• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic-field-controlled spin valve and spin memory based on single-molecule magnets

    2023-10-11 07:56:22ZhengzhongZhang張正中RuyaGuo郭儒雅RuiBo薄銳andHaoLiu劉昊
    Chinese Physics B 2023年9期
    關(guān)鍵詞:儒雅

    Zhengzhong Zhang(張正中), Ruya Guo(郭儒雅), Rui Bo(薄銳), and Hao Liu(劉昊),?

    1Faculty of Mathematics and Physics,Huaiyin Institute of Technology,Huai’an 223003,China

    2Nano Science and Technology Institute,University of Science and Technology of China,Suzhou 215123,China

    Keywords: single-molecule magnet,spin dependent electron tunneling,spin valve

    1.Introduction

    Spintronics aims to exploit the spin degree of freedom in solid-state devices for data storage and information processing technologies.[1]The spin valve(SV),a principal spintronic device, is a microelectronic device in which high-resistance(HR) and low-resistance (LR) states are realized by using both the charge and spin of carriers.[2,3]A standard magnetoresistance (MR) SV is an electronic device in which two conducting magnetic layers are separated by a nonmagnetic layer.[4,5]By applying an external magnetic field, considerable resistance switching can be achieved in the device by altering the magnetic configuration of the electrodes between parallel/LR and antiparallel/HR states.To date, various SV devices have been successfully manufactured, and the discoveries of giant magnetoresistance[6](GMR) and tunneling magnetoresistance[7](TMR)in metallic SV devices have revolutionized applications such as magnetic recording and memory.

    Generally, the magnetic layers in SV devices are composed of ferromagnetic (FM) metals.With the development of materials science, molecule/organic-based magnets, which allow chemical tuning of electronic and magnetic properties, have become a promising new class of magnetic materials for future spintronic applications.[8–13]Among these magnets,single-molecule magnets[14–17](SMMs),a new type of quantum magnetic material, have attracted increasing attention for their potential applications in novel spintronic devices.[18–20]The inner magnetic core of these molecules is surrounded by organic ligands, and the interaction between the magnetic cores of neighboring molecules is very weak,which leads to a large ground-state spin of SMMs.[21,22]This large ground-state spin of an SMM results in a doublewell energy potential, which can resist magnetization reversal under low-temperature conditions.[17,23,24]Experimentally, electron transport of SMMs was observed with scanning tunneling microscopy and mechanically controllable break junctions,[25–30]although some results remain to be clarified.[31–35]More importantly, some studies have shown that electronic properties of these special molecules can be precisely controlled by electrical or magnetic means.[36–40]To date, many interesting phenomena of electron transport through SMMs have been discussed, such as spin blockade effect,[41,42]spin diode effect,[43,44]spin-Seebeck effect,[45,46]spin torque effect,[47–49]Kondo effect,[50–52]and superconducting effect.[53]According to studies of Boganiet al.,these molecules will be trapped in one of two metastable ground states±S, and only electrons whose spin direction is parallel to the molecular magnetism can pass through the SMM, resulting in high spin polarization of the tunneling current.[54]Due to this property,SMMs seem to be appropriate candidates for designing nanoscale spintronic devices, for example, spin filters or SV devices.[55,56]

    In this work, we observe a spin-valve-like signal in our SMM-magnetic tunnel junction(MTJ)system,which consists of a magnetic molecule sandwiched between an FM lead and a nonmagnetic (NM) lead.A small detecting bias voltage is applied between two electrodes,and the conducting electrons are controlled by adjusting the external magnetic field.We observe a stable LR state under positive applied magnetic fields,a stable HR state under negative fields and HR–LR switching depending on the magnetization reversal of the SMM.Although much work on the spin-resolved transport properties of SMM molecules has been performed,[57–61]studies about the HR–LR switching effect controlled by magnetic signals in an SMM and the corresponding properties remain lacking.This work aims to fill this gap.

    2.Model and Hamiltonian

    As shown in Fig.1(a), the magnetic molecular junction we consider here consists of an SMM placed between two metallic electrodes in the presence of an external magnetic field.The total Hamiltonian of this structure is composed of two parts,i.e.,Htotal=Horbit+Hspin,[41,62]

    At low temperature,the transport process is dominated by the sequential tunneling through the SMM energy level,while the co-tunneling and direct tunneling can be neglected safely.For the weak coupling between the SMM and leads,the master equation approach holds.The spin-σcurrent can be written asIσ=(ILσ-IRσ)/2,whereILσ(IRσ)represents the spin current flowing from the left(right)lead to the SMM:

    Some techniques that can accurately deal with the time-dependent evolution in SMM systems have been developed,[57,58,66,67]and in this paper,we choose the numerical method suggested in Refs.[41,68,69].The time evolution can be studied by solving the master equation,which assumes that the kernel does not depend on time.[59]Then, the time dependence of probabilityPi(t) can be obtained by solving a series of equations

    and steady-state probabilityPi(t →∞)can be obtained by applying the condition dPi/dt=0.The total tunneling current isI=∑σ(ILσ-IRσ)/2,and the spin polarization coefficient of the current is defined asη=(I↑-I↓)/I.

