• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineered photonic spin Hall effect of Gaussian beam in antisymmetric parity-time metamaterials

    2023-10-11 07:55:26LuYaoLiu劉露遙ZhenXiaoFeng馮振校DongMeiDeng鄧冬梅andGuangHuiWang王光輝
    Chinese Physics B 2023年9期
    關(guān)鍵詞:光輝

    Lu-Yao Liu(劉露遙), Zhen-Xiao Feng(馮振校), Dong-Mei Deng(鄧冬梅), and Guang-Hui Wang(王光輝),?

    1Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices,South China Normal University,Guangzhou 510006,China

    2Guangzhou Key Laboratory for Special Fiber Photonic Devices,South China Normal University,Guangzhou 510006,China

    Keywords: antisymmetric parity-time,photonic spin Hall effect,Gaussian beam

    1.Introduction

    When a linearly polarized beam is reflected or transmitted at a non-uniform interface, its left circularly polarized (LCP)and right circularly polarized(RCP)components split,resulting in transverse shift (TS) in the direction perpendicular to the refractive index gradient.This phenomenon is known as the photonic spin Hall effect (PSHE), which originates from the conservation of total angular momentum of photons.It was first proposed by Onoda and other scientists in 2004,[1]and it was expected to have significant applications in nanooptics and quantum information.However, the observation of the PSHE was challenging until 2008 when Hosten and Kwiat indirectly detected the PSHE shift for photons passing through an air-glass interface.They used a weak measurement technique to amplify the shift by about 104times.[2]In the last decades, PSHE shifts have also been observed in various systems, such as left-handed materials (LHMs),[3]uniaxial crystals,[4]metals,[5]epsilon-near-zero slabs,[6,7]hyperbolic metamaterial waveguides,[8]graphene,[9,10]and chiral materials.[11–13]It was found that the spin Hall effect in LHMs is unreversed, although the sign of refractive index gradient is reversed.[3,14]The PSHE has a wide range of applications which are not limited to high-sensitivity optical sensors,[15]barcode encryption,[16]biosensors,[17]magnetooptical devices,[18,19]and optical edge detection.[20]

    The concept of parity-time(PT)symmetry was first proposed by Benderet al.in 1998.[21,22]In 2007, El-Ganainyet al.first introduced the concept of PT symmetry into the optical system by founding a PT-symmetric optical system whose refractive index satisfies the conditionn(r)=n*(-r).[23]In 2013,Geet al.designed an antisymmetric parity-time(APT)optical structure,whose refractive index satisfies the conditionn(r)=-n*(-r).[24]APT mematerials can control the PSHE by introducing only loss or gain,without the need for a complete balance of loss and gain.Therefore, APT mematerials can control more flexibly the transmission and distribution of photons,which is important for specific optical device designs.

    Mathematically, a Hamiltonian satisfying PT symmetry is multiplied by i to satisfy the APT, meaning that the properties of an APT system are conjugated with the properties of a PT symmetric system.Thus, in the symmetry-unbroken regime, lossless propagation in a PT system corresponds to refractionless (or unit-refraction) propagation in an anti-PT system.[25,26]However, they also have similarities.It was found that the PSHE transverse shift at exceptional points(EPs) is zero, but largely enhanced in their vicinity.In addition,due to spontaneous PT symmetry breaking,the sign of the transverse shift switches across the exceptional point.[27]It was found that Bragg oscillation can be generated by increasing the period number of PT symmetric metamaterial layers.[28]These phenomena also exist in APT systems.

    In this study, we present a theoretical analysis of impact of a Gaussian optical beam on APT metamaterials.We observe that the TSs generated by both incidences from lefthanded materials(LHMs)and right-handed materials(RHMs)coincide, which is closely related to the elements of the scattering matrix and leads to a conservation relation in terms of the transmittance and (left and right) reflectances of APT metamaterials.[29,30]Furthermore,we discover that by increasing the number of stacked layers in the APT metamaterial layer, we can generate Bragg oscillations and increase the number of peaks in transverse displacement.These findings suggest a promising approach for modulating PSHE in APT metamaterials.

    2.Theory and models

    2.1.Spin Hall effect of reflected and transmitted light

    According to the definition of PSHE, the transverse shifts of the reflected light can be expressed as

    By substituting the electric field expression (2) into Eq.(3),we can derive the expressions for the transverse shifts of the reflected beam in terms of the PSHE as follows:

    whereC=k0w0tanθ.By using the similar methods and boundary conditions, we can derive the displacement expression of the transmitted light at the air-APT metamaterials interface:

    2.2.Model of the APT metamaterials in PSHE

    The structure shown in Fig.1 is placed at thez=0 plane,where its background medium is air.The relative permittivity and relative permeability values for the air,positive refractive index dielectric layer(RHM),and negative refractive index dielectric layer (LHM) are denoted asε0,ε1,ε2, respectively,andε1=ε′±iε′′,ε2=-ε′±iε′′.Here,plus or minus ofε′′indicates that loss or gain is introduced into the APT metamaterials, and the relative permeability of the three dielectric layers isμ0=μ1=1,μ2=-1.The thicknesses of the LHM and RHM both are the same asd.

