• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic-field-controlled spin valve and spin memory based on single-molecule magnets

    2023-10-11 07:56:22ZhengzhongZhang張正中RuyaGuo郭儒雅RuiBo薄銳andHaoLiu劉昊
    Chinese Physics B 2023年9期
    關(guān)鍵詞:儒雅

    Zhengzhong Zhang(張正中), Ruya Guo(郭儒雅), Rui Bo(薄銳), and Hao Liu(劉昊),?

    1Faculty of Mathematics and Physics,Huaiyin Institute of Technology,Huai’an 223003,China

    2Nano Science and Technology Institute,University of Science and Technology of China,Suzhou 215123,China

    Keywords: single-molecule magnet,spin dependent electron tunneling,spin valve

    1.Introduction

    Spintronics aims to exploit the spin degree of freedom in solid-state devices for data storage and information processing technologies.[1]The spin valve(SV),a principal spintronic device, is a microelectronic device in which high-resistance(HR) and low-resistance (LR) states are realized by using both the charge and spin of carriers.[2,3]A standard magnetoresistance (MR) SV is an electronic device in which two conducting magnetic layers are separated by a nonmagnetic layer.[4,5]By applying an external magnetic field, considerable resistance switching can be achieved in the device by altering the magnetic configuration of the electrodes between parallel/LR and antiparallel/HR states.To date, various SV devices have been successfully manufactured, and the discoveries of giant magnetoresistance[6](GMR) and tunneling magnetoresistance[7](TMR)in metallic SV devices have revolutionized applications such as magnetic recording and memory.

    Generally, the magnetic layers in SV devices are composed of ferromagnetic (FM) metals.With the development of materials science, molecule/organic-based magnets, which allow chemical tuning of electronic and magnetic properties, have become a promising new class of magnetic materials for future spintronic applications.[8–13]Among these magnets,single-molecule magnets[14–17](SMMs),a new type of quantum magnetic material, have attracted increasing attention for their potential applications in novel spintronic devices.[18–20]The inner magnetic core of these molecules is surrounded by organic ligands, and the interaction between the magnetic cores of neighboring molecules is very weak,which leads to a large ground-state spin of SMMs.[21,22]This large ground-state spin of an SMM results in a doublewell energy potential, which can resist magnetization reversal under low-temperature conditions.[17,23,24]Experimentally, electron transport of SMMs was observed with scanning tunneling microscopy and mechanically controllable break junctions,[25–30]although some results remain to be clarified.[31–35]More importantly, some studies have shown that electronic properties of these special molecules can be precisely controlled by electrical or magnetic means.[36–40]To date, many interesting phenomena of electron transport through SMMs have been discussed, such as spin blockade effect,[41,42]spin diode effect,[43,44]spin-Seebeck effect,[45,46]spin torque effect,[47–49]Kondo effect,[50–52]and superconducting effect.[53]According to studies of Boganiet al.,these molecules will be trapped in one of two metastable ground states±S, and only electrons whose spin direction is parallel to the molecular magnetism can pass through the SMM, resulting in high spin polarization of the tunneling current.[54]Due to this property,SMMs seem to be appropriate candidates for designing nanoscale spintronic devices, for example, spin filters or SV devices.[55,56]

    In this work, we observe a spin-valve-like signal in our SMM-magnetic tunnel junction(MTJ)system,which consists of a magnetic molecule sandwiched between an FM lead and a nonmagnetic (NM) lead.A small detecting bias voltage is applied between two electrodes,and the conducting electrons are controlled by adjusting the external magnetic field.We observe a stable LR state under positive applied magnetic fields,a stable HR state under negative fields and HR–LR switching depending on the magnetization reversal of the SMM.Although much work on the spin-resolved transport properties of SMM molecules has been performed,[57–61]studies about the HR–LR switching effect controlled by magnetic signals in an SMM and the corresponding properties remain lacking.This work aims to fill this gap.

    2.Model and Hamiltonian

    As shown in Fig.1(a), the magnetic molecular junction we consider here consists of an SMM placed between two metallic electrodes in the presence of an external magnetic field.The total Hamiltonian of this structure is composed of two parts,i.e.,Htotal=Horbit+Hspin,[41,62]

    At low temperature,the transport process is dominated by the sequential tunneling through the SMM energy level,while the co-tunneling and direct tunneling can be neglected safely.For the weak coupling between the SMM and leads,the master equation approach holds.The spin-σcurrent can be written asIσ=(ILσ-IRσ)/2,whereILσ(IRσ)represents the spin current flowing from the left(right)lead to the SMM:

    Some techniques that can accurately deal with the time-dependent evolution in SMM systems have been developed,[57,58,66,67]and in this paper,we choose the numerical method suggested in Refs.[41,68,69].The time evolution can be studied by solving the master equation,which assumes that the kernel does not depend on time.[59]Then, the time dependence of probabilityPi(t) can be obtained by solving a series of equations

    and steady-state probabilityPi(t →∞)can be obtained by applying the condition dPi/dt=0.The total tunneling current isI=∑σ(ILσ-IRσ)/2,and the spin polarization coefficient of the current is defined asη=(I↑-I↓)/I.

