• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Discussion on interface deformation and liquid breakup mechanism in vapor–liquid two-phase flow

    2023-10-11 07:55:44XiangAn安祥BoDong董波YaJinZhang張雅瑾andXunZhou周訓(xùn)
    Chinese Physics B 2023年9期
    關(guān)鍵詞:安祥

    Xiang An(安祥), Bo Dong(董波), Ya-Jin Zhang(張雅瑾), and Xun Zhou(周訓(xùn))

    1School of Naval Architecture and Maritime,Zhejiang Ocean University,Zhoushan 316022,China

    2Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education,School of Energy and Power Engineering,Dalian University of Technology,Dalian 116024,China

    3Institute of Refrigeration and Air Conditioning Technology,Henan University of Science and Technology,Luoyang 471003,China

    Keywords: liquid breakup,lattice Boltzmann method,capillary instability,end-pinching mechanism

    1.Introduction

    Interface deformation and liquid breakup are common in various natural and industrial vapor–liquid two-phase phenomena, such as raindrop falling,[1]inkjet printing,[2]and fuel atomization.[3]Distinguishing the vapor–liquid interface deformation and liquid breakup mechanisms is significant and helpful for understanding the interface evolution and fluid movement.According to Eggers and Villermaux,[4]the vapor–liquid interface is either dominated by the Rayleigh–Taylor instability (RTI) and the Kelvin–Helmholtz instability(KHI)or controlled by the Rayleigh mode where the capillary instability is predominant.

    On the one hand,the RTI and KHI are investigated from different influencing factors or presented as model validation examples.Li and Umemura[5]studied the large interface deformation and spike formation mechanism aroused by the RTI at a large Atwood number.Liuet al.[6]explained the liquid ligament generation from the interface in the RTI.Kim K S and Kim M H[7]simulated the KHI in a multiphase system with multiple interfaces by using a moving particle semi-implicit method.Daiet al.[8]derived the analytical formulas for the KHI of two superposed finite-thickness fluid layers with the magnetic field effect taken into consideration, and found that the effect of thickness is more obvious when the magnetic field intensity is weak.Zhouet al.[9]analyzed the RTI and the KHI in wide ranges of density ratio, viscosity ratio, and Reynolds (Re) number adopting the lattice Boltzmann (LB)method.[10,11]Chenet al.[12]investigated the effects of initial perturbations on the RTI, KHI, and the coupled RT-KHI system by using a multiple-relaxation-time discrete Boltzmann model.Besides, some studies[13–16]also simulated these two instability phenomena and validated the mathematical model via them.In general, the RTI and KHI depict the deformation of the vapor–liquid interface based on the above research.On the other hand, capillary instability has been reported in studies of the liquid jet and droplet collisions.The liquid jet breakup process was carried out by Delteilet al.,[17]and the growth of the capillary instability was simulated.They pointed out that the amplification of the capillary instability induces the liquid jet breakup,and the breakup of the liquid sheet into droplets is due to a coupling between the capillary instability and KHI.Conget al.[18]investigated the binary unequal-sized droplet collision under different Weber(We)numbers and impact parameters.They revealed that capillary instability can be observed on the liquid ligament at large impact parameters.Similarly, Chaitanyaet al.[19]studied the oblique collision of two unequal-sized liquid droplets and found that the end-pinching mechanism is operational in the head-on droplet collision and the capillary instability is responsible for the liquid ligament breakup at large impact parameters.Anet al.[20]simulated the binary droplet collision process with different angles,and their results showed that the liquid back-flow phenomenon is caused by the end-pinching mechanism, which further leads to the capillary instability on the liquid ligament.

    In the above studies on two-phase flow, the fluid instability mechanisms include the RTI,the KHI,the capillary instability, and the end-pinching mechanism.Different mechanisms describe the fluid movement from different perspectives,as previously mentioned,the RTI and KHI are two instability mechanisms characterizing the vapor–liquid phase interface deformation, while, the capillary instability and endpinching mechanism are difficult to recognize and easily confused with the former.Adopted in this work is a threedimensional(3D)phase-field-based LB model[21]to simulate three benchmark cases, analyze the fluid movement based on the capillary instability and the end-pinching mechanism,and clarify the stances of different mechanisms in vapor–liquid two-phase flow.The rest of this paper is organized as follows.The 3D phase-field-based LB model is elaborated in Section 2.Three benchmark cases are simulated and the relevant fluid movement mechanisms are discussed in Section 3.A brief summary is presented in Section 4.

    2.Mathematical method

    As an increasingly popular fluid dynamics method, the LB method has been used to investigate different phenomena, such as bubble collapse,[22]micro-scale fluid flow,[23]and combustion and detonation.[24]There are also some reviews[25,26]expatiating this method, in which different schemes and models are introduced, including the phasefield-based LB model.This model was developed in the 2000s.[27,28]Some studies[29,30]used two sets of LB equations to recover the Cahn–Hilliard equation for interface tracking and the incompressible Navier–Stokes equations for hydrodynamic properties.However, the Allen–Cahn-based LB model was pointed out to have higher numerical accuracy and stability in solving the index parameter than the Cahn–Hilliard-based LB model.[31]Following this point,the singlerelaxation-time (SRT) operator form[32]and the multiplerelaxation-time(MRT)operator form[21]for the Allen–Cahnbased LB model were developed.This MRT phase-field-based LB model is presented in the following.