    Fig.1.Schematic illustration of the wave transmission in the APT structure.(a)Diagram of the scattering of circularly polarized plane waves by a double-layer APT optical system.(b)Schematic of the transverse displacement of the reflected PSHE in the multi-layer APT structure.

    By the method of transmission matrix,we can derive the specific expressions for the reflectivity and transmission coefficient of an APT system as follows:[24]

    When the beam is transmitted from the air into the APT metamaterials and back to the air medium,the matrix is expressed in the specific form[32]

    with

    The scattering matrix of the APT metamaterials is defined as

    3.Results and discussion

    3.1.Double-layer APT with loss in PSHE

    Firstly, we verify the relationship between the reflection coefficient and the transmission coefficient in the APT metamaterial through Mathematica software simulation, and the simulation results are consistent with the results derived from the previous theory,that is,rL=r*R,tL=tR.Under the premise of ensuring that the real and imaginary parts of the refractive index meet the APT material, we first consider some new effects of double-layer APT with loss in PSHE.We then extend our discussion to multi-layer APT systems, where we expect to find similar results.

    The proposed structure is shown in Fig.1, and the APT structure composed of a layer of RHM and a layer of LHM with equal thickness is analyzed first, and the non-magnetic medium is selected from the APT metamaterials, so the specific value isε1= 0.1+i0.01,ε2=-0.1+i0.01,μ1= 1,μ2=-1,d1=d2=0.785λ,w0=15λ.The LHM and RHM layers have the same thicknessd.For ease of studying, the scattering matrix eigenvalues, reflections, and transmission coefficients are logarithms of the modulus, and the displacement is normalized to the incident wavelength, and the result is expressed as a multiple of the wavelength.

    Fig.2.[(a), (b)] Dependences of the eigenvalue of the scattering matrix.[(c), (d)] Display of ratio of the scattering eigenstates on θ for the cases of H polarization (the first column), and V polarization (the second column),respectively.

    Fig.3.Transverse shift of reflected light in the double-layer APT structure with loss.Blue(red)line represents p(s)-polarization incident from the LH or RH layer, and the solid (dashed) line represents the TS of LCP(RCP).

    Figure 3 presents the simulation results for the spin splitting displacement in APT metamaterials with loss, using the same parameters as those in Fig.2.The figure includes two rows showing the TS of reflected light when incident from the RHM and LHM sides, respectively.The TS produced by both of them were found to be identical when incident at the same angle,differing from PT symmetric metamaterials.The PT symmetric systems exhibit the non-reflection phenomenon due to balanced gain and loss,which is dependent strongly on the incidence direction of the optical beam.While PT materials can achieve unidirectional and non-reflection behavior,their control over the PSHE may be limited.[33–35]Both PT and APT metamaterials are non-Hermitian,but they have different advantages: PT metamaterials have symmetry breaking, enabling unidirectional light propagation and nonlinear effects.APT materials have amplifier and loss compensation capabilities, enhancing and maintaining signal strength in signal transmission, and can be designed as single photon emitters,optical amplifiers,and high-efficiency optical energy saver devices.[36]

    We proceed to simulate the TS of the transmitted light in the APT metamaterials that introduce loss, as shown in Fig.4.A p-polarized optical beam exhibits a spin-splitting phenomenon when incident at an angle of 29.7°and again at 34.5°, resulting in two peaks in the transmitted beam.However,the spin-splitting remains unchanged in the incidence interval of 40°–60°as the incidence angle varies.The insensitivity of the spin-splitting phenomenon to changes in the angle of incidence within the 40°–60°interval is a desirable feature for developing optoelectronic devices with anti-interference properties.At the incidence of s-polarization, only one traverse peak appears in the figure, that is, around the angle of incidence of 21.2°, at which point the traverse peak is 7.3λ.At that point, the peak will mutate, that is, from±7.3λmutation to?7.3λ.The results show that in the APT metamaterials which introduce loss,the enhanced PSHE can be achieved by properly adjusting the parameters of the system so that the APT systems spontaneous breaking phase occurs in the system.[37]

    Fig.4.Transmission shift in the double layers of the APT structure with loss.

    3.2.Double-layer APT with gain in PSHE

    In this section,we analyze the effect of a Gaussian beam on an APT symmetric metamaterial structure with gain only,where the imaginary part of the relative permittivity is negative.The scattering characteristics of this type of metamaterial,which consists of a double layer of alternating RHM and LHM with thickness ofd,are shown in Fig.5.Among them,the relative permittivities of the two layers areε1=0.1-i0.1,ε2=-0.1-i0.1.The other parameters are consistent with the above description.A similar result to the previous section can be observed,namely,spontaneous breaking can also occur in APT symmetric metamaterials with gain introduced.When the beam is p-polarized, the system exhibits two EP points,located at the incidence angles of 10.3°and 21.2°, and the eigenstates degenerate of the scattering matrix in the range of 10.3°–21.2°.

