• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Discussion on interface deformation and liquid breakup mechanism in vapor–liquid two-phase flow

    2023-10-11 07:55:44XiangAn安祥BoDong董波YaJinZhang張雅瑾andXunZhou周訓(xùn)
    Chinese Physics B 2023年9期
    關(guān)鍵詞:安祥

    Xiang An(安祥), Bo Dong(董波), Ya-Jin Zhang(張雅瑾), and Xun Zhou(周訓(xùn))

    1School of Naval Architecture and Maritime,Zhejiang Ocean University,Zhoushan 316022,China

    2Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education,School of Energy and Power Engineering,Dalian University of Technology,Dalian 116024,China

    3Institute of Refrigeration and Air Conditioning Technology,Henan University of Science and Technology,Luoyang 471003,China

    Keywords: liquid breakup,lattice Boltzmann method,capillary instability,end-pinching mechanism

    1.Introduction

    Interface deformation and liquid breakup are common in various natural and industrial vapor–liquid two-phase phenomena, such as raindrop falling,[1]inkjet printing,[2]and fuel atomization.[3]Distinguishing the vapor–liquid interface deformation and liquid breakup mechanisms is significant and helpful for understanding the interface evolution and fluid movement.According to Eggers and Villermaux,[4]the vapor–liquid interface is either dominated by the Rayleigh–Taylor instability (RTI) and the Kelvin–Helmholtz instability(KHI)or controlled by the Rayleigh mode where the capillary instability is predominant.

    On the one hand,the RTI and KHI are investigated from different influencing factors or presented as model validation examples.Li and Umemura[5]studied the large interface deformation and spike formation mechanism aroused by the RTI at a large Atwood number.Liuet al.[6]explained the liquid ligament generation from the interface in the RTI.Kim K S and Kim M H[7]simulated the KHI in a multiphase system with multiple interfaces by using a moving particle semi-implicit method.Daiet al.[8]derived the analytical formulas for the KHI of two superposed finite-thickness fluid layers with the magnetic field effect taken into consideration, and found that the effect of thickness is more obvious when the magnetic field intensity is weak.Zhouet al.[9]analyzed the RTI and the KHI in wide ranges of density ratio, viscosity ratio, and Reynolds (Re) number adopting the lattice Boltzmann (LB)method.[10,11]Chenet al.[12]investigated the effects of initial perturbations on the RTI, KHI, and the coupled RT-KHI system by using a multiple-relaxation-time discrete Boltzmann model.Besides, some studies[13–16]also simulated these two instability phenomena and validated the mathematical model via them.In general, the RTI and KHI depict the deformation of the vapor–liquid interface based on the above research.On the other hand, capillary instability has been reported in studies of the liquid jet and droplet collisions.The liquid jet breakup process was carried out by Delteilet al.,[17]and the growth of the capillary instability was simulated.They pointed out that the amplification of the capillary instability induces the liquid jet breakup,and the breakup of the liquid sheet into droplets is due to a coupling between the capillary instability and KHI.Conget al.[18]investigated the binary unequal-sized droplet collision under different Weber(We)numbers and impact parameters.They revealed that capillary instability can be observed on the liquid ligament at large impact parameters.Similarly, Chaitanyaet al.[19]studied the oblique collision of two unequal-sized liquid droplets and found that the end-pinching mechanism is operational in the head-on droplet collision and the capillary instability is responsible for the liquid ligament breakup at large impact parameters.Anet al.[20]simulated the binary droplet collision process with different angles,and their results showed that the liquid back-flow phenomenon is caused by the end-pinching mechanism, which further leads to the capillary instability on the liquid ligament.

    In the above studies on two-phase flow, the fluid instability mechanisms include the RTI,the KHI,the capillary instability, and the end-pinching mechanism.Different mechanisms describe the fluid movement from different perspectives,as previously mentioned,the RTI and KHI are two instability mechanisms characterizing the vapor–liquid phase interface deformation, while, the capillary instability and endpinching mechanism are difficult to recognize and easily confused with the former.Adopted in this work is a threedimensional(3D)phase-field-based LB model[21]to simulate three benchmark cases, analyze the fluid movement based on the capillary instability and the end-pinching mechanism,and clarify the stances of different mechanisms in vapor–liquid two-phase flow.The rest of this paper is organized as follows.The 3D phase-field-based LB model is elaborated in Section 2.Three benchmark cases are simulated and the relevant fluid movement mechanisms are discussed in Section 3.A brief summary is presented in Section 4.

    2.Mathematical method

    As an increasingly popular fluid dynamics method, the LB method has been used to investigate different phenomena, such as bubble collapse,[22]micro-scale fluid flow,[23]and combustion and detonation.[24]There are also some reviews[25,26]expatiating this method, in which different schemes and models are introduced, including the phasefield-based LB model.This model was developed in the 2000s.[27,28]Some studies[29,30]used two sets of LB equations to recover the Cahn–Hilliard equation for interface tracking and the incompressible Navier–Stokes equations for hydrodynamic properties.However, the Allen–Cahn-based LB model was pointed out to have higher numerical accuracy and stability in solving the index parameter than the Cahn–Hilliard-based LB model.[31]Following this point,the singlerelaxation-time (SRT) operator form[32]and the multiplerelaxation-time(MRT)operator form[21]for the Allen–Cahnbased LB model were developed.This MRT phase-field-based LB model is presented in the following.