    3.Result and discussion

    In the following discussions we adopt the parameters based on experiments and first-principles calculations for Mn12-ac molecule[23,31,70]withS=10,D=0.06 meV, andU= 25 meV.This magnetic molecule has two degenerate ground states ofS=±10 and a relatively large tunneling barrierDS2≈60 K.The exchange coupling parameterJis taken to be positive (J= 0.1 meV), meaning that the coupling is ferromagnetic.[55]Since the next higher energy orbital lies about 8 meV above the LUMO,[71]the higher orbitals are expected to affect the results very weakly in the low-bias voltage regime.

    First,we demonstrate how to use a magnetic field to manipulate the HR–LR switching in this SMM-MTJ.Figure 2 shows the magnetization of the SMM and the tunneling current change as functions of the external magnetic field, with a small bias voltageV=1.0 mV exerted across the junction and equilibrium temperatureT=1 K.The arrows show the magnetic field scanning direction, and the scanning process is assumed to be slow to ensure that the system can relax to the steady state.As shown in Fig.2(a), the magnetization of the SMM exhibits a loop structure when the magnetic field is scanned back and forth.The positive applied magnetic field will flip the SMM to the +S(parallel configuration) spin direction,andvice versa.Due to the intrinsic magnetism of the SMM,the molecules will preserve their spin states during the gradual reduction of the external magnetic field.Therefore,in the region close to ΔH=0,both SMM spin states±Scan be retained.In Fig.2(b),we plot the electron current as a function of ΔH.If we useI+to denote the current when ΔHis scanned from+3 meV to-3 meV,andI-to denote the current when the magnetic field is scanned in the opposite direction, then we can find that the electron tunneling spectraI+andI-are quite different.When the magnetic field ΔHis scanned from+3 meV to-3 meV, we observe a large current plateau (LR state) in the window of ΔH ∈[-0.5,2]meV.This current increases as the spin polarization of the FM electrode increases.When the magnetic field is scanned in the opposite direction,a similar but relatively small current plateau(HR state)appears in theI-spectrum near ΔH ∈[-2,0.5] meV, while this current is significantly smaller thanI+in the LR state.UnlikeI+,a higher spin polarization in the electrode will significantly weakenI-.Moreover, in the zero-magnetic field (ZF) point(ΔH=0), the resistance of the molecular junction obviously presents two different states.Both of HR and LR states can be saved at the ZF point.This external magnetic field-controlled HR–LR switching effect is very similar to that in traditional SV devices.[4]The difference is that one of the magnetic layers in the traditional MTJ has been replaced by a magnetic molecule in our system.

    Fig.1.(a)Schematic diagram of a molecular-MTJ proposed in this paper,which consists of an SMM coupled to an FM lead and an NM lead.(b) Schematic illustration of the “HR–LR” switching by applying an external magnetic field and a small bias voltage.

    Fig.2.(a) Magnetic hysteresis loops of the SMM and (b) tunneling currents(scaled by eΓ0/ˉh)varying when the external magnetic field ΔH is scanned back and forth,with different lead’s spin polarizations.The equilibrium temperature and bias voltage are T =1 K and V =1 mV,respectively.

    The HR–LR switching phenomenon illustrated in Fig.2 can be simply explained as follows: As shown in Fig.1(b),a magnetic field will destroy the bistable ground states of the SMM, resulting in a change in the SMM magnetic moment.The bias is not large enough to affect the magnetism of the SMM in the absence of a magnetic field.Therefore,in Fig.2(b), we can observe two different resistance states near the ZF point.If the magnetic field is scanned from +3 meV to 0 meV,then the core spin of the molecule will be flipped by the external magnetic field to the+Sspin state(parallel to the magnetism of the FM electrode).Then, the SMM will tend to allow spin-up (majority) electrons in the FM electrode to pass through the junction, and the device will present an LR state.In contrast, if the magnetic field is scanned in the opposite direction, then the antiparallel magnetic configuration will be maintained at the ZF point,and the molecule will favor spin-down (minority) electron flow through the device.As a consequence,an HR state is presented.

    Fig.3.Variations in the molecular state probabilities (a) as ΔH is scanned from +3 meV to -3 meV and (b) as ΔH is scanned from-3 meV to+3 meV.The equilibrium temperature and bias voltage are given as T =1 K and V =1 mV.