    3.Result and discussion

    In the following discussions we adopt the parameters based on experiments and first-principles calculations for Mn12-ac molecule[23,31,70]withS=10,D=0.06 meV, andU= 25 meV.This magnetic molecule has two degenerate ground states ofS=±10 and a relatively large tunneling barrierDS2≈60 K.The exchange coupling parameterJis taken to be positive (J= 0.1 meV), meaning that the coupling is ferromagnetic.[55]Since the next higher energy orbital lies about 8 meV above the LUMO,[71]the higher orbitals are expected to affect the results very weakly in the low-bias voltage regime.

    First,we demonstrate how to use a magnetic field to manipulate the HR–LR switching in this SMM-MTJ.Figure 2 shows the magnetization of the SMM and the tunneling current change as functions of the external magnetic field, with a small bias voltageV=1.0 mV exerted across the junction and equilibrium temperatureT=1 K.The arrows show the magnetic field scanning direction, and the scanning process is assumed to be slow to ensure that the system can relax to the steady state.As shown in Fig.2(a), the magnetization of the SMM exhibits a loop structure when the magnetic field is scanned back and forth.The positive applied magnetic field will flip the SMM to the +S(parallel configuration) spin direction,andvice versa.Due to the intrinsic magnetism of the SMM,the molecules will preserve their spin states during the gradual reduction of the external magnetic field.Therefore,in the region close to ΔH=0,both SMM spin states±Scan be retained.In Fig.2(b),we plot the electron current as a function of ΔH.If we useI+to denote the current when ΔHis scanned from+3 meV to-3 meV,andI-to denote the current when the magnetic field is scanned in the opposite direction, then we can find that the electron tunneling spectraI+andI-are quite different.When the magnetic field ΔHis scanned from+3 meV to-3 meV, we observe a large current plateau (LR state) in the window of ΔH ∈[-0.5,2]meV.This current increases as the spin polarization of the FM electrode increases.When the magnetic field is scanned in the opposite direction,a similar but relatively small current plateau(HR state)appears in theI-spectrum near ΔH ∈[-2,0.5] meV, while this current is significantly smaller thanI+in the LR state.UnlikeI+,a higher spin polarization in the electrode will significantly weakenI-.Moreover, in the zero-magnetic field (ZF) point(ΔH=0), the resistance of the molecular junction obviously presents two different states.Both of HR and LR states can be saved at the ZF point.This external magnetic field-controlled HR–LR switching effect is very similar to that in traditional SV devices.[4]The difference is that one of the magnetic layers in the traditional MTJ has been replaced by a magnetic molecule in our system.

    Fig.1.(a)Schematic diagram of a molecular-MTJ proposed in this paper,which consists of an SMM coupled to an FM lead and an NM lead.(b) Schematic illustration of the “HR–LR” switching by applying an external magnetic field and a small bias voltage.

    Fig.2.(a) Magnetic hysteresis loops of the SMM and (b) tunneling currents(scaled by eΓ0/ˉh)varying when the external magnetic field ΔH is scanned back and forth,with different lead’s spin polarizations.The equilibrium temperature and bias voltage are T =1 K and V =1 mV,respectively.

    The HR–LR switching phenomenon illustrated in Fig.2 can be simply explained as follows: As shown in Fig.1(b),a magnetic field will destroy the bistable ground states of the SMM, resulting in a change in the SMM magnetic moment.The bias is not large enough to affect the magnetism of the SMM in the absence of a magnetic field.Therefore,in Fig.2(b), we can observe two different resistance states near the ZF point.If the magnetic field is scanned from +3 meV to 0 meV,then the core spin of the molecule will be flipped by the external magnetic field to the+Sspin state(parallel to the magnetism of the FM electrode).Then, the SMM will tend to allow spin-up (majority) electrons in the FM electrode to pass through the junction, and the device will present an LR state.In contrast, if the magnetic field is scanned in the opposite direction, then the antiparallel magnetic configuration will be maintained at the ZF point,and the molecule will favor spin-down (minority) electron flow through the device.As a consequence,an HR state is presented.

    Fig.3.Variations in the molecular state probabilities (a) as ΔH is scanned from +3 meV to -3 meV and (b) as ΔH is scanned from-3 meV to+3 meV.The equilibrium temperature and bias voltage are given as T =1 K and V =1 mV.