    Fig.5.[(a), (b)] Dependences of the eigenvalue of the scattering matrix.[(c), (d)] Display of the ratio of the scattering eigenstates on θ for the cases of H polarization (the first column), and V polarization(the second column),respectively.[(e),(f)]Transverse shift of reflected light in the double-layer APT structure with gain.Blue(red)line represents p(s)-polarization incident from the LH or RH layer,and the solid(dashed)line represents the TS of LCP(RCP).

    We further discuss the spin splitting displacement in the APT symmetric metamaterial with gain introduced.Figures 5(e) and 5(f) show the TS of the parallel and vertically polarized reflected light,respectively.It is found that the TSs produced from RHM and LHM are exactly consistent at the same angular incidence,similar to the case in APT symmetric metamaterials that only introduce loss.Near the EP point,an enhanced spin-splitting traverse is still produced.In addition,in the second symmetry breaking point, that is, the angle of incidence is around 21.2°, the traverse generated by the LCP and RCP components has a positive and negative transition.

    3.3.Controlling the thickness and q of APT metamaterials

    The difference in Fig.6 is that the thickness of the material layer is changed, and the three sets of datad=0.785λ,d= 1.0λ,d= 1.5λare taken for comparison.When a ppolarized beam is incident,the TS of LCP(RCP)light transits from positive to negative (from negative to positive) with increasing thickness at an incidence angle of 31.5°, 20.5°, and 12.3°,respectively,and reaches the peak displacement around this angle, and the displacement peak changes from±1.4λ,±2.1λto about±7.1λ, gradually becoming larger.Moreover, we conducted simulations with varying thicknesses of the APT metamaterials and observed that as the thickness increases, the peak point of the transition displacement for the PSHE shifts towards the left.This shift is most significant for p-polarized incident beams and approaches 0°incidence angle under ideal conditions.When the s-polarization is incident,the displacement peak occurs at about 20°, as the material thickness increases,which shows that the photonic spin hall effect generated by s-polarized beam is insensitive to small material thickness changes.In terms of craftsmanship,this characteristic allows the material to have certain production errors.

    The system parameters will be adjusted appropriately asε1= 0.1-i0.1q,ε2=-0.1-i0.1q;μ1= 1,μ2=-1.Keep the thickness and radius of the girdle unchanged, i.e.,d1=d2=0.785λ,w0=15λ.The magnitude of the gain factorqwill be varied to observe its effect on the TS.

    For incident p-polarized beams,the PSHE exhibits a displacement peak at an incidence angle of approximately 20°,with a gain factor of around 0.1.On the other hand, for spolarization incidence, the reflected light displacement peak appears within the incidence angle range of 10°–20°and decreases gradually as the angle increases.However,increasing the gain factor has a minimal effect on the displacement of the PSHE.Therefore, it is concluded that the reflection displacement of s-polarized beam incidence is relatively tolerant to changes in the gain factor.Additionally, we conducted an investigation into the lateral displacement of the transmitted beam in APT metamaterials.As depicted in Fig.7, the peak displacement for p-polarized incidence occurs at a large angle of 70°, while for s-polarization, it occurs at a smaller angle of around 30°.Similar to the reflection displacement of s-polarized light, the displacement of transmitted s-polarized light is less sensitive to changes in the gain factor when the incidence angle exceeds 20°.

    Fig.6.Relationship of TS changing with the incident angle(θ)under different metamaterials thicknesses.

    Fig.7.Transverse shift contour (integer multiples of wavelength) of LCP reflected light[(a),(b)]and transmitted light[(c),(d)]for different Im[ε]with H[(a),(c)]and V[(b),(d)]inputs.

    3.4.Different refraction index gradient in PSHE

    The refractive index gradient plays an important role in the PSHE,[38]so the next research revolves around changing the effect of the real and imaginary parts of the refractive index of the APT material on PSHE, unlike the above section,the relative permittivity of the right-handed material layer and the left-handed material layer are,respectively,ε1=1+i0.1,ε2=-1+i0.1,μ1=1,μ2=-1,d1=d2=0.785λ,w0=15λ.

    In Fig.8, as a p-polarized beam is incident, the PSHE shift undergoes a transition from positive to negative(or negative to positive)at approximately 44.5°,accompanied by the appearance of the first displacement peak.Reflectivity is minimal during this time.Subsequently, the displacement curve becomes flattened,but a sudden change in sign occurs at 70.6°,where the second peak is observed.At this point, the maximum displacement of±6.9λis reached and accompanied by strong reflection of the incident light field.When an spolarized beam is incident,only one displacement peak is observed,which reaches±6.9λat an angle of incidence around 72.5°.The reflection at this point is also strong.Compared with the PSHE using small refractive index APT materials,the one with large refractive index can achieve giant PSHE displacement at a large angle.Next,the transmission PSHE of the APT material is investigated.It is observed that the displacement of transmitted light under p/s-polarized incidence has only one peak at 70.6°/72.5°,which is consistent with the second peak in the reflection of p/s-polarized beam.