    To explain the physical process in Fig.2 more clearly,we calculate the variation in the probabilities of the SMM statesP|0,S-1〉,P|0,-S+1〉,P|0,±S〉,P|1,±S±1/2〉-andP|1,±S?1/2〉-as the magnetic field is scanned back and forth.In Fig.3(a), the external magnetic field ΔHis slowly scanned from+3 meV to-3 meV to allow the system to relax to the steady state.When ΔH >2.0 meV, all states are unoccupied except for|1,+S+1/2〉-(P|1,+S+1/2〉-=1),which means that the molecule spin state is pinned in the +S(parallel to the FM electrode) spin direction and that one spin-up electron is trapped in the SMM.Due to the Coulomb repulsion energy of the SMM(UMn12-ac≈25 meV)and small applied bias voltage,this trapped electron cannot hop into the NM electrode,and the electron current is completely blocked.When ΔHdecreases from +2.0 meV to-0.3 meV, the probabilityP|0,+S〉quickly increases, and the tunneling current is dominated by the transition between two states:|0,+S〉?|1,+S+1/2〉-.According to Refs.[41,63],only spin-up electrons in this case can tunnel through the LUMO level in the molecule,resulting in a spin-up polarized electron current.Because the FM lead is spin-up polarized,the spin majority(up)electrons are easily transported through the SMM,and an LR state is obtained.If we assume the temperatureT →0, the current in the LR state and ZF condition can be approximated as

    If ΔHis further decreased to the window of [-2.0 meV,-0.3 meV], then inelastic tunneling processes will occur.In this regime, the bistable energy spectrum of the SMM is completely destroyed, and nearly all the spin states of the molecule have a non-zero probability of being occupied.Among these states,the probabilities of the two special states|0,+S〉 and|1,-S-1/2〉-are much larger than those of the other states.The point at whichP|0,+S〉=P|1,-S-1/2〉-exactly corresponds to the magnetism reversal point in Fig.2(a),indicating that the molecular spin direction starts to reverse from + to- due to the magnetic field.As ΔHcontinues to vary, all the state probabilities return to 0 except for that of|1,-S-1/2〉-(P|1,-S-1/2〉-=1), which implies that the SMM spin state is pinned in the-Sdirection and that the tunneling current will be switched “off” by one spindown electron blocking the electron tunneling channel at the LUMO level.If the magnetic field is scanned in the reverse direction (ΔHchanges from-3 meV to +3 meV; see Fig.3(b)), then similar physical phenomena will occur.The SMM magnetic reversal point from- to + corresponds to the point whereP|0,-S〉=P|1,+S+1/2〉-, and the electron tunnelling process in the HR window is dominated by the transition|1,-S-1/2〉-?|0,-S〉, which means that only spin minority(down)electrons can flow through the molecule.At low temperatures,the spin-down polarized electron current in the HR state and ZF condition yields

    If we defnie a parameter MR=to describe the on-off ratio of LR-HR switching, then the MR ratio under low temperature and ZF condition can be given as

    Similar to the results of the Julli`ere’s model,[1]from Eq.(7)we can determine that the MR ratio mainly depends on the spin polarization of the electrode.The higher the spin polarization of the FM lead is,the greater the MR ratio of the device,and the better the device functions as an SV device.

    Next, we discuss the effect of the equilibrium temperature on this device.For ease of description, we useΛ-to denote the reversal point when the spin state of the SMM switches from + to- andΛ+to denote the reversal point from- to +.As shown in Fig.4(a), the magnetic hysteresis loop shrinks and the distance betweenΛ+andΛ-decreases with increasing temperature.As mentioned in regard to Fig.3, the magnetism reversal pointΛ+corresponds to the point whereP|0,-S〉=P|1,+S+1/2〉, andΛ-corresponds to another point whereP|0,+S〉=P|1,-S-1/2〉-.Therefore, in Fig.4(c),we plot the state probabilitiesP|0,S〉andP|1,-S-1/2〉-as functions of ΔHwhen the magnetic field is scanned from+3 meV to-3 meV under different equilibrium temperatures.As shown in Fig.4(c), a higher temperature will excite these two states to participate in the transition earlier, which will lead to the molecular magnetic moment being more prone to flipping.As a result, the absolute values ofΛ+andΛ-will decrease with increasing temperature.In addition, with decreasing temperature, the shape of the current spectra in the HR and LR states gradually evolves into a plateau.We take the current in the LR state as an example.As discussed in regard to Fig.3,the current in the LR state is dominated by the transition|0,+S〉?|1,+S+1/2〉-.Therefore, in Fig.4(d),we plot the probabilities of these states as functions of ΔH.A lower temperature causes the electron tunneling process to be more easily dominated by the transition between the two states|0,+S〉and|1,+S+1/2〉-,resulting in the gradual evolution of the current distribution into a plateau.In contrast,a higher temperature will excite more spin states to participate in the tunneling process, which will reduce the spin polarization of the current and,to a certain extent,narrow the LR(HR)state window.

    Fig.4.(a) Magnetic hysteresis loops of the SMM and (b) tunneling currents (scaled by eΓ0/ˉh) varying when the external magnetic field ΔH is scanned back and forth, with different temperature and bias V =1.0 mV.(c) and (d) Variations in the molecular state probabilities(c)P|0,+S〉 and P|1,-S-1/2〉- and(d)P|0,+S〉 and P|1,+S+1/2〉 as ΔH is scanned from+3 meV to-3 meV.

