• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Discussion on interface deformation and liquid breakup mechanism in vapor–liquid two-phase flow

    2023-10-11 07:55:44XiangAn安祥BoDong董波YaJinZhang張雅瑾andXunZhou周訓(xùn)
    Chinese Physics B 2023年9期
    關(guān)鍵詞:安祥

    Xiang An(安祥), Bo Dong(董波), Ya-Jin Zhang(張雅瑾), and Xun Zhou(周訓(xùn))

    1School of Naval Architecture and Maritime,Zhejiang Ocean University,Zhoushan 316022,China

    2Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education,School of Energy and Power Engineering,Dalian University of Technology,Dalian 116024,China

    3Institute of Refrigeration and Air Conditioning Technology,Henan University of Science and Technology,Luoyang 471003,China

    Keywords: liquid breakup,lattice Boltzmann method,capillary instability,end-pinching mechanism

    1.Introduction

    Interface deformation and liquid breakup are common in various natural and industrial vapor–liquid two-phase phenomena, such as raindrop falling,[1]inkjet printing,[2]and fuel atomization.[3]Distinguishing the vapor–liquid interface deformation and liquid breakup mechanisms is significant and helpful for understanding the interface evolution and fluid movement.According to Eggers and Villermaux,[4]the vapor–liquid interface is either dominated by the Rayleigh–Taylor instability (RTI) and the Kelvin–Helmholtz instability(KHI)or controlled by the Rayleigh mode where the capillary instability is predominant.

    On the one hand,the RTI and KHI are investigated from different influencing factors or presented as model validation examples.Li and Umemura[5]studied the large interface deformation and spike formation mechanism aroused by the RTI at a large Atwood number.Liuet al.[6]explained the liquid ligament generation from the interface in the RTI.Kim K S and Kim M H[7]simulated the KHI in a multiphase system with multiple interfaces by using a moving particle semi-implicit method.Daiet al.[8]derived the analytical formulas for the KHI of two superposed finite-thickness fluid layers with the magnetic field effect taken into consideration, and found that the effect of thickness is more obvious when the magnetic field intensity is weak.Zhouet al.[9]analyzed the RTI and the KHI in wide ranges of density ratio, viscosity ratio, and Reynolds (Re) number adopting the lattice Boltzmann (LB)method.[10,11]Chenet al.[12]investigated the effects of initial perturbations on the RTI, KHI, and the coupled RT-KHI system by using a multiple-relaxation-time discrete Boltzmann model.Besides, some studies[13–16]also simulated these two instability phenomena and validated the mathematical model via them.In general, the RTI and KHI depict the deformation of the vapor–liquid interface based on the above research.On the other hand, capillary instability has been reported in studies of the liquid jet and droplet collisions.The liquid jet breakup process was carried out by Delteilet al.,[17]and the growth of the capillary instability was simulated.They pointed out that the amplification of the capillary instability induces the liquid jet breakup,and the breakup of the liquid sheet into droplets is due to a coupling between the capillary instability and KHI.Conget al.[18]investigated the binary unequal-sized droplet collision under different Weber(We)numbers and impact parameters.They revealed that capillary instability can be observed on the liquid ligament at large impact parameters.Similarly, Chaitanyaet al.[19]studied the oblique collision of two unequal-sized liquid droplets and found that the end-pinching mechanism is operational in the head-on droplet collision and the capillary instability is responsible for the liquid ligament breakup at large impact parameters.Anet al.[20]simulated the binary droplet collision process with different angles,and their results showed that the liquid back-flow phenomenon is caused by the end-pinching mechanism, which further leads to the capillary instability on the liquid ligament.

    In the above studies on two-phase flow, the fluid instability mechanisms include the RTI,the KHI,the capillary instability, and the end-pinching mechanism.Different mechanisms describe the fluid movement from different perspectives,as previously mentioned,the RTI and KHI are two instability mechanisms characterizing the vapor–liquid phase interface deformation, while, the capillary instability and endpinching mechanism are difficult to recognize and easily confused with the former.Adopted in this work is a threedimensional(3D)phase-field-based LB model[21]to simulate three benchmark cases, analyze the fluid movement based on the capillary instability and the end-pinching mechanism,and clarify the stances of different mechanisms in vapor–liquid two-phase flow.The rest of this paper is organized as follows.The 3D phase-field-based LB model is elaborated in Section 2.Three benchmark cases are simulated and the relevant fluid movement mechanisms are discussed in Section 3.A brief summary is presented in Section 4.

    2.Mathematical method

    As an increasingly popular fluid dynamics method, the LB method has been used to investigate different phenomena, such as bubble collapse,[22]micro-scale fluid flow,[23]and combustion and detonation.[24]There are also some reviews[25,26]expatiating this method, in which different schemes and models are introduced, including the phasefield-based LB model.This model was developed in the 2000s.[27,28]Some studies[29,30]used two sets of LB equations to recover the Cahn–Hilliard equation for interface tracking and the incompressible Navier–Stokes equations for hydrodynamic properties.However, the Allen–Cahn-based LB model was pointed out to have higher numerical accuracy and stability in solving the index parameter than the Cahn–Hilliard-based LB model.[31]Following this point,the singlerelaxation-time (SRT) operator form[32]and the multiplerelaxation-time(MRT)operator form[21]for the Allen–Cahnbased LB model were developed.This MRT phase-field-based LB model is presented in the following.

