• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear modes coupling of trapped spin–orbit coupled spin-1 Bose–Einstein condensates

    2023-10-11 07:54:58JieWang王杰JunChengLiang梁俊成ZiFaYu魚(yú)自發(fā)AnQingZhang張安慶AiXiaZhang張愛(ài)霞andJuKuiXue薛具奎
    Chinese Physics B 2023年9期
    關(guān)鍵詞:王杰安慶

    Jie Wang(王杰), Jun-Cheng Liang(梁俊成), Zi-Fa Yu(魚(yú)自發(fā)), An-Qing Zhang(張安慶),Ai-Xia Zhang(張愛(ài)霞), and Ju-Kui Xue(薛具奎)

    College of Physics and Electronics Engineering,Northwest Normal University,Lanzhou 730070,China

    Keywords: spin–orbit coupled spin-1 Bose–Einstein condenses,collective excitations,nonlinear modes coupling

    1.Introduction

    Ultra-cold atomic gases provide an ideal platform for exploring novel spin–orbit(SO)coupling physics,owing to their unprecedented levels of control[1–4]and precision in experiments.In ultra cold atomic gases, SO coupling can be generated by the two-photon Raman coupling technique.[5–9]Recently,SO-coupled spin-1 Bose–Einstein condensates(BECs)have been successfully achieved in experiments through Raman coupling among three hyperfine states of atoms,[2,10]thus paving the way to explore the rich physics of SO-coupled spin-1 BECs.Theoretical predictions and experimental observations of SO-coupled spin-1 BECs render various novel ground-state phases including plane wave phase, stripe phase and zero-momentum phases,etc.[11–14]

    The collective excitation also provides an effective tool for exploring the physics of the condensates,and can be used to identify the phase transition of the system dynamically.The collective excitation of the spin-1/2 BECs with SO coupling has been widely and deeply explored experimentally[7,15]and theoretically[16,17]by using the sum rule approach[18]and the Bogoliubov spectrum analysis.[19]It is found that the collective dynamics is trivial for conventional condensates and the collective oscillation is harmonic.[20,21]However, the collective dynamics of the trapped spinor BECs is complex.Meanwhile,because of emergence of nonlinearity,a lot of interesting phenomena in the collective excitations of BECs,such as frequency shift,[22]mode coupling,[23–25]damping,[26,27]collapse and revival of oscillations,[28,29]are observed.

    Recently, elementary excitations of SO-coupled spin-1 Boses gases are studied in free space, and it is found that phonon modes of different phases have different structures of rotons.[12,13,30]Noticeably, in trapped SO coupling spin-1 cold-atomic systems, an analogy of Hall response can be detected through collective excitations.[31]In Ref.[32],the collective excitation of a quasi-one-dimensional SOcoupled spin-1 BEC at finite temperatures for antiferromagnetic spin interactions was studied by utilizing the Hartree–Fock–Bogolyubor–Popov approximation.Moreover, the spin dynamics of spin-1 condensates in an external magnetic field is studied,[33]which exhibits a variety of periodic oscillations and provides theoretical support for interactions-driven oscillations.In general, because of coupling effects (induced by SO coupling and Raman coupling) and strong nonlinearity(induced by density-dependent interaction and spin-dependent interaction),rich nonlinear modes coupling(harmonic,anharmonic and irregular dynamics) should exist in SO-coupled spin-1 BECs.Accordingly,the nonlinear modes coupling will result in rich nonlinear spin dynamics.However, those are still open subjects.Particularly, the physical mechanism of generating anharmonic collective dynamics and the transition of harmonic-anharmonic dynamics in different phases of the system are still unclear.

    In this paper, we study collective dynamics of SOcoupled spin-1 BECs in harmonic potential bath analytically and numerically.Using variational approaches, the coupled equations of motions for the center-of-mass coordinate of the condensate and its width are derived.Then, two low energy excitation modes in breathing dynamics and dipole dynamics are obtained analytically,which are in agreement with the numerical results of solving the Gross–Pitaevskii equation.We find that the dipolar dynamics for center-of-mass motion and the breathing dynamics for width variation of condensate are coupled through the spin dynamics induced by the SO coupling.This leads to the emergence of multiple external collective modes.Thus,the dipolar and breathing oscillation will be the superposition of the multiple harmonic oscillations,which generates an anharmonic collective dynamics.Furthermore,in anharmonic oscillations, breathing oscillations can be induced by excited dipole oscillations, and vice versa.Interestingly, spin-dependent interactions play an important role in collective excitation.In dipole dynamics, two degenerate low-energy excitation modes become non-degenerate as spindependent interaction increases.In breathing dynamics,however,when spin-dependent interaction is absent,the breathing dynamics is decoupled from spin dynamics and dipole dynamics, in which the breathing oscillation is harmonic.Particularly, we find that the collective dynamics is distinct in different phases,which is revealed both analytically and numerically.

    The paper is organized as follows.In Section 2, based on the mean field approximation, we obtain the Hamiltonian of SO-coupled spin-1 BECs in a quasi-one-dimensional harmonic potential.In Sections 3 and 4,the variational equation of the system is obtained by minimizing the Lagrange density and the ground state phase of the system is analyzed in detail.In Sections 5, two low energy excitation modes in dipole dynamics and breathing dynamics are obtained analytically and verified numerically.Then the physical mechanism causing the anharmonic oscillation is discussed and the coupling effect of spin dynamics and breathing dynamics is emphasized,which leads to the phenomenon that the dipole (breathing)mode induces the breathing(dipole)mode in anharmonic oscillation.Finally in Section 6 we present conclusions.