    Fig.8.The reflectivity and transmissivity of the Gaussian beam propagation (the first row), and the transverse shift of reflected light (the second row)on θ for the cases of H polarization(the first column),and V polarization(the second column),transverse shift of transmitted light(the third row).

    3.5.Multi-layer APT system with gain and loss alternating

    The number of cycles in the APT metamaterial,N, is a significant parameter that affects PSHE.[39]In order to further investigate the influence ofNon lateral displacement,we consider an APT structure with 8 layers of LHM and RHM,which are center-symmetric and satisfy the properties of APT materials.We increase the refractive index difference between the material and air, as well as between neighboring layers of materials, in order to optimize the data and to observe the PSHE.The specific values are as follows: Re[ε13] = 1,Re[ε24]= 8, Re[ε57] =-8, Re[ε68]=-1.Im[ε1368]= 0.1,Im[ε2457]=-0.1,d=1.5λ,μ1234=1,μ5678=-1,w0=15λ.As the number of layers in the APT material increases, more positive and negative TS peaks are obtained due to Bragg oscillation in the multi-layer structure.This process involves alternating gain and loss, which causes violent modulation of light during transmission,leading to the appearance of multiple exceptional points(EPs).

    Fig.9.[(a), (b)] Eigenvalues of the scattering matrix (first row), [(c),(d)] transverse displacement of reflected light (second row) on θ for the cases of H polarization(the first column), and V polarization(second column).(e)Eight-layer APT structure,with plus and minus signs denoting gain and loss.

    4.Conclusion

    In summary, we have investigated the interface of APT metamaterials for PSHE and found that when a Gaussian optical beam is incident on the material, the spin-dependent transverse shift (TS) of beam remains the same regardless of whether it is from the left-handed material (LHM) or righthanded material (RHM) side.Our findings suggest that it is possible to manipulate PSHE at multiple angles and over a wide range using this approach.By adjusting the structural parameters of the material and the angle of incidence of light,we can obtain giant displacements at 7.1λ,whose upper limitation is the half of the beam waist.Furthermore,the TS shows little change in its trend with respect to the gain factor.However,adding more periodic layers amplifies the transverse displacement peaks caused by Bragg resonance.Our results provide a feasible pathway for the modulation of PSHE and the development of novel nanophotonic devices in some related fields.

    Acknowledgment

    Project supported by the Natural Science Foundation of Guangdong Province (Grant Nos.2018A030313480 and 2022A1515012377).