    In the model,the conservative Allen–Cahn equation is the macroscopic equation to capture the interface,which is written as[33,34]

    whereφis the order parameter characterizing the interface,Mis the mobility, andλis a function ofφ.In addition,nis the unit vector normal to the interface, anduis the velocity,which is governed by the following incompressible Navier–Stokes equations[14]

    wherepis the hydrodynamic pressure andFis the total force.

    In this LB model,two sets of evolution equations are designed to solve Eqs.(1)–(3),respectively,

    wherefandgare the particle distribution functions,feqandgeqare the corresponding equilibrium distribution functions,and ^Fiand ^Giare the forcing distribution functions.[35–37]The D3Q7 lattice model and the D3Q15 lattice model are adopted in Eqs.(4)and(5),respectively,andMD3Q7andMD3Q150are the corresponding transformation matrices,

    SfandSgare the diagonal relaxation matrices,which can be written as

    By premultiplying the corresponding transformation matrices in Eqs.(4) and (5), and multiplying the particle distribution functions and the forcing distribution functions with the corresponding transformation matrices in parentheses on the righthand sides,the following equations are obtained:

    wheremf=MD3Q7·fandmg=MD3Q15·gare the particle distribution functions in moment space.Equations (12)and(13)represent the collision process in moment space.The equilibrium distribution functions and the forcing distribution functions can be obtained after some algebraic operations,

    In this phase-field-based LB model, the order parameterφis calculated by particle distribution functionfas

    Then, the density, viscosity, velocity, and pressure can be given,respectively,by

    where the subscripts l and v represent the liquid phase and the vapor phase.ei,cs,andωiare the discrete velocity,the lattice sound speed, and the weighting coefficient in D3Q15 lattice model,respectively,andsi(u)can be calculated from[21]

    3.Numerical results and discussions

    Simulated in this section are three benchmark cases including droplet impact on a solid surface,breakup of a liquid ligament, and binary droplet collision and breakup, by using the above numerical model,and the liquid phase deformation and breakup mechanisms are also discussed here.

    3.1.Droplet impact on a solid surface

    The process of droplet impacting on a solid surface is simulated and the numerical results are compared with the experimental data of Donget al.in this subsection.[38]Two dimensionless parameters ofRenumber andWenumber are used to characterize the impact process,which are calculated as

    whereU0is the initial droplet velocity,D0is the initial droplet diameter,νlandρlare the viscosity and density of the liquid phase,respectively,σis the surface tension coefficient.In the simulation,the computational domain size is 200×200×100 in lattice unit in thex,y, andzdirections.The periodic boundary is adopted in thexandydirections,and the halfway bounce-back scheme is applied to the solid surface, which is perpendicular to thezdirection.In the initialization,the order parameter profile is

    whereRis the droplet radius andWis the interface width.The initial velocity is set as

    According to Donget al.,[38]the system consists of a droplet and an ambient vapor phase on the solid surface.The contact angles are set as 31°and 107°.The droplet diameter is 48.8 μm, and its velocity is 4.36 m/s.The dimensionless parametersRenumber andWenumber are 238.0 and 12.8, respectively.In the simulation,the initial droplet radius and velocity are 25.0 and 0.05 in lattice unit,respectively.According to the droplet diameter in physical unit and lattice unit, the spatial resolution Δlcan be calculated to be 0.976 μm.Then,the temporal resolution can be obtained to be 0.011193 μs by Δt=vl·Δl/vp,wherevlandvpare the droplet velocity in lattice unit and physical unit, respectively.Besides, the density ratio of the liquid phase to the vapor phase is 844.0,the kinematic viscosity ratio of the vapor phase to the liquid phase is 34.8,the surface tension coefficient is 0.098,and the interface width is 4.0.

    The interface evolutions in the process of droplet impacting on a solid surface are presented in Fig.1.The changes of the droplet lateral spreading ratioD*,namely the droplet size parallel to the solid surface and the droplet heightH*on the droplet center line are extracted for quantitative comparisons,as shown in Fig.2,which are normalized by the initial droplet diameterD0.Table 1 lists the relative errors between the numerical results and experimental data in the process of droplet impacting on a solid surface, corresponding to the four cases in Fig.2.The error values are calculated at eight time points for each case,and their average values are also given.As can be seen from the table,when the contact angle is 31°,the numerical results are closer to the experimental data than when the contact angle is 107°.According to the average errors,the values are within 6%for the four cases.Besides,there are differences between the numerical results and experimental data,especially the droplet heights greatly differ from each other in a range from 13 μs to 25 μs as shown in Fig.2(a).As can be seen from the figure, before the first turning point of the droplet height at about 13 μs,the droplet lateral spreading ratio obtained numerically is smaller than the experimental data generally,and the droplet height obtained numerically is larger than the experimental data.One can see that the droplet is not susceptible to spread after the impact.After, there is a distinct increase of the droplet height,namely,the droplet shows strong contractility.Accordingly,it can be inferred that a large surface tension,which makes it difficult for the droplet to expand and easy to contract, is probably the main factor causing the numerical error,especially for the turning point within 13 μs to 25 μs.

