• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Commensurate and incommensurate Haldane phases for a spin-1 bilinear–biquadratic model

    2023-10-11 07:54:56YanWeiDai代艷偉AiMinChen陳愛(ài)民XiJingLiu劉希婧andYaoHengSu蘇耀恒
    Chinese Physics B 2023年9期
    關(guān)鍵詞:愛(ài)民

    Yan-Wei Dai(代艷偉), Ai-Min Chen(陳愛(ài)民), Xi-Jing Liu(劉希婧), and Yao-Heng Su(蘇耀恒)

    1Centre for Modern Physics and Department of Physics,Chongqing University,Chongqing 400044,China

    2School of Science,Xi’an Polytechnic University,Xi’an 710048,China

    3The School of Materials Science and Engineering,Chongqing Jiaotong University,Chongqing 400044,China

    Keywords: commensurate and incommensurate phases, symmetry-protected topological phase, transversal spin correlation

    1.Introduction

    Quantum phase transitions are always a hot topic of interest in condensed matter physics,which are driven by quantum fluctuations due to the uncertainty principle in quantum mechanics.One of the targets is towards completing classification of quantum states of matter.[1]In 1983,Haldane[2,3]conjectured that the half-integer spin antiferromagnetic Heisenberg chain is gapless, and the integer spin chain has an energy gap between the ground state and the first excited state.For the spin-1 Heisenberg chain, a symmetry protected topological (SPT) phase, i.e., the Haldane phase, induces a longrange string order,due to the hidden symmetry of fully brokenZ2×Z2.Interestingly,the Haldane phase in the spin-1 bilinearbiquadratic (BLBQ) model displays two parts in the structure of the Haldane phase,[4–7]i.e.,the commensurate Haldane(HaldaneC) phase and incommensurate Haldane (HaldaneIC)phases.

    Let us recall the ground state phase diagram of the spin-1 BLBQ model with the Hamiltonian described as

    whereSidenotes the spin-1 operator at lattice sitei,andα=tanφis the control parameter.The model has been investigated extensively using analytical and numerical methods,[8–20]exhibiting rich physics.Its ground state phase diagram has been mostly understood.Atφ=0, the model corresponds to the spin-1 Heisenberg antiferromagnet, and forφ=π/4, the model has been exactly solved by Sutherland,[21]who in turn justified the presence of the critical phase with central chargec= 2[20]forπ/4≤φ <π/2.The model exhibits SU(3)symmetry[22,23]atφ=±π/2,π/4,and-3π/4,and a gapless ferromagnetic phase with a multi-fold degenerate is detected fromφ=π/2 toφ=-3π/4.Forφ=-π/2 the model has been solved by Takhtajan and Bubujian,[24,25]which turns out to be the SU(2) WZW model at levelk=2, with the central chargec=3/2.Atφ=-π/4,Barber and Batchelor[26]solve the model in terms of the Bethe ansatz, which indicates that the dimerized phase exists nearby.Whether or not the phase transition from the gapless ferromagnetic phase to the dimerized phase is direct remains controversial.However,this controversial problem has been solved in our previous work.[16]Reference[16]showed the absence of a critical nematic phase in the vicinity of an SU(3)ferromagnetic point(φ=-3π/4)by means of tensor network algorithms.At the SU(3) ferromagnetic pointφ=-3π/4,the ground state wave function is highly degenerated, which is scaled but not conformally invariant, with the fractal dimensiondfbeing equal to 2.In addition, forφ= arctan(1/3), the model has been exactly solved by Affleck, Kennedy, Lieb, and Tasaki (AKLT),[27]with its ground state being the valence-bond-solid state.For-π/4<φ <π/4, the model is in the gapped Haldane phase with hidden topological order;[3,28]the gapped Haldane phase can divide into two subphases (HaldaneCand HaldaneIC) by the AKLT point.

    The transitions between commensurate and incommensurate are important problems in quantum many-body spin systems and are induced by frustration.Physically, “incommensurate”means that the wavelength of the oscillation pattern is not an integer multiple of the lattice spacing.Normally, it is not easy to characterize the incommensurate phase.Therefore, characterization of the commensurate and incommensurate phases is an important problem in physics.Here, we focus on the gapped Haldane phase for-π/4<φ <π/4.Murashimaet al.[4]characterized the HaldaneC–HaldaneICchange by analyzing the energy gap of edge states.F′athet al.[5]proposed an effective field theory to explain these features in the HaldaneC–HaldaneICchange of the spin-1 BLBQ chain.In addition, Nomura[6]proposed a mechanism to explain the onset of the incommensurability and the shortest correlation length at AKLT point and a simple random-walk-type argument is proposed to explain the HaldaneC–HaldaneICtransition in Ref.[7].Our characterization in this study is a numerical method from the tensor network in that we use the transversal spin correlations〈S+S-〉 and the corresponding momentum distribution of the structure factorS+-(q)to characterize the HaldaneCand HaldaneICphases.The transversal spin correlations〈S+S-〉exhibit different decay forms in both subphases.The results show that the transversal spin structure factorS+-(q)exhibits an incommensurate oscillation pattern in the HaldaneIC.Our numerical method can provide a powerful tool for characterizing incommensurable phases.In addition, the transition pointαc(χ) between the HaldaneCand HaldaneICphases is detected by using von Neumann entropy.The singular values of second-order derivatives of the von Neumann entropy correspond to the transition pointsαc(χ).As a typical example of the SPT phase,[29–31]the Haldane phase is protected by any of the following three symmetries:bond-centered inversion symmetry, time-reversal symmetry,and a dihedral group comprising any pair ofπ-rotations in the spin space.[29,30]In order to further characterize the HaldaneCand HaldaneICphases, we also calculate the nonlocal order parameter.The nonlocal order parameter of the bond-centered inversion with a saturation value of-1 and the nonzero value string order indicate that the Haldane phase is a symmetryprotected topological phase.