    2.The model

    We study the collective dynamics of SO-coupled spin-1 BECs in harmonic potential.The SO coupling is characterized by equally weighted Rashba and Dresselhaus SO coupling.[7]The SO coupling only exists in the ?xdirection and mainly affects the collective dynamics in the ?xdirection, while the dipole oscillations in the ?yand ?zdirections are still harmonic oscillations,and the oscillation frequency is the harmonic potential frequency in that direction.Furthermore, when the strength of the trapping potential in the ?yand ?zdirections is much larger than the frequency of the trapping potential in the ?xdirection, the transverse degrees of freedom of the system are frozen such that the dynamics of the system only occurs in the ?xdirection.Therefore, we consider the onedimensional case and discuss the nonlinear mode coupling caused by SO coupling in the ?xdirection.According to the recent experiments[34,35]about the realization of SO-coupled spin-1 BECs, the dynamics of the BECs trapped in harmonic trap can be expressed by a dimensionless mean-field Gross–Pitaevskii equation (GPE) for normalized spinor wave functionΨ=(ψ1,ψ0,ψ-1)Tas[13,36]

    3.The variational analysis

    Now, the selection of the proper form of the trial functions is crucial.In our case, a natural choice is a Gaussian,i.e.,we take

    whereφ(x)is a normalized Gaussian function

    with the widthR, the center-of-mass positionx0, momentumkalong ?xdirection and the variational rate of radiusδof the wave packets.Here,αandβare variational parameters of the related phases of the two spin states.In particular, the average spin polarization〈Fz〉=M=∫(|ψ1|2-|ψ-1|2)dxand spin tensorcan be measured in experiment.Notice that the parameters(R,k,δ,α,β,x0,M,mz)are all time dependent.The nonlinear dynamics is controlled by a set of coupled Gross–Pitaevskii equations.However, the problem of solving the Gross–Pitaevskii equations can be formulated as a variational problem that minimizes the Lagrangian density.Upon substitute the spinor wave function into the Lagrangian£=∫[(i/2)(Ψ*˙Ψ-Ψ˙Ψ*)-Ψ*(h0+hint)Ψ]dx,one can obtain

    where

    Applying the Euler–Lagrangian equations?£/?qi-d(?£/?˙qi)/dt=0, whereqi={k,R,M,mz,x0,α,β,δ}, we arrive at

    Equations (6)–(9) describe the wave packet dynamics of the system, while Eqs.(10)–(13) give the spin dynamics of the system.It is clear that, because of spin-momentum locking and spin-dependent interaction [Eqs.(7), (10), and (11)], the wave packet dynamics and the spin dynamics are coupled.As discussed in the following sections, the ground state and the dynamics of the system are well described by the Eqs.(6)–(13).The variational analysis with Gaussian ansatz is widely used in studying the dynamics of trapped interacting Bose gas.In literature,[43,44]an intensive study of the reasonability of Gaussian ansatz and variational method was also provided.The reasonability of our variational results obtained with Gaussian ansatz(3)is further well confirmed by numerical simulations of the full GPE(1).

    4.The ground state

    The ground state of the system can be obtained by solving the equations of steady state,i.e., ˙qi=0.We find the SO coupled BECs condensate into the momentum statek=kmin=2γM.Thus, the ground state phases of the system can be determined by the order parameterM.WhenM=0, the condensates are in zero momentum state.On the contrary, whenM/=0, the condensates are in nonzero momentum state.In addition,by substituting the solutions of the steady state equations into Eq.(5),we can numerically obtain the ground state energy of the system.Then, the ground states of the system can be determined.

    Fig.1.(a)The energy band of the system as a function of k for different Ω with g2=-0.5.(b)The average spin polarization|M|against Ω for different g2.We set g0=1,γ =0.1,ω =0.1,and Δ =-4.

    To identify the ground state phases of the system,we plot the energy band structure and average spin polarization|M|with differentΩin Fig.1.It is obvious that,withΩincreasing, the spin polarizationMdecreases from a finite value to zero and the band structure changes from a double degenerate minimum withk/= 0 to a single degenerate minimum withk= 0.This proves that the system has undergone a phase transition.ForM/=0, the atoms condense in thek=±2γMstate, the energy band structure has a double well structure.In this case, there are different numbers of atoms in the two spin statesmF=1 andmF=-1,thus the condensates are in a magnetized state(spin polarized state)with nonzero momentum.ForM=0, the atoms condense in the zero momentum state,and the band structure presents a parabolic structure.In this case,the two spin statesmF=±1 have the same number of atoms, thus the condensates are in an unmagnetized state with zero momentum.

    5.The collective excitation

    To analyze the dipolar and breather modes, we consider the weak perturbation around the equilibrium stateqi0of Eqs.(6)–(13).Substitutingqi=qi0+δqiinto Eqs.(6)–(13),the linearized equations for collective dynamics are acquired as follows:

    5.1.Dipolar dynamics

    Firstly, we only focus on the dipolar oscillation, and assume that the width of condensate still remains unchanged under the weak excitation,i.e.,δR=0.Based on Eqs.(14)–(16),one can obtain

    where

    and the dipolar oscillation can be described by

    withδx0being the initial deviation of the center-of-mass from the equilibrium position.

    Fig.2.Frequency and the corresponding amplitude of the dipolar oscillation versus Ω for different g0 and g2,where γ =0.1,Δ =-4,and ω =0.1: (a)–(c)for g0 =1, (d)–(e)for g0 =9.The corresponding M in the ground state is represented by the solid red line,the dashed black line is the higher-frequency mode with zero amplitude.The results of direct numerical simulation of GPE(1)is represented by symbols.The red dashed line marks the phase transition point.