    To explain the physical process in Fig.2 more clearly,we calculate the variation in the probabilities of the SMM statesP|0,S-1〉,P|0,-S+1〉,P|0,±S〉,P|1,±S±1/2〉-andP|1,±S?1/2〉-as the magnetic field is scanned back and forth.In Fig.3(a), the external magnetic field ΔHis slowly scanned from+3 meV to-3 meV to allow the system to relax to the steady state.When ΔH >2.0 meV, all states are unoccupied except for|1,+S+1/2〉-(P|1,+S+1/2〉-=1),which means that the molecule spin state is pinned in the +S(parallel to the FM electrode) spin direction and that one spin-up electron is trapped in the SMM.Due to the Coulomb repulsion energy of the SMM(UMn12-ac≈25 meV)and small applied bias voltage,this trapped electron cannot hop into the NM electrode,and the electron current is completely blocked.When ΔHdecreases from +2.0 meV to-0.3 meV, the probabilityP|0,+S〉quickly increases, and the tunneling current is dominated by the transition between two states:|0,+S〉?|1,+S+1/2〉-.According to Refs.[41,63],only spin-up electrons in this case can tunnel through the LUMO level in the molecule,resulting in a spin-up polarized electron current.Because the FM lead is spin-up polarized,the spin majority(up)electrons are easily transported through the SMM,and an LR state is obtained.If we assume the temperatureT →0, the current in the LR state and ZF condition can be approximated as

    If ΔHis further decreased to the window of [-2.0 meV,-0.3 meV], then inelastic tunneling processes will occur.In this regime, the bistable energy spectrum of the SMM is completely destroyed, and nearly all the spin states of the molecule have a non-zero probability of being occupied.Among these states,the probabilities of the two special states|0,+S〉 and|1,-S-1/2〉-are much larger than those of the other states.The point at whichP|0,+S〉=P|1,-S-1/2〉-exactly corresponds to the magnetism reversal point in Fig.2(a),indicating that the molecular spin direction starts to reverse from + to- due to the magnetic field.As ΔHcontinues to vary, all the state probabilities return to 0 except for that of|1,-S-1/2〉-(P|1,-S-1/2〉-=1), which implies that the SMM spin state is pinned in the-Sdirection and that the tunneling current will be switched “off” by one spindown electron blocking the electron tunneling channel at the LUMO level.If the magnetic field is scanned in the reverse direction (ΔHchanges from-3 meV to +3 meV; see Fig.3(b)), then similar physical phenomena will occur.The SMM magnetic reversal point from- to + corresponds to the point whereP|0,-S〉=P|1,+S+1/2〉-, and the electron tunnelling process in the HR window is dominated by the transition|1,-S-1/2〉-?|0,-S〉, which means that only spin minority(down)electrons can flow through the molecule.At low temperatures,the spin-down polarized electron current in the HR state and ZF condition yields

    If we defnie a parameter MR=to describe the on-off ratio of LR-HR switching, then the MR ratio under low temperature and ZF condition can be given as

    Similar to the results of the Julli`ere’s model,[1]from Eq.(7)we can determine that the MR ratio mainly depends on the spin polarization of the electrode.The higher the spin polarization of the FM lead is,the greater the MR ratio of the device,and the better the device functions as an SV device.

    Next, we discuss the effect of the equilibrium temperature on this device.For ease of description, we useΛ-to denote the reversal point when the spin state of the SMM switches from + to- andΛ+to denote the reversal point from- to +.As shown in Fig.4(a), the magnetic hysteresis loop shrinks and the distance betweenΛ+andΛ-decreases with increasing temperature.As mentioned in regard to Fig.3, the magnetism reversal pointΛ+corresponds to the point whereP|0,-S〉=P|1,+S+1/2〉, andΛ-corresponds to another point whereP|0,+S〉=P|1,-S-1/2〉-.Therefore, in Fig.4(c),we plot the state probabilitiesP|0,S〉andP|1,-S-1/2〉-as functions of ΔHwhen the magnetic field is scanned from+3 meV to-3 meV under different equilibrium temperatures.As shown in Fig.4(c), a higher temperature will excite these two states to participate in the transition earlier, which will lead to the molecular magnetic moment being more prone to flipping.As a result, the absolute values ofΛ+andΛ-will decrease with increasing temperature.In addition, with decreasing temperature, the shape of the current spectra in the HR and LR states gradually evolves into a plateau.We take the current in the LR state as an example.As discussed in regard to Fig.3,the current in the LR state is dominated by the transition|0,+S〉?|1,+S+1/2〉-.Therefore, in Fig.4(d),we plot the probabilities of these states as functions of ΔH.A lower temperature causes the electron tunneling process to be more easily dominated by the transition between the two states|0,+S〉and|1,+S+1/2〉-,resulting in the gradual evolution of the current distribution into a plateau.In contrast,a higher temperature will excite more spin states to participate in the tunneling process, which will reduce the spin polarization of the current and,to a certain extent,narrow the LR(HR)state window.

    Fig.4.(a) Magnetic hysteresis loops of the SMM and (b) tunneling currents (scaled by eΓ0/ˉh) varying when the external magnetic field ΔH is scanned back and forth, with different temperature and bias V =1.0 mV.(c) and (d) Variations in the molecular state probabilities(c)P|0,+S〉 and P|1,-S-1/2〉- and(d)P|0,+S〉 and P|1,+S+1/2〉 as ΔH is scanned from+3 meV to-3 meV.