    In this study, the infinite matrix product state (iMPS)algorithm[32]is used to calculate the ground state wave function withχas the bond dimension.The remainder of this article is organized as follows.In Section 2, bipartite entanglement entropy and entanglement spectrum are calculated; a transition point is located between the HaldaneCand HaldaneICphases, corresponding to the AKLT point withα=1/3.In Section 3, we discuss the bond-centered inversion nonlocal order parameter.Section 4 discusses the string order parameter, and Section 5 characterizes the HaldaneCand HaldaneICphases using the transversal spin correlations〈S+S-〉 and the corresponding momentum distribution of the structure factorS+-(q).Finally, a summary is presented in Section 6.

    Fig.1.(a)Bipartite entanglement entropy S(χ)as a function of the parameter α with bond dimensions χ=30,60,120,150,and 200.(b)The second-order derivatives of the entanglement entropy S(χ)as a function of the parameter α.The bond dimension is χ =150.

    2.Bipartite entanglement entropy and entanglement spectrum

    The von Neumann entropy is a measure of bipartite entanglement for a quantum state,which is exploited to detect a transition point.This entropy is from the perspective of quantum information on the study phase transition.For a system of a pure state partitioned into two subsystems A and B,the bipartite entanglement entropy is defined asS=-TrρAlogρA=-TrρBlogρB, whereρA=|ψA〉〈ψA| (ρB=|ψB〉〈ψB|) denotes the reduced density matrix of subsystem A (B).In this study,we obtain the ground state wave function|ψ〉using the iMPS algorithm[32]from tensor network simulations.In the iMPS representation,the bipartite entanglement entropy for a semi-infinite chain may be rewritten as follows:

    whereλdenotes the Schmidt decomposition coefficient, andχdenotes the bond dimension.Because we consider that the translation of two lattice points is invariant,entanglement entropyS(χ)=(Sa+Sb)/2.The bipartite entanglement entropyS(χ) is plotted in Fig.1(a) as a function of the parameterαwith the bond dimensionsχ= 30, 60, 120,150,and 200.In the region-1.5≤α ≤1.5, three phase transition points are located atα=-1,1/3,1 from the entanglement entropy,and they correspond to four phases: the dimerized phase,HaldaneCphase,HaldaneICphase,and trimerized phase.Notably, an antiferromagnetic phase occurs between the dimerized phase and HaldaneCphases, which disappears as the bond dimensionχincreases.In this study, we focus on the Haldane phase.To detect the transition pointαc(χ)between the HaldaneCand HaldaneICphases,we plot the secondorder derivatives of the entanglement entropyS(χ)as a function of the parameterαin Fig.1(b),with the bond dimensionχ=150.A singular point appears at theα=0.334,which is very close to the AKLT pointα=1/3.Our results indicate a transition at the AKLT point.

    Fig.2.Entanglement spectrum En as a function of n for(a)HaldaneC phase and (b) HaldaneIC phase for different α parameters.The number of dots on each level indicates its degeneracy.The bond dimension χ =200.

    The topological phases can be characterized by the entanglement spectrum.[33–36]The entanglement spectrum of a pure state of a bipartite system is the full set of eigenvalues of the reduced density matrix obtained from tracing out one part.In several cases, the spectrum contains additional information besides the entanglement entropy.In numerical studies,the entanglement spectrum is a robust tool for identifying topological phases.For a bipartite system, the entanglement spectrum[37]is defined as follows:

    whereωn=denotes an eigenvalue of the reduced density matrixρ,nis the number of largest eigenvalues kept.In Fig.2,we plot the entanglement spectrumEnas a function ofnfor(a)the HaldaneCphase withα=-0.8,-0.4, 0, 0.2 and (b) the HaldaneICphase withα=0.4,0.6,0.8.Here,the bond dimensionχ=200.The results indicate that the entanglement spectrum shows double degeneracy in both phases.This means that the Haldane is a topological phase.But the entanglement spectrum can not distinguish the HaldaneCand HaldaneICphases.