    Fig.1.Interface evolutions in the process of droplet impacting on a solid surface with contact angle being(a)31° and(b)107°.

    Combining Figs.1 and 2, when the droplet impacts on the hydrophilic surface, the contact area between them increases continuously and rapidly within 10 μs.At this stage,the droplet morphology mainly depends on the kinetic energy of droplet.After 13.43 μs, the droplet spreads over the solid surface gradually.The surface tension and the wetting condition determine the droplet morphology,and the liquid phase covers the solid surface with an umbrella shape eventually.For the hydrophobic solid surface,the interface evolution is similar to that on the hydrophilic surface before 13 μs.However,after that, the contact area between the droplet and the solid surface shrinks gradually, and the liquid phase is attached to the solid surface as a hemisphere eventually after some oscillations.In this stage, the surface tension plays a leading role in the contraction of the liquid phase.In the process of droplet impacting on a solid surface, the liquid phase only deforms without breakup, the droplet kinetic energy, surface tension,and the wetting condition are the determinants.

    Fig.2.Variations of lateral spreading ratio D*and droplet height H*with time in the process of droplet impacting on solid surface with contact angle being(a)31° and(b)107°.

    Table 1.Relative errors between numerical results and experimental data in the process of droplet impacting on a solid surface.

    3.2.Breakup of liquid ligament

    The breakup of a liquid ligament is an interesting phenomenon, and it is helpful to understand the liquid breakup mechanism.[39]Rayleigh[40]analyzed the stability of a liquid ligament and indicated that the liquid ligament is unstable if the disturbance wavelengthλon the liquid ligament is greater than the perimeter 2πRof the liquid ligament.Namely,if the wave numberk=2πR/λis less than 1,the liquid ligament is unstable.

    In the simulation,the computational domain size isLX×λ×LZin thex,y, andzdirections, and the periodic boundary is applied to all directions.In the initialization, the order parameter distributes as follows:

    whereRis the initial radius of the liquid ligament,which is set as 15.0 in the simulation.The interface widthWis set as 4.0,andDis the disturbance function.The computational domain sizeLXandLZin thexandzdirections are set as 90,and the values of disturbance wavelengthλare set as 230, 300, and 400 in three cases, respectively.Correspondingly, the values of wave numberkare 0.41,0.31,and 0.24.Besides,the density ratios between the liquid phase and the vapor phase are set as 100 and 10,and the surface tension coefficient is 0.15.

    Figure 3 gives the liquid ligament breakup process at the liquid/vapor density ratios of 10 and 100 when the wave number is 0.31.The time steptis normalized intot*=Initially, the liquid ligament begins to converge gradually into both ends under the action of surface tension and disturbance.As the liquid ligament in the middle becomes thin and the liquid accumulates at both ends,the breakup occurs at the joint between the liquid ligament and the hemispheroid.This breakup is dominated by the endpinching mechanism,[41,42]which describes the liquid phase back-flow phenomena at the joints of hemispheroids and the liquid ligament.[20]After the breakup, the liquid phase is divided into the droplet and the liquid ligament in the middle.The former becomes a stable sphere eventually after some oscillations, namely the main droplet, and the latter contracts rapidly into a small droplet due to surface tension,namely the satellite droplet.The liquid ligament fracture is the detail of the liquid breakup,and its mechanism refers to the essence of the liquid breakup.Namely,the end-pinching mechanism can be considered as the immanent cause of other liquid breakup mechanisms, such as capillary instability.Besides, by comparing the interface evolutions in Fig.3(a) and with those in Fig.3(b), one can see that it takes longer time for the liquid ligament to break at a density ratio of 100 than at a density ratio of 10.That is to say,the liquid breakup process is closely related to the liquid/vapor density ratio, and a large density ratio makes it difficult for the liquid to breakup.

    Fig.3.Liquid ligament breakup process with wave number k being 0.31 and liquid/vapor density ratio being(a)10 and(b)100.

    In previous studies, the relationships between the main droplet radius,the satellite droplet radius,and the wave number were investigated numerically,[43]theoretically,[44]and experimentally.[45]Figure 4 depicts the main droplet radii and the satellite droplet radii at three different wave numbers, as well as the relevant data from previous studies.The vertical coordinateR*is normalized by the initial radius of the liquid ligamentR.As can be seen from the figure, the main droplet radius and the satellite droplet radius decrease as the wave number increases, and the liquid phase is allocated much to the main droplet rather than the satellite droplet when the density ratio is 100.In the figure, the simulation results of the satellite droplet radius are different from previous data, especially in the case of a density ratio of 100.The errors may be caused by spontaneous shrinkage[46]and measurement errors in the case of a small droplet.