    Finally, let us discuss how to implement the device scheme proposed in this paper under a real experimental environment.In Fig.5, we use a time-varying magnetic field with an amplitude ΔH=±0.8 meV(approximately 5.5 T)to“write” the resistance state in this device.According to the experimental work of Joet al.,[72]such a magnetic field can be achieved under the current experimental conditions.The train of magnetic field signals applied to the SMM periodically changes its direction every 2×105ˉh/Γ(~= 4 μs forΓ=8 GHz[69]).As shown in Fig.5(a),this time-varying magnetic field signal only lasts 2 μs every time to reach±0.8 meV and then quickly reduces to zero.Figure 5(c) shows that the SMM can maintain its magnetization(remain in the+Sor-Sspin state) when the magnetic field disappears.To detect the HR–LR switching in this device,we apply a small bias voltageV=0.5 mV across the two electrodes.As shown in Fig.5(b),we calculate the current spectrum changes with the magnetic field variation.The tunneling current can clearly be switched between the“HR”and“LR”state by this time-varying external magnetic field.Even with a relatively low spin-polarized FM electrode(PFM=0.3,close to the spin polarization of the metal Ni[73,74]) and higher temperatureT=2 K, the MR ratio at ZF point can reach almost 0.38,which is very consistent with the prediction of Eq.(7).Interestingly, every time the sign of the magnetic signal changes, the electron current obviously oscillates and soon stabilizes to a new plateau.This unusual electrical signal is instantaneous and disappears with the completion of the molecular magnetic inversion process.Therefore,observing the generation and disappearance of this signal may yield effective evidence to judge whether magnetic reversal of the molecular magnetism has been completed.Furthermore, as shown in Fig.5(d), regardless of how the polarization of the FM electrode changes,the spin polarization parameter of the electron currentηcan always vary from +1 to-1.This shows that not only the resistance state but also the current spin polarization parameter in this system can be rewritten by a magnetic field.

    4.Conclusions

    In summary,we have proposed a supramolecular SV consisting of an SMM and an FM electrode.By adjusting the magnetic field,the core spin of the molecule can be switched between two bistable magnetic ground states|±S〉,leading to a parallel(LR)or an antiparallel(HR)magnetic configuration of the system.Our numerical results show that the device resistance depends on the spin alignment of the MTJ,which can be controlled by an external magnetic field and read out by a small bias voltage.More interestingly, due to the intrinsic magnetism of the SMM, this HR/LR state can be saved and readout under a ZF condition.The results in this work offer a starting point to study multilayer structures combined with molecular magnets,such as SMM spin-valve structures.However, the functional ability of the device greatly depends on the molecular magnetic characteristics, a relatively low equilibrium temperature and an FM electrode.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant No.11404322), the Natural Science Foundation of Huai’an (Grant Nos.HAB202229 and HAB202150), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No.22KJD140002).