    猜你喜歡
    光輝
    光輝的學(xué)習(xí)榜樣
    今日民族(2022年9期)2022-10-09 05:35:26
    袁光輝博士簡介
    藝術(shù)百家 宋光輝
    春在飛
    又是光輝勝利的一年——國慶日的感想
    就在家門口
    世界家苑(2018年11期)2018-11-20 10:50:58
    當(dāng)兵愛寂寞
    小新筆記
    讓人文光輝照耀未來
    黨的光輝
    三上悠亚av全集在线观看| 少妇被粗大的猛进出69影院| 免费高清在线观看日韩| 一区二区av电影网| 高潮久久久久久久久久久不卡| 国产精品国产高清国产av | 久久精品aⅴ一区二区三区四区| 黄色视频,在线免费观看| 99香蕉大伊视频| 国产精品一区二区在线不卡| 在线观看66精品国产| 亚洲国产看品久久| 精品久久久久久久毛片微露脸| 十八禁人妻一区二区| 少妇的丰满在线观看| 色综合婷婷激情| 黄网站色视频无遮挡免费观看| av在线播放免费不卡| 香蕉丝袜av| 亚洲国产av新网站| 免费一级毛片在线播放高清视频 | 免费看十八禁软件| 丰满人妻熟妇乱又伦精品不卡| 免费日韩欧美在线观看| 美女午夜性视频免费| 午夜福利在线免费观看网站| 欧美日韩一级在线毛片| 精品卡一卡二卡四卡免费| 飞空精品影院首页| videosex国产| 性少妇av在线| 亚洲欧美一区二区三区久久| 丝袜喷水一区| 国产福利在线免费观看视频| √禁漫天堂资源中文www| 两性午夜刺激爽爽歪歪视频在线观看 | 9色porny在线观看| 亚洲国产欧美日韩在线播放| 国产亚洲欧美在线一区二区| 日本vs欧美在线观看视频| 在线观看免费高清a一片| 亚洲国产欧美日韩在线播放| 国产精品一区二区在线观看99| 久久久国产成人免费| 一级毛片女人18水好多| 老汉色∧v一级毛片| 日韩成人在线观看一区二区三区| 久久精品熟女亚洲av麻豆精品| 一二三四社区在线视频社区8| 国产在线免费精品| 亚洲性夜色夜夜综合| 男女之事视频高清在线观看| 大香蕉久久成人网| 国产麻豆69| 亚洲成国产人片在线观看| 久久久久久亚洲精品国产蜜桃av| 精品午夜福利视频在线观看一区 | 国产精品98久久久久久宅男小说| 蜜桃在线观看..| 亚洲av国产av综合av卡| 久久青草综合色| 久久久久久久大尺度免费视频| 精品人妻熟女毛片av久久网站| 久久性视频一级片| 最近最新中文字幕大全电影3 | 99久久人妻综合| 国产在线免费精品| 少妇的丰满在线观看| 欧美国产精品va在线观看不卡| 一个人免费看片子| 国产精品久久久久久人妻精品电影 | 12—13女人毛片做爰片一| 国产精品二区激情视频| 午夜老司机福利片| 丝袜美足系列| 啦啦啦免费观看视频1| 亚洲av日韩在线播放| 亚洲精品乱久久久久久| 国产精品电影一区二区三区 | 国产精品99久久99久久久不卡| 精品少妇一区二区三区视频日本电影| 韩国精品一区二区三区| 久久亚洲精品不卡| 成年人免费黄色播放视频| 人成视频在线观看免费观看| 99香蕉大伊视频| 久久久久久亚洲精品国产蜜桃av| 欧美久久黑人一区二区| 久久精品亚洲精品国产色婷小说| 欧美日韩黄片免| 亚洲欧美色中文字幕在线| 人人妻人人爽人人添夜夜欢视频| 俄罗斯特黄特色一大片| 国产精品偷伦视频观看了| 国产区一区二久久| 精品第一国产精品| 中文字幕精品免费在线观看视频| 丝袜在线中文字幕| 欧美在线黄色| 亚洲成av片中文字幕在线观看| 国产亚洲精品久久久久5区| 青草久久国产| av又黄又爽大尺度在线免费看| 怎么达到女性高潮| 免费日韩欧美在线观看| 飞空精品影院首页| 日韩欧美一区二区三区在线观看 | 99re在线观看精品视频| 美女高潮到喷水免费观看| 1024视频免费在线观看| 777米奇影视久久| 青青草视频在线视频观看| 亚洲一区中文字幕在线| 日韩制服丝袜自拍偷拍| 另类亚洲欧美激情| 极品教师在线免费播放| 大香蕉久久成人网| 欧美另类亚洲清纯唯美| 一区二区三区乱码不卡18| 建设人人有责人人尽责人人享有的| 午夜福利视频在线观看免费| www.999成人在线观看| 在线看a的网站| bbb黄色大片| 亚洲精品国产色婷婷电影| 国产成+人综合+亚洲专区| 黄网站色视频无遮挡免费观看| 深夜精品福利| 桃花免费在线播放| 国产精品98久久久久久宅男小说| 欧美日韩中文字幕国产精品一区二区三区 | 人成视频在线观看免费观看| 一边摸一边抽搐一进一小说 | 十分钟在线观看高清视频www| 久久久国产欧美日韩av| 啦啦啦 在线观看视频| 嫁个100分男人电影在线观看| 国产人伦9x9x在线观看| 