• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tuning magneto–dielectric properties of Co2Z ferrites via Gd doping for high-frequency applications

    2023-10-11 07:56:22JianWu武劍BingLu盧冰YingZhang張穎YixinChen陳一鑫KaiSun孫凱DamingChen陳大明QiangLi李強(qiáng)YingliLiu劉穎力andJieLi李頡
    Chinese Physics B 2023年9期
    關(guān)鍵詞:張穎大明

    Jian Wu(武劍), Bing Lu(盧冰), Ying Zhang(張穎), Yixin Chen(陳一鑫),Kai Sun(孫凱), Daming Chen(陳大明), Qiang Li(李強(qiáng)), Yingli Liu(劉穎力), and Jie Li(李頡),?

    1State Key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 610054,China

    2School of Materials Science and Engineering,Hainan University,Haikou 570228,China

    3School of Instrument and Electronics,North University of China,Taiyuan 030000,China

    Keywords: Co2Z ferrite,magneto–dielectric properties,Gd doping,high-frequency applications

    1.Introduction

    With the development of communication systems,miniaturization, integration, multi-function, and high-frequency characteristics of electric equipment are becoming more and more important.These requirements have strengthened the research efforts to develop new electronic materials.[1]Hence,the main goals of the research on electronic materials include achieving high-frequency functionality, high performance,and low-temperature sintering process, especially for the requirements of 5G communication and intelligent electronics.Miniaturized antennas and high-frequency filters are important electronic devices for electronic products and systems.[2–4]The materials that make up the filters need to possess excellent performances,including high magnetic permeability,low magnetic loss, and high-frequency function.[5]For miniaturized antennas, the miniaturization factor (N= (μ·ε)1/2) is derived from the following relationship:[6]whereLpis the length of radiating patch,μandεare the magnetic permeability and dielectric permittivity of substrate material,respectively,cis the speed of light in free space,andfris the cut-off frequency.Hence, increasing the value ofμ,ε,andfris the key to reducing the overall size of the antenna.Thus, the utilization of materials with such performances as multilayer filters and antenna substrates should be investigated in more depth.

    The Ba3Co2Fe24O41, often denoted as Co2Z, is a ferrite material that has a magnetic easy plane perpendicular to thecaxis,where the magnetic moments can freely rotate.[7]Hence,this material can possess high magnetization, permeability,permittivity, and cut-off frequency.Singhet al.reported the magnetic properties of Co2Z ferrites doped with SiO2and Bi2O3in a frequency range from 1 Hz to 1 MHz.[8]Tranet al.doped Co2Z ferrites with La ions to enhance their microwave absorption and found that La doping endows the ferrites with static magnetic properties and electromagnetic features in a frequency range of 2 GHz–18 GHz.[9]In recent years, many metal ions have been selected for doping Co2Z ferrite materials to adjust their microstructure and magnetic properties,such as Zn2+, La3+, Mg2+, and Cu2+ions.[10–13]Furthermore, in many studies, ferrite was doped with Ba3+ions, thereby affecting its magnetic properties to a certain extent because Ba3+ions are non-magnetic.The magnetic properties of Co2Z materials predominantly originate from total magnetic moment of ferrite and superexchange interaction between magnetic ions.Hence, in the present work, we select rare-earth Gd3+ions to replace Fe3+ions and thus adjust magnetic and dielectric properties of resulting ferrites.The magnetism and magnetic properties of obtained ferrites are also discussed in detail.

    2.Experimental details

    Ba3Co2Fe24-xGdxO41ferrite materials (x= 0.00, 0.05,0.10,0.15,and 0.20)were prepared via solid-state reaction by using analytical reagent (AR grade,≥99.5%, Aladdin Co.)BaCO3, Co2O3, Fe2O3, and Gd2O3chemicals as raw materials.These chemicals were combined via ball-milling stoichiometrically.They were mixed with deionized water for 16 h.After being dried at 80°C and a heating rate of 2°C/min,these mixtures were pre-sintered at 1200°C for 4 h.Then,2.5-wt%Bi2O3was added and mixed with powders using planetary mill for 12 h.The dried powers were granulated using polyvinyl alcohol (PVA) adhesive and then pressed into 2–3-mm-thick plates and columnar samples.Finally,the materials were sintered at 925°C in air for 4 h.

    The phase constitution of the ferrite was identified via xray diffraction(XRD,DX-2700,Haoyuan Co.) using Cu-Kαradiation.The fractured cross sections of the samples were observed via scanning electron microscopy (SEM, JEOL, JSM-6490).Their bulk densities were measured by using an auto density meter (GF-300D, A & D Co.).Their initial magnetization curve and magnetic hysteresis loops were measured by using a vibrating sample magnetometer (VSM, MODEL,BHL-525) in a direct-current (DC) magnetic field ranging from-10 kOe to+10 kOe(1 Oe=79.5775 A·m-1).Complex magnetic permeability and dielectric permittivity of each sample were measured by using an impedance analyzer(E4991B,Agilent).All the measurements were performed at room temperature.