    Finally, let us discuss how to implement the device scheme proposed in this paper under a real experimental environment.In Fig.5, we use a time-varying magnetic field with an amplitude ΔH=±0.8 meV(approximately 5.5 T)to“write” the resistance state in this device.According to the experimental work of Joet al.,[72]such a magnetic field can be achieved under the current experimental conditions.The train of magnetic field signals applied to the SMM periodically changes its direction every 2×105ˉh/Γ(~= 4 μs forΓ=8 GHz[69]).As shown in Fig.5(a),this time-varying magnetic field signal only lasts 2 μs every time to reach±0.8 meV and then quickly reduces to zero.Figure 5(c) shows that the SMM can maintain its magnetization(remain in the+Sor-Sspin state) when the magnetic field disappears.To detect the HR–LR switching in this device,we apply a small bias voltageV=0.5 mV across the two electrodes.As shown in Fig.5(b),we calculate the current spectrum changes with the magnetic field variation.The tunneling current can clearly be switched between the“HR”and“LR”state by this time-varying external magnetic field.Even with a relatively low spin-polarized FM electrode(PFM=0.3,close to the spin polarization of the metal Ni[73,74]) and higher temperatureT=2 K, the MR ratio at ZF point can reach almost 0.38,which is very consistent with the prediction of Eq.(7).Interestingly, every time the sign of the magnetic signal changes, the electron current obviously oscillates and soon stabilizes to a new plateau.This unusual electrical signal is instantaneous and disappears with the completion of the molecular magnetic inversion process.Therefore,observing the generation and disappearance of this signal may yield effective evidence to judge whether magnetic reversal of the molecular magnetism has been completed.Furthermore, as shown in Fig.5(d), regardless of how the polarization of the FM electrode changes,the spin polarization parameter of the electron currentηcan always vary from +1 to-1.This shows that not only the resistance state but also the current spin polarization parameter in this system can be rewritten by a magnetic field.

    4.Conclusions

    In summary,we have proposed a supramolecular SV consisting of an SMM and an FM electrode.By adjusting the magnetic field,the core spin of the molecule can be switched between two bistable magnetic ground states|±S〉,leading to a parallel(LR)or an antiparallel(HR)magnetic configuration of the system.Our numerical results show that the device resistance depends on the spin alignment of the MTJ,which can be controlled by an external magnetic field and read out by a small bias voltage.More interestingly, due to the intrinsic magnetism of the SMM, this HR/LR state can be saved and readout under a ZF condition.The results in this work offer a starting point to study multilayer structures combined with molecular magnets,such as SMM spin-valve structures.However, the functional ability of the device greatly depends on the molecular magnetic characteristics, a relatively low equilibrium temperature and an FM electrode.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant No.11404322), the Natural Science Foundation of Huai’an (Grant Nos.HAB202229 and HAB202150), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No.22KJD140002).