    In the model,the conservative Allen–Cahn equation is the macroscopic equation to capture the interface,which is written as[33,34]

    whereφis the order parameter characterizing the interface,Mis the mobility, andλis a function ofφ.In addition,nis the unit vector normal to the interface, anduis the velocity,which is governed by the following incompressible Navier–Stokes equations[14]

    wherepis the hydrodynamic pressure andFis the total force.

    In this LB model,two sets of evolution equations are designed to solve Eqs.(1)–(3),respectively,

    wherefandgare the particle distribution functions,feqandgeqare the corresponding equilibrium distribution functions,and ^Fiand ^Giare the forcing distribution functions.[35–37]The D3Q7 lattice model and the D3Q15 lattice model are adopted in Eqs.(4)and(5),respectively,andMD3Q7andMD3Q150are the corresponding transformation matrices,

    SfandSgare the diagonal relaxation matrices,which can be written as

    By premultiplying the corresponding transformation matrices in Eqs.(4) and (5), and multiplying the particle distribution functions and the forcing distribution functions with the corresponding transformation matrices in parentheses on the righthand sides,the following equations are obtained:

    wheremf=MD3Q7·fandmg=MD3Q15·gare the particle distribution functions in moment space.Equations (12)and(13)represent the collision process in moment space.The equilibrium distribution functions and the forcing distribution functions can be obtained after some algebraic operations,

    In this phase-field-based LB model, the order parameterφis calculated by particle distribution functionfas

    Then, the density, viscosity, velocity, and pressure can be given,respectively,by

    where the subscripts l and v represent the liquid phase and the vapor phase.ei,cs,andωiare the discrete velocity,the lattice sound speed, and the weighting coefficient in D3Q15 lattice model,respectively,andsi(u)can be calculated from[21]

    3.Numerical results and discussions

    Simulated in this section are three benchmark cases including droplet impact on a solid surface,breakup of a liquid ligament, and binary droplet collision and breakup, by using the above numerical model,and the liquid phase deformation and breakup mechanisms are also discussed here.

    3.1.Droplet impact on a solid surface

    The process of droplet impacting on a solid surface is simulated and the numerical results are compared with the experimental data of Donget al.in this subsection.[38]Two dimensionless parameters ofRenumber andWenumber are used to characterize the impact process,which are calculated as

    whereU0is the initial droplet velocity,D0is the initial droplet diameter,νlandρlare the viscosity and density of the liquid phase,respectively,σis the surface tension coefficient.In the simulation,the computational domain size is 200×200×100 in lattice unit in thex,y, andzdirections.The periodic boundary is adopted in thexandydirections,and the halfway bounce-back scheme is applied to the solid surface, which is perpendicular to thezdirection.In the initialization,the order parameter profile is

    whereRis the droplet radius andWis the interface width.The initial velocity is set as

    According to Donget al.,[38]the system consists of a droplet and an ambient vapor phase on the solid surface.The contact angles are set as 31°and 107°.The droplet diameter is 48.8 μm, and its velocity is 4.36 m/s.The dimensionless parametersRenumber andWenumber are 238.0 and 12.8, respectively.In the simulation,the initial droplet radius and velocity are 25.0 and 0.05 in lattice unit,respectively.According to the droplet diameter in physical unit and lattice unit, the spatial resolution Δlcan be calculated to be 0.976 μm.Then,the temporal resolution can be obtained to be 0.011193 μs by Δt=vl·Δl/vp,wherevlandvpare the droplet velocity in lattice unit and physical unit, respectively.Besides, the density ratio of the liquid phase to the vapor phase is 844.0,the kinematic viscosity ratio of the vapor phase to the liquid phase is 34.8,the surface tension coefficient is 0.098,and the interface width is 4.0.

    The interface evolutions in the process of droplet impacting on a solid surface are presented in Fig.1.The changes of the droplet lateral spreading ratioD*,namely the droplet size parallel to the solid surface and the droplet heightH*on the droplet center line are extracted for quantitative comparisons,as shown in Fig.2,which are normalized by the initial droplet diameterD0.Table 1 lists the relative errors between the numerical results and experimental data in the process of droplet impacting on a solid surface, corresponding to the four cases in Fig.2.The error values are calculated at eight time points for each case,and their average values are also given.As can be seen from the table,when the contact angle is 31°,the numerical results are closer to the experimental data than when the contact angle is 107°.According to the average errors,the values are within 6%for the four cases.Besides,there are differences between the numerical results and experimental data,especially the droplet heights greatly differ from each other in a range from 13 μs to 25 μs as shown in Fig.2(a).As can be seen from the figure, before the first turning point of the droplet height at about 13 μs,the droplet lateral spreading ratio obtained numerically is smaller than the experimental data generally,and the droplet height obtained numerically is larger than the experimental data.One can see that the droplet is not susceptible to spread after the impact.After, there is a distinct increase of the droplet height,namely,the droplet shows strong contractility.Accordingly,it can be inferred that a large surface tension,which makes it difficult for the droplet to expand and easy to contract, is probably the main factor causing the numerical error,especially for the turning point within 13 μs to 25 μs.