    3.The bond-centered inversion nonlocal order parameter

    The Haldane phase[2]is a typical example of the SPT phase,[29–31]which is protected by any of the following three symmetries: bond-centered inversion symmetry,time-reversal symmetry, and a dihedral group comprising any pair ofπrotations in the spin space.[29,30]The topological phase cannot be characterized by a local order parameter, which falls beyond the Landau paradigm, but can be characterized by nonlocal order.The iMPS[32]and infinite density matrix renormalization group (iDMRG)[38]are robust tensor network algorithms, which can be exploited to efficiently simulate onedimensional quantum many-body systems.The algorithms generate a ground state wave function in an iMPS representation and provide an efficient means to evaluate various physical observables.From the iMPS simulation,the ground state|ψ〉is obtained, which is invariant under the two-site translation.In terms of the bond-centered inversionI(1,L),the bondcentered nonlocal order parameter for the segment comprisingLbonds of type A–B is defined as follows:[39,40]

    whereλBdenotes the Schmidt decomposition coefficient,and the segment lengthLis even.A graphical representation is shown in Fig.3.

    Fig.3.Graphical representation of nonlocal order parameters in the MPS picture for the segment comprising L bonds of type A–B.

    We plot the nonlocal order parameterOas a function ofαwith the bond dimensionχ=200 in the Haldane phase in Fig.4(a).In the entire Haldane phase,Oreaches a saturation value of-1 whenαis away from the quantum phase points±1,indicating that the nonlocal order parameterOcannot distinguish between the HaldaneCand HaldaneICphases,but can be used to characterize the SPT phase.In addition, we plot the nonlocal order parameterOas a function of the segment lengthLwith the bond dimensionχ=200 forα=-0.4,0,0.4[Fig.4(b)].This indicates that the nonlocal order parameterOtends to a saturation value of-1 as the segment lengthLincreases.

    Fig.4.(a)Nonlocal order parameter O as a function of α with the bond dimension χ=200 in the Haldane phase.(b)Saturation of the nonlocal order parameter O,with the block size L being even,for α =-0.4,0,0.4.

    4.String order parameter

    In the Haldane phase for the spin-1 BLBQ model with-1<α <1,due to the hiddenZ2×Z2symmetry is broken,[41]the characteristic order can be measured by the string correlation function[42]

    wherer=|i-j| denotes the lattice distance.In Fig.5, we plot the string correlation functiong(r) as a function of the lattice distancerfor (a) HaldaneCphase withα=-0.8,-0.4, 0, 0.2 and (b) HaldaneICphase withα=0.4, 0.6, 0.8.Here, the bond dimensionχ=200.For a small lattice distancer, theg(r) rapidly tends to a saturation value, indicating that the long-range order is evident.If we continue to increase the lattice distancer, the saturation value of string correlationg(r) stays at the limiting value.Forα=0, the spin-1 BLBQ model corresponds to the spin-1 antiferromagnetic Heisenberg model.Consequently,we compute the string correlation function, which shows a long-range order withg(∞) =-0.374324443, with the bond dimensionχ= 200.Our result agrees with the resultg(∞) =-0.374325096(2)from the iDMRG algorithm.[43]The behaviors of string correlation are the same in both the HaldaneCand HaldaneICphases.Note our results show that the entanglement spectrum,the bond-centered inversion nonlocal order parameter,and the string correlation cannot distinguish the HaldaneC–HaldaneICtransition,but they can clearly characterize the Haldane phase.

    Fig.5.String correlation function g(r)as a function of the lattice distance r for(a)HaldaneC phase and(b)HaldaneIC phase for different α parameters.The bond dimension χ =200.

    5.Characterization of the HaldaneC and HaldaneIC phases

    We now characterize the HaldaneCand HaldaneICphases.Physically, “incommensurate” means the wavelength of the oscillation pattern is not an integer multiple of the lattice spacing.To characterize the HaldaneCand HaldaneICphases, we calculate the transversal spin correlationC(r)=with the spin operatorS±=Sx±iSy.By a Fourier transform, the static spin structure factor of the transversal spin correlation is defined as follows:[44–46]