    猜你喜歡
    儒雅
    豪放儒雅見真情
    世界博覽(2022年16期)2022-05-30 22:55:13
    凈心繪歲月 儒雅君子風
    和愛儒雅育桃李——廈門市鷺江新城小學簡介之一
    潤染儒雅起點,成就幸福人生
    呂信儒:儒雅少女,溫暖流年
    學生天地(2016年34期)2016-05-17 05:47:37
    曾偉平 陳儒雅 李媛 王棒作品
    人間(2016年9期)2016-05-14 17:25:24
    唐文宗恭儉儒雅
    春岸
    黃河之聲(2016年24期)2016-04-22 02:39:44
    儒雅教育 滋潤美好童年
    儒雅之風
    做人與處世(2015年6期)2015-04-27 11:48:40
    国产精品爽爽va在线观看网站| 午夜日韩欧美国产| 午夜成年电影在线免费观看| 一本一本综合久久| 国产高清有码在线观看视频 | 日韩高清综合在线| 黄色视频不卡| 天堂动漫精品| 日韩精品免费视频一区二区三区| 美女免费视频网站| 在线视频色国产色| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久亚洲av毛片大全| 嫩草影视91久久| 午夜福利在线在线| 人人妻人人澡欧美一区二区| 大型黄色视频在线免费观看| 999精品在线视频| 亚洲 国产 在线| 亚洲自拍偷在线| avwww免费| 精品国产美女av久久久久小说| 国产精品,欧美在线| 黄色视频不卡| 国产精品爽爽va在线观看网站| 香蕉丝袜av| 亚洲九九香蕉| 免费观看人在逋| 久久亚洲真实| 两个人视频免费观看高清| 岛国在线免费视频观看| 一边摸一边抽搐一进一小说| 国产精品久久视频播放| 色精品久久人妻99蜜桃| 久久性视频一级片| 久久香蕉激情| 女人被狂操c到高潮| 蜜桃久久精品国产亚洲av| 级片在线观看| 黄色a级毛片大全视频| 成人精品一区二区免费| 搡老熟女国产l中国老女人| 两性午夜刺激爽爽歪歪视频在线观看 | 久99久视频精品免费| 国产69精品久久久久777片 | 桃色一区二区三区在线观看| 亚洲国产精品久久男人天堂| 国产精品 欧美亚洲| 高潮久久久久久久久久久不卡| 精品国内亚洲2022精品成人| 在线观看舔阴道视频| 亚洲国产欧美网| 久久精品国产综合久久久| 亚洲va日本ⅴa欧美va伊人久久| 亚洲色图av天堂| 欧美成人午夜精品| ponron亚洲| 又粗又爽又猛毛片免费看| 久久国产乱子伦精品免费另类| av国产免费在线观看| 亚洲,欧美精品.| 久久久久久大精品| 黄频高清免费视频| 国产高清有码在线观看视频 | 国内精品久久久久久久电影| 国产精品亚洲av一区麻豆| 性欧美人与动物交配| 欧美成人免费av一区二区三区| 午夜福利成人在线免费观看| 高清在线国产一区| 一本精品99久久精品77| 亚洲av成人精品一区久久| 亚洲欧美激情综合另类| 国产黄a三级三级三级人| 欧美日本亚洲视频在线播放| 精品久久久久久,| 色综合亚洲欧美另类图片| 免费av毛片视频| 久久久久久久久久黄片| 变态另类丝袜制服| 久久中文字幕人妻熟女| 中亚洲国语对白在线视频| 香蕉国产在线看| 久久久久久亚洲精品国产蜜桃av| 成人三级做爰电影| 久久精品国产99精品国产亚洲性色| 亚洲精品国产一区二区精华液| 久久人妻av系列| 久久久久久久久免费视频了| 好看av亚洲va欧美ⅴa在| 在线十欧美十亚洲十日本专区| 免费无遮挡裸体视频| 午夜激情av网站| 久久精品91蜜桃| 久久欧美精品欧美久久欧美| 久久人人精品亚洲av| 亚洲成人中文字幕在线播放| 在线永久观看黄色视频| 国产精品一区二区三区四区久久| 亚洲av美国av| 久久久精品欧美日韩精品| 亚洲七黄色美女视频| 日韩高清综合在线| 欧美日韩福利视频一区二区| 国产日本99.免费观看| 欧美色欧美亚洲另类二区| 色综合欧美亚洲国产小说| 法律面前人人平等表现在哪些方面| 精品国产乱子伦一区二区三区| 国产伦一二天堂av在线观看| 岛国在线观看网站| 日本黄大片高清| 日本五十路高清| 国产又色又爽无遮挡免费看| 午夜免费观看网址| 国产精品九九99| 91av网站免费观看| 麻豆av在线久日| 国产真实乱freesex| xxxwww97欧美| svipshipincom国产片| 一本精品99久久精品77| 人人妻人人看人人澡| av免费在线观看网站| 动漫黄色视频在线观看| 亚洲自拍偷在线| 他把我摸到了高潮在线观看| 欧美一区二区国产精品久久精品 | 亚洲欧美激情综合另类| 午夜成年电影在线免费观看| 人人妻人人看人人澡| 精品少妇一区二区三区视频日本电影| 国内少妇人妻偷人精品xxx网站 | 欧美午夜高清在线| 亚洲性夜色夜夜综合| 国产精品九九99| 日韩大码丰满熟妇| 国产区一区二久久| 日日夜夜操网爽| 国产精品99久久99久久久不卡| 久久人人精品亚洲av| 国产黄a三级三级三级人| 国产精品久久久久久人妻精品电影| 午夜福利视频1000在线观看| 性欧美人与动物交配| 亚洲在线自拍视频| 欧美日韩精品网址| 日韩精品青青久久久久久| 香蕉av资源在线| 国产精品av久久久久免费| 国产精华一区二区三区| 少妇的丰满在线观看| 麻豆一二三区av精品| 日本黄大片高清| 欧美午夜高清在线| 国产伦人伦偷精品视频| 热99re8久久精品国产| 亚洲在线自拍视频| 欧美日韩国产亚洲二区| 18禁观看日本| 99久久精品热视频| 亚洲av日韩精品久久久久久密| cao死你这个sao货| 日本一区二区免费在线视频| 99热这里只有精品一区 | aaaaa片日本免费| 国产av一区在线观看免费| 欧美绝顶高潮抽搐喷水| 日日摸夜夜添夜夜添小说| 搞女人的毛片| 天天躁夜夜躁狠狠躁躁| 18禁国产床啪视频网站| 欧美性猛交╳xxx乱大交人| 18禁裸乳无遮挡免费网站照片| 精品久久蜜臀av无| 亚洲av中文字字幕乱码综合| 黑人巨大精品欧美一区二区mp4| 亚洲真实伦在线观看| 国产av不卡久久| 亚洲五月天丁香| 99久久综合精品五月天人人| 可以在线观看毛片的网站| 香蕉丝袜av| 午夜精品在线福利| 老司机福利观看| 免费一级毛片在线播放高清视频| 国产精品一区二区精品视频观看| 亚洲欧美日韩东京热| 国产爱豆传媒在线观看 | 免费看日本二区| 久久这里只有精品19| 观看免费一级毛片| www.熟女人妻精品国产| netflix在线观看网站| 妹子高潮喷水视频| 精华霜和精华液先用哪个| 国产午夜精品久久久久久| 久久久久国内视频| 无人区码免费观看不卡| 高潮久久久久久久久久久不卡| 亚洲午夜精品一区,二区,三区| 国产三级中文精品| 哪里可以看免费的av片| 日韩高清综合在线| 午夜老司机福利片| 亚洲av成人精品一区久久| 国产视频一区二区在线看| 99re在线观看精品视频| 久久人妻福利社区极品人妻图片| 99在线视频只有这里精品首页| 美女扒开内裤让男人捅视频| 国产亚洲精品av在线| 亚洲精品中文字幕在线视频| 国产精品av视频在线免费观看| 在线观看美女被高潮喷水网站 | 日韩大码丰满熟妇| 成人国语在线视频| 亚洲中文日韩欧美视频| 国产一区二区三区视频了| 久久精品国产清高在天天线| 岛国在线免费视频观看| 亚洲免费av在线视频| 91在线观看av| 久久久久久免费高清国产稀缺| avwww免费| 最近最新中文字幕大全免费视频| e午夜精品久久久久久久| 亚洲中文日韩欧美视频| 欧美日韩黄片免| 国产精品,欧美在线| 18美女黄网站色大片免费观看| 午夜福利成人在线免费观看| 国产伦在线观看视频一区| 欧美+亚洲+日韩+国产| 一二三四社区在线视频社区8| 日韩大码丰满熟妇| 欧美国产日韩亚洲一区| 欧美 亚洲 国产 日韩一| 亚洲精品一区av在线观看| 免费高清视频大片| 国产精品久久视频播放| 精品久久久久久成人av| 两性午夜刺激爽爽歪歪视频在线观看 | 色在线成人网| 亚洲狠狠婷婷综合久久图片| 国产成人一区二区三区免费视频网站| 淫妇啪啪啪对白视频| 国产亚洲精品久久久久久毛片| 日韩精品免费视频一区二区三区| 国产伦人伦偷精品视频| 夜夜夜夜夜久久久久| 久久精品国产综合久久久| 嫩草影视91久久| 久久久久久大精品| 国内精品久久久久久久电影| 一级毛片高清免费大全| 999久久久国产精品视频| 亚洲激情在线av| 1024视频免费在线观看| 国产精品久久电影中文字幕| 日本熟妇午夜| 精华霜和精华液先用哪个| 搡老妇女老女人老熟妇| 亚洲免费av在线视频| 亚洲av片天天在线观看| 波多野结衣高清无吗| 极品教师在线免费播放| 久久久国产成人精品二区| 在线十欧美十亚洲十日本专区| 国产成人系列免费观看| 丝袜美腿诱惑在线| 精品久久蜜臀av无| 国产精品一区二区三区四区免费观看 | 国产精品1区2区在线观看.