    3.Results and discussion

    Figure 1 shows the XRD patterns of materials with different quantities of Gd3+ions.Firstly,as shown by the XRD patterns,all samples exhibit a single hexagonal phase,and no other phases are observed.The crystal structure of Z-type hexagonal ferrite is complex and belongs toP63/mmcspace group.[14]The XRD patterns in a range of 28°–32°show that the diffraction peaks shift toward a lower angle for the case of Gd doping,indicating that the lattice constant of the doped material is higher than that of the undoped one.The ionic radius of Gd3+is 0.94 ?A,which is greater than that of Fe3+ion(0.64 ?A).Hence,when a small quantity of Gd3+ions are incorporated,they enter into the crystal lattice and occupy the lattice sites, replacing Fe3+ions.As Gd3+ion content increases tox=0.20,the XRD peaks shift toward higher angles,which illustrates that a large number of incorporated Gd3+ions cause lattice distortion.Hence,the XRD results show that Gd3+ions enter into the lattice cells, and no other phases appear, while Gd doping increases the lattice content and causes lattice to be distorted.Additionally,the materials are prepared at low temperature with 2.5-wt%Bi2O3sintering aids.No Bi2O3phase can be seen in the XRD patterns,which shows that Bi2O3sintering aids provide the energy of chemical reaction, and part of Bi2O3is evaporated.

    Fig.1.XRD patterns of materials with different quantities of Gd3+ ions.

    Fig.2.SEM images and bulk density of materials with different quantities of Gd3+ ions.

    The SEM images of materials are shown in Fig.2.These images reveal the presence of hexagonal grains with a plateletlike shape.As Gd3+ion content increases, the grain changes from regular shape into irregular shape.This change is due to the different ionic radii and characteristics of Gd3+and Fe3+ions.The substitution of Gd3+ions for Fe3+ions causes lattice to be distorted, resulting in a change in grain size and shape.The change in grain shape and chemical composition leads to different bulk densities,as shown in Fig.2.With the quantity of Gd3+ions increasing, the bulk density of the investigated ferrite first increases from 4.83 g/cm3(x=0.00)to 5.03 g/cm3(x=0.10) and then decreases to 4.84 g/cm3(x=0.20).The increase in bulk density is predominantly attributed to two factors: (i) the atomic mass of Gd3+ion is greater than that of Fe3+ion, and (ii) there are less pores between grain boundaries whenx=0.10.Whenx=0.15 and 0.20, the decrease in bulk density is mainly due to irregular grain shape and the presence of more pores.Additionally,the pores between grain boundaries hinder domain wall from moving, thereby affecting the magnetic properties.

    Grain size distributions of materials with different quantities of Gd3+ions are determined from SEM images and the results are shown in Fig.3.With the quantity of Gd3+ions increasing, the average grain size of materials increases from~2.2 μm (x= 0.00) to~3.5 μm (x= 0.20).This phenomenon can be attributed to the effect of Gd3+ions on the ferrite.Firstly,Gd3+has greater ionic radius than Fe3+,which leads to larger grains.Secondly, more Gd3+ions exist at the grain boundaries, which makes the shape of grains irregular and larger.In addition, Bi2O3sintering aids can provide the energy required for the chemical synthesis of Co2Z ferrites.Bi2O3produces a thick liquid phase,which suppresses graingrowing and widens grain boundary,thereby generating a surface tension force in liquid phase and directly affecting grain size and pores.[15]

    Figure 4 shows the magnetic hysteresis loops of materials with different quantities of Gd3+ions,and the inset shows a magnified part of the loops in the magnetic field range ofH= 0 kOe–10 kOe.It can be seen that all samples show relatively smooth hysteresis loops and typical soft magnetic performances.With the quantity of Gd3+ions increasing,saturation magnetization(Ms)of Gd-doped Co2Z ferrite first increases from 43.66 emu/g(x=0.00)to 44.86 emu/g(x=0.15)and then decreases to 38.57 emu/g (x=0.20).In the basic structure of Co2Z ferrite,Fe3+ions are distributed on ten different interstitial sublattices, which consist of the following six octahedral (FeO6) sites: 12kVI, 4fVI, 4eVI, 4fVI*, 12kVI*,and 2aVI,three tetrahedral(FeO4)sites(4eIV,4fIV,and 4fIV*),and one pentahedral(FeO5)site(2bV)for transition metal ions(including Fe and other metal ions).The main origin of the saturation magnetization is related to the total magnetic moment of the ferrite and the Fe3+–O2–Fe3+superexchange interaction in the hyper field at 12k and 4f sites.[16]The Gd is a rare-earth element and also a special ferromagnetic element.Its magnetic moment is contributed by the non-filled 4f7electronic shell.The magnetic moment of the Gd3+ion is 7.94μB,which is larger than that of the Fe3+ion (4.9μB).When the Gd3+ions replace the Fe3+ions,the Gd3+ions preferentially occupy the 2aVIor 4fVIoctahedral sites,which results in an increase in the total magnetic moment of the ferrite.[17]Hence,as the Gd3+ion content increases from 0.00 to 0.15,the saturation magnetization increases.Secondly,Wanget al.reported that the saturation magnetization is related to the density and average grain size of the ferrite.[18]The result is in good agreement with the above-mentioned trend of density.As a result,the increase in density and average grain size are possibly responsible for the increase inMs.However, as the quantity of the Gd3+ions increases further, a part of Gd3+ions occupy 4fIV* tetrahedral sites,resulting in a decrease in the total magnetic moment of the ferrite.The change in the bulk density and the presence of pores present two further reasons for theMsvariation.On the other hand, Bi2O3sintering aid is nonmagnetic, so the addition weakened the overall magnetic properties of the Co2Z ferrite.