    In Fig.6(a), we plot the transversal spin correlationC(r) in the HaldaneCphase (up) withα=-0.8,-0.4, 0, 0.2 and the HaldaneICphase (down) withα= 0.4, 0.6, 0.8.The transversal spin correlation tends to zero as the lattice distancerincreases, indicating that no off-diagonal order exists in the Haldane phase.In addition, Fig.6(a) clearly shows that the transversal spin correlation〈〉 takes on different forms of decay in both HaldaneCand HaldaneICphases.To obtain the decay function,as an illustrative example,we choose two typical ground states in the HaldaneCand HaldaneICphases.In Fig.6(b) (up), for small lattice distancer=100, a number fit to the transversal spin correlation〈〉(for odd lattice distance) is performed withα=-0.8 in the HaldaneC,with the fitting functionC(r)=ar-η+b.The numerical constants are given asη=0.5118,a=0.69, andb=-0.0278.In Fig.6(b) (down), for the small lattice distancer=30, a number fit to the transversal spin correlation〈S+i S-j〉 is performed withα=0.6 in the HaldaneIC, with the fitting functionC(r)=r-ηcos(qr)+candq=βπ.The numerical constants are given asη=1.533,β=1.264, andc=-0.0012.The solid black line is the fit.Our results clearly show that the dominant decaying form to the transversal spin correlation is ∝r-ηfor the HaldaneCphase and ∝r-ηcos(qr) for the HaldaneICphase for small lattice distancer.In addition,to further characterize the HaldaneCand HaldaneICphases, we investigate the momentum distribution of the spin structure factorS+-(q).In Fig.6(c) (up), we plot the corresponding momentum distribution of the spin structure factorS+-(q)in the HaldaneCphase withα=-0.8,-0.4, 0, 0.2.For HaldaneCphase,we observe that the peaks for the transversal spin structure factorS+-(q)atq=±πare the uniform background.In Fig.6(c) (down), we plot the corresponding momentum distribution of the spin structure factorS+-(q)in the HaldaneICphase withα=0.4,0.6,0.8.For HaldaneICphase,we observe that the dips for the transversal spin structure factorS+-(q)are located atq=±π.In addition,we do see some peaks around(i)q=±0.7π,±1.3πforα=0.8, (ii)q=±0.66π,±1.34πforα=0.6 and(iii)q=±0.78π,±1.22πforα=0.4 in the transversal spin structure factorS+-(q),which account for the incommensurate contribution.Here, the bond dimension isχ=200.

    Fig.6.(a) Transversal spin correlation C(r) in the HaldaneC phase (up) and the HaldaneIC phase (down) for various α parameters, (b) the fitting of the transversal correlation C(r)in the HaldaneC phase(up)with α =-0.8 and the HaldaneIC phase(down)with α =0.6,and(c)the corresponding momentum distribution of the structure factor S+-(q)in the HaldaneC phase(up)and the HaldaneIC phase(down)for various α parameters.The bond dimension χ =200.

    As a result, the transversal spin correlation〈S+i S-j〉 exhibits different decay behaviors in HaldaneCand HaldaneICphases, respectively.The dominant decaying form of the transversal spin correlation〈S+i S-j〉is proportional tor-ηin the HaldaneCphase and is proportional tor-ηcos(qr) in the HaldaneICphase.In addition, the transversal spin structure factorS+-(q)exhibits an incommensurate oscillation pattern in the HaldaneIC.

    6.Summary

    The HaldaneCand HaldaneICphases for the spin-1 BLBQ model are investigated using the iMPS algorithm.A phase transition point, which corresponds to the AKLT point withα=1/3,is located by the bipartite entanglement entropy between the HaldaneCand HaldaneICphases.In both phases,the entanglement spectrum shows double degeneracy.We calculate the nonlocal order parameter of the bond-centered inversion in both phases,which rapidly approaches a saturation value of-1 as the segment lengthLincreases.The nonlocal string order is also calculated;a nonzero value string order can be used to characterize the topological phases.Forα=0,the spin-1 BLBQ model corresponds to the spin-1 antiferromagnetic Heisenberg model, and the string correlation function shows long-range order,withg(∞)~=-0.374325096(2)from the iDMRG algorithm.[43]Our results agree with the results from the iDMRG algorithm.[43]In addition,to distinguish the HaldaneCand HaldaneICphases, the transversal spin correlation〈S+i S-j〉 and corresponding momentum distribution of the structure factorS+-(q)are analyzed.Our results show that the dominant decaying form of the transversal spin correlation is proportional tor-ηfor HaldaneCphase and is proportional tor-ηcos(qr)for HaldaneICphase for a small lattice distancer.In addition, the HaldaneICphase exhibits an incommensurate oscillation pattern in the spin correlation structure factor.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.11805285), the Natural Science Foundation of Shaanxi Province of China (Grant No.2022JM-033),and the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN 201900703).