    Fig.1.Interface evolutions in the process of droplet impacting on a solid surface with contact angle being(a)31° and(b)107°.

    Combining Figs.1 and 2, when the droplet impacts on the hydrophilic surface, the contact area between them increases continuously and rapidly within 10 μs.At this stage,the droplet morphology mainly depends on the kinetic energy of droplet.After 13.43 μs, the droplet spreads over the solid surface gradually.The surface tension and the wetting condition determine the droplet morphology,and the liquid phase covers the solid surface with an umbrella shape eventually.For the hydrophobic solid surface,the interface evolution is similar to that on the hydrophilic surface before 13 μs.However,after that, the contact area between the droplet and the solid surface shrinks gradually, and the liquid phase is attached to the solid surface as a hemisphere eventually after some oscillations.In this stage, the surface tension plays a leading role in the contraction of the liquid phase.In the process of droplet impacting on a solid surface, the liquid phase only deforms without breakup, the droplet kinetic energy, surface tension,and the wetting condition are the determinants.

    Fig.2.Variations of lateral spreading ratio D*and droplet height H*with time in the process of droplet impacting on solid surface with contact angle being(a)31° and(b)107°.

    Table 1.Relative errors between numerical results and experimental data in the process of droplet impacting on a solid surface.

    3.2.Breakup of liquid ligament

    The breakup of a liquid ligament is an interesting phenomenon, and it is helpful to understand the liquid breakup mechanism.[39]Rayleigh[40]analyzed the stability of a liquid ligament and indicated that the liquid ligament is unstable if the disturbance wavelengthλon the liquid ligament is greater than the perimeter 2πRof the liquid ligament.Namely,if the wave numberk=2πR/λis less than 1,the liquid ligament is unstable.

    In the simulation,the computational domain size isLX×λ×LZin thex,y, andzdirections, and the periodic boundary is applied to all directions.In the initialization, the order parameter distributes as follows:

    whereRis the initial radius of the liquid ligament,which is set as 15.0 in the simulation.The interface widthWis set as 4.0,andDis the disturbance function.The computational domain sizeLXandLZin thexandzdirections are set as 90,and the values of disturbance wavelengthλare set as 230, 300, and 400 in three cases, respectively.Correspondingly, the values of wave numberkare 0.41,0.31,and 0.24.Besides,the density ratios between the liquid phase and the vapor phase are set as 100 and 10,and the surface tension coefficient is 0.15.

    Figure 3 gives the liquid ligament breakup process at the liquid/vapor density ratios of 10 and 100 when the wave number is 0.31.The time steptis normalized intot*=Initially, the liquid ligament begins to converge gradually into both ends under the action of surface tension and disturbance.As the liquid ligament in the middle becomes thin and the liquid accumulates at both ends,the breakup occurs at the joint between the liquid ligament and the hemispheroid.This breakup is dominated by the endpinching mechanism,[41,42]which describes the liquid phase back-flow phenomena at the joints of hemispheroids and the liquid ligament.[20]After the breakup, the liquid phase is divided into the droplet and the liquid ligament in the middle.The former becomes a stable sphere eventually after some oscillations, namely the main droplet, and the latter contracts rapidly into a small droplet due to surface tension,namely the satellite droplet.The liquid ligament fracture is the detail of the liquid breakup,and its mechanism refers to the essence of the liquid breakup.Namely,the end-pinching mechanism can be considered as the immanent cause of other liquid breakup mechanisms, such as capillary instability.Besides, by comparing the interface evolutions in Fig.3(a) and with those in Fig.3(b), one can see that it takes longer time for the liquid ligament to break at a density ratio of 100 than at a density ratio of 10.That is to say,the liquid breakup process is closely related to the liquid/vapor density ratio, and a large density ratio makes it difficult for the liquid to breakup.

    Fig.3.Liquid ligament breakup process with wave number k being 0.31 and liquid/vapor density ratio being(a)10 and(b)100.

    In previous studies, the relationships between the main droplet radius,the satellite droplet radius,and the wave number were investigated numerically,[43]theoretically,[44]and experimentally.[45]Figure 4 depicts the main droplet radii and the satellite droplet radii at three different wave numbers, as well as the relevant data from previous studies.The vertical coordinateR*is normalized by the initial radius of the liquid ligamentR.As can be seen from the figure, the main droplet radius and the satellite droplet radius decrease as the wave number increases, and the liquid phase is allocated much to the main droplet rather than the satellite droplet when the density ratio is 100.In the figure, the simulation results of the satellite droplet radius are different from previous data, especially in the case of a density ratio of 100.The errors may be caused by spontaneous shrinkage[46]and measurement errors in the case of a small droplet.