    For a conventional condensate, the dipolar oscillation is trivial, its frequency is just the harmonic-trap frequency and is independent of SO coupling, RC and inter-atomic interactions.However, for an SO coupled condensate, the dipolaroscillation frequency is different from the trapping frequency.The coupling effect of SO coupling, RC and atomic interactions is generation of two external dipolar modes, which can lead to the dipolar dynamics in the superposition of the two harmonic oscillations.When one of the two external frequencies is the inherent frequency, and the amplitude of the other external frequency vanishes, the dipolar oscillation is harmonic, otherwise it is the anharmonic dipolar oscillation.Whether the dipolar oscillation is harmonic depends on the competition between the two external modes, this is demonstrated in Eqs.(21) and (22) and clearly shown in Fig.2.In Fig.2, the phase transition pointΩ=Ωcis represented byM=0.WhenΩ=0 and|g2| is small [see Figs.2(a) and 2(d)],the two modes degenerate to the trapping frequency,i.e.,ωDL=ωDH=ω.With the increase of|g2|,the two degeneracy frequencies are split apart,and the larger the|g2|is,the more obvious the split is.However,the largerg0weakens the effect ofg2onωDH[see Figs.2(d)–2(f)].As shown in Fig.2, the lower-frequency modeωDLdoes not change much and keeps at trapping frequency asΩincreases, i.e.,ωDL~=ω, whereas the higher-frequency modeωDHalways increases withΩ, especially in theΩ >Ωcregion.When the system is deeply in the unmagnetized phase (Ω ?Ωc), the dipolar oscillation is harmonic withωDL=ω(ADL=1 andADH=0).However,around the phase transition point (Ω ≈Ωc), the collective excitation of the system is complicated and anharmonic.In this case, many modes will be excited.When the system is in the fully magnetized phase (Ω ?Ωc), the amplitudeADHcorresponding to modeωDHdisappears and the dipolar oscillation is also harmonic withωDL=ω.In this case,M →1 andmz →1,nearly all atoms condense in the spin state ofmf=1(i.e.|Ψ-1|2→0,|Ψ0|2→0 and|Ψ1|2→1),it can be approximated that the system is nearly one-component,spin dynamics disappears,so dipolar oscillation is harmonic.

    Fig.3.The dipolar dynamics started in the fully magnetized phase with Ω =0.1(a1)–(e1),in the magnetized phase near phase transition point with Ω =0.55 (a2)–(e2), and in the deep unmagnetized phase with Ω =2.0(a3)–(e3).(e1)–(e3)The corresponding spectrum analyses of dipolar oscillation.We set γ=0.1,g0=1,g2=-0.5,δx0=0.5,δR=0,ω =0.1,and Δ =-4.

    To confirm the variational prediction,with small displacement of the center mass position of wave packets from the ground state, we perform direct numerical simulations of full GPE(1)using the fourth-order Runge–Kutta method,and the dipolar dynamics in the different phase regions is depicted in Fig.3.Meanwhile, the numerical results of the two dipolar modes are also shown in Fig.2, we find that the variational results are in good agreement with the numerical simulations.When the condensates are perturbed in nearly fully magnetized phase[see Figs.3(a1)–3(e1)],as predicted by variational analysis[see Fig.2],the amplitude of higher-frequency modeADHis zero, the dipolar oscillating is harmonic withωDL=ω[see Fig.3(e1)].In this case,M →1 andmz →1[see Figs.3(c1)–3(d1)], the spin dynamics disappears, the breathing dynamics cannot be excited,R ≈R0[see Fig.3(b1)].When the condensates are excited in a magnetized phase near the phase transition point[see Figs.3(a2)–3(e2)],where the dipolar dynamics and the breathing dynamics are strongly coupled due to SO coupling [see Eqs.(14)–(17)], the dipolar oscillation is anharmonic and its oscillation frequency is the superposition of two modesωDLandωDH[see spectrum analysis in Fig.3(e2)].In addition, the dipolar dynamics induces complex and irregular breathing dynamics and spin dynamics[see Figs.3(b2)–3(d2)].When the condensates are excited in the deep unmagnetized phase [see Figs.3(a3)–3(e3)], where the dipolar dynamics and the breathing dynamics are decoupled due toM=0 [see Eqs.(14)–(17)], the dipolar oscillating is harmonic, the dipolar dynamics cannot induce the breathing dynamics and spin dynamics[see Figs.3(b3)and 3(d3)].

    Fig.4.Time evolution of the three pseudo spin states |ψ1|, |ψ0| and|ψ-1| in the fully magnetized phase with Ω =0.1 (the first column),in the unmagnetized phase near phase transition point with Ω =0.55(the second column) and in the deep magnetized phase with Ω =2.0(the third column).We set g0 =1, g2 =-0.5, γ =0.1, ω =0.1, and Δ =-4.

    The corresponding wave packets in different ground state phases are shown in Fig.4.The wave packets|ψ1|,|ψ0| and|ψ-1| are always Gaussian like.In the case of full magnetized phase[see Figs.4(a1)–4(d1)],M →1,mz →1,only one component|ψ1| exists and there is almost no spin exchange between the spin components|ψ1| and|ψ-1|.However, in the magnetized phase near phase transition point,the dynamic behaviors of two pseudo spin components|ψ1|and|ψ-1|are different[see Figs.4(a2)–4(d2)],the strong spin exchange can be observed evidently.In addition,|ψ1|and|ψ-1|are almost coincided in the deep unmagnetized phase [see Figs.4(a3)–4(d3)],M=0, the spin exchange between two pseudo spin components is very weak in this case.We conclude that strong spin dynamic induces strong coupling of dipolar and breather modes,which results in anharmonic and complex wave packets dynamics and spin dynamics.The numerical simulation confirm the variational predictions.

    5.2.Breathing dynamics

    When considering the breathing dynamics under the weak excitation, the mass center of condensates can be regarded to be at rest, i.e.,δx0=0.Based on Eqs.(15)–(17), one can obtain

    whereD21=-(A2+B3+C1),D22=-A1C2-A3B2+A2B3+A2C1+B3C1-B1C3,D23=A1B3C2-A1B2C3+A3B2C1-A2B3C1-A3B1C2+A2B1C3;δR(n)is then-th order derivative ofδRaboutt.From Eq.(23), the low-frequency modeωBLand the high-frequency modeωBHof the breathing oscillation can be acquired as follows:

    where

    The breathing oscillation can be described by

    where

    withδR=R-R0being the deviation of width fromR0initially.

    The inherent frequency of the breathing oscillation for a conventional condensate iswhich depends on the harmonic trapping and atomic interactions.However, the breather modes are complex for spinor BECs, which is related to SO coupling, RC, harmonic trapping, and atomic interactions.Obviously, under a weak excitation,the breathing dynamics of trapped BECs with SO coupling is also the superposition of the two harmonic oscillations with frequenciesωBLandωBH.The competition of the two breather modes is clearly depicted in Fig.5.