    In the model,the conservative Allen–Cahn equation is the macroscopic equation to capture the interface,which is written as[33,34]

    whereφis the order parameter characterizing the interface,Mis the mobility, andλis a function ofφ.In addition,nis the unit vector normal to the interface, anduis the velocity,which is governed by the following incompressible Navier–Stokes equations[14]

    wherepis the hydrodynamic pressure andFis the total force.

    In this LB model,two sets of evolution equations are designed to solve Eqs.(1)–(3),respectively,

    wherefandgare the particle distribution functions,feqandgeqare the corresponding equilibrium distribution functions,and ^Fiand ^Giare the forcing distribution functions.[35–37]The D3Q7 lattice model and the D3Q15 lattice model are adopted in Eqs.(4)and(5),respectively,andMD3Q7andMD3Q150are the corresponding transformation matrices,

    SfandSgare the diagonal relaxation matrices,which can be written as

    By premultiplying the corresponding transformation matrices in Eqs.(4) and (5), and multiplying the particle distribution functions and the forcing distribution functions with the corresponding transformation matrices in parentheses on the righthand sides,the following equations are obtained:

    wheremf=MD3Q7·fandmg=MD3Q15·gare the particle distribution functions in moment space.Equations (12)and(13)represent the collision process in moment space.The equilibrium distribution functions and the forcing distribution functions can be obtained after some algebraic operations,

    In this phase-field-based LB model, the order parameterφis calculated by particle distribution functionfas

    Then, the density, viscosity, velocity, and pressure can be given,respectively,by

    where the subscripts l and v represent the liquid phase and the vapor phase.ei,cs,andωiare the discrete velocity,the lattice sound speed, and the weighting coefficient in D3Q15 lattice model,respectively,andsi(u)can be calculated from[21]

    3.Numerical results and discussions

    Simulated in this section are three benchmark cases including droplet impact on a solid surface,breakup of a liquid ligament, and binary droplet collision and breakup, by using the above numerical model,and the liquid phase deformation and breakup mechanisms are also discussed here.

    3.1.Droplet impact on a solid surface

    The process of droplet impacting on a solid surface is simulated and the numerical results are compared with the experimental data of Donget al.in this subsection.[38]Two dimensionless parameters ofRenumber andWenumber are used to characterize the impact process,which are calculated as

    whereU0is the initial droplet velocity,D0is the initial droplet diameter,νlandρlare the viscosity and density of the liquid phase,respectively,σis the surface tension coefficient.In the simulation,the computational domain size is 200×200×100 in lattice unit in thex,y, andzdirections.The periodic boundary is adopted in thexandydirections,and the halfway bounce-back scheme is applied to the solid surface, which is perpendicular to thezdirection.In the initialization,the order parameter profile is

    whereRis the droplet radius andWis the interface width.The initial velocity is set as

    According to Donget al.,[38]the system consists of a droplet and an ambient vapor phase on the solid surface.The contact angles are set as 31°and 107°.The droplet diameter is 48.8 μm, and its velocity is 4.36 m/s.The dimensionless parametersRenumber andWenumber are 238.0 and 12.8, respectively.In the simulation,the initial droplet radius and velocity are 25.0 and 0.05 in lattice unit,respectively.According to the droplet diameter in physical unit and lattice unit, the spatial resolution Δlcan be calculated to be 0.976 μm.Then,the temporal resolution can be obtained to be 0.011193 μs by Δt=vl·Δl/vp,wherevlandvpare the droplet velocity in lattice unit and physical unit, respectively.Besides, the density ratio of the liquid phase to the vapor phase is 844.0,the kinematic viscosity ratio of the vapor phase to the liquid phase is 34.8,the surface tension coefficient is 0.098,and the interface width is 4.0.

    The interface evolutions in the process of droplet impacting on a solid surface are presented in Fig.1.The changes of the droplet lateral spreading ratioD*,namely the droplet size parallel to the solid surface and the droplet heightH*on the droplet center line are extracted for quantitative comparisons,as shown in Fig.2,which are normalized by the initial droplet diameterD0.Table 1 lists the relative errors between the numerical results and experimental data in the process of droplet impacting on a solid surface, corresponding to the four cases in Fig.2.The error values are calculated at eight time points for each case,and their average values are also given.As can be seen from the table,when the contact angle is 31°,the numerical results are closer to the experimental data than when the contact angle is 107°.According to the average errors,the values are within 6%for the four cases.Besides,there are differences between the numerical results and experimental data,especially the droplet heights greatly differ from each other in a range from 13 μs to 25 μs as shown in Fig.2(a).As can be seen from the figure, before the first turning point of the droplet height at about 13 μs,the droplet lateral spreading ratio obtained numerically is smaller than the experimental data generally,and the droplet height obtained numerically is larger than the experimental data.One can see that the droplet is not susceptible to spread after the impact.After, there is a distinct increase of the droplet height,namely,the droplet shows strong contractility.Accordingly,it can be inferred that a large surface tension,which makes it difficult for the droplet to expand and easy to contract, is probably the main factor causing the numerical error,especially for the turning point within 13 μs to 25 μs.