    Fig.3.Grain size distributions of materials with different quantities of Gd3+ ions.

    Fig.4.Magnetic hysteresis loops of materials with different quantities of Gd3+ ions.

    For ferrite magnetic materials, the initial magnetization of Co2Z ferrite is related to the magnetocrystalline constantK1.The initial magnetization curves of materials with different quantities of Gd3+sions are shown in Fig.5(a).In the initial magnetization curves, the area surrounded by theM–Hcurve and theMaxis (as shown in the inset of Fig.5(a))represents the magnetocrystalline anisotropy energy.K1can be expressed as the magnetocrystalline anisotropy energy in a unit volume,and obtained from the following equation:

    whereVis the crystal cell volume.The value ofK1is calculated based on the results in Fig.5(b).With Gd3+ions doped,theK1value is~6.0×104J/m3.Meanwhile,the different values of coercivity(Hc)of samples are obtained from Fig.5(b).The Gd3+ion doping clearly affects the coercivity of Co2Z ferrite,and the value ofHcfirst increases from 55.2 Oe(x=0.00)to 139.7 Oe(x=0.10)and then decreases to 67.4 Oe(x=0.20).It is found that the coercivity of Z-type barium ferrite is mainly affected by anisotropic field and grain size.[19]Among the possible lattice sites that Gd3+ions can occupy,the 2dvfivefold site has the greatest effect onHc.Therefore,Gd3+ion doping changes the grain size and causesHcto increase.Incorporated Gd3+ions mainly occupy 2aVI,4fVI,and 4fIV* sites, but these occupancies influence lattice position of 2dvsite, leading the lattice to be distorted and affecting the coercivity of material.

    For barium ferrite, coercivity is closed related to magnetocrystalline anisotropy.It is found that according to Heisenberg model, the magnetic ion whose orbital is not totally frozen contributes significantly to the magnetocrystalline anisotropy.[20]The magnetic moment of Gd3+ion is larger than that of Fe3+ion.Hence,replacing Fe3+ions with Gd3+ions leads the magnetic properties of the sample to increase slightly but does not cause the number of magnetic ions to increase.Therefore, Gd doping does not cause magnetocrystalline anisotropy constant to change significantly.In addition,it has been reported that the anisotropy of hexaferrite is primarily contributed by Fe3+ions at 2bVsites and Co2+ions.[21]In the above discussion,Gd3+ions mainly occupy 2aVI,4fVI,and 4fIV* sites,which is another reason for the unusual change in magnetocrystalline anisotropy constant.Whenx=0.15 and 0.20,the decrease inK1is due to the presence of small amount of Gd3+ions at grain boundaries and lattice distortion.The contribution of magnetic ions decreases,and the magnetocrystalline anisotropy constant is reduced.

    Fig.5.(a) Initial magnetization curves of materials with different quantities of Gd3+ions,with inset showing integration image and(b)variations of coercivity and K1 changes with quantities of Gd3+ ions.

    Figure 6 shows the spectra of the real part of magnetic permeability(μ′)and dielectric permittivity(ε′)of Gd-doped Co2Z ferrite in a frequency range from 10 MHz to 1 GHz.For all quantities of Gd3+ions under investigation,the value ofμ′first increases and then decreases before the cut-off frequency.The maximum value ofμ′(~12.2)is found atx=0.15,and this trend is the same as that observed for the saturation magnetization.According to the Globus model,the change in magnetic permeability can be explained according to the following equation:

    whereDis the average grain size.Therefore, the change inMsleads the permeability to change.Based on the above discussion, theMsvalue is mainly determined by metal ion occupancy, and theK1value is dictated by the metal ion properties of 2bVsite and 12k site.In addition, the permeability of ferrite is also affected by grain size.As shown in Fig.3,the grain size increases gradually with the quantity of Gd3+ions increasing fromx=0.00 tox=0.15, which contributes to the enhancement of magnetic permeability.The grain is the largest atx=0.20, but shapes of grains are uneven, and several pores can be observed,which negatively affects magnetic permeability.

    Figure 6(b) shows the variations of real part of dielectric permittivity (ε′) with frequency of samples.The values ofε′are almost the same for all samples with a pronounced fluctuation between 13.66 and 17.61 in the frequency range of 10 MHz–1 GHz.The Co2Z ferrite withx=0.15 has the highest value ofε′(17.61) in all investigated samples.The higher value ofε′can be explained by Koop’s model,according to which dielectric structure consists of conduction grains separated by resistive grain boundaries.[22]The surface charge polarization at the interface between grains and grain boundaries is responsible for the higherε′value.The good dielectric properties of Co2Z ferrite are due to the hexagonal platelet-like shape particles and the fact that the ion substitution prevents charge from moving.It can be seen that Gd-doped samples exhibit larger grains with more pronounced platelet shape than undoped sample,which provides higher surface area and generates surface polarization.Hence, the value ofε′increases with the quantity of Gd3+ions increasing from 0.00 to 0.15.Whenx=0.20, grains of different shapes and pores provide more hindrance to domain wall motion and grain conduction,which leads to sharp reduction in dielectric constant.