    3.3.Binary droplet collision and breakup

    The collision process and breakup process of binary droplets exist widely in natural and industrial phenomena.In general, the collision process between binary droplets is divided into five regimes: coalescence, bouncing, coalescence with major deformation, head-on separation, and off-center separation.[47]It is worth mentioning that in the study of shear-driven two colliding motions of binary double emulsion droplets,[48,49]two typical colliding motions of passing-over motion and reversing motion are observed experimentally and numerically,in which the reversing motion,namely the bouncing regime, has never been observed in previous numerical studies.As theRenumber and theWenumber increase, the droplet breakup occurs instead of coalescence or separation.The binary droplet collision and breakup process are simulated and the results are also qualitatively compared with the experimental results of Panet al.in this subsection.[50]

    The binary droplet collision process is characterized by theRenumber and theWenumber

    whereRis the droplet radius,Uis the relative velocity between the two droplets,ρlandνlare the liquid density and kinematic viscosity,andσis the surface tension coefficient.Figure 5 displays the binary collision process atRenumber andWenumber of 1720 and 58, respectively.The computational domain size is 300, 250, 250 in thex,y, andzdirections.Figures 6 and 7 give the breakup processes in binary droplet collision atRe=4690,We=280,andRe=6650,We=878,respectively.For these two cases,the computational domain sizes are 250,300,300 in thex,y,andzdirections.In these three cases,the periodic boundary scheme is applied to all directions.In each of Figs.5–7,panel(a)shows the present numerical results,and panel(b)displays the experimental results of Panet al.[50]

    In Fig.6, a round phase structure and a flat liquid phase structure appear after the impact.Specifically, the outermost secondary droplets do not break away immediately from the liquid phase structure,even though crannies between the outermost secondary droplets and the liquid phase structure appear.Then,the entire liquid phase structure disintegrates into many secondary droplets due to the contraction caused by surface tension, namely the capillary instability on the liquid phase structure.These secondary droplets have no kinetic energy, thus in this process, the initial droplet kinetic energy determines the deformation of the liquid phase only, and the capillary instability on the liquid phase structure is the mechanism of driving the liquid breakup and secondary droplet formation.In the end,the liquid phase exists entirely in the form of irregular secondary droplets.In the process of liquid phase structure disintegration,the end-pinching mechanism works at each breakup point,resulting in capillary instability on the liquid phase structure.The end-pinching mechanism is the fundamental mechanism for the liquid breakup and the immanent cause of the capillary instability.

    Unlike the scenario in Fig.6, the outermost secondary droplets are produced and “fly away” before the liquid phase structure becomes flat completely in Fig.7.These secondary droplets have their kinetic energy, which can only be derived from the initial droplet kinetic energy.When the liquid phase structure becomes flat completely, the residual inner liquid phase decomposes due to the end-pinching mechanism and the capillary instability,which is the same as that in Fig.6.In the whole process, the produced secondary droplets are smaller than those in Fig.6, the initial droplet kinetic energy and the capillary instability both contribute to the liquid breakup and the secondary droplet production.

    Combining the point of Eggers and Villermaux,[4]and the above discussion,one can conclude that RTI,KHI,and capillary instability are the instability mechanisms of the vapor–liquid phase interface.However, it should be pointed out clearly that RTI and KHI are the interface deformation mechanisms as mentioned in the Introduction,and the capillary instability is the driving mechanism of the liquid phase disintegration and the secondary droplet production when theWenumber is large,by comparing Fig.5 with Figs.6 and 7.

    Fig.5.Binary droplet collision process at Re = 1720 and We = 58: (a)present results and(b)experimental results

    Fig.6.Binary droplet collision and breakup process at Re = 4690 and We=280: (a)present results and(b)experimental results.

    Fig.7.Binary droplet collision and breakup process at Re = 6650 and We=878: (a)present results and(b)experimental results.

    4.Conclusions

    A 3D phase-field-based LB model is adopted to simulate the droplet and liquid ligament dynamic behavior and analyze the interface deformation and liquid breakup mechanisms in this work.Based on previous studies and present analysis results, RTI, KHI, and capillary instability are triggered off by different vapor–liquid phase interface instability mechanisms, specifically speaking, RTI and KHI dominate the interface deformation and the capillary instability is driven by the liquid breakup and the secondary droplet production at a largeWenumber.As another liquid breakup mechanism, the end-pinching mechanism,which describes the back-flow phenomenon of the liquid phase, works at each breakup point,thus resulting in capillary instability on the liquid phase structure.In essence,it is the fundamental mechanism for the liquid breakup and the immanent cause of capillary instability.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.51776031), the Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes, China, and the Key Project of Science and Technology Development of Henan Province, China (Grant No.222102220033).