    Fig.1.Interface evolutions in the process of droplet impacting on a solid surface with contact angle being(a)31° and(b)107°.

    Combining Figs.1 and 2, when the droplet impacts on the hydrophilic surface, the contact area between them increases continuously and rapidly within 10 μs.At this stage,the droplet morphology mainly depends on the kinetic energy of droplet.After 13.43 μs, the droplet spreads over the solid surface gradually.The surface tension and the wetting condition determine the droplet morphology,and the liquid phase covers the solid surface with an umbrella shape eventually.For the hydrophobic solid surface,the interface evolution is similar to that on the hydrophilic surface before 13 μs.However,after that, the contact area between the droplet and the solid surface shrinks gradually, and the liquid phase is attached to the solid surface as a hemisphere eventually after some oscillations.In this stage, the surface tension plays a leading role in the contraction of the liquid phase.In the process of droplet impacting on a solid surface, the liquid phase only deforms without breakup, the droplet kinetic energy, surface tension,and the wetting condition are the determinants.

    Fig.2.Variations of lateral spreading ratio D*and droplet height H*with time in the process of droplet impacting on solid surface with contact angle being(a)31° and(b)107°.

    Table 1.Relative errors between numerical results and experimental data in the process of droplet impacting on a solid surface.

    3.2.Breakup of liquid ligament

    The breakup of a liquid ligament is an interesting phenomenon, and it is helpful to understand the liquid breakup mechanism.[39]Rayleigh[40]analyzed the stability of a liquid ligament and indicated that the liquid ligament is unstable if the disturbance wavelengthλon the liquid ligament is greater than the perimeter 2πRof the liquid ligament.Namely,if the wave numberk=2πR/λis less than 1,the liquid ligament is unstable.

    In the simulation,the computational domain size isLX×λ×LZin thex,y, andzdirections, and the periodic boundary is applied to all directions.In the initialization, the order parameter distributes as follows:

    whereRis the initial radius of the liquid ligament,which is set as 15.0 in the simulation.The interface widthWis set as 4.0,andDis the disturbance function.The computational domain sizeLXandLZin thexandzdirections are set as 90,and the values of disturbance wavelengthλare set as 230, 300, and 400 in three cases, respectively.Correspondingly, the values of wave numberkare 0.41,0.31,and 0.24.Besides,the density ratios between the liquid phase and the vapor phase are set as 100 and 10,and the surface tension coefficient is 0.15.

    Figure 3 gives the liquid ligament breakup process at the liquid/vapor density ratios of 10 and 100 when the wave number is 0.31.The time steptis normalized intot*=Initially, the liquid ligament begins to converge gradually into both ends under the action of surface tension and disturbance.As the liquid ligament in the middle becomes thin and the liquid accumulates at both ends,the breakup occurs at the joint between the liquid ligament and the hemispheroid.This breakup is dominated by the endpinching mechanism,[41,42]which describes the liquid phase back-flow phenomena at the joints of hemispheroids and the liquid ligament.[20]After the breakup, the liquid phase is divided into the droplet and the liquid ligament in the middle.The former becomes a stable sphere eventually after some oscillations, namely the main droplet, and the latter contracts rapidly into a small droplet due to surface tension,namely the satellite droplet.The liquid ligament fracture is the detail of the liquid breakup,and its mechanism refers to the essence of the liquid breakup.Namely,the end-pinching mechanism can be considered as the immanent cause of other liquid breakup mechanisms, such as capillary instability.Besides, by comparing the interface evolutions in Fig.3(a) and with those in Fig.3(b), one can see that it takes longer time for the liquid ligament to break at a density ratio of 100 than at a density ratio of 10.That is to say,the liquid breakup process is closely related to the liquid/vapor density ratio, and a large density ratio makes it difficult for the liquid to breakup.

    Fig.3.Liquid ligament breakup process with wave number k being 0.31 and liquid/vapor density ratio being(a)10 and(b)100.

    In previous studies, the relationships between the main droplet radius,the satellite droplet radius,and the wave number were investigated numerically,[43]theoretically,[44]and experimentally.[45]Figure 4 depicts the main droplet radii and the satellite droplet radii at three different wave numbers, as well as the relevant data from previous studies.The vertical coordinateR*is normalized by the initial radius of the liquid ligamentR.As can be seen from the figure, the main droplet radius and the satellite droplet radius decrease as the wave number increases, and the liquid phase is allocated much to the main droplet rather than the satellite droplet when the density ratio is 100.In the figure, the simulation results of the satellite droplet radius are different from previous data, especially in the case of a density ratio of 100.The errors may be caused by spontaneous shrinkage[46]and measurement errors in the case of a small droplet.