    猜你喜歡
    儒雅
    豪放儒雅見真情
    世界博覽(2022年16期)2022-05-30 22:55:13
    凈心繪歲月 儒雅君子風
    和愛儒雅育桃李——廈門市鷺江新城小學簡介之一
    潤染儒雅起點,成就幸福人生
    呂信儒:儒雅少女,溫暖流年
    學生天地(2016年34期)2016-05-17 05:47:37
    曾偉平 陳儒雅 李媛 王棒作品
    人間(2016年9期)2016-05-14 17:25:24
    唐文宗恭儉儒雅
    春岸
    黃河之聲(2016年24期)2016-04-22 02:39:44
    儒雅教育 滋潤美好童年
    儒雅之風
    做人與處世(2015年6期)2015-04-27 11:48:40
    精品少妇久久久久久888优播| 亚洲欧洲国产日韩| 精品国产一区二区久久| 狂野欧美激情性xxxx| 亚洲综合色网址| 人妻人人澡人人爽人人| 精品亚洲乱码少妇综合久久| 国产高清不卡午夜福利| 日韩伦理黄色片| 9色porny在线观看| 亚洲欧美精品综合一区二区三区| 两个人免费观看高清视频| 国产有黄有色有爽视频| 日韩不卡一区二区三区视频在线| 美女福利国产在线| 亚洲精品在线美女| 亚洲成人国产一区在线观看 | 国产成人精品在线电影| 视频在线观看一区二区三区| 日本vs欧美在线观看视频| 亚洲精品国产一区二区精华液| 久久午夜综合久久蜜桃| 国产精品熟女久久久久浪| 久久久久精品久久久久真实原创| 91国产中文字幕| 精品久久久久久电影网| 大码成人一级视频| 啦啦啦在线免费观看视频4| 亚洲自偷自拍图片 自拍| 一级黄片播放器| 日韩中文字幕欧美一区二区 | 美女福利国产在线| 高清不卡的av网站| 免费黄色在线免费观看| 亚洲欧美色中文字幕在线| 日韩视频在线欧美| 久久久久久久久久久免费av| 在线看a的网站| 欧美精品一区二区免费开放| 日韩大片免费观看网站| av国产精品久久久久影院| 最近手机中文字幕大全| 亚洲av综合色区一区| 无遮挡黄片免费观看| 国产精品国产av在线观看| 亚洲精品美女久久av网站| 欧美最新免费一区二区三区| 中文欧美无线码| 十分钟在线观看高清视频www| 一级片'在线观看视频| 欧美精品av麻豆av| 精品一区二区三区av网在线观看 | 午夜福利乱码中文字幕| 国产成人精品在线电影| 国产极品天堂在线| 七月丁香在线播放| 国产成人av激情在线播放| 午夜日韩欧美国产| 青春草国产在线视频| 免费黄网站久久成人精品| tube8黄色片| 少妇被粗大的猛进出69影院| 肉色欧美久久久久久久蜜桃| 亚洲熟女精品中文字幕| 熟女少妇亚洲综合色aaa.| 久久午夜综合久久蜜桃| 9191精品国产免费久久| 一边摸一边做爽爽视频免费| 精品亚洲乱码少妇综合久久| 欧美激情 高清一区二区三区| 女性生殖器流出的白浆| 国产免费现黄频在线看| 国产精品国产三级专区第一集| 午夜老司机福利片| 精品午夜福利在线看| 国产一区二区 视频在线| 男女边吃奶边做爰视频| 国产日韩一区二区三区精品不卡| 2021少妇久久久久久久久久久| 国产精品一二三区在线看| 午夜福利视频在线观看免费| 成人亚洲精品一区在线观看| 18在线观看网站| 七月丁香在线播放| 日日爽夜夜爽网站| 狂野欧美激情性bbbbbb| 十八禁高潮呻吟视频| 日韩欧美一区视频在线观看| 国产一区二区三区综合在线观看| 男女免费视频国产| 欧美日韩视频精品一区| 最黄视频免费看| 久久久久视频综合| 欧美日韩国产mv在线观看视频| 欧美精品亚洲一区二区| 亚洲国产精品国产精品| 考比视频在线观看| 亚洲人成77777在线视频| 一级片免费观看大全| 成人国产麻豆网| 王馨瑶露胸无遮挡在线观看| 久久久久国产精品人妻一区二区| 国产一级毛片在线| 极品少妇高潮喷水抽搐| 亚洲在久久综合| 亚洲第一区二区三区不卡| 中文欧美无线码| 激情五月婷婷亚洲| 亚洲 欧美一区二区三区| 午夜激情av网站| 亚洲国产精品999| 男人操女人黄网站| 亚洲综合精品二区| 欧美av亚洲av综合av国产av | 亚洲七黄色美女视频| 纯流量卡能插随身wifi吗| 伊人久久大香线蕉亚洲五| 精品人妻在线不人妻| 国产熟女欧美一区二区| 亚洲欧美精品自产自拍| 欧美精品一区二区免费开放| av一本久久久久| 老司机在亚洲福利影院| 国产亚洲av片在线观看秒播厂| 成人免费观看视频高清| 在线观看免费午夜福利视频| 免费久久久久久久精品成人欧美视频| 咕卡用的链子| 中文字幕制服av| kizo精华| 久久精品国产亚洲av高清一级| 久久久精品国产亚洲av高清涩受| 