    Figure 7 shows the variations of imaginary part of magnetic permeability and imaginary part of dielectric permittivity of materials with the quantity of Gd3+ions.As a result, the magnetic loss tangent (tanδμ) and the dielectric loss tangent(tanδε) are obtained from the equation: tanδμ=μ′′/μ′and tanδε=ε′′/ε′.The values of magnetic loss tangent (tanδμ)and dielectric loss tangent (tanδε) of the materials at different frequencies are shown in Table 1.These loss tangents are defined as tanδμ=μ′′/μ′and tanδε=ε′′/ε′,which indicate magnetic and electric energy loss ability,respectively.For ferrite materials,tanδμis contributed by three main components:hysteresis loss tangent tanδh,eddy current loss tangent tanδe,and residual loss tangent tanδr.[23]The tanδhis the predominant loss at low frequency(in a range of 10 Hz–1 MHz).[10]Hence, the change in magnetic loss at high frequency is attributed to tanδeand tanδr, while tanδeis inversely proportional to the DC resistivity, and tanδris proportional to the grain size of the ferrite.Smaller grains can provide more grain boundaries and enhance the DC resistivity.The Gd doping increases the grain size(as shown in Fig.3),which results in an increase of the resistivity, thereby leading the magnetic loss to increase slightly.Additionally, the change of the resistivity not only increases tanδebut also influences the dielectric loss.The concentration of the Fe3+ions at lattice sites(2aVI,4fVI, and 4fIV* sites)decreases gradually with the Gd3+content increasing.Therefore,the probability of hopping between Fe3+and Fe2+ions is improved, causing the polarization to increase.[24,25]Furthermore, Bi2O3sintering aids bring the thicker grain boundary, affecting the loss.The uneven shape of grain and pore affects the magnetic loss and dielectric loss whenx=0.20.[26]Besides,the low real permeability and real permittivity are another factors influencing the magnetic and dielectric losses.

    Table 1.Values of magnetic loss tangent(tanδμ),and dielectric loss tangent(tanδε)at different frequencies.

    4.Conclusions

    The Z-type ferrite materials, specifically Gd-doped Ba3Co2Fe24-xGdxO41with 2.5-wt%Bi2O3sintering aids,are prepared, and their magnetodielectric properties are investigated.Gd doping does not change the phase of Co2Z ferrite but affects their grain size and shape, contributing to the magnetic and dielectric properties with Gd3+ion substitution.Whenx=0.15, the Ba3Co2Fe22.85Gd0.15O41material processes high saturation magnetization(Ms=44.86 emu/g),low magnetocrystalline anisotropy constant (K1= 5.88×103J/m3),high magnetic permeability(μ′=12.2)and dielectric permittivity (ε′=17.61), and low magnetic loss and dielectric loss in the frequency range from 10 MHz to 1 GHz.The results indicate that the prepared magnetodielectric materials have great potential applications in high-frequency antennas and filters.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2022YFB3504800),the National Natural Science Foundation of China (Grant Nos.61901142, 52003256, and 51902037), and the Natural Science Foundation of Shanxi Province, China (Grant No.201901D211259).