    3.3.Binary droplet collision and breakup

    The collision process and breakup process of binary droplets exist widely in natural and industrial phenomena.In general, the collision process between binary droplets is divided into five regimes: coalescence, bouncing, coalescence with major deformation, head-on separation, and off-center separation.[47]It is worth mentioning that in the study of shear-driven two colliding motions of binary double emulsion droplets,[48,49]two typical colliding motions of passing-over motion and reversing motion are observed experimentally and numerically,in which the reversing motion,namely the bouncing regime, has never been observed in previous numerical studies.As theRenumber and theWenumber increase, the droplet breakup occurs instead of coalescence or separation.The binary droplet collision and breakup process are simulated and the results are also qualitatively compared with the experimental results of Panet al.in this subsection.[50]

    The binary droplet collision process is characterized by theRenumber and theWenumber

    whereRis the droplet radius,Uis the relative velocity between the two droplets,ρlandνlare the liquid density and kinematic viscosity,andσis the surface tension coefficient.Figure 5 displays the binary collision process atRenumber andWenumber of 1720 and 58, respectively.The computational domain size is 300, 250, 250 in thex,y, andzdirections.Figures 6 and 7 give the breakup processes in binary droplet collision atRe=4690,We=280,andRe=6650,We=878,respectively.For these two cases,the computational domain sizes are 250,300,300 in thex,y,andzdirections.In these three cases,the periodic boundary scheme is applied to all directions.In each of Figs.5–7,panel(a)shows the present numerical results,and panel(b)displays the experimental results of Panet al.[50]

    In Fig.6, a round phase structure and a flat liquid phase structure appear after the impact.Specifically, the outermost secondary droplets do not break away immediately from the liquid phase structure,even though crannies between the outermost secondary droplets and the liquid phase structure appear.Then,the entire liquid phase structure disintegrates into many secondary droplets due to the contraction caused by surface tension, namely the capillary instability on the liquid phase structure.These secondary droplets have no kinetic energy, thus in this process, the initial droplet kinetic energy determines the deformation of the liquid phase only, and the capillary instability on the liquid phase structure is the mechanism of driving the liquid breakup and secondary droplet formation.In the end,the liquid phase exists entirely in the form of irregular secondary droplets.In the process of liquid phase structure disintegration,the end-pinching mechanism works at each breakup point,resulting in capillary instability on the liquid phase structure.The end-pinching mechanism is the fundamental mechanism for the liquid breakup and the immanent cause of the capillary instability.

    Unlike the scenario in Fig.6, the outermost secondary droplets are produced and “fly away” before the liquid phase structure becomes flat completely in Fig.7.These secondary droplets have their kinetic energy, which can only be derived from the initial droplet kinetic energy.When the liquid phase structure becomes flat completely, the residual inner liquid phase decomposes due to the end-pinching mechanism and the capillary instability,which is the same as that in Fig.6.In the whole process, the produced secondary droplets are smaller than those in Fig.6, the initial droplet kinetic energy and the capillary instability both contribute to the liquid breakup and the secondary droplet production.

    Combining the point of Eggers and Villermaux,[4]and the above discussion,one can conclude that RTI,KHI,and capillary instability are the instability mechanisms of the vapor–liquid phase interface.However, it should be pointed out clearly that RTI and KHI are the interface deformation mechanisms as mentioned in the Introduction,and the capillary instability is the driving mechanism of the liquid phase disintegration and the secondary droplet production when theWenumber is large,by comparing Fig.5 with Figs.6 and 7.

    Fig.5.Binary droplet collision process at Re = 1720 and We = 58: (a)present results and(b)experimental results

    Fig.6.Binary droplet collision and breakup process at Re = 4690 and We=280: (a)present results and(b)experimental results.

    Fig.7.Binary droplet collision and breakup process at Re = 6650 and We=878: (a)present results and(b)experimental results.

    4.Conclusions

    A 3D phase-field-based LB model is adopted to simulate the droplet and liquid ligament dynamic behavior and analyze the interface deformation and liquid breakup mechanisms in this work.Based on previous studies and present analysis results, RTI, KHI, and capillary instability are triggered off by different vapor–liquid phase interface instability mechanisms, specifically speaking, RTI and KHI dominate the interface deformation and the capillary instability is driven by the liquid breakup and the secondary droplet production at a largeWenumber.As another liquid breakup mechanism, the end-pinching mechanism,which describes the back-flow phenomenon of the liquid phase, works at each breakup point,thus resulting in capillary instability on the liquid phase structure.In essence,it is the fundamental mechanism for the liquid breakup and the immanent cause of capillary instability.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.51776031), the Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes, China, and the Key Project of Science and Technology Development of Henan Province, China (Grant No.222102220033).