    猜你喜歡
    愛(ài)民
    李愛(ài)民美術(shù)作品
    中國(guó)承諾
    小英雄李愛(ài)民
    觸摸俄羅斯
    金秋(2020年24期)2020-04-30 00:15:28
    叫我怎不把你愛(ài)
    小燕子 剪春雨
    密語(yǔ)
    孫愛(ài)民作品
    保持快樂(lè)心情的秘密
    精品亚洲乱码少妇综合久久| 欧美精品人与动牲交sv欧美| 一本久久精品| 色哟哟·www| av国产免费在线观看| 91午夜精品亚洲一区二区三区| 亚洲欧美一区二区三区黑人 | 久久精品国产亚洲av天美| 免费看日本二区| 国产亚洲一区二区精品| 日本黄色片子视频| 日韩 亚洲 欧美在线| 美女高潮的动态| 免费在线观看成人毛片| 2021少妇久久久久久久久久久| 一区二区三区四区激情视频| av在线播放精品| 超碰av人人做人人爽久久| 国产成人精品婷婷| 各种免费的搞黄视频| 久久久久久国产a免费观看| 精品一区在线观看国产| 亚洲最大成人av| 国产男女内射视频| 精品一区二区免费观看| 少妇人妻一区二区三区视频| 亚洲精品,欧美精品| 91aial.com中文字幕在线观看| 免费观看a级毛片全部| 久久精品国产自在天天线| 国内少妇人妻偷人精品xxx网站| av天堂中文字幕网| 国产毛片在线视频| 欧美人与善性xxx| 菩萨蛮人人尽说江南好唐韦庄| 精品久久久久久电影网| 国产精品人妻久久久影院| 狂野欧美激情性xxxx在线观看| 国精品久久久久久国模美| 一本久久精品| a级毛色黄片| 久久久久久久大尺度免费视频| 男人添女人高潮全过程视频| 制服丝袜香蕉在线| 国产av不卡久久| 一本一本综合久久| 国产成人a区在线观看| av福利片在线观看| 18禁裸乳无遮挡动漫免费视频 | 欧美日本视频| 少妇高潮的动态图| 免费大片黄手机在线观看| 三级男女做爰猛烈吃奶摸视频| 大陆偷拍与自拍| 日韩欧美 国产精品| 亚洲欧洲国产日韩| 一级片'在线观看视频| 高清av免费在线| 听说在线观看完整版免费高清| 毛片一级片免费看久久久久| 在现免费观看毛片| 99热这里只有是精品在线观看| 午夜精品国产一区二区电影 | 你懂的网址亚洲精品在线观看| 午夜日本视频在线| 欧美bdsm另类| 久久久久久国产a免费观看| videossex国产| 免费看日本二区| 尾随美女入室| 国内精品美女久久久久久| 26uuu在线亚洲综合色| 天美传媒精品一区二区| 99久久人妻综合| 日韩,欧美,国产一区二区三区| 国产真实伦视频高清在线观看| 男女边吃奶边做爰视频| 国产中年淑女户外野战色| 免费看不卡的av| 亚洲av国产av综合av卡| 日韩成人av中文字幕在线观看| 成人鲁丝片一二三区免费| 尾随美女入室| 亚洲美女视频黄频| 六月丁香七月| 天堂网av新在线| 三级国产精品欧美在线观看| 高清av免费在线| 黄色视频在线播放观看不卡| 国产成人午夜福利电影在线观看| 少妇人妻一区二区三区视频| 亚洲国产最新在线播放| 成人综合一区亚洲| 亚洲精品久久久久久婷婷小说| 男女国产视频网站| 建设人人有责人人尽责人人享有的 | 嫩草影院精品99| 麻豆精品久久久久久蜜桃| 亚洲精品一二三| 日韩av不卡免费在线播放| 国产一区二区亚洲精品在线观看| 美女高潮的动态| 欧美老熟妇乱子伦牲交| 欧美三级亚洲精品| 丝瓜视频免费看黄片| 日本三级黄在线观看| 18禁动态无遮挡网站| 一级毛片aaaaaa免费看小| 国产黄片美女视频| 人妻夜夜爽99麻豆av| 欧美亚洲 丝袜 人妻 在线| 国产精品成人在线| 亚洲丝袜综合中文字幕| 看十八女毛片水多多多| av在线观看视频网站免费| 国产亚洲91精品色在线| 久久久久九九精品影院| 成人亚洲精品av一区二区| 99久久中文字幕三级久久日本| 99久久中文字幕三级久久日本| 欧美另类一区| 91久久精品国产一区二区成人| 日韩 亚洲 欧美在线| 亚洲天堂国产精品一区在线| 欧美人与善性xxx| 午夜福利高清视频| 日本wwww免费看| 亚洲av电影在线观看一区二区三区 | 高清欧美精品videossex| 亚洲国产成人一精品久久久| 国产午夜精品一二区理论片| 亚洲电影在线观看av| 成人黄色视频免费在线看| 欧美少妇被猛烈插入视频| 韩国av在线不卡| 亚洲国产精品999| 91aial.com中文字幕在线观看| 免费观看无遮挡的男女| 男女那种视频在线观看| 男女啪啪激烈高潮av片| 欧美激情在线99| 97在线人人人人妻| 