啦啦啦在线观看免费高清www| 毛片一级片免费看久久久久| 韩国av在线不卡| 在线观看www视频免费| 亚洲精品国产av蜜桃| 国产亚洲精品第一综合不卡| 久久亚洲国产成人精品v| 精品国产乱码久久久久久男人| 青草久久国产| 午夜久久久在线观看| 国产99久久九九免费精品| 人妻人人澡人人爽人人| 久久久久久人人人人人| 久久天堂一区二区三区四区| 天天操日日干夜夜撸| 青草久久国产| 久久久精品94久久精品| 老司机深夜福利视频在线观看 | av福利片在线| 级片在线观看| 少妇 在线观看| 欧美av亚洲av综合av国产av| 90打野战视频偷拍视频| 青草久久国产| 黄片播放在线免费| 一级a爱视频在线免费观看| avwww免费| 淫秽高清视频在线观看| 国产精品亚洲av一区麻豆| 久热爱精品视频在线9| 天堂动漫精品| 亚洲欧美激情综合另类| 欧美成人午夜精品| 色综合站精品国产| 国产高清videossex| 麻豆久久精品国产亚洲av| videosex国产| 久久久久精品国产欧美久久久| 国产成人欧美| 狠狠狠狠99中文字幕| 久久伊人香网站| 欧美一区二区精品小视频在线| 男女之事视频高清在线观看| 91老司机精品| 一级a爱片免费观看的视频| 欧美成人性av电影在线观看| 窝窝影院91人妻| 亚洲国产毛片av蜜桃av| 久9热在线精品视频| 欧美绝顶高潮抽搐喷水| 国产三级黄色录像| 国产aⅴ精品一区二区三区波| 伊人久久大香线蕉亚洲五| 日韩av在线大香蕉| 99久久99久久久精品蜜桃| 一区二区日韩欧美中文字幕| 亚洲欧美激情综合另类| 欧美亚洲日本最大视频资源| 免费人成视频x8x8入口观看| 精品高清国产在线一区| 欧美午夜高清在线| 首页视频小说图片口味搜索| 免费在线观看影片大全网站| 久久天躁狠狠躁夜夜2o2o| 日日爽夜夜爽网站| 他把我摸到了高潮在线观看| 最新在线观看一区二区三区| 夜夜看夜夜爽夜夜摸| 99在线人妻在线中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲午夜理论影院| 国产精品二区激情视频| 欧美另类亚洲清纯唯美| 亚洲伊人色综图| 亚洲国产欧美一区二区综合| 久久人妻av系列| 波多野结衣高清无吗| 亚洲黑人精品在线| 国产亚洲精品av在线| 免费av毛片视频| 久久这里只有精品19| 久久国产精品影院| 狠狠狠狠99中文字幕| 怎么达到女性高潮| 久久婷婷人人爽人人干人人爱 | 日本 av在线| 三级毛片av免费| 久久国产精品影院| 99国产精品一区二区蜜桃av| 麻豆一二三区av精品| 国产又色又爽无遮挡免费看| av片东京热男人的天堂| 午夜精品国产一区二区电影| 国产成人影院久久av| 久久精品亚洲精品国产色婷小说| 久久久水蜜桃国产精品网| 在线十欧美十亚洲十日本专区| 一进一出好大好爽视频| 国产麻豆69| 老司机在亚洲福利影院| 黄频高清免费视频| 成人欧美大片| 人人妻人人爽人人添夜夜欢视频| www.熟女人妻精品国产| 国产成人系列免费观看| 亚洲色图 男人天堂 中文字幕| 日韩国内少妇激情av| 男女做爰动态图高潮gif福利片 | 国产精品亚洲一级av第二区| 欧美日韩亚洲综合一区二区三区_| 在线播放国产精品三级| 午夜福利18| 嫁个100分男人电影在线观看| 好看av亚洲va欧美ⅴa在| 欧美老熟妇乱子伦牲交| 国产精品 欧美亚洲| 色哟哟哟哟哟哟| 色播亚洲综合网| 国产亚洲精品综合一区在线观看 | 午夜a级毛片| 很黄的视频免费| 亚洲熟女毛片儿| 制服丝袜大香蕉在线| 50天的宝宝边吃奶边哭怎么回事| 丰满的人妻完整版| 成人亚洲精品av一区二区| 97碰自拍视频| 国产熟女午夜一区二区三区| 亚洲欧美激情在线| 国产成人精品久久二区二区91| 一区二区三区国产精品乱码| 天堂动漫精品| 亚洲情色 制服丝袜| 国产成人系列免费观看| 国产97色在线日韩免费| 嫩草影视91久久| 亚洲人成电影观看| 国产乱人伦免费视频| 国产精品精品国产色婷婷| 夜夜躁狠狠躁天天躁| 亚洲国产看品久久| 首页视频小说图片口味搜索| 免费看a级黄色片| 欧美成狂野欧美在线观看| 精品福利观看| 人成视频在线观看免费观看| 搞女人的毛片| 欧美激情高清一区二区三区| 亚洲欧美精品综合一区二区三区| 一个人免费在线观看的高清视频| 真人做人爱边吃奶动态| 88av欧美| 级片在线观看| 午夜a级毛片| 午夜老司机福利片| 欧美 亚洲 国产 日韩一| 在线观看免费视频网站a站| 大型av网站在线播放| 少妇的丰满在线观看| 9191精品国产免费久久| 999久久久国产精品视频| av在线天堂中文字幕| 成人三级做爰电影| 