    猜你喜歡
    安祥
    高血壓誤診誤治原因分析及預(yù)防策略
    父親走了
    鴨綠江(2020年17期)2020-11-17 10:06:12
    父親走了
    鴨綠江(2020年20期)2020-11-12 05:07:06
    防瘟老衲
    面對(duì)風(fēng)景
    牡丹(2018年31期)2018-01-03 12:33:26
    張安祥
    王安祥:書寫大愛的人
    鎮(zhèn)沅世界茶王芳香鎮(zhèn)沅
    松濤吟唱的詩行
    歲月(2016年5期)2016-08-13 00:32:59
    扶貧路上的老代表
    亚洲一卡2卡3卡4卡5卡精品中文| 成人手机av| 国产蜜桃级精品一区二区三区| 亚洲精品在线美女| 久久国产亚洲av麻豆专区| 国产亚洲欧美精品永久| 亚洲色图 男人天堂 中文字幕| 一二三四社区在线视频社区8| 村上凉子中文字幕在线| 亚洲电影在线观看av| 热re99久久国产66热| e午夜精品久久久久久久| 99国产精品一区二区蜜桃av| 国内精品久久久久精免费| a在线观看视频网站| 国产精品爽爽va在线观看网站 | 欧美乱妇无乱码| 国产成人av教育| 国产黄a三级三级三级人| 嫩草影视91久久| 午夜福利在线观看吧| 精品国产乱码久久久久久男人| 两个人免费观看高清视频| 黄色 视频免费看| 看黄色毛片网站| 在线av久久热| 久99久视频精品免费| 一个人观看的视频www高清免费观看 | 国产精品永久免费网站| 在线观看日韩欧美| 视频在线观看一区二区三区| 天天添夜夜摸| 国产蜜桃级精品一区二区三区| 欧美又色又爽又黄视频| 亚洲 欧美 日韩 在线 免费| 国产精品乱码一区二三区的特点| 人成视频在线观看免费观看| 日本精品一区二区三区蜜桃| 国产三级在线视频| 久久久久久免费高清国产稀缺| 久久久久久久久中文| 亚洲在线自拍视频| 真人一进一出gif抽搐免费| 亚洲狠狠婷婷综合久久图片| 一进一出好大好爽视频| 99国产极品粉嫩在线观看| 国产成人欧美| 老司机深夜福利视频在线观看| 91老司机精品| 成人亚洲精品av一区二区| x7x7x7水蜜桃| 国产亚洲精品第一综合不卡| 日韩国内少妇激情av| 高潮久久久久久久久久久不卡| 久久精品国产99精品国产亚洲性色| 大香蕉久久成人网| 久久人妻福利社区极品人妻图片| 亚洲精品色激情综合| 国产99白浆流出| 中文字幕精品免费在线观看视频| 成人18禁高潮啪啪吃奶动态图| 国产单亲对白刺激| 久久九九热精品免费| 制服丝袜大香蕉在线| 久久99热这里只有精品18| 少妇粗大呻吟视频| 欧美不卡视频在线免费观看 | 国产一区二区激情短视频| 亚洲精品在线美女| 成人永久免费在线观看视频| 级片在线观看| 精品久久蜜臀av无| 最近在线观看免费完整版| 久久人妻福利社区极品人妻图片| 亚洲激情在线av| 亚洲第一av免费看| 好男人电影高清在线观看| 国语自产精品视频在线第100页| 亚洲一区二区三区不卡视频| 人妻丰满熟妇av一区二区三区| 国内久久婷婷六月综合欲色啪| 三级毛片av免费| 1024视频免费在线观看| 90打野战视频偷拍视频| 国产精品,欧美在线| 巨乳人妻的诱惑在线观看| 久久精品人妻少妇| 女同久久另类99精品国产91| 热re99久久国产66热| 欧美最黄视频在线播放免费| 午夜免费鲁丝| 97超级碰碰碰精品色视频在线观看| 亚洲成av人片免费观看| 亚洲精品中文字幕一二三四区| 哪里可以看免费的av片| 少妇被粗大的猛进出69影院| 久久国产乱子伦精品免费另类| 久久久久亚洲av毛片大全| 国产视频一区二区在线看| 亚洲精品一卡2卡三卡4卡5卡| 又黄又粗又硬又大视频| 日韩大尺度精品在线看网址| 操出白浆在线播放| 精品欧美国产一区二区三| av超薄肉色丝袜交足视频| 日日干狠狠操夜夜爽| 精品国产乱码久久久久久男人| 久久久精品欧美日韩精品| 男女床上黄色一级片免费看| 他把我摸到了高潮在线观看| 国产一区在线观看成人免费| 人人妻,人人澡人人爽秒播| 免费在线观看影片大全网站| 在线观看www视频免费| 国产亚洲精品久久久久久毛片| 少妇 在线观看| 一级黄色大片毛片| 国产一区二区三区视频了| 一区二区三区激情视频| 99国产精品99久久久久| 国产99久久九九免费精品| 亚洲欧洲精品一区二区精品久久久| 欧美成人免费av一区二区三区| 国产日本99.免费观看| 99精品久久久久人妻精品| 中国美女看黄片| 亚洲国产精品成人综合色| 最近最新中文字幕大全免费视频| 亚洲狠狠婷婷综合久久图片| 天堂√8在线中文| 亚洲久久久国产精品| 亚洲,欧美精品.