    猜你喜歡
    張穎大明
    張穎
    大江南北(2023年2期)2023-02-11 05:45:56
    張穎
    大江南北(2022年11期)2022-11-08 12:04:18
    張穎
    大江南北(2022年3期)2022-03-12 01:19:16
    因式分解的常見應(yīng)用
    到延安去
    最美的背影
    春天醒了
    北方音樂(2019年13期)2019-08-21 02:14:32
    《六字大明陀羅尼》考釋
    西夏學(xué)(2017年2期)2017-10-24 05:35:28
    On the Notion of Equivalence in Translation
    《十大明王》造像方法談
    雕塑(1999年1期)1999-06-28 05:01:06
    av播播在线观看一区| 国产国拍精品亚洲av在线观看| 亚洲精品亚洲一区二区| 性高湖久久久久久久久免费观看| 成年女人在线观看亚洲视频| 水蜜桃什么品种好| 亚洲欧美一区二区三区国产| 天堂俺去俺来也www色官网| 久久久久人妻精品一区果冻| 久久久久久久久久久久大奶| 免费人成在线观看视频色| av在线app专区| 国产毛片在线视频| 欧美精品一区二区免费开放| 狂野欧美激情性xxxx在线观看| 亚洲va在线va天堂va国产| 中文字幕亚洲精品专区| 国产成人午夜福利电影在线观看| 中国美白少妇内射xxxbb| 久久久久久久久久人人人人人人| 男女免费视频国产| 午夜激情久久久久久久| a 毛片基地| 观看免费一级毛片| 国产精品久久久久久久电影| 最近最新中文字幕免费大全7| 国产av国产精品国产| 麻豆乱淫一区二区| 熟女av电影| 国产成人精品久久久久久| 免费播放大片免费观看视频在线观看| 一区二区三区免费毛片| 国产高清三级在线| 欧美精品一区二区大全| 亚洲精品国产成人久久av| 中文乱码字字幕精品一区二区三区| 女的被弄到高潮叫床怎么办| 伊人久久国产一区二区| 中文在线观看免费www的网站| 国产色婷婷99| 国产午夜精品一二区理论片| 伦理电影大哥的女人| av福利片在线观看| 一区二区三区精品91| av一本久久久久| 国产美女午夜福利| 免费看不卡的av| 亚洲国产精品一区二区三区在线| 免费av中文字幕在线| 男人爽女人下面视频在线观看| 亚洲第一av免费看| 日韩av在线免费看完整版不卡| 国产亚洲午夜精品一区二区久久| 狂野欧美白嫩少妇大欣赏| 18+在线观看网站| 精品一区二区三卡| 91午夜精品亚洲一区二区三区| 精品久久久久久久久av| 99热这里只有是精品在线观看| 国产精品人妻久久久久久| 制服丝袜香蕉在线| 一边亲一边摸免费视频| 亚洲国产精品成人久久小说| 亚洲人成网站在线观看播放| 亚洲精品,欧美精品| av天堂久久9| 青春草国产在线视频| 97超碰精品成人国产| 欧美亚洲 丝袜 人妻 在线| 国产视频首页在线观看| 女的被弄到高潮叫床怎么办| 国产黄片美女视频| 欧美精品国产亚洲| 免费黄色在线免费观看| 伊人久久精品亚洲午夜| 久久久久精品久久久久真实原创| 丰满少妇做爰视频| 黄色欧美视频在线观看| 国产精品.久久久| 久久99蜜桃精品久久| 精品久久久久久电影网| 国产日韩一区二区三区精品不卡 | 亚洲av免费高清在线观看| 高清在线视频一区二区三区| 国产精品人妻久久久久久| 不卡视频在线观看欧美| 午夜免费观看性视频| 十八禁网站网址无遮挡 | 色哟哟·www| 伦理电影免费视频| 亚洲色图综合在线观看| 成人无遮挡网站| 国产淫片久久久久久久久| 中文字幕制服av| 亚洲国产精品国产精品| 国产淫语在线视频| 午夜福利,免费看| 国产黄片美女视频| 交换朋友夫妻互换小说| 亚洲天堂av无毛| 777米奇影视久久| 国产av国产精品国产| 午夜免费鲁丝| 国产老妇伦熟女老妇高清| 一本久久精品| 一区二区三区乱码不卡18| 国产精品99久久99久久久不卡 | 卡戴珊不雅视频在线播放| 午夜老司机福利剧场| 99热全是精品| 涩涩av久久男人的天堂| 成人午夜精彩视频在线观看| 欧美最新免费一区二区三区| 在线观看av片永久免费下载| 国产极品天堂在线| 免费久久久久久久精品成人欧美视频 | 丁香六月天网| 女性生殖器流出的白浆| 日本与韩国留学比较| 制服丝袜香蕉在线| 91午夜精品亚洲一区二区三区| 亚洲熟女精品中文字幕| 在线观看三级黄色| 色视频在线一区二区三区| 色婷婷久久久亚洲欧美| 国产一级毛片在线| av在线老鸭窝| 精品少妇黑人巨大在线播放| 岛国毛片在线播放| 