    猜你喜歡
    安祥
    高血壓誤診誤治原因分析及預(yù)防策略
    父親走了
    鴨綠江(2020年17期)2020-11-17 10:06:12
    父親走了
    鴨綠江(2020年20期)2020-11-12 05:07:06
    防瘟老衲
    面對(duì)風(fēng)景
    牡丹(2018年31期)2018-01-03 12:33:26
    張安祥
    王安祥:書寫大愛的人
    鎮(zhèn)沅世界茶王芳香鎮(zhèn)沅
    松濤吟唱的詩行
    歲月(2016年5期)2016-08-13 00:32:59
    扶貧路上的老代表
    欧美xxⅹ黑人| 久久久久久久久免费视频了| 一区二区三区乱码不卡18| 亚洲国产精品一区二区三区在线| 亚洲第一av免费看| 少妇 在线观看| 看免费av毛片| 日韩中文字幕视频在线看片| 亚洲欧美一区二区三区黑人| 在线精品无人区一区二区三| 免费黄频网站在线观看国产| 五月天丁香电影| 日本一区二区免费在线视频| 国产精品香港三级国产av潘金莲 | 伊人亚洲综合成人网| 亚洲在久久综合| av不卡在线播放| 欧美日韩亚洲国产一区二区在线观看 | 无遮挡黄片免费观看| 美女福利国产在线| 精品国产乱码久久久久久男人| a 毛片基地| 看非洲黑人一级黄片| 九九爱精品视频在线观看| 19禁男女啪啪无遮挡网站| 这个男人来自地球电影免费观看 | 成年女人毛片免费观看观看9 | 国产av国产精品国产| 精品亚洲乱码少妇综合久久| 亚洲人成电影观看| 亚洲国产成人一精品久久久| 啦啦啦视频在线资源免费观看| 精品国产一区二区久久| 日本一区二区免费在线视频| 天天躁夜夜躁狠狠久久av| 成人免费观看视频高清| 国产免费又黄又爽又色| 久久久久久人妻| 国产精品熟女久久久久浪| 欧美另类一区| 美女大奶头黄色视频| 男人舔女人的私密视频| 观看av在线不卡| 国产乱人偷精品视频| 国产成人啪精品午夜网站| 国产一区二区激情短视频 | 热re99久久精品国产66热6| 久久久久精品国产欧美久久久 | 伊人久久国产一区二区| 亚洲,一卡二卡三卡| 1024视频免费在线观看| 亚洲少妇的诱惑av| 亚洲四区av| 王馨瑶露胸无遮挡在线观看| 国产成人a∨麻豆精品| 免费观看性生交大片5| 国产人伦9x9x在线观看| 亚洲国产精品一区三区| 人人澡人人妻人| 婷婷色综合大香蕉| 黄色一级大片看看| 精品视频人人做人人爽| 少妇人妻精品综合一区二区| 天天躁日日躁夜夜躁夜夜| 午夜91福利影院| 国产av国产精品国产| 2018国产大陆天天弄谢| 色综合欧美亚洲国产小说| 亚洲美女黄色视频免费看| 欧美日韩综合久久久久久| 波多野结衣av一区二区av| 亚洲精品国产区一区二| 老司机影院成人| 国产在视频线精品| 色播在线永久视频| 免费日韩欧美在线观看| 精品少妇一区二区三区视频日本电影 | 欧美精品一区二区免费开放| a级毛片在线看网站| 一级片免费观看大全| 天天操日日干夜夜撸| 男女边摸边吃奶| 国产黄色免费在线视频| 亚洲人成电影观看| 国产成人精品久久久久久| 在线免费观看不下载黄p国产| 99久久综合免费| 午夜激情av网站| 卡戴珊不雅视频在线播放| 大片电影免费在线观看免费| 亚洲精品国产一区二区精华液| 搡老乐熟女国产| 国产成人精品久久久久久| 亚洲av综合色区一区| 国产成人a∨麻豆精品| 亚洲av中文av极速乱| 精品亚洲乱码少妇综合久久| 岛国毛片在线播放| 老司机在亚洲福利影院| 成人影院久久| 国产成人啪精品午夜网站| 午夜老司机福利片| 777米奇影视久久| 久久这里只有精品19| 波多野结衣一区麻豆| 亚洲天堂av无毛| 香蕉国产在线看| 日韩精品有码人妻一区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产 一区精品| 交换朋友夫妻互换小说| 人妻人人澡人人爽人人| 操出白浆在线播放| 国产精品久久久久久人妻精品电影 | av在线app专区| 精品一区二区免费观看| 在线看a的网站| 国产一区二区三区综合在线观看| 女人被躁到高潮嗷嗷叫费观| 九九爱精品视频在线观看| 欧美亚洲日本最大视频资源| 一区二区三区乱码不卡18| 中国三级夫妇交换| av有码第一页| 18禁观看日本| 9热在线视频观看99| av天堂久久9| 一级片'在线观看视频| 制服诱惑二区| 一级毛片黄色毛片免费观看视频| 午夜福利乱码中文字幕| 国产亚洲一区二区精品| 高清不卡的av网站| 日本猛色少妇xxxxx猛交久久| 在线观看免费午夜福利视频| 久久精品亚洲av国产电影网| 性高湖久久久久久久久免费观看| 热re99久久精品国产66热6| 成年人午夜在线观看视频| 美女福利国产在线| 18禁裸乳无遮挡动漫免费视频| 男女边摸边吃奶| 99精国产麻豆久久婷婷| 中文字幕人妻丝袜一区二区 | 一本一本久久a久久精品综合妖精| 少妇精品久久久久久久| 日韩欧美精品免费久久| 9191精品国产免费久久| 中文字幕av电影在线播放| 久久久久国产一级毛片高清牌| 91aial.com中文字幕在线观看| 免费高清在线观看视频在线观看| av.