    3.3.Binary droplet collision and breakup

    The collision process and breakup process of binary droplets exist widely in natural and industrial phenomena.In general, the collision process between binary droplets is divided into five regimes: coalescence, bouncing, coalescence with major deformation, head-on separation, and off-center separation.[47]It is worth mentioning that in the study of shear-driven two colliding motions of binary double emulsion droplets,[48,49]two typical colliding motions of passing-over motion and reversing motion are observed experimentally and numerically,in which the reversing motion,namely the bouncing regime, has never been observed in previous numerical studies.As theRenumber and theWenumber increase, the droplet breakup occurs instead of coalescence or separation.The binary droplet collision and breakup process are simulated and the results are also qualitatively compared with the experimental results of Panet al.in this subsection.[50]

    The binary droplet collision process is characterized by theRenumber and theWenumber

    whereRis the droplet radius,Uis the relative velocity between the two droplets,ρlandνlare the liquid density and kinematic viscosity,andσis the surface tension coefficient.Figure 5 displays the binary collision process atRenumber andWenumber of 1720 and 58, respectively.The computational domain size is 300, 250, 250 in thex,y, andzdirections.Figures 6 and 7 give the breakup processes in binary droplet collision atRe=4690,We=280,andRe=6650,We=878,respectively.For these two cases,the computational domain sizes are 250,300,300 in thex,y,andzdirections.In these three cases,the periodic boundary scheme is applied to all directions.In each of Figs.5–7,panel(a)shows the present numerical results,and panel(b)displays the experimental results of Panet al.[50]

    In Fig.6, a round phase structure and a flat liquid phase structure appear after the impact.Specifically, the outermost secondary droplets do not break away immediately from the liquid phase structure,even though crannies between the outermost secondary droplets and the liquid phase structure appear.Then,the entire liquid phase structure disintegrates into many secondary droplets due to the contraction caused by surface tension, namely the capillary instability on the liquid phase structure.These secondary droplets have no kinetic energy, thus in this process, the initial droplet kinetic energy determines the deformation of the liquid phase only, and the capillary instability on the liquid phase structure is the mechanism of driving the liquid breakup and secondary droplet formation.In the end,the liquid phase exists entirely in the form of irregular secondary droplets.In the process of liquid phase structure disintegration,the end-pinching mechanism works at each breakup point,resulting in capillary instability on the liquid phase structure.The end-pinching mechanism is the fundamental mechanism for the liquid breakup and the immanent cause of the capillary instability.

    Unlike the scenario in Fig.6, the outermost secondary droplets are produced and “fly away” before the liquid phase structure becomes flat completely in Fig.7.These secondary droplets have their kinetic energy, which can only be derived from the initial droplet kinetic energy.When the liquid phase structure becomes flat completely, the residual inner liquid phase decomposes due to the end-pinching mechanism and the capillary instability,which is the same as that in Fig.6.In the whole process, the produced secondary droplets are smaller than those in Fig.6, the initial droplet kinetic energy and the capillary instability both contribute to the liquid breakup and the secondary droplet production.

    Combining the point of Eggers and Villermaux,[4]and the above discussion,one can conclude that RTI,KHI,and capillary instability are the instability mechanisms of the vapor–liquid phase interface.However, it should be pointed out clearly that RTI and KHI are the interface deformation mechanisms as mentioned in the Introduction,and the capillary instability is the driving mechanism of the liquid phase disintegration and the secondary droplet production when theWenumber is large,by comparing Fig.5 with Figs.6 and 7.

    Fig.5.Binary droplet collision process at Re = 1720 and We = 58: (a)present results and(b)experimental results

    Fig.6.Binary droplet collision and breakup process at Re = 4690 and We=280: (a)present results and(b)experimental results.

    Fig.7.Binary droplet collision and breakup process at Re = 6650 and We=878: (a)present results and(b)experimental results.

    4.Conclusions

    A 3D phase-field-based LB model is adopted to simulate the droplet and liquid ligament dynamic behavior and analyze the interface deformation and liquid breakup mechanisms in this work.Based on previous studies and present analysis results, RTI, KHI, and capillary instability are triggered off by different vapor–liquid phase interface instability mechanisms, specifically speaking, RTI and KHI dominate the interface deformation and the capillary instability is driven by the liquid breakup and the secondary droplet production at a largeWenumber.As another liquid breakup mechanism, the end-pinching mechanism,which describes the back-flow phenomenon of the liquid phase, works at each breakup point,thus resulting in capillary instability on the liquid phase structure.In essence,it is the fundamental mechanism for the liquid breakup and the immanent cause of capillary instability.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.51776031), the Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes, China, and the Key Project of Science and Technology Development of Henan Province, China (Grant No.222102220033).