两个人的视频大全免费| 午夜av观看不卡| 99热网站在线观看| 色视频在线一区二区三区| 下体分泌物呈黄色| 免费黄网站久久成人精品| 男女无遮挡免费网站观看| 男人舔奶头视频| 久久青草综合色| 久久久久久久久久久丰满| 久久人妻熟女aⅴ| 欧美国产精品一级二级三级 | 久久精品国产自在天天线| 丝袜在线中文字幕| 日韩,欧美,国产一区二区三区| 国产男女超爽视频在线观看| 欧美日韩精品成人综合77777| 国产精品人妻久久久影院| 18禁在线播放成人免费| 王馨瑶露胸无遮挡在线观看| 一本大道久久a久久精品| 下体分泌物呈黄色| 特大巨黑吊av在线直播| 亚洲,欧美,日韩| 婷婷色麻豆天堂久久| 91aial.com中文字幕在线观看| 免费播放大片免费观看视频在线观看| 国产成人免费观看mmmm| 亚洲精品久久午夜乱码| 99久国产av精品国产电影| 欧美丝袜亚洲另类| 国产精品蜜桃在线观看| 久久久精品免费免费高清| 人妻夜夜爽99麻豆av| 一级毛片 在线播放| 天堂8中文在线网| 国产精品一区www在线观看| 美女中出高潮动态图| 免费人妻精品一区二区三区视频| 久久国内精品自在自线图片| 内射极品少妇av片p| 亚洲av.av天堂| 狂野欧美激情性bbbbbb| 三级经典国产精品| 成人影院久久| 亚洲av成人精品一区久久| 亚洲一区二区三区欧美精品| 亚洲婷婷狠狠爱综合网| 97超碰精品成人国产| 少妇人妻 视频| 国产淫片久久久久久久久| 内射极品少妇av片p| 99久久中文字幕三级久久日本| 最近2019中文字幕mv第一页| 人体艺术视频欧美日本| 久久综合国产亚洲精品| 精品久久久噜噜| 街头女战士在线观看网站| 啦啦啦视频在线资源免费观看| 夜夜爽夜夜爽视频| 搡女人真爽免费视频火全软件| 下体分泌物呈黄色| 国产一区二区三区综合在线观看 | 婷婷色麻豆天堂久久| 大片免费播放器 马上看| 久久精品熟女亚洲av麻豆精品| 欧美精品一区二区免费开放| 中文字幕精品免费在线观看视频 | 日韩精品免费视频一区二区三区 | 国产精品一区二区在线观看99| 精品久久久久久久久av| 新久久久久国产一级毛片| 天堂中文最新版在线下载| av福利片在线| 男女免费视频国产| 国产精品国产三级专区第一集| 亚洲精品,欧美精品| 亚洲欧洲日产国产| 一本久久精品| 亚洲丝袜综合中文字幕| av网站免费在线观看视频| 三级经典国产精品| 亚洲精品亚洲一区二区| 亚洲精品国产成人久久av| 在现免费观看毛片| 极品教师在线视频| 成人美女网站在线观看视频| 人妻一区二区av| 久久久久久久久久成人| 国产精品国产三级专区第一集| 日本vs欧美在线观看视频 | 丝袜喷水一区| 色5月婷婷丁香| 日本午夜av视频| 亚洲精品日本国产第一区| 久久久久国产网址| 欧美另类一区| av黄色大香蕉| 国产欧美日韩综合在线一区二区 | 熟女电影av网| 中文字幕av电影在线播放| 亚洲丝袜综合中文字幕| 亚洲精品色激情综合| 美女视频免费永久观看网站| 国产成人精品无人区| 成人特级av手机在线观看| 国产成人精品无人区| 人人妻人人澡人人爽人人夜夜| 中文欧美无线码| 免费久久久久久久精品成人欧美视频 | 嫩草影院入口| 亚洲人成网站在线播| 国产伦在线观看视频一区| 亚洲av中文av极速乱| 伦理电影免费视频| 男人狂女人下面高潮的视频| 欧美老熟妇乱子伦牲交| 欧美亚洲 丝袜 人妻 在线| 日韩成人av中文字幕在线观看| 久久久久久久国产电影| 国产成人精品福利久久| 免费观看a级毛片全部| 亚洲精品久久午夜乱码| 久久久久久久久久久丰满| 欧美xxⅹ黑人| 久久久久久久亚洲中文字幕| 亚洲精华国产精华液的使用体验| 国产欧美日韩综合在线一区二区 | 日日啪夜夜爽| 色94色欧美一区二区| 国产国拍精品亚洲av在线观看| 91在线精品国自产拍蜜月| 国产爽快片一区二区三区| 色网站视频免费| 九色成人免费人妻av| 天堂俺去俺来也www色官网| 波野结衣二区三区在线| 欧美精品国产亚洲| 久久99热6这里只有精品| 成人亚洲精品一区在线观看| www.