    Similar to dipolar dynamics, when one of the two external frequencies is the inherent frequency, and the amplitudes of the other external frequencies vanish [see Eqs.(27a) and(27b)], the breathing oscillation is harmonic, otherwise it is anharmonic.Whether the breathing oscillation is harmonic depends on the competition between the two external modes,which is demonstrated in Eqs.(26) and (27).In addition,the spin-dependent interactiong2has an important effect on breathing dynamics.In particular, wheng2= 0, breathing dynamics is decoupled not only from spin dynamics but also from dipolar dynamics due to coefficientsC2=0 andC3=0[see Eq.(17) or Eqs.(8) and (9)].In this case, the breathing oscillation is also harmonic withωB0.Meanwhile, different from the dipolar mode, the two breather modes do not degenerate wheng2is small andg2only has a greater influence onωBHmode.However,the largerg0weakens the effect ofg2onωDH[see Figs.5(d)–5(f)].As shown in Fig.5, the lower-frequency modeωBLalways varies around the inherent frequencyasΩincreases.Contrarily, the higherfrequency modeωBHalways increases withΩ, especially in theΩ >Ωcregion.When the system is in the fully magnetized phase(Ω ?Ωc),M →1,mz →1,spin dynamics disappears,the breathing dynamics is harmonic with high-frequency modeωBH.The breathing dynamics around the phase transition point(Ω ≈Ωc)is also complex for the reasons similar to that of the dipolar mode,i.e.,strong coupling of breathing dynamics and spin dynamics occurs.However, when the system is deeply in the unmagnetized phase (Ω ?Ωc),M=0, the spin and breathing dynamics are decoupled,the breathing oscillation is also harmonic withωBL~=ωB0(ABL=1 andABH=0).

    Fig.5.The same as Fig.2 but for the breathing oscillation.

    To prove the variational predictions, with the weak perturbation of wave packet width from the ground state, the breathing dynamic behaviors of different phase regions are obtained by numerical simulation [see Fig.6].Meanwhile,the numerical simulation results of the two breather modes are also shown in Fig.5.We find that variational results are also in good agreement with the numerical simulations.When the condensates are disturbed in nearly fully magnetized phase [Figs.6(a1)–6(e1)], as predicted by variational analysis [Fig.5], the amplitude of lower-frequency modeωBLis zero, and the breathing oscillation is harmonic withωBH.In this case,the dipolar dynamics and spin dynamics are not excited [see Figs.6(b1)–6(e1)].When the condensates are excited in a magnetized phase around the phase transition point,the breathing oscillation is anharmonic[see Fig.6(a2)]due to dipolar dynamics and spin dynamic behaviors are excited[see Figs.6(b2)and 6(c2)].At the same time,breathing oscillation frequency is the superposition of two frequenciesωBLandωBH[see spectrum analysis in Fig.6(e2)].When the condensates are excited in the deep unmagnetized phase[see Figs.6(a3)–6(e3)],where the breathing dynamics and the dipolar dynamics are decoupled due toM= 0 [see Eqs.(14)–(17)], the breathing oscillation is harmonic,and the breathing dynamics cannot induce the dipolar dynamics and spin dynamics [see Figs.6(b3)–6(e3)].Interestingly, in this case, although the spin tensormzis excited, it has weak effect on the collective dynamic of the system.

    Fig.6.Breathing dynamics started in the fully magnetized phase with Ω =0.1(a1)–(e1),in the magnetized phase near phase transition point with Ω = 0.55 (a2)–(e2), and in the deep unmagnetized phase with Ω =2.0(a3)–(e3).(e1)–(e3)The corresponding spectrum analyses of breathing oscillation.We set g0 =1, g2 =-0.5, γ =0.1, δR=0.5,δx0=0,ω =0.1,and Δ =-4.The inset in(d3)is a larger view of the gray area.

    In breathing dynamics, the corresponding wave packets dynamics in different ground state phases are shown in Fig.7.In the fully magnetized phase [Figs.7(a1)–7(d1)],M →1,mz →1, the condensates keep in themF=1 state during the breathing dynamics.The numerical results well confirm the variational predictions.In the magnetized phase near phase transition point [Figs.7(a2)–7(d2)], the wave packets of the two spin components|ψ1| and|ψ-1| are obviously different,and there is an obvious spin exchange between|ψ1|and|ψ-1|during the time evolution.However,in the deep unmagnetized phase[Figs.7(a3)–7(d3)],M=0,the wave packets of the two spin components|ψ1|and|ψ-1|almost coincide,and there is no spin exchange between|ψ1| and|ψ-1| in the time evolution.

    Fig.7.Time evolutions of the three pseudo spin states |ψ1|, |ψ0| and|ψ-1|in the fully magnetization phase with Ω =0.1(the first column),in the magnetized phase near phase transition point with Ω =0.55(the second column)and in the deep unmagnetized phase with Ω =2.0(the third column).We set g0=1,g2=-0.5,γ=0.1,ω=0.1,and Δ=-4.

    6.Conclusions

    In summary,we have characterized the collective excitations of interacting SO-coupled spin-1 BECs in harmonic potential.We analytically predict the dipolar and breather modes in collective excitations,which are well confirmed by the numerical results.The collective behaviors of the BECs can be regarded as the superposition of the multiple harmonic oscillations induced by the coupling effects of SO coupling,RC and atomic interactions.Therefore, the collective oscillations can translate between harmonic and anharmonic, which depends on the competition of the multiple external collective modes.In addition,the dipolar dynamics and breathing dynamics can be coupled due to the cooperative effect of spin momentum locking and spin-dependent interaction, and behaves distinct characters in different phases.Interestingly, in anharmonic oscillations, breathing oscillations can be induced by excited dipole oscillations, and vice versa.Our results provide theoretical evidence for identifying, exploring and manipulating the ground sate phases and collective dynamics of a system experimentally.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant Nos.12164042, 12264045,11764039, 11475027, 11865014, 12104374, and 11847304),the Natural Science Foundation of Gansu Province (Grant Nos.17JR5RA076 and 20JR5RA526),the Scientific Research Project of Gansu Higher Education (Grant No.2016A-005),the Innovation Capability Enhancement Project of Gansu Higher Education (Grant Nos.2020A-146 and 2019A-014),and the Creation of Science and Technology of Northwest Normal University(Grant No.NWNU-LKQN-18-33).