| 香蕉av资源在线| 久久人人精品亚洲av| 人人妻人人澡欧美一区二区| 精品国产超薄肉色丝袜足j| 欧美精品亚洲一区二区| 超碰成人久久| 757午夜福利合集在线观看| 久久精品国产综合久久久| 免费一级毛片在线播放高清视频| 啦啦啦观看免费观看视频高清| 久久伊人香网站| 欧洲精品卡2卡3卡4卡5卡区| 午夜久久久在线观看| 欧美另类亚洲清纯唯美| 老司机午夜十八禁免费视频| 好男人在线观看高清免费视频 | 国产aⅴ精品一区二区三区波| 热99re8久久精品国产| 一级作爱视频免费观看| 在线观看免费午夜福利视频| 桃红色精品国产亚洲av| 99国产精品一区二区蜜桃av| 色综合亚洲欧美另类图片| 欧美在线黄色| 国产野战对白在线观看| 国内少妇人妻偷人精品xxx网站 | ponron亚洲| 男人舔奶头视频| 国产欧美日韩一区二区三| 在线天堂中文资源库| 亚洲国产欧美一区二区综合| 好男人在线观看高清免费视频 | 神马国产精品三级电影在线观看 | 国产亚洲欧美精品永久| aaaaa片日本免费| aaaaa片日本免费| 亚洲第一欧美日韩一区二区三区| 国内精品久久久久久久电影| 给我免费播放毛片高清在线观看| 99在线视频只有这里精品首页| 麻豆国产av国片精品| 国内精品久久久久久久电影| 日韩一卡2卡3卡4卡2021年| 美女 人体艺术 gogo| 一进一出抽搐动态| 亚洲欧美激情综合另类| 国产视频内射| 成年免费大片在线观看| 色综合欧美亚洲国产小说| 中出人妻视频一区二区| 久久伊人香网站| 淫妇啪啪啪对白视频| 欧美最黄视频在线播放免费| 成人欧美大片| 亚洲av片天天在线观看| 国产成人av激情在线播放| 淫妇啪啪啪对白视频| 日日爽夜夜爽网站| 91大片在线观看| 夜夜躁狠狠躁天天躁| 精品高清国产在线一区| 成人精品一区二区免费| 天堂影院成人在线观看| xxx96com| 久久国产精品影院| 超碰成人久久| 亚洲色图av天堂| 麻豆久久精品国产亚洲av| 大型黄色视频在线免费观看| 精品人妻1区二区| 婷婷精品国产亚洲av在线| 国产精品久久久久久亚洲av鲁大| 久久国产精品男人的天堂亚洲| 欧美黑人精品巨大| 女生性感内裤真人,穿戴方法视频| 极品教师在线免费播放| 国产精品自产拍在线观看55亚洲| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产精品成人综合色| 免费看十八禁软件| 一本久久中文字幕| 午夜精品在线福利| aaaaa片日本免费| 国产精品永久免费网站| 真人做人爱边吃奶动态| 波多野结衣巨乳人妻| 激情在线观看视频在线高清| 又紧又爽又黄一区二区| 大型黄色视频在线免费观看| 日本五十路高清| 国产精品久久久人人做人人爽| 免费高清视频大片| 99国产综合亚洲精品| 欧美zozozo另类| 欧美性猛交╳xxx乱大交人| 免费看十八禁软件| 三级毛片av免费| 国产欧美日韩一区二区精品| 日韩大码丰满熟妇| 欧美人与性动交α欧美精品济南到| 成年女人毛片免费观看观看9| 欧美一级a爱片免费观看看 | 成在线人永久免费视频| 亚洲久久久国产精品| 国产av不卡久久| 狠狠狠狠99中文字幕| 男人操女人黄网站| 日本一区二区免费在线视频| 精品久久蜜臀av无| 亚洲欧美日韩高清在线视频| 亚洲在线自拍视频| 国产1区2区3区精品| 国产精品乱码一区二三区的特点| 亚洲精品一卡2卡三卡4卡5卡| 一区二区三区激情视频| 91字幕亚洲| 99re在线观看精品视频| 亚洲第一青青草原| 亚洲无线在线观看| av有码第一页| av视频在线观看入口| 精品一区二区三区四区五区乱码| 免费看日本二区| 亚洲中文日韩欧美视频| 日本熟妇午夜| 欧美日韩黄片免| 国产精品久久久久久亚洲av鲁大| 亚洲成人国产一区在线观看| 在线永久观看黄色视频| 亚洲精品美女久久av网站| 免费女性裸体啪啪无遮挡网站| 成人av一区二区三区在线看| 91九色精品人成在线观看| 国产一级毛片七仙女欲春2 | 亚洲中文av在线| 亚洲aⅴ乱码一区二区在线播放 | 在线观看午夜福利视频| 久9热在线精品视频| 久久人妻av系列| 国产精品1区2区在线观看.