大片看看| av在线观看视频网站免费| 边亲边吃奶的免费视频| 成人欧美大片| 亚洲国产精品国产精品| 99热这里只有是精品在线观看| 97精品久久久久久久久久精品| 美女cb高潮喷水在线观看| 91久久精品国产一区二区成人| 高清av免费在线| 汤姆久久久久久久影院中文字幕| 亚洲自拍偷在线| 九草在线视频观看| 男女无遮挡免费网站观看| 国产成人freesex在线| 国产伦精品一区二区三区四那| 亚洲丝袜综合中文字幕| 国产欧美日韩精品一区二区| 看黄色毛片网站| 美女被艹到高潮喷水动态| 亚洲三级黄色毛片| 久久久久久久久久久免费av| 国产精品久久久久久久电影| 亚洲电影在线观看av| .国产精品久久| 国产高清不卡午夜福利| 国产成人freesex在线| 伊人久久国产一区二区| 性色avwww在线观看| 在线 av 中文字幕| 大香蕉97超碰在线| 大香蕉97超碰在线| 高清欧美精品videossex| 熟女人妻精品中文字幕| 精品人妻熟女av久视频| 91精品国产九色| 真实男女啪啪啪动态图| 夜夜爽夜夜爽视频| 欧美潮喷喷水| 亚洲在线观看片| 97在线人人人人妻| 午夜精品国产一区二区电影 | 97精品久久久久久久久久精品| 最近2019中文字幕mv第一页| 免费看日本二区| 特大巨黑吊av在线直播| 欧美成人精品欧美一级黄| 大香蕉97超碰在线| 麻豆乱淫一区二区| 国产欧美日韩一区二区三区在线 | 亚洲欧美精品自产自拍| 国产有黄有色有爽视频| 亚洲经典国产精华液单| 欧美激情久久久久久爽电影| 男女无遮挡免费网站观看| 国产爽快片一区二区三区| 国产精品蜜桃在线观看| 真实男女啪啪啪动态图| 一级爰片在线观看| 久久这里有精品视频免费| av在线app专区| 99热这里只有精品一区| 久久精品国产亚洲网站| 韩国高清视频一区二区三区| 老女人水多毛片| 另类亚洲欧美激情| 国产白丝娇喘喷水9色精品| 91久久精品电影网| 欧美bdsm另类| 777米奇影视久久| 日韩大片免费观看网站| 国产精品久久久久久精品电影| 搡老乐熟女国产| 青春草亚洲视频在线观看| 日韩欧美精品免费久久| 成年av动漫网址| 人妻 亚洲 视频| 日本一本二区三区精品| 亚洲欧美日韩东京热| 成人欧美大片| 高清在线视频一区二区三区| 日日啪夜夜爽| 国产综合懂色| 久久久久久国产a免费观看| 国产精品久久久久久精品电影小说 | 中国三级夫妇交换| 成人特级av手机在线观看| 69av精品久久久久久| 69人妻影院| 老司机影院成人| 欧美成人一区二区免费高清观看| 一本一本综合久久| 一二三四中文在线观看免费高清| 久久久色成人| 国产老妇伦熟女老妇高清| 亚洲精品一区蜜桃| 少妇的逼水好多| 不卡视频在线观看欧美| 蜜臀久久99精品久久宅男| 中文天堂在线官网| 99久久中文字幕三级久久日本| 国产综合精华液| 性色av一级| 又爽又黄a免费视频| 免费看日本二区| 97在线人人人人妻| 十八禁网站网址无遮挡 | 欧美精品一区二区大全| 91午夜精品亚洲一区二区三区| 欧美激情在线99| 精品久久久精品久久久| 丰满少妇做爰视频| 性色av一级| 亚洲久久久久久中文字幕| 久久精品国产亚洲av天美| 亚洲av不卡在线观看| 国产乱来视频区| 国产精品伦人一区二区| 成人亚洲精品av一区二区| 如何舔出高潮| 日韩在线高清观看一区二区三区| 黄色一级大片看看| 欧美日韩一区二区视频在线观看视频在线 | 青青草视频在线视频观看| 美女xxoo啪啪120秒动态图| 综合色av麻豆| 欧美日韩视频高清一区二区三区二| 热re99久久精品国产66热6| 新久久久久国产一级毛片| 国产成人精品一,二区| 欧美日本视频| 少妇人妻一区二区三区视频| 视频区图区小说| 97在线视频观看| 国产 精品1| 成年av动漫网址| 