午夜两性在线视频| 90打野战视频偷拍视频| 中出人妻视频一区二区| 国产精品98久久久久久宅男小说| 天堂动漫精品| 女人精品久久久久毛片| 精品福利观看| 在线天堂中文资源库| 女人被狂操c到高潮| 9热在线视频观看99| www.999成人在线观看| e午夜精品久久久久久久| 97人妻天天添夜夜摸| 国产精品免费一区二区三区在线| 国产精品永久免费网站| 亚洲片人在线观看| 中出人妻视频一区二区| 巨乳人妻的诱惑在线观看| 美女 人体艺术 gogo| 悠悠久久av| 两性夫妻黄色片| 久久香蕉精品热| 日韩av在线大香蕉| 国语自产精品视频在线第100页| 精品免费久久久久久久清纯| 国产伦一二天堂av在线观看| 少妇裸体淫交视频免费看高清 | 99久久精品国产亚洲精品| 女人被躁到高潮嗷嗷叫费观| 国产熟女午夜一区二区三区| 国产精品综合久久久久久久免费 | 免费无遮挡裸体视频| 搡老妇女老女人老熟妇| 亚洲专区字幕在线| 香蕉丝袜av| 欧美日本视频| 亚洲性夜色夜夜综合| 国产精品野战在线观看| 国产成年人精品一区二区| 丰满人妻熟妇乱又伦精品不卡| 国产精品香港三级国产av潘金莲| 成人三级做爰电影| 久久亚洲精品不卡| 欧美中文综合在线视频| 国产精品久久久人人做人人爽| 亚洲avbb在线观看| avwww免费| 校园春色视频在线观看| 国产不卡一卡二| 国产精品亚洲av一区麻豆| 国产成+人综合+亚洲专区| 亚洲av电影在线进入| 亚洲中文日韩欧美视频| 亚洲av电影在线进入| 国产成人精品久久二区二区免费| 成人亚洲精品一区在线观看| 久久精品国产综合久久久| 久久香蕉国产精品| 国产1区2区3区精品| 国产三级黄色录像| netflix在线观看网站| 成人免费观看视频高清| 黑人操中国人逼视频| 国产91精品成人一区二区三区| 黄色丝袜av网址大全| 国产免费av片在线观看野外av| 日本三级黄在线观看| 亚洲 国产 在线| 国产麻豆成人av免费视频| 91字幕亚洲| 久99久视频精品免费| 夜夜看夜夜爽夜夜摸| 大香蕉久久成人网| 国产一级毛片七仙女欲春2 | 欧美一级a爱片免费观看看 | 国产精品,欧美在线| 在线播放国产精品三级| 午夜福利,免费看| 最新美女视频免费是黄的| 亚洲第一青青草原| 夜夜躁狠狠躁天天躁| 免费高清视频大片| 男男h啪啪无遮挡| 美女高潮到喷水免费观看| 91精品国产国语对白视频| 女性生殖器流出的白浆| 亚洲av成人一区二区三| 午夜亚洲福利在线播放| 精品福利观看| 18禁裸乳无遮挡免费网站照片 | av中文乱码字幕在线| 国产亚洲欧美精品永久| 婷婷六月久久综合丁香| 天堂影院成人在线观看| 午夜福利,免费看| 国内精品久久久久精免费| 男女床上黄色一级片免费看| 国产成人免费无遮挡视频| 久久久久久大精品| 一本大道久久a久久精品| 亚洲av第一区精品v没综合| 欧美日韩瑟瑟在线播放| av网站免费在线观看视频| 少妇 在线观看| 桃红色精品国产亚洲av| 欧美一区二区精品小视频在线| 国产国语露脸激情在线看| 久久久久亚洲av毛片大全| 精品无人区乱码1区二区| 18禁观看日本| 操美女的视频在线观看| 中文字幕人成人乱码亚洲影| 亚洲国产精品久久男人天堂| 国产91精品成人一区二区三区| 久久久久久久久免费视频了| 国产亚洲欧美在线一区二区| 精品高清国产在线一区| 一夜夜www| 成年版毛片免费区| 99riav亚洲国产免费| 亚洲一区二区三区色噜噜| 可以在线观看的亚洲视频| 嫩草影视91久久| 精品国产一区二区久久| 国产亚洲精品第一综合不卡| 美女扒开内裤让男人捅视频| 久久人人精品亚洲av| 无人区码免费观看不卡| 午夜视频精品福利| 麻豆国产av国片精品| 亚洲三区欧美一区| 老鸭窝网址在线观看| 中文字幕精品免费在线观看视频| 久久婷婷人人爽人人干人人爱 | 亚洲精品一区av在线观看| 成人手机av| 国产精品98久久久久久宅男小说| 免费搜索国产男女视频| 老司机深夜福利视频在线观看| 丝袜美腿诱惑在线| netflix在线观看网站| 露出奶头的视频| 久久久久精品国产欧美久久久| 在线观看免费视频网站a站| 无人区码免费观看不卡| www.