    猜你喜歡
    安祥
    高血壓誤診誤治原因分析及預(yù)防策略
    父親走了
    鴨綠江(2020年17期)2020-11-17 10:06:12
    父親走了
    鴨綠江(2020年20期)2020-11-12 05:07:06
    防瘟老衲
    面對(duì)風(fēng)景
    牡丹(2018年31期)2018-01-03 12:33:26
    張安祥
    王安祥:書寫大愛的人
    鎮(zhèn)沅世界茶王芳香鎮(zhèn)沅
    松濤吟唱的詩行
    歲月(2016年5期)2016-08-13 00:32:59
    扶貧路上的老代表
    av电影中文网址| 一个人免费看片子| 伦理电影大哥的女人| a级毛片在线看网站| 七月丁香在线播放| 精品卡一卡二卡四卡免费| 国产一级毛片在线| 人妻 亚洲 视频| 你懂的网址亚洲精品在线观看| 日韩不卡一区二区三区视频在线| 亚洲 欧美一区二区三区| 日韩中文字幕欧美一区二区 | 精品卡一卡二卡四卡免费| 女的被弄到高潮叫床怎么办| 亚洲国产日韩一区二区| 街头女战士在线观看网站| √禁漫天堂资源中文www| 超碰成人久久| 国产xxxxx性猛交| 最近中文字幕2019免费版| 免费播放大片免费观看视频在线观看| 在线观看美女被高潮喷水网站| 亚洲五月色婷婷综合| 成年动漫av网址| 国产免费福利视频在线观看| 精品久久蜜臀av无| 天天躁日日躁夜夜躁夜夜| 天天躁夜夜躁狠狠躁躁| 国产高清不卡午夜福利| 色吧在线观看| 热99国产精品久久久久久7| 涩涩av久久男人的天堂| 免费观看在线日韩| 高清av免费在线| 日本欧美国产在线视频| 午夜福利乱码中文字幕| 视频在线观看一区二区三区| 成人18禁高潮啪啪吃奶动态图| 日韩 亚洲 欧美在线| 在线观看免费视频网站a站| 久久精品国产亚洲av高清一级| 桃花免费在线播放| 国产精品嫩草影院av在线观看| 91成人精品电影| 亚洲人成77777在线视频| 日韩伦理黄色片| 久久久久久久精品精品| 亚洲成人一二三区av| 国产午夜精品一二区理论片| 午夜福利网站1000一区二区三区| 99久久中文字幕三级久久日本| 国产亚洲最大av| 日本爱情动作片www.在线观看| 亚洲四区av| 亚洲国产毛片av蜜桃av| 男女免费视频国产| www.精华液| 亚洲欧美中文字幕日韩二区| 少妇的逼水好多| 老鸭窝网址在线观看| 大片电影免费在线观看免费| 在线 av 中文字幕| 亚洲精华国产精华液的使用体验| 日本色播在线视频| 国产成人a∨麻豆精品| 国产爽快片一区二区三区| 成人免费观看视频高清| 女人精品久久久久毛片| 曰老女人黄片| 一区二区日韩欧美中文字幕| 亚洲精品,欧美精品| 男女边吃奶边做爰视频| 欧美日韩精品网址| 少妇的逼水好多| 亚洲精品久久久久久婷婷小说| 伦理电影免费视频| 黄色 视频免费看| 精品人妻熟女毛片av久久网站| 国产一区二区三区av在线| 观看美女的网站| 丝袜在线中文字幕| 黄色一级大片看看| 少妇的丰满在线观看| 免费在线观看视频国产中文字幕亚洲 | 国产熟女欧美一区二区| 熟女少妇亚洲综合色aaa.| 久久久久精品性色| 亚洲在久久综合| 日本色播在线视频| 卡戴珊不雅视频在线播放| 成年av动漫网址| 人人妻人人澡人人爽人人夜夜| 精品一区二区免费观看| 黄色视频在线播放观看不卡| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一本大道久久a久久精品| 波多野结衣av一区二区av| 在线看a的网站| www.精华液| 一边摸一边做爽爽视频免费| 久久久国产精品麻豆| 久久这里只有精品19| 亚洲综合精品二区| 美女中出高潮动态图| 亚洲精品自拍成人| 亚洲国产精品一区三区| 老熟女久久久| 成年美女黄网站色视频大全免费| 2018国产大陆天天弄谢| 在线观看www视频免费| 十八禁网站网址无遮挡| 一级毛片 在线播放| 一本久久精品| 在线观看免费视频网站a站| freevideosex欧美| 毛片一级片免费看久久久久| 日韩一区二区视频免费看| 男的添女的下面高潮视频| 国产视频首页在线观看| 亚洲成人一二三区av| 成人免费观看视频高清| 另类精品久久| 久热这里只有精品99| 精品福利永久在线观看| 男女国产视频网站| 国产精品蜜桃在线观看| 精品国产露脸久久av麻豆| 国产成人免费观看mmmm| 99热全是精品| 欧美激情极品国产一区二区三区| 爱豆传媒免费全集在线观看| 久久精品久久久久久久性| 岛国毛片在线播放| 国产激情久久老熟女| 人妻系列 视频| 国产探花极品一区二区| 成年女人毛片免费观看观看9 | 国产亚洲最大av| 美女视频免费永久观看网站| 黄频高清免费视频| 国产一区二区 视频在线| 18禁观看日本| 久久精品国产亚洲av高清一级| 欧美国产精品一级二级三级| 中文字幕亚洲精品专区| 美女脱内裤让男人舔精品视频| 午夜激情久久久久久久| 女人被躁到高潮嗷嗷叫费观| 欧美精品一区二区大全| 看免费av毛片| 亚洲少妇的诱惑av| 老鸭窝网址在线观看| 午夜免费鲁丝| 亚洲第一av免费看| 69精品国产乱码久久久| 最近手机中文字幕大全| 人人妻人人爽人人添夜夜欢视频| 亚洲一级一片aⅴ在线观看| 97人妻天天添夜夜摸| 黄片小视频在线播放| 亚洲av成人精品一二三区| 国产免费一区二区三区四区乱码| 性色av一级| 亚洲人成网站在线观看播放| 制服诱惑二区| 日韩欧美精品免费久久| 1024香蕉在线观看| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美精品综合一区二区三区 | 国产精品三级大全| 免费看av在线观看网站| 永久网站在线| 日日爽夜夜爽网站| 午夜影院在线不卡| 国产精品偷伦视频观看了| 国产成人免费无遮挡视频| 国产又爽黄色视频| 亚洲欧美成人综合另类久久久| 久久久久网色| 大香蕉久久网| 国产人伦9x9x在线观看 | 亚洲综合色网址| 99热全是精品| 久久精品国产亚洲av高清一级| 久久热在线av| 天天影视国产精品| 26uuu在线亚洲综合色| 欧美人与性动交α欧美软件| 黄色配什么色好看| 欧美精品av麻豆av| 老女人水多毛片| 亚洲激情五月婷婷啪啪| 一本久久精品| www.av在线官网国产| 欧美精品国产亚洲| 蜜桃国产av成人99| 国产女主播在线喷水免费视频网站| 9色porny在线观看| 男女无遮挡免费网站观看| 波多野结衣一区麻豆| 男男h啪啪无遮挡| 秋霞伦理黄片| 美女国产视频在线观看| 麻豆精品久久久久久蜜桃| 久久国产精品大桥未久av| 色哟哟·www| 成年av动漫网址| 欧美精品一区二区大全| 精品久久久精品久久久| 欧美日本中文国产一区发布| 伦理电影免费视频| 美女午夜性视频免费| 香蕉国产在线看| 午夜福利影视在线免费观看| 久久久久国产网址| 午夜久久久在线观看| 天天躁夜夜躁狠狠躁躁| 街头女战士在线观看网站| 春色校园在线视频观看| 亚洲国产日韩一区二区| 国产精品一区二区在线不卡| 巨乳人妻的诱惑在线观看| 日本午夜av视频| 亚洲精品日本国产第一区| 久久久久国产网址| 国产片内射在线| 亚洲少妇的诱惑av| 少妇被粗大猛烈的视频| 人妻少妇偷人精品九色| 免费高清在线观看日韩| 亚洲色图综合在线观看| 久久亚洲国产成人精品v| 成人国语在线视频| 韩国高清视频一区二区三区| 不卡视频在线观看欧美| 精品福利永久在线观看| 免费日韩欧美在线观看| 欧美成人精品欧美一级黄| 免费看不卡的av| 日本av免费视频播放| 美女福利国产在线| 伊人久久国产一区二区| 欧美日韩一区二区视频在线观看视频在线| 大片电影免费在线观看免费| 一区二区三区激情视频| 久久鲁丝午夜福利片| 日韩一卡2卡3卡4卡2021年| 2021少妇久久久久久久久久久| h视频一区二区三区| 大香蕉久久成人网| 综合色丁香网| 麻豆精品久久久久久蜜桃| 不卡视频在线观看欧美| 久久久久久伊人网av| av女优亚洲男人天堂| 亚洲第一av免费看| 国产高清不卡午夜福利| 日本vs欧美在线观看视频| 精品国产国语对白av| 如何舔出高潮| 免费大片黄手机在线观看| 最新中文字幕久久久久| 热re99久久国产66热| videos熟女内射| 欧美最新免费一区二区三区| 精品一区二区免费观看| 亚洲精品国产av成人精品| 最近中文字幕高清免费大全6| 性色av一级| 国产在线视频一区二区| 国产成人91sexporn| 9191精品国产免费久久| 国产爽快片一区二区三区| 久久精品人人爽人人爽视色| 日日撸夜夜添| videossex国产| videos熟女内射| 成年美女黄网站色视频大全免费| 国产成人av激情在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 免费在线观看黄色视频的| 久久精品夜色国产| 国产精品 国内视频| 春色校园在线视频观看| 人体艺术视频欧美日本| videossex国产| 十八禁网站网址无遮挡| 天堂8中文在线网| 一区二区日韩欧美中文字幕| 日本猛色少妇xxxxx猛交久久| av在线app专区| 中文字幕人妻熟女乱码| 亚洲成人一二三区av| 男女啪啪激烈高潮av片| 下体分泌物呈黄色| 亚洲精品aⅴ在线观看| 天天躁日日躁夜夜躁夜夜| 亚洲国产日韩一区二区| 