亚洲精品aⅴ在线观看| 久久ye,这里只有精品| 亚洲成人一二三区av| 国产毛片a区久久久久| 亚洲国产精品专区欧美| 狂野欧美白嫩少妇大欣赏| 亚洲国产精品999| 久久久久精品久久久久真实原创| 精品人妻熟女av久视频| 亚洲国产精品国产精品| 三级经典国产精品| 国产黄a三级三级三级人| 国产亚洲一区二区精品| 免费观看av网站的网址| 亚洲av一区综合| 精品99又大又爽又粗少妇毛片| 欧美日韩综合久久久久久| 一级片'在线观看视频| 免费黄色在线免费观看| 99re6热这里在线精品视频| 搡女人真爽免费视频火全软件| 毛片女人毛片| 亚洲,欧美,日韩| 日本wwww免费看| 成年人午夜在线观看视频| 亚洲无线观看免费| freevideosex欧美| 日韩强制内射视频| 国产在线一区二区三区精| 国产男女超爽视频在线观看| 一边亲一边摸免费视频| 最近手机中文字幕大全| 欧美变态另类bdsm刘玥| 国产 一区精品| 日韩av免费高清视频| 麻豆乱淫一区二区| 亚洲国产高清在线一区二区三| 一级毛片电影观看| 中文字幕免费在线视频6| 高清午夜精品一区二区三区| 色吧在线观看| a级毛片免费高清观看在线播放| 亚洲av日韩在线播放| 亚洲成人精品中文字幕电影| 免费观看a级毛片全部| 欧美少妇被猛烈插入视频| 欧美xxxx黑人xx丫x性爽| 如何舔出高潮| 欧美97在线视频| 国产伦在线观看视频一区| .国产精品久久| 亚洲成人中文字幕在线播放| 亚洲内射少妇av| 国模一区二区三区四区视频| 18禁动态无遮挡网站| 亚洲人成网站在线观看播放| 白带黄色成豆腐渣| 日本色播在线视频| 成人漫画全彩无遮挡| 国产片特级美女逼逼视频| 又爽又黄a免费视频| 在线精品无人区一区二区三 | 高清视频免费观看一区二区| 成人毛片a级毛片在线播放| xxx大片免费视频| 毛片一级片免费看久久久久| 久热久热在线精品观看| 中文资源天堂在线| 成人毛片a级毛片在线播放| 亚洲国产精品专区欧美| 色视频在线一区二区三区| 一级黄片播放器| 国产一区有黄有色的免费视频| 免费av不卡在线播放| 哪个播放器可以免费观看大片| 嫩草影院精品99| 人妻系列 视频| 国产在线一区二区三区精| www.av在线官网国产| 久久99蜜桃精品久久| 激情五月婷婷亚洲| 简卡轻食公司| 亚洲天堂国产精品一区在线| 亚洲经典国产精华液单| 国内揄拍国产精品人妻在线| 91久久精品国产一区二区成人| 韩国av在线不卡| 国产一区有黄有色的免费视频| 免费看光身美女| 午夜福利网站1000一区二区三区| 亚洲av男天堂| 欧美成人a在线观看| 亚洲成人一二三区av| 欧美高清成人免费视频www| 国产免费福利视频在线观看| 五月玫瑰六月丁香| 男人和女人高潮做爰伦理| 国产精品麻豆人妻色哟哟久久| 久久女婷五月综合色啪小说 | 日本与韩国留学比较| 一级片'在线观看视频| 久久久久网色| 国产大屁股一区二区在线视频| 三级男女做爰猛烈吃奶摸视频| 欧美日韩精品成人综合77777| 欧美性猛交╳xxx乱大交人| 国产人妻一区二区三区在| 国产探花在线观看一区二区| 日本-黄色视频高清免费观看| 中国三级夫妇交换| 18禁裸乳无遮挡免费网站照片| 尤物成人国产欧美一区二区三区| av福利片在线观看| 久久久久久伊人网av| 最近手机中文字幕大全| 午夜精品一区二区三区免费看| 亚洲精品aⅴ在线观看| 欧美国产精品一级二级三级 | 国产精品av视频在线免费观看| 亚洲欧美中文字幕日韩二区| 色综合色国产| 观看美女的网站| 中文字幕久久专区| 亚洲国产精品专区欧美| 啦啦啦啦在线视频资源| av在线蜜桃| 久久韩国三级中文字幕| 日韩国内少妇激情av| 色哟哟·www| 国产日韩欧美亚洲二区| 亚洲欧美成人综合另类久久久| 在线免费观看不下载黄p国产| 国产男女超爽视频在线观看| 丝袜美腿在线中文| 亚洲在线观看片| 人体艺术视频欧美日本| 国产探花在线观看一区二区| 欧美精品一区二区大全| 亚洲欧美精品专区久久| 观看美女的网站| 午夜精品国产一区二区电影 | 亚洲av国产av综合av卡| 五月玫瑰六月丁香| 日日啪夜夜撸| a级毛片免费高清观看在线播放| 国产亚洲精品久久久com| 一级毛片aaaaaa免费看小| 亚洲精品视频女| 久久ye,这里只有精品| 听说在线观看完整版免费高清| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 91精品伊人久久大香线蕉| 国产日韩欧美亚洲二区| 日韩欧美 国产精品| 亚洲精品国产成人久久av| 男人狂女人下面高潮的视频| .