    Appendix A: The dimensional reduction of the model

    The GPE describing the three-dimensional trapped SOcoupled spin-1 BECs can be written as

    whereΨ=(ψ1,ψ0,ψ-1)Tis the spinor wave function,px=-iˉh?x,p⊥=-iˉh(?y+?z),g0=4πˉh2(a0+2a2)/(3m),g2=4πˉh2(a2-a0)/(3m), ~Ωis the RC strength, and ~Δis the quadratic Zeeman strength.We consider an SO coupling characterized by an equally weighted Rashba and Dresselhaus SO coupling.The SO coupling only exists in the ?xdirection and mainly affects the collective dynamics in the ?xdirection, while the dipole oscillations in the ?yand ?zdirections are still harmonic oscillations, and the oscillation frequency is the harmonic potential frequency in that direction.Furthermore,when the strength of the trapping potential in the ?yand ?zdirections is much larger than the frequency of the trapping potential in the ?xdirection,the transverse degrees of freedom of the system are frozen such that the dynamics of the system only occurs in the ?xdirection.Therefore, we consider the one-dimensional case and discuss the nonlinear mode coupling caused by SO coupling in the ?xdirection.The threedimensional wave function can be decomposed into

    where

    A constant is ignored in Eq.(A4).Comparing Eqs.(A4)with(A1), we can find that the dimensional reduction of the GPE only causes a correction for the strength of interactions.

    The obtained dimensionless parameters can be estimated according to the relevant experimental parameters.[7,34,39]Taking the wavelength of the Raman laser asλR= 804.3 nm,trapped potential frequencyωx=2π×20 Hz andωy=ωz=2π×400 Hz and atomic numberN=10000, then the oscillator lengths in the ?xdirection and the transverse direction arel0=2.41 μm andl⊥=0.571 μm, respectively; SO couplingγ~4, RC strengthΩ~0–100 and quadratic Zeeman strength|Δ|~0–35 are experimentally adjustable to a large extent.For87Rb atoms, the scattering lengtha0=5.387 nm anda2=5.313 nm,then the reduced density-dependent interactiong0~200 and spin-dependent interactiong2~-1 can be obtained.However, for23Na atoms, the scattering lengtha0=2.646 nm anda2=2.919 nm,theng0~53 andg2~2.Therefore, the physical parameters used in this paper are all within the ranges of experimental parameters.

    Appendix B:Linearization coefficients

    The linearization coefficients mentioned in Section 3 are given as follows:

    whereM,mzandRare taken in the ground state and are determined by Eqs.(6)–(13).