自偷自拍.com| 免费人成视频x8x8入口观看| 久久国产亚洲av麻豆专区| 国产精品,欧美在线| 国产人伦9x9x在线观看| 国产精品久久久久久精品电影 | 免费观看精品视频网站| av视频免费观看在线观看| 国产精品亚洲av一区麻豆| 大型黄色视频在线免费观看| 国产激情欧美一区二区| 精品人妻在线不人妻| 麻豆国产av国片精品| 亚洲欧美日韩另类电影网站| 欧美激情高清一区二区三区| 久久 成人 亚洲| 久久精品国产清高在天天线| 久久久久国产一级毛片高清牌| 乱人伦中国视频| 亚洲色图 男人天堂 中文字幕| 国产亚洲精品久久久久久毛片| 色精品久久人妻99蜜桃| 欧美国产精品va在线观看不卡| 在线av久久热| 一级a爱片免费观看的视频| 在线播放国产精品三级| 啦啦啦 在线观看视频| 美国免费a级毛片| 两个人视频免费观看高清| 亚洲五月色婷婷综合| 亚洲人成电影免费在线| 国产在线观看jvid| 国产高清videossex| АⅤ资源中文在线天堂| 99久久99久久久精品蜜桃| 欧美成人性av电影在线观看| 亚洲中文字幕日韩| 欧美日韩福利视频一区二区| 欧美日本亚洲视频在线播放| 校园春色视频在线观看| 深夜精品福利| 色播在线永久视频| 日韩av在线大香蕉| 亚洲中文字幕一区二区三区有码在线看 | 婷婷丁香在线五月| 国产一卡二卡三卡精品| 午夜日韩欧美国产| 男女下面插进去视频免费观看| 久久香蕉精品热| 午夜老司机福利片| 欧美黑人精品巨大| 看免费av毛片| 欧美成人性av电影在线观看| 999久久久精品免费观看国产| 欧美色欧美亚洲另类二区 | 亚洲色图综合在线观看| 日韩欧美免费精品| 亚洲午夜精品一区,二区,三区| 欧美乱妇无乱码| 乱人伦中国视频| 日本三级黄在线观看| 国产午夜精品久久久久久| 欧美乱色亚洲激情| 18禁裸乳无遮挡免费网站照片 | 国产av一区二区精品久久| 亚洲欧美日韩高清在线视频| 俄罗斯特黄特色一大片| 国产亚洲精品综合一区在线观看 | 久久人妻熟女aⅴ| 亚洲成人免费电影在线观看| av片东京热男人的天堂| 国产不卡一卡二| 国产日韩一区二区三区精品不卡| 99国产综合亚洲精品| 9热在线视频观看99| 99香蕉大伊视频| 国产三级在线视频| 精品久久久久久成人av| 老汉色av国产亚洲站长工具| 国产免费男女视频| 午夜精品在线福利| 91成人精品电影| 性欧美人与动物交配| 久久中文看片网| 精品久久久精品久久久| 大香蕉久久成人网| 在线视频色国产色| 国内精品久久久久精免费| 久久人妻熟女aⅴ| 国产一区二区三区视频了| 中文字幕色久视频| 亚洲av成人av| 亚洲一区中文字幕在线| 国产精品美女特级片免费视频播放器 | 69精品国产乱码久久久| 一级a爱片免费观看的视频| 夜夜躁狠狠躁天天躁| 免费看美女性在线毛片视频| 精品一区二区三区视频在线观看免费| 久久精品国产99精品国产亚洲性色 | a级毛片在线看网站| 12—13女人毛片做爰片一| 婷婷丁香在线五月| 国产一区二区激情短视频| 成人国产综合亚洲| 黄色片一级片一级黄色片| 国产蜜桃级精品一区二区三区| 淫妇啪啪啪对白视频| 中文字幕另类日韩欧美亚洲嫩草| 999久久久精品免费观看国产| 可以免费在线观看a视频的电影网站| 亚洲成av片中文字幕在线观看| 99国产精品一区二区三区| 香蕉国产在线看| 国产成人系列免费观看| 亚洲色图综合在线观看| 亚洲国产欧美一区二区综合| 99国产极品粉嫩在线观看| 最近最新中文字幕大全电影3 | 午夜福利,免费看| 搞女人的毛片| 别揉我奶头~嗯~啊~动态视频| 日本欧美视频一区| 久久人妻av系列| 丝袜美腿诱惑在线| 亚洲精品中文字幕在线视频| 亚洲精品国产一区二区精华液| 欧美日韩中文字幕国产精品一区二区三区 | 男女下面进入的视频免费午夜 | 国产精品国产高清国产av| 午夜精品久久久久久毛片777| 日韩 欧美 亚洲 中文字幕| 日日夜夜操网爽| 亚洲精华国产精华精| 国产三级在线视频| 怎么达到女性高潮| 电影成人av| 人人妻人人澡欧美一区二区 | 日本免费a在线| 12—13女人毛片做爰片一| 日本在线视频免费播放| 久久人妻福利社区极品人妻图片| 久久婷婷成人综合色麻豆| 老司机福利观看| videosex国产| 亚洲 欧美 日韩 在线 免费| 成年女人毛片免费观看观看9| 19禁男女啪啪无遮挡网站| 欧美精品亚洲一区二区| 国产区一区二久久| 91精品三级在线观看| 午夜激情av网站| 亚洲免费av在线视频| 国产精品一区二区三区四区久久 | 纯流量卡能插随身wifi吗| 国产成人啪精品午夜网站| 国产成人精品在线电影| 在线观看www视频免费| 熟女少妇亚洲综合色aaa.| 黑丝袜美女国产一区| 欧美亚洲日本最大视频资源| 久久伊人香网站| 欧美激情高清一区二区三区| 纯流量卡能插随身wifi吗| 久久影院123| 国产高清有码在线观看视频 | 无限看片的www在线观看| 99精品久久久久人妻精品| 久久精品国产亚洲av香蕉五月| 久久精品亚洲精品国产色婷小说| 亚洲人成电影免费在线| 亚洲第一青青草原| 亚洲av五月六月丁香网| 很黄的视频免费| 老汉色av国产亚洲站长工具|