| 欧美黑人精品巨大| 中亚洲国语对白在线视频| 欧美日韩亚洲国产一区二区在线观看| 757午夜福利合集在线观看| 国产三级在线视频| 国产精品自产拍在线观看55亚洲| 97超级碰碰碰精品色视频在线观看| 中文资源天堂在线| 欧美又色又爽又黄视频| 天天添夜夜摸| 国产精品影院久久| 日韩视频一区二区在线观看| 国产麻豆成人av免费视频| 看片在线看免费视频| av天堂在线播放| 久久人妻福利社区极品人妻图片| 欧美日韩一级在线毛片| 精品久久久久久久久久免费视频| 在线观看www视频免费| 久久精品国产清高在天天线| 午夜福利在线观看吧| 制服人妻中文乱码| 国产亚洲av高清不卡| 亚洲第一青青草原| 午夜福利视频1000在线观看| 最近最新中文字幕大全电影3 | 人人妻,人人澡人人爽秒播| videosex国产| 成年免费大片在线观看| 欧美乱码精品一区二区三区| 久久精品人妻少妇| 成在线人永久免费视频| 久久久精品国产亚洲av高清涩受| netflix在线观看网站| 日韩欧美国产一区二区入口| 久久中文字幕一级| 亚洲欧美精品综合久久99| 久久精品亚洲精品国产色婷小说| 村上凉子中文字幕在线| 国产黄色小视频在线观看| 国产精品亚洲av一区麻豆| 真人做人爱边吃奶动态| av天堂在线播放| 精品国产乱码久久久久久男人| 欧美一级毛片孕妇| 天天一区二区日本电影三级| 18禁黄网站禁片免费观看直播| 国产黄色小视频在线观看| 成人亚洲精品av一区二区| 欧美亚洲日本最大视频资源| 成人亚洲精品一区在线观看| 女人被狂操c到高潮| 日韩国内少妇激情av| 成人三级黄色视频| 老鸭窝网址在线观看| 一本精品99久久精品77| 欧美亚洲日本最大视频资源| 亚洲中文av在线| e午夜精品久久久久久久| 一本综合久久免费| 精品久久久久久,| 国产精品久久视频播放| 男女那种视频在线观看| 国产高清视频在线播放一区| 成人亚洲精品一区在线观看| 99热6这里只有精品| 两性午夜刺激爽爽歪歪视频在线观看 | 首页视频小说图片口味搜索| 欧美性长视频在线观看| 国产av在哪里看| 亚洲av熟女| 日本三级黄在线观看| 曰老女人黄片| 国产蜜桃级精品一区二区三区| 丝袜人妻中文字幕| 国产激情欧美一区二区| 欧美日韩黄片免| 免费高清视频大片| tocl精华| 免费在线观看日本一区| 神马国产精品三级电影在线观看 | 精品久久久久久久毛片微露脸| 可以在线观看的亚洲视频| 热re99久久国产66热| 在线视频色国产色| 人成视频在线观看免费观看| 精品第一国产精品| 伊人久久大香线蕉亚洲五| 日本免费a在线| 黄色丝袜av网址大全| 亚洲精品国产区一区二| 免费高清在线观看日韩| 国产区一区二久久| 日韩精品中文字幕看吧| 香蕉av资源在线| 午夜老司机福利片| 日韩国内少妇激情av| 婷婷六月久久综合丁香| av福利片在线| 午夜日韩欧美国产| 丁香欧美五月| 99riav亚洲国产免费| 亚洲中文日韩欧美视频| 18禁黄网站禁片免费观看直播| 国产精品久久视频播放| 精品国产乱子伦一区二区三区| 日本五十路高清| 亚洲黑人精品在线| 欧美最黄视频在线播放免费| 国产av在哪里看| 午夜福利在线观看吧| 国产精品一区二区免费欧美| 伊人久久大香线蕉亚洲五| 免费女性裸体啪啪无遮挡网站| 校园春色视频在线观看| 黑人巨大精品欧美一区二区mp4| 在线天堂中文资源库| 久久久久久亚洲精品国产蜜桃av| 亚洲精品一卡2卡三卡4卡5卡| 国产91精品成人一区二区三区| 久久久精品国产亚洲av高清涩受| 女性被躁到高潮视频| 国产精品二区激情视频| 免费在线观看亚洲国产| 激情在线观看视频在线高清| 黄色视频不卡| 国产精品亚洲av一区麻豆| 亚洲成人免费电影在线观看| 淫秽高清视频在线观看| 国产亚洲欧美精品永久| 精品国产超薄肉色丝袜足j| 叶爱在线成人免费视频播放| 欧美一级毛片孕妇| 精品国产亚洲在线| 亚洲九九香蕉| 亚洲人成网站高清观看| 午夜免费成人在线视频| av视频在线观看入口| 亚洲欧美日韩高清在线视频| 国产亚洲精品第一综合不卡| 99久久无色码亚洲精品果冻| 久久午夜综合久久蜜桃| 国产99白浆流出| 亚洲久久久国产精品| 99国产精品一区二区蜜桃av| 麻豆一二三区av精品| 热re99久久国产66热| 国产免费男女视频| 亚洲在线自拍视频| 日韩欧美国产在线观看| 国产激情欧美一区二区| 欧美亚洲日本最大视频资源| 欧美性猛交╳xxx乱大交人| 国产亚洲欧美精品永久| 亚洲 国产 在线| 又大又爽又粗| 天天一区二区日本电影三级| 中文字幕人妻丝袜一区二区| 精品欧美一区二区三区在线| 国产爱豆传媒在线观看 | 久久人妻av系列| 国产伦一二天堂av在线观看| 亚洲第一青青草原| 欧美中文日本在线观看视频| 国产午夜福利久久久久久| 午夜亚洲福利在线播放| 看免费av毛片| 丁香欧美五月| 好男人在线观看高清免费视频 | 在线天堂中文资源库| 亚洲av电影不卡..