国产精品久久| 国产成年人精品一区二区| 丝袜脚勾引网站| 国产精品不卡视频一区二区| 精品久久久久久久久亚洲| 精品久久久精品久久久| 欧美一级a爱片免费观看看| 亚洲精品视频女| 天天躁日日操中文字幕| 免费少妇av软件| 日韩欧美精品v在线| 久久国内精品自在自线图片| 青春草视频在线免费观看| 日韩中字成人| 欧美3d第一页| 91aial.com中文字幕在线观看| 熟女人妻精品中文字幕| av在线蜜桃| 一级毛片我不卡| 99久久九九国产精品国产免费| 深爱激情五月婷婷| 国产伦理片在线播放av一区| 欧美性猛交╳xxx乱大交人| 成人欧美大片| 国产成人福利小说| 成年女人在线观看亚洲视频 | 久久久欧美国产精品| 大码成人一级视频| 国产成人a区在线观看| 国产成人91sexporn| 欧美日韩亚洲高清精品| 精品人妻视频免费看| 久久久久国产精品人妻一区二区| 22中文网久久字幕| 国产美女午夜福利| 91午夜精品亚洲一区二区三区| 亚洲四区av| 99视频精品全部免费 在线| 一个人观看的视频www高清免费观看| 伦精品一区二区三区| 亚洲最大成人av| 久久久精品免费免费高清| 久久人人爽人人爽人人片va| 精品视频人人做人人爽| 国产av不卡久久| 国产成人精品一,二区| 国产成人91sexporn| 欧美成人午夜免费资源| 草草在线视频免费看| 国产欧美日韩一区二区三区在线 | 久久精品国产鲁丝片午夜精品| 日韩伦理黄色片| 蜜桃亚洲精品一区二区三区| 亚洲成人中文字幕在线播放| 成人亚洲精品av一区二区| 欧美日韩视频精品一区| 欧美成人精品欧美一级黄| 街头女战士在线观看网站| 99热全是精品| av播播在线观看一区| 国产精品国产三级国产专区5o| 亚洲精品视频女| 亚洲欧美一区二区三区国产| 男女边摸边吃奶| 黄色视频在线播放观看不卡| av网站免费在线观看视频| 亚洲四区av| 免费观看av网站的网址| 国产老妇伦熟女老妇高清| 在线天堂最新版资源| 精品久久久久久久末码| 成人亚洲欧美一区二区av| 少妇猛男粗大的猛烈进出视频 | 99久国产av精品国产电影| 亚洲国产高清在线一区二区三| 插阴视频在线观看视频| av.在线天堂| 禁无遮挡网站| 国产女主播在线喷水免费视频网站| 久久久色成人| 久久热精品热| 日韩一区二区三区影片| 一区二区三区精品91| 久久人人爽人人片av| 日韩人妻高清精品专区| 免费黄色在线免费观看| 日本与韩国留学比较| 色视频www国产| 中文欧美无线码| 建设人人有责人人尽责人人享有的 | 九草在线视频观看| 毛片一级片免费看久久久久| 九九在线视频观看精品| 国产精品嫩草影院av在线观看| 三级国产精品欧美在线观看| 国产黄色视频一区二区在线观看| 婷婷色麻豆天堂久久| 免费在线观看成人毛片| 亚洲熟女精品中文字幕| 国产欧美日韩一区二区三区在线 | 一级爰片在线观看| 亚洲av福利一区| 国产色婷婷99| av一本久久久久| 国产午夜精品一二区理论片| 一级毛片久久久久久久久女| 免费大片黄手机在线观看| 国产成人免费无遮挡视频| 黄色一级大片看看| 午夜老司机福利剧场| 欧美区成人在线视频| 午夜福利视频1000在线观看| 边亲边吃奶的免费视频| 亚洲精品成人av观看孕妇| 汤姆久久久久久久影院中文字幕| 国产一级毛片在线| 草草在线视频免费看| videos熟女内射| 亚洲精品乱久久久久久| 日韩电影二区| 男女国产视频网站| 91狼人影院| 黄色怎么调成土黄色| 免费大片黄手机在线观看| 天天躁日日操中文字幕| 精品熟女少妇av免费看| 精品人妻熟女av久视频| 国产精品福利在线免费观看| 久久久久久久国产电影| 亚洲国产精品专区欧美| 欧美97在线视频| 欧美国产精品一级二级三级 | 黄色欧美视频在线观看| 亚洲精品国产色婷婷电影| 色5月婷婷丁香| 天美传媒精品一区二区| 老司机影院毛片| 国产亚洲av嫩草精品影院| 永久网站在线| 水蜜桃什么品种好| 91aial.com中文字幕在线观看| 18禁动态无遮挡网站| 99久久精品热视频| 欧美97在线视频| 激情五月婷婷亚洲| 天天一区二区日本电影三级| 丰满少妇做爰视频| 中文天堂在线官网| 啦啦啦啦在线视频资源| 国产精品av视频在线免费观看| 国产亚洲av片在线观看秒播厂| 国产av不卡久久| 国产精品av视频在线免费观看| 国产爽快片一区二区三区| 国产精品秋霞免费鲁丝片| 国产色爽女视频免费观看| 一级a做视频免费观看| 在线播放无遮挡| 