    猜你喜歡
    王杰安慶
    “一不怕苦二不怕死”的解放軍戰(zhàn)士王杰
    安慶師范大學(xué)優(yōu)秀校友
    魚(yú)殤
    意林彩版(2022年1期)2022-05-03 10:25:07
    安慶師范大學(xué)優(yōu)秀校友
    安慶石化:馳援災(zāi)區(qū)顯擔(dān)當(dāng)
    一個(gè)新的三元不等式鏈
    王杰 中共中央黨校教授
    中秋月
    王杰:國(guó)學(xué)與為政智慧
    商周刊(2018年17期)2018-08-31 02:20:12
    The optimization for the eradication of Ebola
    国产亚洲精品久久久com| 全区人妻精品视频| 美女主播在线视频| 亚洲精品色激情综合| av又黄又爽大尺度在线免费看| 国产高清有码在线观看视频| 18禁动态无遮挡网站| 国产午夜精品一二区理论片| 国产精品 国内视频| 桃花免费在线播放| 嫩草影院入口| 极品少妇高潮喷水抽搐| 久久国产精品大桥未久av| 91国产中文字幕| 欧美国产精品一级二级三级| 在线 av 中文字幕| 成人午夜精彩视频在线观看| 男女边摸边吃奶| 亚洲av福利一区| 亚洲婷婷狠狠爱综合网| 亚洲精品456在线播放app| 亚洲人成网站在线观看播放| 久久免费观看电影| 99九九线精品视频在线观看视频| 亚洲精品成人av观看孕妇| 男女无遮挡免费网站观看| 大陆偷拍与自拍| 国产欧美日韩综合在线一区二区| 亚洲欧美日韩卡通动漫| 91精品国产九色| 成人午夜精彩视频在线观看| 美女大奶头黄色视频| 国产精品人妻久久久影院| 午夜91福利影院| 99热这里只有精品一区| 全区人妻精品视频| 国产精品免费大片| 国产日韩欧美视频二区| 人人妻人人爽人人添夜夜欢视频| 国产午夜精品久久久久久一区二区三区| a级毛片免费高清观看在线播放| 亚洲国产色片| 久久久欧美国产精品| 久久免费观看电影| 色视频在线一区二区三区| 久久精品国产亚洲网站| 久久精品国产亚洲av涩爱| 国产 一区精品| 久久综合国产亚洲精品| 亚洲av不卡在线观看| 欧美人与善性xxx| 国产精品无大码| 久久影院123| 少妇人妻精品综合一区二区| 国产成人一区二区在线| 久久99精品国语久久久| av国产精品久久久久影院| 亚洲精品成人av观看孕妇| 考比视频在线观看| 欧美日韩在线观看h| 黑人欧美特级aaaaaa片| 久热久热在线精品观看| 女人久久www免费人成看片| av福利片在线| 亚洲精品国产av成人精品| 国产日韩欧美亚洲二区| 波野结衣二区三区在线| 成人国产av品久久久| 男人添女人高潮全过程视频| 精品熟女少妇av免费看| 97在线视频观看| 最近的中文字幕免费完整| 久久久精品免费免费高清| 伊人亚洲综合成人网| 2018国产大陆天天弄谢| 简卡轻食公司| 99re6热这里在线精品视频| 国产一区二区三区av在线| 综合色丁香网| 中文字幕制服av| 大香蕉久久网| 日韩三级伦理在线观看| 久久精品夜色国产| 亚洲精品美女久久av网站| 国产熟女午夜一区二区三区 | 夫妻性生交免费视频一级片| 中文精品一卡2卡3卡4更新| 一本一本综合久久| 国产不卡av网站在线观看| 超色免费av| 亚洲国产精品一区三区| 高清毛片免费看| 免费高清在线观看日韩| 国国产精品蜜臀av免费| 久热久热在线精品观看| 国产高清不卡午夜福利| 一级a做视频免费观看| 熟女人妻精品中文字幕| 久久精品国产亚洲av涩爱| 看非洲黑人一级黄片| 18禁在线无遮挡免费观看视频| 新久久久久国产一级毛片| 国产有黄有色有爽视频| 国产男女内射视频| 亚洲精品456在线播放app| 女性生殖器流出的白浆| 最近最新中文字幕免费大全7| 最近手机中文字幕大全| 日韩在线高清观看一区二区三区| 久久久久精品久久久久真实原创| 五月天丁香电影| 久热这里只有精品99| 亚洲精品亚洲一区二区| 久久国产亚洲av麻豆专区| 黑人巨大精品欧美一区二区蜜桃 | 日日撸夜夜添| 亚洲精品日本国产第一区| 人妻 亚洲 视频| 久久久午夜欧美精品| 久久人人爽av亚洲精品天堂| 91精品国产九色| 免费高清在线观看日韩| 丰满乱子伦码专区| 亚洲国产欧美日韩在线播放| 一级毛片黄色毛片免费观看视频| 久久影院123| 婷婷成人精品国产| 赤兔流量卡办理| 91久久精品电影网| 校园人妻丝袜中文字幕| 97在线人人人人妻| 久久久亚洲精品成人影院| 国产综合精华液| 高清毛片免费看| 永久网站在线| 成人漫画全彩无遮挡| 久久久久网色| 另类亚洲欧美激情| 3wmmmm亚洲av在线观看| 男人爽女人下面视频在线观看| 国产av一区二区精品久久| 午夜日本视频在线| √禁漫天堂资源中文www| av女优亚洲男人天堂| 男女无遮挡免费网站观看| 国产成人精品久久久久久| 久久99蜜桃精品久久| 2018国产大陆天天弄谢| 精品少妇内射三级| 亚洲人与动物交配视频| 国产一区有黄有色的免费视频| 女性生殖器流出的白浆| 免费高清在线观看日韩| av免费观看日本| 自拍欧美九色日韩亚洲蝌蚪91| 性色avwww在线观看| 久久精品夜色国产| 免费少妇av软件| 国产一区二区三区综合在线观看 | 免费观看a级毛片全部| 搡老乐熟女国产| 久久久久国产精品人妻一区二区| 黄色欧美视频在线观看| 色网站视频免费| 国产熟女午夜一区二区三区 | a级片在线免费高清观看视频| 久久久午夜欧美精品| 国产精品一区二区在线不卡| 一本一本综合久久| 黑人巨大精品欧美一区二区蜜桃 | 久久精品国产亚洲av涩爱| 亚洲精品自拍成人| xxx大片免费视频| 午夜福利视频精品| 国产精品久久久久久精品古装| 大又大粗又爽又黄少妇毛片口| 大陆偷拍与自拍| 免费播放大片免费观看视频在线观看| 国产精品一区二区在线不卡| 2021少妇久久久久久久久久久| 黑人巨大精品欧美一区二区蜜桃 | 中文字幕人妻丝袜制服| 精品一区二区免费观看| 亚洲欧美日韩卡通动漫| 国产又色又爽无遮挡免| 一区二区av电影网| 麻豆乱淫一区二区| 