国产精品亚洲一级av第二区| 国产精品国产av在线观看| 亚洲精品粉嫩美女一区| 久久午夜亚洲精品久久| 美女扒开内裤让男人捅视频| 国产在视频线精品| 在线观看一区二区三区激情| 精品免费久久久久久久清纯 | 99久久精品国产亚洲精品| 亚洲国产欧美网| 亚洲av成人不卡在线观看播放网| 一二三四社区在线视频社区8| 午夜精品久久久久久毛片777| 高潮久久久久久久久久久不卡| 久久久久久久大尺度免费视频| 免费在线观看完整版高清| 麻豆av在线久日| 精品一区二区三区四区五区乱码| 久久ye,这里只有精品| 不卡av一区二区三区| 日韩制服丝袜自拍偷拍| 老汉色av国产亚洲站长工具| 亚洲一区二区三区欧美精品| 成年女人毛片免费观看观看9 | 美女扒开内裤让男人捅视频| 热99国产精品久久久久久7| 亚洲av成人不卡在线观看播放网| 免费在线观看完整版高清| 麻豆av在线久日| 亚洲色图综合在线观看| 成年动漫av网址| 亚洲国产欧美一区二区综合| 最新在线观看一区二区三区| 精品国内亚洲2022精品成人 | 青青草视频在线视频观看| 女同久久另类99精品国产91| 日韩欧美一区视频在线观看| 亚洲精品中文字幕一二三四区 | 97在线人人人人妻| 成人免费观看视频高清| 如日韩欧美国产精品一区二区三区| 亚洲欧洲精品一区二区精品久久久| 免费在线观看视频国产中文字幕亚洲| 91字幕亚洲| 国产在线免费精品| 国产成人欧美在线观看 | 国产精品国产av在线观看| 精品国产乱码久久久久久小说| 欧美国产精品va在线观看不卡| 黄片小视频在线播放| 国产极品粉嫩免费观看在线| 欧美日韩精品网址| 精品久久久久久久毛片微露脸| 熟女少妇亚洲综合色aaa.| 动漫黄色视频在线观看| 免费观看av网站的网址| 啦啦啦视频在线资源免费观看| 国产成人系列免费观看| 母亲3免费完整高清在线观看| 日日夜夜操网爽| 欧美久久黑人一区二区| 成人永久免费在线观看视频 | 国产一区二区在线观看av| 国精品久久久久久国模美| 飞空精品影院首页| 日本黄色日本黄色录像| 中国美女看黄片| 色尼玛亚洲综合影院| 美女国产高潮福利片在线看| 国产野战对白在线观看| 亚洲av日韩精品久久久久久密| 久9热在线精品视频| 人人妻人人添人人爽欧美一区卜| 亚洲精品国产区一区二| 一本一本久久a久久精品综合妖精| 一级片免费观看大全| 欧美另类亚洲清纯唯美| 成年版毛片免费区| 精品国产一区二区三区四区第35| 黄频高清免费视频| 日韩中文字幕视频在线看片| 在线 av 中文字幕| 巨乳人妻的诱惑在线观看| 99国产综合亚洲精品| av福利片在线| 无限看片的www在线观看| 一区福利在线观看| 欧美在线一区亚洲| 麻豆国产av国片精品| 久久国产精品人妻蜜桃| 欧美日韩黄片免| 19禁男女啪啪无遮挡网站| 免费在线观看黄色视频的| 精品高清国产在线一区| 欧美av亚洲av综合av国产av| 丝袜美腿诱惑在线| 99热网站在线观看| 美女福利国产在线| 日韩视频在线欧美| 亚洲人成伊人成综合网2020| 精品国产亚洲在线| 精品福利永久在线观看| 国产成人免费无遮挡视频| h视频一区二区三区| 国产极品粉嫩免费观看在线| 亚洲精品在线美女| 又大又爽又粗| 精品久久久精品久久久| 亚洲精品美女久久久久99蜜臀| 久久久久国产一级毛片高清牌| 蜜桃国产av成人99| 高清黄色对白视频在线免费看| 国产免费视频播放在线视频| 99国产精品免费福利视频| 成年女人毛片免费观看观看9 | 极品少妇高潮喷水抽搐| 日韩有码中文字幕| 午夜激情av网站| 精品久久久久久久毛片微露脸| 久久人人爽av亚洲精品天堂| 午夜福利一区二区在线看| 日韩一卡2卡3卡4卡2021年| 日韩一区二区三区影片| 啪啪无遮挡十八禁网站| 精品少妇内射三级| 少妇被粗大的猛进出69影院| a级毛片在线看网站| 亚洲欧洲精品一区二区精品久久久| 激情视频va一区二区三区| 成年人免费黄色播放视频| 黑人猛操日本美女一级片| 男女午夜视频在线观看| 久久久精品国产亚洲av高清涩受| 精品国产超薄肉色丝袜足j| 纵有疾风起免费观看全集完整版| 成人永久免费在线观看视频 | 欧美性长视频在线观看| 成人免费观看视频高清| 一级毛片精品| 日韩欧美一区二区三区在线观看 | 91大片在线观看| 无遮挡黄片免费观看| 国产欧美日韩综合在线一区二区| 少妇 在线观看| 久久中文字幕一级| 在线观看舔阴道视频| 一二三四社区在线视频社区8| 一级毛片电影观看| 欧美黑人精品巨大| 亚洲综合色网址| 日本五十路高清| 香蕉国产在线看| 欧美日韩av久久| 少妇裸体淫交视频免费看高清 | 少妇裸体淫交视频免费看高清 | 男女床上黄色一级片免费看| 