最近中文字幕高清免费大全6| 亚洲成色77777| 2021少妇久久久久久久久久久| 亚洲,一卡二卡三卡| av免费观看日本| 一本久久精品| 久久久久国产网址| 国产精品国产三级国产av玫瑰| 特大巨黑吊av在线直播| 日韩人妻高清精品专区| 国模一区二区三区四区视频| 日韩,欧美,国产一区二区三区| 一级爰片在线观看| av在线app专区| 26uuu在线亚洲综合色| 日韩 亚洲 欧美在线| 99视频精品全部免费 在线| 久久6这里有精品| 国产成人一区二区在线| 国产男人的电影天堂91| 如何舔出高潮| 久久久午夜欧美精品| 久久久久网色| 美女脱内裤让男人舔精品视频| 亚洲色图综合在线观看| 久久亚洲国产成人精品v| 男女边吃奶边做爰视频| 国产日韩欧美在线精品| 日日撸夜夜添| 亚洲不卡免费看| 国产一区二区在线观看日韩| 婷婷色av中文字幕| 久久久午夜欧美精品| 欧美xxxx性猛交bbbb| 两个人的视频大全免费| 午夜老司机福利剧场| 全区人妻精品视频| 插阴视频在线观看视频| 99视频精品全部免费 在线| 日韩免费高清中文字幕av| 人体艺术视频欧美日本| 丰满少妇做爰视频| 人人妻人人澡人人爽人人夜夜| 亚洲精品影视一区二区三区av| 岛国毛片在线播放| 国产精品精品国产色婷婷| 欧美日本视频| 精品久久久久久久久av| 最近最新中文字幕大全电影3| 亚洲国产精品专区欧美| 久久精品国产鲁丝片午夜精品| 日本wwww免费看| 久久久久久久久久久丰满| 99热国产这里只有精品6| 91精品国产九色| 亚洲熟女精品中文字幕| 性色av一级| 神马国产精品三级电影在线观看| 亚洲国产色片| 永久免费av网站大全| 男人和女人高潮做爰伦理| 日本-黄色视频高清免费观看| 美女cb高潮喷水在线观看| av天堂中文字幕网| 精品久久久久久久末码| h日本视频在线播放| 亚洲欧美日韩卡通动漫| 日韩国内少妇激情av| 日本av手机在线免费观看| 亚洲,欧美,日韩| 黄色怎么调成土黄色| 伦精品一区二区三区| 欧美日韩视频高清一区二区三区二| 欧美+日韩+精品| 亚洲av一区综合| 亚洲,欧美,日韩| 综合色丁香网| 大陆偷拍与自拍| 一级黄片播放器| 九九久久精品国产亚洲av麻豆| 秋霞伦理黄片| 91久久精品国产一区二区成人| 两个人的视频大全免费| 久久久久久久大尺度免费视频| 亚洲av福利一区| 国产成人freesex在线| 一本久久精品| 2021天堂中文幕一二区在线观| 国产乱人偷精品视频| 久久久久久国产a免费观看| 国产成人精品福利久久| 亚洲国产色片| 日韩精品有码人妻一区| 国产在线男女| 一个人观看的视频www高清免费观看| 边亲边吃奶的免费视频| 狠狠精品人妻久久久久久综合| 国产男女内射视频| 成年版毛片免费区| 日韩 亚洲 欧美在线| 日韩不卡一区二区三区视频在线| 80岁老熟妇乱子伦牲交| 91久久精品国产一区二区成人| 欧美精品人与动牲交sv欧美| 成年av动漫网址| 国产成人福利小说| 网址你懂的国产日韩在线| 狂野欧美白嫩少妇大欣赏| 久久99热这里只有精品18| 欧美高清成人免费视频www| 能在线免费看毛片的网站| av在线观看视频网站免费| 在线观看人妻少妇| 观看美女的网站| 国产精品一区二区性色av| 欧美 日韩 精品 国产| 大片电影免费在线观看免费| 五月开心婷婷网| 狂野欧美白嫩少妇大欣赏| www.色视频.com| 久久亚洲国产成人精品v| 日本一二三区视频观看| 国产精品无大码| 亚洲三级黄色毛片| 卡戴珊不雅视频在线播放| 久久热精品热| av黄色大香蕉| 少妇裸体淫交视频免费看高清| 身体一侧抽搐| 亚洲久久久久久中文字幕| 91久久精品国产一区二区三区| 久久久久久久久久人人人人人人| 99热6这里只有精品| 色吧在线观看| 日本熟妇午夜| 亚洲欧美一区二区三区国产| 亚洲综合色惰| 精品少妇黑人巨大在线播放| 丝袜脚勾引网站| 久久久成人免费电影| 91狼人影院| 国产精品嫩草影院av在线观看| 少妇丰满av| 亚洲精华国产精华液的使用体验| 国语对白做爰xxxⅹ性视频网站| 少妇人妻一区二区三区视频| 成人一区二区视频在线观看| 18禁在线无遮挡免费观看视频| 国产精品福利在线免费观看| 黄色欧美视频在线观看| 91精品伊人久久大香线蕉| 国产精品国产三级专区第一集| 国产成人精品一,二区| 一二三四中文在线观看免费高清| 日韩av在线免费看完整版不卡| 乱码一卡2卡4卡精品| 啦啦啦中文免费视频观看日本| 在线观看av片永久免费下载| 亚洲国产精品国产精品|