亚洲第一区二区三区不卡| 成人影院久久| 夜夜爽夜夜爽视频| 免费播放大片免费观看视频在线观看| 免费黄色在线免费观看| 久久人妻熟女aⅴ| 在线观看国产h片| 伊人久久国产一区二区| 满18在线观看网站| 国产亚洲欧美精品永久| 亚洲四区av| 天天影视国产精品| 熟女电影av网| 一本—道久久a久久精品蜜桃钙片| 午夜老司机福利剧场| 久久久久久久亚洲中文字幕| 九九在线视频观看精品| 一区二区三区精品91| 国产精品免费大片| 国产精品久久久久成人av| 国产在线一区二区三区精| 欧美人与善性xxx| 超色免费av| 伦理电影免费视频| 国产精品一区www在线观看| 一个人免费看片子| 最近中文字幕2019免费版| 最新中文字幕久久久久| av卡一久久| 亚洲av不卡在线观看| 久久精品国产亚洲av涩爱| 日韩三级伦理在线观看| 久久精品国产亚洲av天美| 亚洲一区二区三区欧美精品| 美女cb高潮喷水在线观看| 欧美激情国产日韩精品一区| 丰满乱子伦码专区| 亚洲少妇的诱惑av| 亚洲熟女精品中文字幕| 日本欧美国产在线视频| .国产精品久久| 亚洲av电影在线观看一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 这个男人来自地球电影免费观看 | 亚洲av国产av综合av卡| 99久国产av精品国产电影| 国产成人freesex在线| 亚洲国产欧美在线一区| 久久久久久人妻| 国产女主播在线喷水免费视频网站| 91在线精品国自产拍蜜月| 精品一区二区三卡| 国产精品国产三级国产av玫瑰| a级毛片黄视频| 亚洲无线观看免费| 少妇被粗大猛烈的视频| 丰满少妇做爰视频| 黄色配什么色好看| 国产综合精华液| 夜夜爽夜夜爽视频| 成人国语在线视频| 久久精品国产亚洲av天美| 国产精品 国内视频| 久久人人爽av亚洲精品天堂| 纯流量卡能插随身wifi吗| 女性生殖器流出的白浆| 日韩强制内射视频| 欧美97在线视频| 日韩不卡一区二区三区视频在线| 嘟嘟电影网在线观看| 纵有疾风起免费观看全集完整版| 午夜老司机福利剧场| 十八禁网站网址无遮挡| 欧美性感艳星| av视频免费观看在线观看| 极品人妻少妇av视频| 麻豆乱淫一区二区| a级毛片在线看网站| 亚洲国产最新在线播放| 性高湖久久久久久久久免费观看| 视频中文字幕在线观看| 国产不卡av网站在线观看| 黑人高潮一二区| 特大巨黑吊av在线直播| 亚洲熟女精品中文字幕| 性色av一级| 极品少妇高潮喷水抽搐| 91国产中文字幕| 一本大道久久a久久精品| 人人妻人人爽人人添夜夜欢视频| 中文字幕最新亚洲高清| 赤兔流量卡办理| 久久久久视频综合| 欧美日韩亚洲高清精品| 亚洲天堂av无毛| 亚洲欧美一区二区三区国产| 亚洲国产精品一区二区三区在线| 精品久久久精品久久久| 国产在线视频一区二区| 少妇的逼好多水| 少妇 在线观看| 大又大粗又爽又黄少妇毛片口| 国产精品久久久久久精品电影小说| 久久久欧美国产精品| 国产探花极品一区二区| 亚洲精品视频女| 卡戴珊不雅视频在线播放| 久久国产精品男人的天堂亚洲 | 大话2 男鬼变身卡| 美女xxoo啪啪120秒动态图| 国产精品蜜桃在线观看| 精品国产露脸久久av麻豆| 黑人欧美特级aaaaaa片| 国产精品麻豆人妻色哟哟久久| 日本黄大片高清| 国产视频首页在线观看| 热re99久久精品国产66热6| 成人亚洲欧美一区二区av| 国产黄片视频在线免费观看| 人人妻人人爽人人添夜夜欢视频| 免费av中文字幕在线| 国产日韩欧美在线精品| 色婷婷av一区二区三区视频| 久久精品国产亚洲av天美| 亚洲熟女精品中文字幕| 丝袜在线中文字幕| 国产一区二区三区av在线| 水蜜桃什么品种好| 欧美精品人与动牲交sv欧美| 亚洲欧美清纯卡通| 欧美老熟妇乱子伦牲交| 国产欧美另类精品又又久久亚洲欧美| 丁香六月天网| 91aial.com中文字幕在线观看| 美女内射精品一级片tv| 老司机影院毛片| 亚洲,一卡二卡三卡| 欧美激情 高清一区二区三区| 午夜久久久在线观看| 免费黄频网站在线观看国产| 成人国产av品久久久| 久久久久久伊人网av| 久久久久久久国产电影| 人人妻人人澡人人看| 国产精品蜜桃在线观看| 久久精品久久久久久噜噜老黄| 另类精品久久| 欧美日韩精品成人综合77777| 国产无遮挡羞羞视频在线观看| 日产精品乱码卡一卡2卡三| 人妻少妇偷人精品九色| 美女大奶头黄色视频| 曰老女人黄片| 美女大奶头黄色视频| 亚洲精品日本国产第一区| 永久网站在线| 丝袜脚勾引网站| 亚洲精品aⅴ在线观看| av不卡在线播放| 美女脱内裤让男人舔精品视频| 国产免费一区二区三区四区乱码| 国产精品麻豆人妻色哟哟久久| 黄片无遮挡物在线观看| 夜夜骑夜夜射夜夜干| 免费大片黄手机在线观看| 亚洲内射少妇av| 亚洲av在线观看美女高潮| 只有这里有精品99| 99久久精品国产国产毛片| 国产在线免费精品| 国产片内射在线| 如何舔出高潮| 国产免费福利视频在线观看| 亚洲精品久久午夜乱码| 国产免费又黄又爽又色| 精品国产乱码久久久久久小说| 亚洲欧美一区二区三区国产| 看免费成人av毛片| 国产亚洲午夜精品一区二区久久| 日本黄色片子视频| 成人免费观看视频高清| 精品一区二区免费观看| 97精品久久久久久久久久精品| 精品酒店卫生间| 大片电影免费在线观看免费| 国产精品国产三级国产专区5o| 黄色一级大片看看| 日本vs欧美在线观看视频| 51国产日韩欧美| 伊人久久精品亚洲午夜| 五月玫瑰六月丁香| 国产精品国产三级国产专区5o| 插逼视频在线观看| 成人漫画全彩无遮挡| 免费黄频网站在线观看国产| 国产极品天堂在线| 好男人视频免费观看在线| 蜜桃在线观看..