中亚洲国语对白在线视频| 国产高清国产精品国产三级| 精品一区二区三区视频在线观看免费 | 午夜福利,免费看| 成人手机av| 看免费av毛片| 久久人人97超碰香蕉20202| 黑丝袜美女国产一区| 法律面前人人平等表现在哪些方面| 变态另类成人亚洲欧美熟女 | 亚洲三区欧美一区| 中国美女看黄片| 色老头精品视频在线观看| 99国产综合亚洲精品| 国产1区2区3区精品| 中文字幕人妻丝袜一区二区| 久久午夜综合久久蜜桃| 久久狼人影院| 少妇的丰满在线观看| 国产男靠女视频免费网站| 精品国产乱码久久久久久小说| 在线观看www视频免费| 1024视频免费在线观看| 精品福利观看| 久久精品国产亚洲av高清一级| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 麻豆乱淫一区二区| 国产成人影院久久av| 色老头精品视频在线观看| 肉色欧美久久久久久久蜜桃| 国产成+人综合+亚洲专区| 90打野战视频偷拍视频| 美女福利国产在线| 一个人免费在线观看的高清视频| 99九九在线精品视频| 亚洲情色 制服丝袜| 精品人妻1区二区| 欧美日韩福利视频一区二区| 大型黄色视频在线免费观看| 欧美日韩一级在线毛片| 久久人人97超碰香蕉20202| 美女主播在线视频| 每晚都被弄得嗷嗷叫到高潮| 一区在线观看完整版| 亚洲中文字幕日韩| 欧美乱妇无乱码| 在线观看免费视频日本深夜| 最新的欧美精品一区二区| 一二三四在线观看免费中文在| 最近最新中文字幕大全免费视频| 9热在线视频观看99| 男女免费视频国产| 国产老妇伦熟女老妇高清| 日韩欧美免费精品| 亚洲va日本ⅴa欧美va伊人久久| 黄色视频,在线免费观看| 国产成人精品久久二区二区免费| 国产精品一区二区在线观看99| 在线观看免费高清a一片| 亚洲av美国av| 91大片在线观看| 国产一卡二卡三卡精品| 91大片在线观看| 国产91精品成人一区二区三区 | 女性生殖器流出的白浆| 午夜日韩欧美国产| 亚洲性夜色夜夜综合| 色播在线永久视频| 国产av精品麻豆| 大片免费播放器 马上看| 美女高潮到喷水免费观看| 日日摸夜夜添夜夜添小说| 99re6热这里在线精品视频| 精品第一国产精品| 99在线人妻在线中文字幕 | 成人av一区二区三区在线看| 美女主播在线视频| 丝瓜视频免费看黄片| 女警被强在线播放| 日韩欧美国产一区二区入口| 日本vs欧美在线观看视频| 97在线人人人人妻| 亚洲第一欧美日韩一区二区三区 | 99久久国产精品久久久| 亚洲 国产 在线| 午夜老司机福利片| 亚洲成人免费av在线播放| 欧美黄色淫秽网站| 亚洲国产看品久久| 伦理电影免费视频| 免费在线观看完整版高清| 淫妇啪啪啪对白视频| 一本一本久久a久久精品综合妖精| 天堂8中文在线网| 美女高潮喷水抽搐中文字幕| 久久99热这里只频精品6学生| 十八禁网站网址无遮挡| 亚洲中文日韩欧美视频| 精品国产一区二区三区久久久樱花| 91九色精品人成在线观看| 极品教师在线免费播放| 久久久久网色| 久久天躁狠狠躁夜夜2o2o| 变态另类成人亚洲欧美熟女 | 精品人妻1区二区| 最新在线观看一区二区三区| av在线播放免费不卡| 免费av中文字幕在线| 91麻豆精品激情在线观看国产 | 亚洲精品国产一区二区精华液| 男女无遮挡免费网站观看| 国产精品欧美亚洲77777| 欧美午夜高清在线| 50天的宝宝边吃奶边哭怎么回事| 黄色视频不卡| 热re99久久国产66热| 国产成人精品在线电影| 欧美性长视频在线观看| 男女免费视频国产| 欧美乱码精品一区二区三区| 国产精品.久久久| 亚洲午夜理论影院| 啦啦啦 在线观看视频| 正在播放国产对白刺激| 国产免费福利视频在线观看| 日本撒尿小便嘘嘘汇集6| 在线观看免费视频日本深夜| 国产1区2区3区精品| 午夜福利欧美成人| 亚洲人成电影免费在线| 一级a爱视频在线免费观看| 欧美日韩亚洲综合一区二区三区_| 国产精品一区二区在线不卡| 亚洲精品在线观看二区| 最黄视频免费看| 变态另类成人亚洲欧美熟女 | 免费观看a级毛片全部| 一区二区三区乱码不卡18| 99re6热这里在线精品视频| 法律面前人人平等表现在哪些方面| 自线自在国产av| 久久久久国内视频| 91九色精品人成在线观看| 啦啦啦 在线观看视频| 男女高潮啪啪啪动态图| 男女午夜视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 成年版毛片免费区| 欧美激情高清一区二区三区| 一区二区三区国产精品乱码| 亚洲,欧美精品.