天堂8中文在线网| 两个人免费观看高清视频| 免费不卡的大黄色大毛片视频在线观看| 国产精品久久久久久精品古装| 国产成人精品无人区| 性色avwww在线观看| 亚洲中文av在线| 在线观看美女被高潮喷水网站| 80岁老熟妇乱子伦牲交| 亚洲欧洲日产国产| 久久久精品免费免费高清| av又黄又爽大尺度在线免费看| 九九爱精品视频在线观看| 91aial.com中文字幕在线观看| 午夜激情av网站| 免费女性裸体啪啪无遮挡网站| 国产成人a∨麻豆精品| 国产在线视频一区二区| 久久99热这里只频精品6学生| 18禁国产床啪视频网站| 成人影院久久| 国产又色又爽无遮挡免| 日韩大片免费观看网站| 国产亚洲精品第一综合不卡| 日日撸夜夜添| 女人高潮潮喷娇喘18禁视频| 七月丁香在线播放| 在线观看人妻少妇| 爱豆传媒免费全集在线观看| 国产一区有黄有色的免费视频| 国产成人91sexporn| 久久久久久人妻| 欧美日韩精品成人综合77777| 青春草国产在线视频| 久久免费观看电影| 亚洲欧美日韩另类电影网站| 男的添女的下面高潮视频| 在现免费观看毛片| 国产女主播在线喷水免费视频网站| 高清欧美精品videossex| 90打野战视频偷拍视频| 精品国产国语对白av| videosex国产| 99九九在线精品视频| 久久女婷五月综合色啪小说| 欧美日韩国产mv在线观看视频| 国产在线免费精品| 亚洲成人手机| 叶爱在线成人免费视频播放| 中文字幕精品免费在线观看视频| 国产成人精品久久久久久| 婷婷色综合www| 精品国产一区二区三区久久久樱花| 91精品伊人久久大香线蕉| 在线天堂中文资源库| 亚洲精品久久午夜乱码| 日韩,欧美,国产一区二区三区| 午夜免费鲁丝| av有码第一页| 国产免费一区二区三区四区乱码| 熟女电影av网| 在现免费观看毛片| 母亲3免费完整高清在线观看 | 美女午夜性视频免费| 亚洲成国产人片在线观看| 久久久a久久爽久久v久久| 亚洲av男天堂| 一级爰片在线观看| 亚洲精品国产一区二区精华液| 美女午夜性视频免费| 一级片'在线观看视频| 国产免费又黄又爽又色| 色哟哟·www| 一区二区日韩欧美中文字幕| 久久久久人妻精品一区果冻| 亚洲,欧美精品.| 丰满迷人的少妇在线观看| 国产精品不卡视频一区二区| 精品少妇久久久久久888优播| 91精品三级在线观看| 人人澡人人妻人| 伦精品一区二区三区| 日韩成人av中文字幕在线观看| 尾随美女入室| 又粗又硬又长又爽又黄的视频| 纯流量卡能插随身wifi吗| 人人妻人人澡人人爽人人夜夜| 一本色道久久久久久精品综合| 在线免费观看不下载黄p国产| 欧美人与善性xxx| 大码成人一级视频| 97人妻天天添夜夜摸| 国产成人午夜福利电影在线观看| 日韩不卡一区二区三区视频在线| 99久国产av精品国产电影| 黄片小视频在线播放| 亚洲美女视频黄频| 九色亚洲精品在线播放| 久久精品人人爽人人爽视色| 国产精品 欧美亚洲| 中文字幕制服av| 边亲边吃奶的免费视频| 久久久久久久精品精品| 亚洲国产看品久久| av福利片在线| 亚洲一区中文字幕在线| 大香蕉久久网| 97在线视频观看| 精品人妻一区二区三区麻豆| 大香蕉久久成人网| 亚洲成人一二三区av| 婷婷色综合大香蕉| 男女午夜视频在线观看| 高清av免费在线| 午夜福利乱码中文字幕| 国产精品女同一区二区软件| 性高湖久久久久久久久免费观看| 婷婷色综合www| 亚洲一码二码三码区别大吗| 9热在线视频观看99| 视频在线观看一区二区三区| 老汉色∧v一级毛片| 又大又黄又爽视频免费| av在线老鸭窝| 久久久精品94久久精品| 亚洲精品一二三| 校园人妻丝袜中文字幕| videosex国产| 在现免费观看毛片| 亚洲人成电影观看| 国产爽快片一区二区三区| 亚洲av男天堂| 日韩欧美一区视频在线观看| 国产日韩一区二区三区精品不卡| 大香蕉久久网| 国产在视频线精品| 一级,二级,三级黄色视频| 丰满饥渴人妻一区二区三| 五月伊人婷婷丁香| 精品亚洲成国产av| 午夜久久久在线观看| 欧美激情 高清一区二区三区| 91在线精品国自产拍蜜月| 欧美最新免费一区二区三区| a级毛片黄视频| 国产极品天堂在线| 狠狠精品人妻久久久久久综合| 亚洲国产av新网站| 男女无遮挡免费网站观看| www.