在线天堂| 亚洲,欧美,日韩| av在线app专区| 亚洲av成人不卡在线观看播放网 | 国产成人免费无遮挡视频| 校园人妻丝袜中文字幕| 黄片播放在线免费| 国产成人av激情在线播放| 亚洲国产欧美在线一区| 亚洲精品乱久久久久久| 成人国产麻豆网| 亚洲精品,欧美精品| 大香蕉久久成人网| 啦啦啦 在线观看视频| 啦啦啦中文免费视频观看日本| 国产熟女午夜一区二区三区| 色网站视频免费| 亚洲精华国产精华液的使用体验| 日韩 欧美 亚洲 中文字幕| 亚洲五月色婷婷综合| 久久青草综合色| 国产片内射在线| 精品久久久久久电影网| 在线观看免费午夜福利视频| 欧美日韩一级在线毛片| av免费观看日本| 国产一区亚洲一区在线观看| 午夜激情久久久久久久| 久久ye,这里只有精品| 久久ye,这里只有精品| 青春草亚洲视频在线观看| 别揉我奶头~嗯~啊~动态视频 | 在线观看免费午夜福利视频| 午夜av观看不卡| 欧美激情极品国产一区二区三区| 久久久久网色| 搡老乐熟女国产| 一边亲一边摸免费视频| 国产一区二区三区av在线| 美女大奶头黄色视频| 最近中文字幕2019免费版| 欧美激情极品国产一区二区三区| 亚洲,欧美精品.| h视频一区二区三区| 亚洲少妇的诱惑av| 高清在线视频一区二区三区| 飞空精品影院首页| 日韩一区二区三区影片| 曰老女人黄片| 99久久综合免费| 欧美中文综合在线视频| 少妇人妻久久综合中文| 看非洲黑人一级黄片| 街头女战士在线观看网站| 日韩av不卡免费在线播放| 欧美在线一区亚洲| 久久天躁狠狠躁夜夜2o2o | 国产欧美日韩一区二区三区在线| 黄色 视频免费看| 欧美日韩av久久| a级毛片黄视频| 一区二区三区激情视频| 国产 精品1| 午夜激情av网站| 九九爱精品视频在线观看| 国产亚洲一区二区精品| 一区二区三区激情视频| 中文字幕亚洲精品专区| 青春草视频在线免费观看| a级片在线免费高清观看视频| 91精品三级在线观看| 亚洲av日韩精品久久久久久密 | 亚洲欧洲国产日韩| 精品久久蜜臀av无| 亚洲精品国产色婷婷电影| 午夜免费鲁丝| 99九九在线精品视频| 成年人午夜在线观看视频| 日韩中文字幕欧美一区二区 | 国产一区二区三区综合在线观看| 久久精品国产a三级三级三级| 亚洲av成人不卡在线观看播放网 | 黄网站色视频无遮挡免费观看| 久久久久久人妻| 国产亚洲一区二区精品| 中文字幕精品免费在线观看视频| 热99国产精品久久久久久7| 在线观看免费高清a一片| 久久青草综合色| 精品久久久精品久久久| 国产 精品1| 亚洲av综合色区一区| 亚洲国产精品国产精品| 久久精品aⅴ一区二区三区四区| 久久毛片免费看一区二区三区| 黄片小视频在线播放| 久久99一区二区三区| 亚洲av中文av极速乱| 日韩一卡2卡3卡4卡2021年| 人人妻人人澡人人看| 国产av精品麻豆| 在线观看免费视频网站a站| 亚洲精品国产av蜜桃| 亚洲国产成人一精品久久久| 国产无遮挡羞羞视频在线观看| 欧美日韩亚洲高清精品| 啦啦啦啦在线视频资源| 黄网站色视频无遮挡免费观看| 国产成人免费无遮挡视频| 男女边吃奶边做爰视频| 免费av中文字幕在线| 亚洲av欧美aⅴ国产| 亚洲人成77777在线视频| www.自偷自拍.com| 亚洲欧美激情在线| 麻豆乱淫一区二区| 飞空精品影院首页| av线在线观看网站| 精品国产一区二区三区四区第35| 亚洲男人天堂网一区| 成人免费观看视频高清| 国产成人精品久久久久久| 成人手机av| e午夜精品久久久久久久| 国产精品免费大片| 久久97久久精品| 我的亚洲天堂| 啦啦啦中文免费视频观看日本| 一区二区三区四区激情视频| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产欧美一区二区综合| 天堂中文最新版在线下载| 久久免费观看电影| 欧美日韩视频精品一区| 狂野欧美激情性xxxx| 久久午夜综合久久蜜桃| 久久精品久久精品一区二区三区| 国产精品久久久久成人av| 欧美亚洲日本最大视频资源| 国产精品麻豆人妻色哟哟久久| 亚洲久久久国产精品| 