色视频.com| 99久国产av精品国产电影| 少妇被粗大的猛进出69影院 | av免费在线看不卡| 少妇 在线观看| 尾随美女入室| 国产熟女午夜一区二区三区 | 青青草视频在线视频观看| 久久久久网色| 国产日韩欧美在线精品| 高清黄色对白视频在线免费看 | 老女人水多毛片| 日本-黄色视频高清免费观看| 欧美日韩视频高清一区二区三区二| 国产色婷婷99| 色吧在线观看| 九九爱精品视频在线观看| 汤姆久久久久久久影院中文字幕| 黄色视频在线播放观看不卡| 午夜福利在线观看免费完整高清在| 亚洲色图综合在线观看| 免费看不卡的av| 一本色道久久久久久精品综合| 18禁动态无遮挡网站| 精品人妻偷拍中文字幕| 国产精品熟女久久久久浪| 久久久国产精品麻豆| 成人漫画全彩无遮挡| 黄色欧美视频在线观看| 色吧在线观看| 新久久久久国产一级毛片| 婷婷色综合大香蕉| 丰满饥渴人妻一区二区三| 欧美精品人与动牲交sv欧美| 一区二区三区乱码不卡18| 性高湖久久久久久久久免费观看| 少妇猛男粗大的猛烈进出视频| 日日摸夜夜添夜夜添av毛片| 久久久久人妻精品一区果冻| 熟女av电影| 国产精品欧美亚洲77777| 精品久久久噜噜| 十分钟在线观看高清视频www | 中文欧美无线码| 免费黄色在线免费观看| 日韩一本色道免费dvd| av不卡在线播放| 免费av不卡在线播放| 日本爱情动作片www.在线观看| 久久亚洲国产成人精品v| 少妇的逼好多水| 观看免费一级毛片| av又黄又爽大尺度在线免费看| 国产乱人偷精品视频| 国产欧美日韩综合在线一区二区 | 亚洲精品视频女| 男人爽女人下面视频在线观看| 中文字幕人妻丝袜制服| 热99国产精品久久久久久7| 老司机影院毛片| av卡一久久| 大香蕉久久网| 亚洲婷婷狠狠爱综合网| 欧美区成人在线视频| 国产成人a∨麻豆精品| 国产在线视频一区二区| 黄色毛片三级朝国网站 | 亚洲四区av| 精品国产一区二区三区久久久樱花| 高清不卡的av网站| 看十八女毛片水多多多| 大片免费播放器 马上看| 精品酒店卫生间| 久久青草综合色| 不卡视频在线观看欧美| 免费观看无遮挡的男女| h日本视频在线播放| 卡戴珊不雅视频在线播放| 欧美激情极品国产一区二区三区 | 久久午夜综合久久蜜桃| 国产成人一区二区在线| 最近中文字幕高清免费大全6| 色5月婷婷丁香| 欧美性感艳星| 99国产精品免费福利视频| 人人澡人人妻人| 欧美老熟妇乱子伦牲交| 黄色怎么调成土黄色| 欧美人与善性xxx| 少妇裸体淫交视频免费看高清| 人人妻人人爽人人添夜夜欢视频 | 80岁老熟妇乱子伦牲交| 日韩av免费高清视频| 在线观看一区二区三区激情| 九色成人免费人妻av| 日韩精品免费视频一区二区三区 | 亚洲av中文av极速乱| 少妇 在线观看| 婷婷色麻豆天堂久久| 免费在线观看成人毛片| 男女边摸边吃奶| 秋霞在线观看毛片| 国产 一区精品| 久久人人爽人人片av| 免费观看av网站的网址| 综合色丁香网| 亚洲欧洲精品一区二区精品久久久 | 亚洲欧美成人精品一区二区| 日韩伦理黄色片| 99热6这里只有精品| 黄色配什么色好看| 亚洲情色 制服丝袜| 男人添女人高潮全过程视频| 爱豆传媒免费全集在线观看| 亚洲人与动物交配视频| 免费观看av网站的网址| 亚洲国产最新在线播放| 精品视频人人做人人爽| 亚洲国产欧美在线一区| 男人狂女人下面高潮的视频| 国产精品偷伦视频观看了| 欧美日韩av久久| av福利片在线观看| 亚洲国产精品一区三区| 日韩欧美一区视频在线观看 | 精品人妻熟女av久视频| 人人妻人人澡人人爽人人夜夜| 亚洲情色 制服丝袜| 男女无遮挡免费网站观看| 搡女人真爽免费视频火全软件| 免费看av在线观看网站| 亚洲av中文av极速乱| 国产亚洲精品久久久com| av天堂中文字幕网| av卡一久久| 国产在线免费精品| 免费大片18禁| 国产在线男女| 国产精品国产三级国产av玫瑰| 精品人妻一区二区三区麻豆| 3wmmmm亚洲av在线观看| 亚洲国产欧美日韩在线播放 | 少妇 在线观看| 成人毛片a级毛片在线播放| 国产在视频线精品| 岛国毛片在线播放| 久久 成人 亚洲| 亚洲在久久综合| 在线观看国产h片| 午夜视频国产福利| 一级片'在线观看视频| tube8黄色片| 日日撸夜夜添| 久久精品国产a三级三级三级| 一区二区av电影网| 国产精品蜜桃在线观看| 日韩一本色道免费dvd| 老司机影院成人| 秋霞伦理黄片| 精品人妻偷拍中文字幕| 少妇猛男粗大的猛烈进出视频| 欧美老熟妇乱子伦牲交| 多毛熟女@视频| 男人添女人高潮全过程视频| 亚洲欧洲国产日韩| 国产精品一二三区在线看| 亚洲精品乱码久久久久久按摩| a 毛片基地| 国内少妇人妻偷人精品xxx网站| 一本久久精品| 99视频精品全部免费 在线| 亚洲国产成人一精品久久久| 日韩欧美 国产精品| 久久国内精品自在自线图片| h日本视频在线播放| 最近中文字幕高清免费大全6| 人人妻人人爽人人添夜夜欢视频 | 日日摸夜夜添夜夜爱| 日韩成人伦理影院| 777米奇影视久久| 伊人久久国产一区二区| 欧美日韩精品成人综合77777| 少妇人妻精品综合一区二区| 你懂的网址亚洲精品在线观看| 