| www日本黄色视频网| 一个人观看的视频www高清免费观看 | 少妇被粗大的猛进出69影院| 一个人免费在线观看电影 | 国产精品 欧美亚洲| 在线观看免费视频日本深夜| 丰满的人妻完整版| 这个男人来自地球电影免费观看| 高清在线国产一区| 亚洲精品在线美女| 99精品欧美一区二区三区四区| 好男人在线观看高清免费视频| 亚洲 欧美一区二区三区| 国产爱豆传媒在线观看 | 欧美最黄视频在线播放免费| 精品电影一区二区在线| 露出奶头的视频| 国产成人欧美在线观看| 又黄又粗又硬又大视频| av国产免费在线观看| 欧美zozozo另类| 国产精品久久电影中文字幕| 99精品在免费线老司机午夜| 老熟妇仑乱视频hdxx| 舔av片在线| 亚洲免费av在线视频| 亚洲一区中文字幕在线| 婷婷六月久久综合丁香| 日本 欧美在线| 午夜精品一区二区三区免费看| 午夜福利高清视频| 琪琪午夜伦伦电影理论片6080| 日本撒尿小便嘘嘘汇集6| 日韩欧美在线乱码| 动漫黄色视频在线观看| 欧美一区二区国产精品久久精品 | 757午夜福利合集在线观看| 宅男免费午夜| 亚洲人与动物交配视频| 在线国产一区二区在线| 久久这里只有精品中国| 欧美成人一区二区免费高清观看 | av国产免费在线观看| 99热6这里只有精品| 一区二区三区高清视频在线| 99精品久久久久人妻精品| 国产亚洲av高清不卡| 老鸭窝网址在线观看| 亚洲国产精品合色在线| av视频在线观看入口| 成人永久免费在线观看视频| 日本免费a在线| 欧美高清成人免费视频www| 麻豆国产97在线/欧美 | 99精品欧美一区二区三区四区| 高清在线国产一区| 在线观看一区二区三区| 人妻久久中文字幕网| 天天躁狠狠躁夜夜躁狠狠躁| 国产97色在线日韩免费| 亚洲自拍偷在线| xxxwww97欧美| 日韩成人在线观看一区二区三区| 久久草成人影院| 亚洲欧美日韩无卡精品| 少妇的丰满在线观看| 男女午夜视频在线观看| 国产亚洲欧美98| 午夜福利在线在线| 国产97色在线日韩免费| 国内揄拍国产精品人妻在线| 99在线视频只有这里精品首页| 亚洲国产高清在线一区二区三| 久久天躁狠狠躁夜夜2o2o| 激情在线观看视频在线高清| av超薄肉色丝袜交足视频| 亚洲一区中文字幕在线| 欧美成人性av电影在线观看| 婷婷亚洲欧美| 1024视频免费在线观看| 一区二区三区激情视频| 亚洲色图 男人天堂 中文字幕| 亚洲 欧美 日韩 在线 免费| 亚洲欧美日韩高清专用| 国内少妇人妻偷人精品xxx网站 | 天堂av国产一区二区熟女人妻 | 久久热在线av| 亚洲精品色激情综合| 两个人看的免费小视频| 中文字幕人妻丝袜一区二区| 成人一区二区视频在线观看| videosex国产| 色综合婷婷激情| 91成年电影在线观看| 久久久久久久久中文| 国产精品日韩av在线免费观看| 啦啦啦韩国在线观看视频| 久久久水蜜桃国产精品网| 免费观看精品视频网站| 国产午夜精品久久久久久| 黄色毛片三级朝国网站| 90打野战视频偷拍视频| 国产成+人综合+亚洲专区| 精品国产乱码久久久久久男人| 韩国av一区二区三区四区| 国产精品av久久久久免费| 香蕉久久夜色| 国产成人精品久久二区二区91| 超碰成人久久| 免费观看人在逋| 日韩国内少妇激情av| 国产高清有码在线观看视频 | 成在线人永久免费视频| 欧美日韩国产亚洲二区| 大型av网站在线播放| 国内精品一区二区在线观看| 国产精品久久视频播放| 黑人巨大精品欧美一区二区mp4| 99riav亚洲国产免费| 国产精品亚洲一级av第二区| 亚洲欧美日韩高清专用| 此物有八面人人有两片| 性欧美人与动物交配| 亚洲成人中文字幕在线播放| 日本在线视频免费播放| 国产成年人精品一区二区| 免费观看精品视频网站| 淫秽高清视频在线观看| 搞女人的毛片| a级毛片在线看网站| 精品不卡国产一区二区三区| 麻豆国产av国片精品| 色哟哟哟哟哟哟| 别揉我奶头~嗯~啊~动态视频| 91字幕亚洲| 国内精品久久久久久久电影| 日韩成人在线观看一区二区三区| 法律面前人人平等表现在哪些方面| 国产精品久久久久久精品电影| 最新美女视频免费是黄的| 亚洲熟妇中文字幕五十中出| 免费观看精品视频网站| 最近视频中文字幕2019在线8| 成人永久免费在线观看视频| 亚洲国产欧美一区二区综合| 亚洲成人免费电影在线观看| 日韩有码中文字幕| 久久久国产欧美日韩av| 日本三级黄在线观看| 精品乱码久久久久久99久播| 国产精品野战在线观看| 制服丝袜大香蕉在线| 日韩精品中文字幕看吧| 男人的好看免费观看在线视频 | av片东京热男人的天堂| 中文字幕人成人乱码亚洲影| www.