亚洲第一区二区三区不卡| 久久性视频一级片| 各种免费的搞黄视频| 成人手机av| 91aial.com中文字幕在线观看| 国产成人精品无人区| 黑丝袜美女国产一区| 亚洲国产精品一区二区三区在线| 九草在线视频观看| 1024香蕉在线观看| 成人午夜精彩视频在线观看| 少妇精品久久久久久久| 极品少妇高潮喷水抽搐| 日本欧美视频一区| 午夜影院在线不卡| 亚洲国产毛片av蜜桃av| 人体艺术视频欧美日本| 国产精品成人在线| 亚洲综合色网址| 国精品久久久久久国模美| 国产日韩欧美视频二区| 日韩制服丝袜自拍偷拍| 韩国精品一区二区三区| 国产一区二区激情短视频 | 国产成人精品福利久久| 香蕉丝袜av| 国产欧美亚洲国产| 亚洲,欧美,日韩| 亚洲av日韩精品久久久久久密 | 人人妻人人澡人人看| 日韩大片免费观看网站| 中国国产av一级| 亚洲伊人色综图| 97在线人人人人妻| 在线天堂中文资源库| 亚洲国产精品一区二区三区在线| 黄片无遮挡物在线观看| 欧美日韩一级在线毛片| 日本vs欧美在线观看视频| 久久综合国产亚洲精品| 国产精品久久久久成人av| 久久久久久人妻| 考比视频在线观看| 国产一区二区三区综合在线观看| 中文字幕人妻丝袜制服| 欧美日韩成人在线一区二区| 中文字幕色久视频| 国产免费视频播放在线视频| 欧美日韩av久久| 亚洲国产欧美日韩在线播放| 精品酒店卫生间| 天堂中文最新版在线下载| 人成视频在线观看免费观看| 精品国产乱码久久久久久小说| 桃花免费在线播放| 日日摸夜夜添夜夜爱| 色婷婷久久久亚洲欧美| 亚洲国产欧美日韩在线播放| 欧美精品高潮呻吟av久久| 精品人妻熟女毛片av久久网站| 永久免费av网站大全| 国产极品粉嫩免费观看在线| 多毛熟女@视频| 午夜日韩欧美国产| 亚洲精品一区蜜桃| 亚洲国产看品久久| 叶爱在线成人免费视频播放| 大香蕉久久成人网| 久久综合国产亚洲精品| 狂野欧美激情性bbbbbb| 天天躁狠狠躁夜夜躁狠狠躁| 性高湖久久久久久久久免费观看| 超色免费av| 午夜久久久在线观看| 久久精品国产综合久久久| 侵犯人妻中文字幕一二三四区| 国产午夜精品一二区理论片| 51午夜福利影视在线观看| 丝袜美腿诱惑在线| 美女大奶头黄色视频| 精品国产乱码久久久久久男人| 亚洲第一区二区三区不卡| 男人操女人黄网站| 亚洲国产av新网站| 亚洲精品国产一区二区精华液| 亚洲精品国产一区二区精华液| 欧美少妇被猛烈插入视频| 国产精品欧美亚洲77777| 国产1区2区3区精品| 国产 精品1| 精品一区二区三卡| 久久久国产精品麻豆| 制服诱惑二区| 久久精品国产综合久久久| 亚洲精品在线美女| tube8黄色片| 国产精品 国内视频| 日韩av免费高清视频| 啦啦啦在线免费观看视频4| 热re99久久精品国产66热6| 19禁男女啪啪无遮挡网站| 午夜日本视频在线| 国产成人啪精品午夜网站| 91精品伊人久久大香线蕉| 伊人久久大香线蕉亚洲五| 两个人免费观看高清视频| 日本黄色日本黄色录像| 视频在线观看一区二区三区| 汤姆久久久久久久影院中文字幕| 精品一区二区免费观看| 国产一区二区 视频在线| 夜夜骑夜夜射夜夜干| 欧美av亚洲av综合av国产av | 国产av精品麻豆| av免费观看日本| 搡老乐熟女国产| 美女国产高潮福利片在线看| 男女午夜视频在线观看| 国产av精品麻豆| 国产欧美日韩综合在线一区二区| 国产精品免费大片| 久久 成人 亚洲| 狂野欧美激情性bbbbbb| 欧美av亚洲av综合av国产av | 天堂中文最新版在线下载| 久久人妻熟女aⅴ| 观看av在线不卡| 欧美日韩视频高清一区二区三区二| 精品少妇一区二区三区视频日本电影 | 一边亲一边摸免费视频| 免费在线观看视频国产中文字幕亚洲 | 久久国产亚洲av麻豆专区| 如何舔出高潮| 考比视频在线观看| 国产精品一区二区在线观看99| 一级片免费观看大全| 色婷婷av一区二区三区视频| 曰老女人黄片| 日韩一区二区视频免费看| 纵有疾风起免费观看全集完整版| 国产一区二区在线观看av| av国产精品久久久久影院| 中文字幕制服av| 黄色一级大片看看| 一本色道久久久久久精品综合| 午夜福利影视在线免费观看| 国产午夜精品一二区理论片| av福利片在线| 国产片特级美女逼逼视频| 欧美人与善性xxx| 一本色道久久久久久精品综合| 亚洲精品第二区| 九草在线视频观看| 国产成人啪精品午夜网站| 男人舔女人的私密视频| 亚洲精品日韩在线中文字幕| 亚洲 欧美一区二区三区| 日韩电影二区| 看非洲黑人一级黄片| 午夜激情av网站| 国产精品一区二区在线观看99| 黑人猛操日本美女一级片| 日韩大片免费观看网站| 