人妻一区二区av| 婷婷色麻豆天堂久久| 激情五月婷婷亚洲| 欧美xxxx性猛交bbbb| 秋霞伦理黄片| 久久热精品热| 日本wwww免费看| 美女国产视频在线观看| 久久人人爽av亚洲精品天堂 | 三级男女做爰猛烈吃奶摸视频| 制服丝袜香蕉在线| 天堂中文最新版在线下载 | 亚洲欧美中文字幕日韩二区| 亚洲精品中文字幕在线视频 | 少妇人妻久久综合中文| 久久ye,这里只有精品| 嫩草影院入口| 欧美xxxx黑人xx丫x性爽| 亚洲国产精品国产精品| 欧美激情国产日韩精品一区| 在线天堂最新版资源| 精品人妻视频免费看| 国产成人免费观看mmmm| 97超视频在线观看视频| 国产一区亚洲一区在线观看| 一本一本综合久久| 亚洲精品一区蜜桃| 麻豆成人av视频| 日本午夜av视频| 99久久中文字幕三级久久日本| 国产精品精品国产色婷婷| 精品久久久久久久末码| 99热6这里只有精品| 亚洲欧美成人精品一区二区| 波野结衣二区三区在线| 在线观看av片永久免费下载| 国内揄拍国产精品人妻在线| 亚洲精品乱久久久久久| 在线 av 中文字幕| 免费看日本二区| 日韩在线高清观看一区二区三区| 成年女人在线观看亚洲视频 | 亚洲av中文字字幕乱码综合| 身体一侧抽搐| 亚洲怡红院男人天堂| eeuss影院久久| 欧美日韩视频高清一区二区三区二| 最近2019中文字幕mv第一页| 女的被弄到高潮叫床怎么办| 国产色爽女视频免费观看| 尾随美女入室| 成人亚洲精品一区在线观看 | 亚洲精华国产精华液的使用体验| 自拍偷自拍亚洲精品老妇| 一级毛片 在线播放| 我要看日韩黄色一级片| 久久99热这里只频精品6学生| 三级国产精品片| av专区在线播放| 全区人妻精品视频| 亚洲精品国产色婷婷电影| 在线 av 中文字幕| 国产一区有黄有色的免费视频| 午夜福利在线观看免费完整高清在| 亚洲综合色惰| 嫩草影院入口| 国产爽快片一区二区三区| 国产老妇女一区| 成人黄色视频免费在线看| 视频中文字幕在线观看| 亚洲婷婷狠狠爱综合网| 男男h啪啪无遮挡| 免费黄色在线免费观看| 国产爽快片一区二区三区| 免费av观看视频| 国产亚洲5aaaaa淫片| 高清日韩中文字幕在线| 亚洲精品久久午夜乱码| av黄色大香蕉| 国产精品.久久久| 欧美性感艳星| 免费黄色在线免费观看| 欧美成人午夜免费资源| 亚洲在久久综合| 亚洲av中文av极速乱| 中文欧美无线码| 99久久精品国产国产毛片| 亚洲天堂国产精品一区在线| 久久久久久久久久人人人人人人| 九色成人免费人妻av| 熟女人妻精品中文字幕| 国产欧美日韩精品一区二区| 边亲边吃奶的免费视频| 美女主播在线视频| 美女xxoo啪啪120秒动态图| 日日啪夜夜爽| 成人亚洲精品一区在线观看 | 久久久久精品性色| 国产色爽女视频免费观看| 欧美人与善性xxx| 大码成人一级视频| 成人无遮挡网站| a级毛色黄片| 国产黄片美女视频| 国产极品天堂在线| 国产男女内射视频| 国产中年淑女户外野战色| 人妻 亚洲 视频| 精品国产一区二区三区久久久樱花 | 美女内射精品一级片tv| 亚洲av成人精品一二三区| 免费大片18禁| 一本一本综合久久| 国产精品不卡视频一区二区| 日产精品乱码卡一卡2卡三| 啦啦啦在线观看免费高清www| 亚洲精品第二区| 99精国产麻豆久久婷婷| 国产欧美另类精品又又久久亚洲欧美| 久久国内精品自在自线图片| 建设人人有责人人尽责人人享有的 | 久久久久网色| 成人二区视频| 国内少妇人妻偷人精品xxx网站| 激情五月婷婷亚洲| 啦啦啦啦在线视频资源| 免费观看av网站的网址| 美女国产视频在线观看| 好男人在线观看高清免费视频| 联通29元200g的流量卡| 三级国产精品欧美在线观看| 男女国产视频网站| 久久久色成人| 午夜视频国产福利| 