| 一本—道久久a久久精品蜜桃钙片| 另类精品久久| 亚洲av日韩在线播放| 在线观看美女被高潮喷水网站| 欧美老熟妇乱子伦牲交| 亚洲精品久久午夜乱码| 亚洲av二区三区四区| 国产免费视频播放在线视频| 美女脱内裤让男人舔精品视频| 日韩免费高清中文字幕av| 国产av码专区亚洲av| 能在线免费看毛片的网站| 肉色欧美久久久久久久蜜桃| 亚洲精品日本国产第一区| 久久久久久久久久久久大奶| 少妇熟女欧美另类| 精品久久久久久久久亚洲| 中文字幕亚洲精品专区| 精品久久久久久电影网| 少妇精品久久久久久久| 九色成人免费人妻av| 久热这里只有精品99| 国产视频首页在线观看| 亚洲精品美女久久av网站| 午夜福利视频精品| 免费观看av网站的网址| 欧美xxxx性猛交bbbb| 一区二区三区精品91| 国产一级毛片在线| 草草在线视频免费看| 在线观看人妻少妇| 国国产精品蜜臀av免费| 亚洲无线观看免费| 91精品伊人久久大香线蕉| 夫妻性生交免费视频一级片| 色婷婷久久久亚洲欧美| 日韩av在线免费看完整版不卡| 一级黄片播放器| 在线观看免费日韩欧美大片 | 少妇人妻久久综合中文| 日韩电影二区| 搡老乐熟女国产| 免费看光身美女| 嫩草影院入口| 成人毛片60女人毛片免费| 亚洲精品第二区| 在线观看免费日韩欧美大片 | av又黄又爽大尺度在线免费看| av专区在线播放| 18禁在线播放成人免费| 亚洲经典国产精华液单| 99久久精品国产国产毛片| 美女大奶头黄色视频| 天堂俺去俺来也www色官网| 亚洲熟女精品中文字幕| av在线app专区| 久久人人爽人人爽人人片va| 色5月婷婷丁香| av在线播放精品| 美女脱内裤让男人舔精品视频| 中文乱码字字幕精品一区二区三区| 久久久久久久久久久久大奶| 蜜桃国产av成人99| 亚洲av.av天堂| 日韩 亚洲 欧美在线| 婷婷色麻豆天堂久久| 韩国高清视频一区二区三区| 久久精品久久久久久噜噜老黄| 乱码一卡2卡4卡精品| 亚洲第一av免费看| 色婷婷av一区二区三区视频| h视频一区二区三区| 欧美少妇被猛烈插入视频| 男女无遮挡免费网站观看| 啦啦啦在线观看免费高清www| 久久久久久久亚洲中文字幕| 女人精品久久久久毛片| 亚洲精品国产av蜜桃| 一区在线观看完整版| 欧美丝袜亚洲另类| 免费人妻精品一区二区三区视频| 亚洲国产精品成人久久小说| 欧美日韩一区二区视频在线观看视频在线| 少妇猛男粗大的猛烈进出视频| 人人妻人人爽人人添夜夜欢视频| 亚洲欧洲日产国产| 亚洲精品乱码久久久v下载方式| 国产 一区精品| 青春草国产在线视频| 午夜日本视频在线| 夫妻性生交免费视频一级片| 满18在线观看网站| 99热全是精品| 日韩制服骚丝袜av| 一级毛片aaaaaa免费看小| 中国国产av一级| 日韩熟女老妇一区二区性免费视频| 99久久精品国产国产毛片| 国产黄色免费在线视频| 亚洲美女搞黄在线观看| 亚洲综合色网址| 午夜福利,免费看| 91精品国产国语对白视频| 永久网站在线| 欧美3d第一页| 女人精品久久久久毛片| 18+在线观看网站| 亚洲精品av麻豆狂野| 免费观看在线日韩| 日本黄色片子视频| 99久久中文字幕三级久久日本| 秋霞伦理黄片| 久久青草综合色| 插逼视频在线观看| 人妻系列 视频| 最新中文字幕久久久久| 免费人成在线观看视频色| 观看美女的网站| 国产高清不卡午夜福利| 少妇 在线观看| 又大又黄又爽视频免费| 久久婷婷青草| 黄色怎么调成土黄色| 国产精品久久久久久久电影| 99热这里只有是精品在线观看| 搡女人真爽免费视频火全软件| 天天影视国产精品| 人人妻人人添人人爽欧美一区卜| av.在线天堂| 韩国高清视频一区二区三区| 99久久中文字幕三级久久日本| 日韩在线高清观看一区二区三区| 国模一区二区三区四区视频| 日韩人妻高清精品专区| 亚洲人成网站在线播| 九色成人免费人妻av| 人妻制服诱惑在线中文字幕| 男人爽女人下面视频在线观看| 成人黄色视频免费在线看| 久久久a久久爽久久v久久| 成人漫画全彩无遮挡| 99视频精品全部免费 在线| 亚洲人与动物交配视频| 亚洲怡红院男人天堂| 赤兔流量卡办理| 嫩草影院入口| 这个男人来自地球电影免费观看 | 久久久久久伊人网av| 亚洲精品一二三| 一区二区三区乱码不卡18| 亚洲精品亚洲一区二区| 97在线人人人人妻| 亚洲av电影在线观看一区二区三区| 最近中文字幕2019免费版| 国产精品国产三级国产专区5o| 亚洲av.av天堂| 久久av网站| 最后的刺客免费高清国语| 久久99精品国语久久久| tube8黄色片| 午夜免费鲁丝| 午夜福利网站1000一区二区三区| 亚洲精品国产av蜜桃| 国产精品欧美亚洲77777| 色94色欧美一区二区| 亚洲精品第二区| 国产成人免费观看mmmm| 在线播放无遮挡| 日韩欧美精品免费久久| 国产黄频视频在线观看| 丝袜喷水一区| 最近中文字幕高清免费大全6| 亚洲欧美一区二区三区黑人 | 久久精品夜色国产| 久久久久久伊人网av| 午夜福利,免费看| 亚洲四区av| 最黄视频免费看| 久热这里只有精品99| 久久午夜福利片| 亚洲av国产av综合av卡| 午夜福利视频在线观看免费| 黄片播放在线免费| 日本黄大片高清| 在线亚洲精品国产二区图片欧美 | 大香蕉久久网| 少妇 在线观看| av免费在线看不卡| 伊人久久精品亚洲午夜| 精品人妻熟女av久视频| 亚洲美女视频黄频| 尾随美女入室| 中文乱码字字幕精品一区二区三区| 国产欧美日韩综合在线一区二区| 少妇的逼水好多| 婷婷色综合www| 69精品国产乱码久久久| 免费人成在线观看视频色| 热re99久久国产66热| 久久99精品国语久久久| 日韩视频在线欧美| 91久久精品国产一区二区成人| 午夜日本视频在线| 国产色爽女视频免费观看| 欧美日韩视频高清一区二区三区二| 欧美xxⅹ黑人| 亚洲人成网站在线播| 久久午夜综合久久蜜桃| 男女免费视频国产| 纯流量卡能插随身wifi吗| 亚洲精品国产色婷婷电影| 夜夜看夜夜爽夜夜摸| 美女视频免费永久观看网站| 国产国拍精品亚洲av在线观看| .国产精品久久| 亚洲成人一二三区av| 亚洲欧洲日产国产| 插逼视频在线观看| 欧美成人精品欧美一级黄| 男女国产视频网站| 日本-黄色视频高清免费观看| 特大巨黑吊av在线直播| 91久久精品国产一区二区三区| 欧美三级亚洲精品| 亚洲人成网站在线播| 成人漫画全彩无遮挡| 国产女主播在线喷水免费视频网站| 97超视频在线观看视频| 伊人久久精品亚洲午夜| 亚洲精品第二区|