国产成人av激情在线播放| 午夜精品国产一区二区电影| 亚洲欧美一区二区三区黑人| 日本av手机在线免费观看| 精品亚洲成国产av| 成人手机av| 欧美人与性动交α欧美软件| 亚洲精华国产精华液的使用体验| 看非洲黑人一级黄片| 下体分泌物呈黄色| 国产一区二区激情短视频 | 国产精品熟女久久久久浪| 国产亚洲av片在线观看秒播厂| 免费观看av网站的网址| 搡老乐熟女国产| 亚洲伊人色综图| 你懂的网址亚洲精品在线观看| 69精品国产乱码久久久| 夜夜骑夜夜射夜夜干| 久热爱精品视频在线9| 青春草视频在线免费观看| 汤姆久久久久久久影院中文字幕| 毛片一级片免费看久久久久| 国产午夜精品一二区理论片| 日本一区二区免费在线视频| a级毛片黄视频| 国产成人一区二区在线| 一级毛片 在线播放| 一级黄片播放器| 亚洲在久久综合| 一本—道久久a久久精品蜜桃钙片| 国产黄色视频一区二区在线观看| www.av在线官网国产| 成人国语在线视频| 妹子高潮喷水视频| 免费观看av网站的网址| 91老司机精品| 一个人免费看片子| 只有这里有精品99| 精品少妇内射三级| 一区福利在线观看| 精品国产一区二区久久| 一边摸一边抽搐一进一出视频| 黄色一级大片看看| 日本猛色少妇xxxxx猛交久久| 亚洲国产欧美日韩在线播放| 欧美激情高清一区二区三区 | 日韩 亚洲 欧美在线| 久久女婷五月综合色啪小说| 制服人妻中文乱码| 欧美av亚洲av综合av国产av | 少妇人妻精品综合一区二区| 香蕉丝袜av| 久久 成人 亚洲| 精品少妇黑人巨大在线播放| 男女高潮啪啪啪动态图| 精品视频人人做人人爽| 中文字幕人妻丝袜制服| 看非洲黑人一级黄片| 欧美日韩亚洲高清精品| 精品一区二区免费观看| 乱人伦中国视频| 免费不卡黄色视频| 晚上一个人看的免费电影| 如日韩欧美国产精品一区二区三区| 亚洲成人一二三区av| 99香蕉大伊视频| 丝袜在线中文字幕| 一区二区av电影网| 亚洲av在线观看美女高潮| 性少妇av在线| 欧美成人精品欧美一级黄| 免费人妻精品一区二区三区视频| 热re99久久精品国产66热6| 只有这里有精品99| 午夜精品国产一区二区电影| 国产麻豆69| 18禁观看日本| 99久久精品国产亚洲精品| videos熟女内射| 午夜激情久久久久久久| 久久精品熟女亚洲av麻豆精品| 国产一区二区在线观看av| 日日啪夜夜爽| 中文精品一卡2卡3卡4更新| 两个人免费观看高清视频| 亚洲情色 制服丝袜| 午夜免费男女啪啪视频观看| 亚洲欧洲精品一区二区精品久久久 | 久久久久久久精品精品| 精品少妇黑人巨大在线播放| 久久综合国产亚洲精品| 久久毛片免费看一区二区三区| 精品午夜福利在线看| 欧美在线黄色| 高清av免费在线| 秋霞伦理黄片| 激情五月婷婷亚洲| 高清视频免费观看一区二区| 亚洲精品av麻豆狂野| 深夜精品福利| 午夜免费鲁丝| 欧美黑人欧美精品刺激| 啦啦啦在线免费观看视频4| 黄色一级大片看看| 黑人猛操日本美女一级片| 尾随美女入室| 丁香六月欧美| 欧美日韩一区二区视频在线观看视频在线| 在线观看免费高清a一片| av在线老鸭窝| 国产男女内射视频| 午夜福利乱码中文字幕| 久久综合国产亚洲精品| 亚洲成人免费av在线播放| av网站在线播放免费| 热99久久久久精品小说推荐| 色综合欧美亚洲国产小说| 男女无遮挡免费网站观看| 91国产中文字幕| 毛片一级片免费看久久久久| 人人妻人人爽人人添夜夜欢视频| 一边亲一边摸免费视频| 在线观看免费视频网站a站| 国产成人免费观看mmmm| 中文字幕制服av| 亚洲欧美成人综合另类久久久| 欧美精品亚洲一区二区| 久久人妻熟女aⅴ| 亚洲色图综合在线观看| 国产日韩欧美在线精品| svipshipincom国产片| 黄色 视频免费看| 久久人人97超碰香蕉20202| 亚洲熟女精品中文字幕| 高清不卡的av网站| 狠狠婷婷综合久久久久久88av| 一边摸一边抽搐一进一出视频| 亚洲精品久久久久久婷婷小说| 精品国产超薄肉色丝袜足j| 久久性视频一级片| 女的被弄到高潮叫床怎么办| 欧美日韩一级在线毛片| 伊人久久大香线蕉亚洲五| 日本色播在线视频| 欧美成人精品欧美一级黄| 日本色播在线视频| 一级黄片播放器| 久久人妻熟女aⅴ| 日韩免费高清中文字幕av| 国产成人精品在线电影| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧洲国产日韩| 久久久久久久大尺度免费视频| 久久精品亚洲av国产电影网| av片东京热男人的天堂| 久久精品国产a三级三级三级| 中文欧美无线码| 国产精品一二三区在线看|