熟女人妻精品国产| 99在线人妻在线中文字幕| 在线国产一区二区在线| av视频在线观看入口| 一级黄色大片毛片| 欧美成狂野欧美在线观看| 亚洲专区中文字幕在线| 久久精品国产99精品国产亚洲性色| 在线观看一区二区三区| 99热这里只有是精品50| 国产精品爽爽va在线观看网站| 久久精品亚洲精品国产色婷小说| 久久久水蜜桃国产精品网| 真人做人爱边吃奶动态| а√天堂www在线а√下载| 国产精品99久久99久久久不卡| 日韩高清综合在线| 999久久久国产精品视频| e午夜精品久久久久久久| 日韩 欧美 亚洲 中文字幕| 精品久久久久久成人av| 波多野结衣高清作品| 亚洲国产欧美网| 日日干狠狠操夜夜爽| 精品不卡国产一区二区三区| 亚洲成人久久爱视频| 无遮挡黄片免费观看| 日本在线视频免费播放| 亚洲熟妇熟女久久| 无限看片的www在线观看| 欧美zozozo另类| 欧美精品啪啪一区二区三区| 欧美黑人巨大hd| 一区二区三区激情视频| 99国产精品99久久久久| 黄频高清免费视频| 又紧又爽又黄一区二区| 欧美人与性动交α欧美精品济南到| 日韩精品青青久久久久久| 精品欧美一区二区三区在线| 精品乱码久久久久久99久播| 亚洲av片天天在线观看| 亚洲国产精品久久男人天堂| 久久亚洲精品不卡| 精品一区二区三区av网在线观看| 最近视频中文字幕2019在线8| 成人国产综合亚洲| 欧美成狂野欧美在线观看| 久久精品人妻少妇| 熟女少妇亚洲综合色aaa.| 久久精品aⅴ一区二区三区四区| 精品一区二区三区av网在线观看| 叶爱在线成人免费视频播放| 女同久久另类99精品国产91| 午夜老司机福利片| 国内揄拍国产精品人妻在线| 欧美最黄视频在线播放免费| 丝袜美腿诱惑在线| 久久香蕉精品热| 午夜老司机福利片| 国产主播在线观看一区二区| 成人欧美大片| 亚洲欧美一区二区三区黑人| 妹子高潮喷水视频| xxxwww97欧美| 国产精品一及| 午夜日韩欧美国产| 久久精品91无色码中文字幕| 成人国产一区最新在线观看| 亚洲精品国产一区二区精华液| 亚洲国产欧洲综合997久久,| 免费在线观看视频国产中文字幕亚洲| 亚洲精华国产精华精| 久久久久久九九精品二区国产 | 久久这里只有精品中国| 国产精品野战在线观看| 日韩av在线大香蕉| 国产爱豆传媒在线观看 | 亚洲国产欧洲综合997久久,| 一本大道久久a久久精品| 久久亚洲真实| 大型黄色视频在线免费观看| 法律面前人人平等表现在哪些方面| 天堂√8在线中文| 99国产精品一区二区三区| 一本久久中文字幕| www.自偷自拍.com| 欧美国产日韩亚洲一区| 午夜福利免费观看在线| 婷婷精品国产亚洲av| 女警被强在线播放| 久久这里只有精品中国| 一区二区三区国产精品乱码| a级毛片在线看网站| 欧美+亚洲+日韩+国产| 成熟少妇高潮喷水视频| 亚洲精品色激情综合| 一本大道久久a久久精品| 日本一二三区视频观看| 无遮挡黄片免费观看| 国产精品一区二区免费欧美| 久久中文字幕人妻熟女| 夜夜看夜夜爽夜夜摸| e午夜精品久久久久久久| 91麻豆精品激情在线观看国产| 亚洲午夜理论影院| 高清毛片免费观看视频网站| 国产亚洲精品第一综合不卡| 欧美久久黑人一区二区| 国产伦人伦偷精品视频| 黄色 视频免费看| 免费看日本二区| 亚洲国产欧洲综合997久久,| www日本在线高清视频| 一本一本综合久久| 国产一区在线观看成人免费| 中文字幕久久专区| 精品国产乱码久久久久久男人| 久久精品91蜜桃| 成人国语在线视频| 十八禁网站免费在线| 欧美日韩瑟瑟在线播放| 日韩有码中文字幕| 久久99热这里只有精品18| 亚洲午夜理论影院| 桃红色精品国产亚洲av| 美女大奶头视频| 精品国内亚洲2022精品成人| 夜夜爽天天搞| 婷婷精品国产亚洲av在线| 最新美女视频免费是黄的| 少妇裸体淫交视频免费看高清 | 1024视频免费在线观看| 2021天堂中文幕一二区在线观| 国产在线精品亚洲第一网站| 亚洲欧美一区二区三区黑人| 久久久久久人人人人人| 日本在线视频免费播放| av在线天堂中文字幕| 999久久久精品免费观看国产| 婷婷丁香在线五月| 久久久久久国产a免费观看| 在线观看66精品国产| 国产97色在线日韩免费| 长腿黑丝高跟| 国产精品99久久99久久久不卡| 精品无人区乱码1区二区| 亚洲成人国产一区在线观看| 日韩国内少妇激情av| av福利片在线| 精品国产美女av久久久久小说| 国产亚洲精品一区二区www| 国产av又大| 久久亚洲精品不卡| 亚洲成av人片在线播放无| 91国产中文字幕| 国产一区在线观看成人免费| 一级毛片高清免费大全| 午夜免费激情av| 99re在线观看精品视频| 人人妻人人看人人澡| 国产精华一区二区三区| 国产又色又爽无遮挡免费看| 午夜日韩欧美国产| 欧美乱妇无乱码| 亚洲精品久久成人aⅴ小说| 看黄色毛片网站| 禁无遮挡网站| 日韩精品免费视频一区二区三区| 亚洲成av人片在线播放无| 一本一本综合久久| 国产高清激情床上av| 亚洲一区二区三区不卡视频| 制服诱惑二区| 婷婷六月久久综合丁香| 韩国av一区二区三区四区| 国产欧美日韩一区二区精品| 亚洲精品久久成人aⅴ小说| 女人爽到高潮嗷嗷叫在线视频| 国产熟女午夜一区二区三区| 丰满的人妻完整版| 日韩国内少妇激情av| 热99re8久久精品国产| 深夜精品福利| 国语自产精品视频在线第100页|