一级毛片我不卡| 久久久国产精品麻豆| 国精品久久久久久国模美| 亚洲,欧美,日韩| 久久久久久久精品精品| 欧美变态另类bdsm刘玥| 久久免费观看电影| 日韩欧美 国产精品| 欧美高清成人免费视频www| 成人毛片60女人毛片免费| 精品一区在线观看国产| 亚洲人与动物交配视频| 日韩成人伦理影院| 少妇人妻一区二区三区视频| 免费大片18禁| 在线观看一区二区三区激情| 久久热精品热| 观看美女的网站| 欧美3d第一页| 国产精品一区二区三区四区免费观看| 99热网站在线观看| 热re99久久精品国产66热6| 欧美精品一区二区大全| 综合色丁香网| 丝袜喷水一区| 免费播放大片免费观看视频在线观看| 2021少妇久久久久久久久久久| 人妻制服诱惑在线中文字幕| 国国产精品蜜臀av免费| 在线亚洲精品国产二区图片欧美 | 新久久久久国产一级毛片| 免费av不卡在线播放| 久久综合国产亚洲精品| 少妇被粗大的猛进出69影院 | 亚洲精品色激情综合| 秋霞在线观看毛片| 一区二区三区精品91| 秋霞在线观看毛片| 国产 一区精品| 亚洲图色成人| 亚洲精品久久久久久婷婷小说| 91在线精品国自产拍蜜月| 伊人久久精品亚洲午夜| 亚洲欧洲精品一区二区精品久久久 | 国产精品秋霞免费鲁丝片| av国产久精品久网站免费入址| 亚洲av二区三区四区| 亚洲欧美日韩卡通动漫| 亚洲av二区三区四区| 国产高清有码在线观看视频| 国产一区二区三区综合在线观看 | 最近中文字幕2019免费版| 一级毛片 在线播放| 一边亲一边摸免费视频| 亚洲美女搞黄在线观看| 亚洲美女黄色视频免费看| 99久久精品国产国产毛片| 人妻制服诱惑在线中文字幕| 自拍欧美九色日韩亚洲蝌蚪91 | 在线观看av片永久免费下载| 亚洲国产精品成人久久小说| 伊人久久精品亚洲午夜| 午夜福利视频精品| 久久久久久久久久成人| 中文字幕av电影在线播放| 亚洲久久久国产精品| 免费观看无遮挡的男女| 女性生殖器流出的白浆| 一区二区三区四区激情视频| 国产精品久久久久久av不卡| 亚洲不卡免费看| 国产白丝娇喘喷水9色精品| 久久ye,这里只有精品| 久久久久久久久久久丰满| 亚洲美女黄色视频免费看| 亚洲精品日本国产第一区| 日本黄大片高清| 久久青草综合色| 在线播放无遮挡| 爱豆传媒免费全集在线观看| 久久久久久人妻| 日韩伦理黄色片| 国产精品一二三区在线看| 男女啪啪激烈高潮av片| 少妇 在线观看| 亚洲av中文av极速乱| 水蜜桃什么品种好| 日韩欧美 国产精品| 下体分泌物呈黄色| 美女大奶头黄色视频| 国产精品一区www在线观看| 亚洲欧美日韩东京热| 少妇裸体淫交视频免费看高清| 成人午夜精彩视频在线观看| 九九久久精品国产亚洲av麻豆| 在线观看www视频免费| 久久99一区二区三区| 少妇猛男粗大的猛烈进出视频| 国产在线免费精品| 人人妻人人添人人爽欧美一区卜| 欧美老熟妇乱子伦牲交| 黑人高潮一二区| 欧美3d第一页| 亚洲第一区二区三区不卡| 最后的刺客免费高清国语| 亚洲精品一二三| 亚洲欧洲精品一区二区精品久久久 | 国产老妇伦熟女老妇高清| 人妻制服诱惑在线中文字幕| 色视频在线一区二区三区| 人人妻人人看人人澡| 亚洲av男天堂| 国产亚洲av片在线观看秒播厂| 国产一区二区在线观看av| 亚洲美女搞黄在线观看| 久久99精品国语久久久| 久久精品国产亚洲网站| 国产成人精品无人区| 精品久久久精品久久久| 国产有黄有色有爽视频| 亚洲av免费高清在线观看| 国产成人精品无人区| 国产中年淑女户外野战色| 中文天堂在线官网| 妹子高潮喷水视频| 观看av在线不卡| 在线观看人妻少妇| 成人特级av手机在线观看| 欧美激情国产日韩精品一区| av免费在线看不卡| 丝瓜视频免费看黄片| 亚洲伊人久久精品综合| videos熟女内射| 欧美精品国产亚洲| 久久久精品免费免费高清| 亚洲精品国产色婷婷电影| 国产欧美亚洲国产| 久久韩国三级中文字幕| 国产男女超爽视频在线观看| 国产av国产精品国产| 看十八女毛片水多多多| 午夜福利视频精品| 天堂中文最新版在线下载| 99热6这里只有精品| 国产男女超爽视频在线观看| 美女cb高潮喷水在线观看| 22中文网久久字幕| 亚洲av综合色区一区| 日本av免费视频播放| 晚上一个人看的免费电影| 亚洲欧洲国产日韩| 久久精品国产鲁丝片午夜精品| 99热网站在线观看| 乱人伦中国视频| 国产国拍精品亚洲av在线观看| 80岁老熟妇乱子伦牲交| 激情五月婷婷亚洲| kizo精华| 视频中文字幕在线观看| 亚洲在久久综合| 中文精品一卡2卡3卡4更新| 久久这里有精品视频免费|