熟女人妻精品国产| 91精品三级在线观看| 99久久综合免费| 亚洲欧美一区二区三区黑人 | 两性夫妻黄色片| 纯流量卡能插随身wifi吗| 日日撸夜夜添| 色吧在线观看| 久久久精品免费免费高清| 久久久久久久久免费视频了| 国产男女超爽视频在线观看| 国产精品久久久久久精品电影小说| 免费高清在线观看视频在线观看| 熟妇人妻不卡中文字幕| 精品午夜福利在线看| 免费看不卡的av| 久久97久久精品| 中文字幕另类日韩欧美亚洲嫩草| 少妇人妻精品综合一区二区| 欧美bdsm另类| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕最新亚洲高清| 久久久国产精品麻豆| 亚洲av免费高清在线观看| 国产黄色免费在线视频| 欧美成人精品欧美一级黄| 日日撸夜夜添| 久久毛片免费看一区二区三区| 啦啦啦啦在线视频资源| 99热国产这里只有精品6| 日本91视频免费播放| 国产精品免费大片| 亚洲国产日韩一区二区| av不卡在线播放| 丝袜人妻中文字幕| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品国产一区二区精华液| 高清视频免费观看一区二区| 久久 成人 亚洲| 制服丝袜香蕉在线| 久久精品久久久久久久性| 亚洲国产av新网站| 久久久精品免费免费高清| 免费观看性生交大片5| 香蕉丝袜av| 亚洲五月色婷婷综合| 久久精品久久久久久噜噜老黄| 久久久久久久亚洲中文字幕| 久久人人爽av亚洲精品天堂| 99精国产麻豆久久婷婷| 秋霞在线观看毛片| 日韩不卡一区二区三区视频在线| 一区福利在线观看| 高清不卡的av网站| 亚洲中文av在线| 热re99久久国产66热| 久久精品人人爽人人爽视色| 欧美日韩视频高清一区二区三区二| av视频免费观看在线观看| 午夜久久久在线观看| 少妇的逼水好多| 9色porny在线观看| 不卡视频在线观看欧美| 中文字幕av电影在线播放| 久久鲁丝午夜福利片| 久久韩国三级中文字幕| 日本黄色日本黄色录像| 高清不卡的av网站| 美女高潮到喷水免费观看| 嫩草影院入口| 你懂的网址亚洲精品在线观看| 亚洲av免费高清在线观看| 丝袜美腿诱惑在线| 美女福利国产在线| 日韩熟女老妇一区二区性免费视频| 天美传媒精品一区二区| 午夜福利,免费看| 国产一区二区 视频在线| 亚洲,欧美,日韩| 亚洲精品久久午夜乱码| 国产欧美亚洲国产| 免费观看无遮挡的男女| 性高湖久久久久久久久免费观看| 久久韩国三级中文字幕| 夫妻性生交免费视频一级片| 一级毛片我不卡| 狠狠婷婷综合久久久久久88av| 我要看黄色一级片免费的| 亚洲第一区二区三区不卡| 国产精品久久久久成人av| 亚洲一码二码三码区别大吗| 国产 精品1| av网站免费在线观看视频| 最近的中文字幕免费完整| 免费高清在线观看视频在线观看| 久久久精品区二区三区| 亚洲色图 男人天堂 中文字幕| 亚洲国产成人一精品久久久| 日韩不卡一区二区三区视频在线| 极品少妇高潮喷水抽搐| 十分钟在线观看高清视频www| 免费黄频网站在线观看国产| 国产精品一区二区在线不卡| 丝袜美腿诱惑在线| 另类精品久久| 中文精品一卡2卡3卡4更新| 久久精品国产亚洲av涩爱| 女性被躁到高潮视频| 99香蕉大伊视频| 午夜福利乱码中文字幕| 色播在线永久视频| 免费高清在线观看视频在线观看| 免费黄频网站在线观看国产| 校园人妻丝袜中文字幕| 天天操日日干夜夜撸| 免费黄网站久久成人精品| av一本久久久久| 亚洲成人av在线免费| 天堂俺去俺来也www色官网| 日韩中文字幕视频在线看片| 国产一区二区三区综合在线观看| 亚洲一区中文字幕在线| 少妇人妻 视频| 亚洲人成网站在线观看播放| 一本久久精品| 日本午夜av视频| 日韩欧美一区视频在线观看| 精品国产国语对白av| 久久精品亚洲av国产电影网| 国产又爽黄色视频| 91精品国产国语对白视频| 亚洲av国产av综合av卡| 丝袜喷水一区| av在线播放精品| 男女啪啪激烈高潮av片| 91成人精品电影| 精品少妇久久久久久888优播| 亚洲精品aⅴ在线观看| 亚洲美女搞黄在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美精品自产自拍| 天天躁夜夜躁狠狠躁躁| 成人影院久久| 国产免费福利视频在线观看| 免费黄网站久久成人精品| 在线观看国产h片| 中文字幕人妻丝袜制服| 国产欧美日韩一区二区三区在线| 91久久精品国产一区二区三区| 中文字幕人妻丝袜制服| 中文字幕制服av| 成人影院久久| 国产成人精品久久久久久| 九九爱精品视频在线观看| 成人漫画全彩无遮挡| 国产福利在线免费观看视频| 久久久久久人妻| 亚洲国产精品一区三区| 边亲边吃奶的免费视频| 高清在线视频一区二区三区| 天美传媒精品一区二区| 久久久亚洲精品成人影院| 久久久国产欧美日韩av| 啦啦啦视频在线资源免费观看| 日韩av在线免费看完整版不卡| 欧美av亚洲av综合av国产av | 蜜桃国产av成人99| 欧美另类一区|