| 免费久久久久久久精品成人欧美视频| 999久久久国产精品视频| 大香蕉久久成人网| 手机成人av网站| 成在线人永久免费视频| 黄片播放在线免费| 久热这里只有精品99| 少妇的丰满在线观看| 三上悠亚av全集在线观看| 国产av又大| 女同久久另类99精品国产91| 男女免费视频国产| 美国免费a级毛片| 99在线人妻在线中文字幕 | 亚洲欧洲精品一区二区精品久久久| 亚洲美女黄片视频| 亚洲人成伊人成综合网2020| 国产成人欧美| a级毛片在线看网站| 色老头精品视频在线观看| 老司机影院毛片| 亚洲色图综合在线观看| a级片在线免费高清观看视频| 亚洲精品乱久久久久久| 自线自在国产av| 欧美乱妇无乱码| 变态另类成人亚洲欧美熟女 | 亚洲avbb在线观看| 在线观看人妻少妇| 极品人妻少妇av视频| 亚洲全国av大片| 热99re8久久精品国产| 每晚都被弄得嗷嗷叫到高潮| 国产成人影院久久av| 日本黄色视频三级网站网址 | 在线观看免费日韩欧美大片| 国产精品免费视频内射| cao死你这个sao货| 9191精品国产免费久久| 19禁男女啪啪无遮挡网站| 91老司机精品| 一进一出好大好爽视频| 高清av免费在线| 天天影视国产精品| 首页视频小说图片口味搜索| 97在线人人人人妻| 国产国语露脸激情在线看| 动漫黄色视频在线观看| 国产精品久久久久久人妻精品电影 | 国产精品国产高清国产av | 日韩欧美免费精品| 亚洲欧美一区二区三区久久| 亚洲精品美女久久av网站| 欧美精品av麻豆av| 另类亚洲欧美激情| 伦理电影免费视频| kizo精华| 国产成人啪精品午夜网站| 搡老岳熟女国产| 在线av久久热| 久久久国产欧美日韩av| 人人妻人人澡人人看| 免费在线观看影片大全网站| tocl精华| 欧美 日韩 精品 国产| 69精品国产乱码久久久| 天天躁夜夜躁狠狠躁躁| 欧美日韩一级在线毛片| 老司机靠b影院| 一进一出抽搐动态| 伊人久久大香线蕉亚洲五| 性少妇av在线| av天堂在线播放| 一本—道久久a久久精品蜜桃钙片| 亚洲少妇的诱惑av| 夜夜夜夜夜久久久久| 亚洲成人免费av在线播放| 最新在线观看一区二区三区| 日本欧美视频一区| 精品午夜福利视频在线观看一区 | 99国产综合亚洲精品| 久久99热这里只频精品6学生| 黄片小视频在线播放| 天堂8中文在线网| 欧美老熟妇乱子伦牲交| 高潮久久久久久久久久久不卡| 久久久久精品人妻al黑| 在线观看免费高清a一片| 国产男女超爽视频在线观看| 热re99久久国产66热| 久久国产精品大桥未久av| 久久精品亚洲精品国产色婷小说| 18禁美女被吸乳视频| 亚洲专区字幕在线| 亚洲av第一区精品v没综合| 亚洲专区字幕在线| 日韩欧美免费精品| 国产成+人综合+亚洲专区| 免费观看人在逋| 欧美国产精品va在线观看不卡| 狠狠狠狠99中文字幕| 五月天丁香电影| 国产精品久久久久久人妻精品电影 | 亚洲欧美色中文字幕在线| 久久久久视频综合| 亚洲精品久久成人aⅴ小说| 国产亚洲午夜精品一区二区久久| 欧美激情 高清一区二区三区| 黄片播放在线免费| 日本精品一区二区三区蜜桃| 久久99热这里只频精品6学生| 黄色视频不卡| 精品少妇内射三级| 99国产综合亚洲精品| 亚洲午夜精品一区,二区,三区| 中亚洲国语对白在线视频| 麻豆成人av在线观看| 欧美日韩视频精品一区| 丝袜在线中文字幕| 热99re8久久精品国产| 日韩成人在线观看一区二区三区| svipshipincom国产片| 亚洲,欧美精品.| 啦啦啦视频在线资源免费观看| 大香蕉久久网| 亚洲午夜理论影院| 亚洲一码二码三码区别大吗| 亚洲专区国产一区二区| 丝袜人妻中文字幕| 不卡一级毛片| 久9热在线精品视频| 少妇粗大呻吟视频| 亚洲国产av新网站| 丁香欧美五月| 欧美中文综合在线视频| kizo精华| 啦啦啦中文免费视频观看日本| 视频区欧美日本亚洲| 一本综合久久免费| 人成视频在线观看免费观看| 女同久久另类99精品国产91| 两性夫妻黄色片| 欧美+亚洲+日韩+国产| 国产区一区二久久| 久久国产精品男人的天堂亚洲| 在线播放国产精品三级| 成年人免费黄色播放视频| 99久久99久久久精品蜜桃| 亚洲欧美一区二区三区黑人| 下体分泌物呈黄色| 91国产中文字幕| 日韩制服丝袜自拍偷拍| 午夜激情久久久久久久| 国产伦理片在线播放av一区| 国产av国产精品国产| 极品教师在线免费播放| 亚洲欧美精品综合一区二区三区| 欧美成狂野欧美在线观看| 人人妻,人人澡人人爽秒播| 欧美一级毛片孕妇| 在线永久观看黄色视频| 久久青草综合色| 99国产综合亚洲精品| 美女国产高潮福利片在线看| 亚洲天堂av无毛| 日韩欧美国产一区二区入口| 成年女人毛片免费观看观看9 | 色婷婷久久久亚洲欧美| 亚洲五月婷婷丁香|