在线观看| 12—13女人毛片做爰片一| 国产精品 国内视频| 中文字幕高清在线视频| 欧美午夜高清在线| 最新在线观看一区二区三区| 亚洲精品在线美女| 大型av网站在线播放| 久久 成人 亚洲| 精品国产美女av久久久久小说| 国产成人一区二区三区免费视频网站| 欧美成人午夜精品| 日韩欧美免费精品| 窝窝影院91人妻| 丰满的人妻完整版| 性欧美人与动物交配| 身体一侧抽搐| 亚洲aⅴ乱码一区二区在线播放 | 人人妻人人看人人澡| 欧美黑人精品巨大| av片东京热男人的天堂| 久久香蕉精品热| 国产亚洲精品久久久久5区| 黄片播放在线免费| 精品国产一区二区三区四区第35| 黄色片一级片一级黄色片| 国产精品一区二区精品视频观看| 90打野战视频偷拍视频| 精品第一国产精品| 国内揄拍国产精品人妻在线 | 国产99久久九九免费精品| 丰满的人妻完整版| 国产精品亚洲av一区麻豆| 欧美+亚洲+日韩+国产| 久久精品91无色码中文字幕| 国产成人精品久久二区二区免费| 99热只有精品国产| 亚洲国产精品久久男人天堂| 久久久国产欧美日韩av| 欧美乱妇无乱码| 国产精品一区二区精品视频观看| 丝袜美腿诱惑在线| 精品一区二区三区av网在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 天天添夜夜摸| 免费一级毛片在线播放高清视频| 男女做爰动态图高潮gif福利片| 国产97色在线日韩免费| 伊人久久大香线蕉亚洲五| 一本一本综合久久| 欧美日韩精品网址| 国内毛片毛片毛片毛片毛片| 免费观看精品视频网站| 国产精品久久久久久精品电影 | 欧美+亚洲+日韩+国产| 欧美成狂野欧美在线观看| 国产视频一区二区在线看| 69av精品久久久久久| 韩国av一区二区三区四区| 国产精品日韩av在线免费观看| 精品久久久久久久久久免费视频| 精品国产美女av久久久久小说| 欧美色欧美亚洲另类二区| 亚洲全国av大片| 国产欧美日韩一区二区精品| 一边摸一边做爽爽视频免费| 欧美在线一区亚洲| 岛国在线观看网站| 欧美日韩乱码在线| 中文字幕高清在线视频| 变态另类丝袜制服| 高潮久久久久久久久久久不卡| 草草在线视频免费看| 成熟少妇高潮喷水视频| 国产三级在线视频| 99久久精品国产亚洲精品| 自线自在国产av| 久久九九热精品免费| 黄网站色视频无遮挡免费观看| 1024视频免费在线观看| 国产精品乱码一区二三区的特点| 欧美性猛交╳xxx乱大交人| 麻豆一二三区av精品| 亚洲熟妇熟女久久| 亚洲在线自拍视频| 香蕉av资源在线| 日韩欧美在线二视频| 波多野结衣av一区二区av| 老司机午夜十八禁免费视频| 日本免费一区二区三区高清不卡| 欧美日韩一级在线毛片| 国产视频一区二区在线看| 亚洲国产精品成人综合色| 亚洲最大成人中文| 久久人妻福利社区极品人妻图片| 久久久久久久久中文| 啦啦啦 在线观看视频| 精品国产乱子伦一区二区三区| 午夜免费观看网址| 伦理电影免费视频| 久久精品国产清高在天天线| 熟女少妇亚洲综合色aaa.| av欧美777| 成人亚洲精品av一区二区| 免费看a级黄色片| 老司机午夜十八禁免费视频| 好男人电影高清在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人欧美| 久9热在线精品视频| 成人av一区二区三区在线看| 真人一进一出gif抽搐免费| 999精品在线视频| 麻豆成人午夜福利视频| 国产成人欧美| 一进一出抽搐gif免费好疼| 丝袜美腿诱惑在线| 亚洲专区字幕在线| 国产午夜精品久久久久久| 精品国内亚洲2022精品成人| 亚洲国产欧洲综合997久久, | 久久99热这里只有精品18| 国产精品久久电影中文字幕| 男女做爰动态图高潮gif福利片| 国产成人啪精品午夜网站| 久久亚洲精品不卡| 亚洲第一电影网av| 香蕉av资源在线| 精品一区二区三区av网在线观看| 色综合亚洲欧美另类图片| 久久热在线av| 精品国产美女av久久久久小说| 午夜久久久久精精品| 亚洲男人天堂网一区| 中文在线观看免费www的网站 | av有码第一页| 人人妻人人看人人澡| 午夜亚洲福利在线播放| 曰老女人黄片| 视频在线观看一区二区三区| 精品国产亚洲在线| 久久香蕉激情| 亚洲专区中文字幕在线| 欧美色欧美亚洲另类二区| 国产在线观看jvid| 欧美日韩亚洲国产一区二区在线观看| av在线播放免费不卡| 亚洲第一电影网av| 免费在线观看完整版高清| 淫妇啪啪啪对白视频| 国产黄a三级三级三级人| 午夜日韩欧美国产| 18禁美女被吸乳视频| 免费无遮挡裸体视频| 一区二区三区精品91| 欧美亚洲日本最大视频资源| av福利片在线| 国产男靠女视频免费网站| 午夜福利成人在线免费观看| 一区福利在线观看| 精品第一国产精品| 国产午夜精品久久久久久| 9191精品国产免费久久| 狠狠狠狠99中文字幕| 黑人巨大精品欧美一区二区mp4| 日韩高清综合在线| 午夜视频精品福利| 99久久精品国产亚洲精品| 99re在线观看精品视频| 国产人伦9x9x在线观看| 在线天堂中文资源库| 女人爽到高潮嗷嗷叫在线视频| 欧美zozozo另类|