联通29元200g的流量卡| 婷婷色麻豆天堂久久| 国产成人精品婷婷| 婷婷色av中文字幕| 亚洲精品日韩在线中文字幕| av免费在线看不卡| 亚洲成人精品中文字幕电影| 日韩av免费高清视频| 啦啦啦中文免费视频观看日本| 成人亚洲精品av一区二区| 亚洲av国产av综合av卡| 在线观看美女被高潮喷水网站| 女的被弄到高潮叫床怎么办| 一个人看的www免费观看视频| 街头女战士在线观看网站| 国产高清有码在线观看视频| 国产高清有码在线观看视频| av女优亚洲男人天堂| 国产淫片久久久久久久久| 久久久久久久亚洲中文字幕| 亚洲av二区三区四区| 精品久久久久久久久亚洲| 2021天堂中文幕一二区在线观| 成人高潮视频无遮挡免费网站| 男女边摸边吃奶| 草草在线视频免费看| 一区二区三区免费毛片| 中文字幕人妻熟人妻熟丝袜美| 夜夜看夜夜爽夜夜摸| 99久久中文字幕三级久久日本| 春色校园在线视频观看| 黄色一级大片看看| 亚洲国产av新网站| 春色校园在线视频观看| 成人午夜精彩视频在线观看| 国产精品一区二区性色av| 欧美激情在线99| 日韩视频在线欧美| 少妇人妻 视频| 热re99久久精品国产66热6| 人妻夜夜爽99麻豆av| 欧美xxxx黑人xx丫x性爽| 欧美激情国产日韩精品一区| 国产男女内射视频| 高清毛片免费看| 亚洲欧美日韩无卡精品| 亚洲人与动物交配视频| av.在线天堂| 天天躁日日操中文字幕| 高清视频免费观看一区二区| 有码 亚洲区| 国产高清三级在线| 草草在线视频免费看| 女人被狂操c到高潮| 日韩av在线免费看完整版不卡| 18禁裸乳无遮挡免费网站照片| 国产欧美亚洲国产| 欧美性猛交╳xxx乱大交人| 成人一区二区视频在线观看| 久久久成人免费电影| 亚洲精品国产av蜜桃| 国产精品福利在线免费观看| 精品一区二区三区视频在线| 国产高清不卡午夜福利| 免费大片18禁| av线在线观看网站| 国产 一区精品| 国内精品宾馆在线| 别揉我奶头 嗯啊视频| 两个人的视频大全免费| 精品久久久久久久久av| 伊人久久国产一区二区| 夜夜爽夜夜爽视频| 人妻夜夜爽99麻豆av| 欧美一区二区亚洲| 久久精品国产亚洲av天美| 国内少妇人妻偷人精品xxx网站| av国产精品久久久久影院| 国产成人a区在线观看| 国产毛片在线视频| 亚洲国产精品专区欧美| 亚洲欧美日韩卡通动漫| 国产91av在线免费观看| 国产午夜福利久久久久久| 深爱激情五月婷婷| 亚洲国产成人一精品久久久| 色综合色国产| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产v大片淫在线免费观看| 欧美三级亚洲精品| 亚洲精品国产色婷婷电影| 中文字幕亚洲精品专区| 人体艺术视频欧美日本| 各种免费的搞黄视频| 中文乱码字字幕精品一区二区三区| 日韩电影二区| 高清av免费在线| 男人狂女人下面高潮的视频| 国产免费一级a男人的天堂| 国产精品爽爽va在线观看网站| 在线亚洲精品国产二区图片欧美 | 国产视频内射| 国产精品.久久久| 一本色道久久久久久精品综合| 国产中年淑女户外野战色| 天天躁夜夜躁狠狠久久av| 国产精品久久久久久av不卡| 黄色欧美视频在线观看| 欧美日韩精品成人综合77777| 美女内射精品一级片tv| 日本三级黄在线观看| 午夜福利在线在线| 亚洲高清免费不卡视频| 日韩欧美一区视频在线观看 | 欧美精品国产亚洲| 51国产日韩欧美| 免费看光身美女| www.色视频.com| 久久午夜福利片| 国产在线一区二区三区精| 少妇被粗大猛烈的视频| 三级国产精品片| 精品人妻视频免费看| 特大巨黑吊av在线直播| 草草在线视频免费看| 极品少妇高潮喷水抽搐| 国产精品av视频在线免费观看| 亚洲国产精品成人久久小说| 亚洲精品一二三|