• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SMEFT is falsifiable through multi-Higgs measurements (even in the absence of new light particles)

    2023-10-11 05:30:38RaquelmezAmbrosioFelipeLlanesEstradaAlexandreSalasBernrdezandJuanSanzCillero
    Communications in Theoretical Physics 2023年9期

    Raquel Gómez-Ambrosio,Felipe J Llanes-Estrada,Alexandre Salas-Bernárdez,* and Juan J Sanz-Cillero

    1 Dipartimento di Fisica,Univ.di Torino,and INFN,Sezione di Torino,Via P.Giuria 1,Torino,10125,Italy

    2 Univ.Complutense de Madrid,Dept.Fisica Teorica and IPARCOS,Plaza de las Ciencias 1,Madrid,28040,Spain

    Abstract By embedding the Standard Model effective field theory (SMEFT) in the more general Higgs effective field theory (HEFT),we expose correlations among the coefficients of the latter that,if found to be violated in future data,would lead to the experimental falsification of the SMEFT framework.These are derived from the necessary symmetric point of HEFT and analyticity of the SMEFT Lagrangian that allows the construction of the SMEFT expansion,as laid out by other groups,and properties at that point of the Higgs-flare function F(h) coupling Goldstone and Higgs bosons,of the Higgs potential V(h) and of the Higgs-top quark coupling function G(h).

    Keywords: SMEFT,HEFT,EFT,effective field theories,electroweak,LHC,quantum field theories

    1.Introduction

    Discovering new particles would entail the Standard Model(SM)being falsified in Popper’s sense[1]and force us to extend it.Absent such discovery,the SM is still falsifiable upon finding new forces among the known particles.Because the SM has a characteristic energy scale of 100 GeV (the mass of the Higgs boson at mh=125 GeV,as well as the vacuum constant v=246 GeV exemplify it),but no new particles below 1000 GeV have been found,there is a scale separation that begs the use of effective field theory.

    The popular Standard Model effective field theory(SMEFT) extension of the SM electroweak symmetry breaking sector (EWSBS) adds operators classified by their mass dimension,

    It is easy to ask oneself how the whole framework of SMEFT can be tested.Effective theories include all the possible interactions that are compatible with known particle content and the symmetries believed to hold.Would it not be that any separation from the SM could be recast in SMEFT form? In that case,absent some new light particle,any phenomena could be described by adding an operator with a parameter to the SM.This is not so,as we will detail.

    The particle content of the electroweak symmetry breaking sector is packaged in a Higgs doublet field in the SM as in the SMEFT

    where the Cartesian coordinates φacan be rearranged to thepolar decomposition in terms of the ωiGoldstone bosons(which set the orientation of H through the unitary matrix U(ω) and the radial coordinate hSMEFT(with ∣H∣=(v+hSMEFT).

    Table 1.Correlations between the ai HEFT coefficients necessary for the SMEFT to exist,at order Λ-2(first and second columns,with the numbers in the second consistent with 95% confidence level experimental bounds a1/2 ∈[0.97,1.09] [21]).The right column provides the corresponding numerical values at the next order [5].They are quoted in terms of Δa1:=a1-2 and Δa2:=a2-1,so that all objects in the table vanish in the SM,with all the equalities becoming 0=0.

    An additional non-linear redefinition of hSMEFTallows us to rearrange the SMEFT Lagrangian in the form of a more general theory,the Higgs effective field theory (HEFT):

    Our current focus therein is the flare function [3,4]:

    which amounts to a radial‘scale’(think of a(t)in a Friedmann-Robertson-Walker cosmology)in the field space of the(h,ωi) electroweak bosons (with ωianalogous to the spatial coordinates).What we call attention here is that the Taylorseries coefficients ofF as defined in equation(4)must satisfy experimental correlations or constraints as given in table 1 similar to the ones in[5]if the SMEFT is a valid description.3Our advance since our previous publication in [5] consists of the new correlations among the HEFT t quark-Yukawa sector coefficients,see equation(19)and the improvements to the correlations among the Higgs selfinteraction presented in equation (18) due to the cH□operator.The results presented here have been reported to the Quark Confinement and the Hadron Spectrum conference resulting in a preliminary publication [6].It is clear that an experimental program aimed at these correlations via the key process to accessF,ωω →nh as sketched in figure 1,mh →nh to access V(hHEFT) (the Higgs potential),ortˉt→nhto access the tree-level function modifying the Yukawa couplings,see equation (7),G(h),can test the validity of the SMEFT itself and not only its parameters.As an example,the SMEFT correlation among a1and a2is shown in figure 2.

    Fig.1.The ωω →nh processes can be the key to disentangling the nature of the EWSBS.They give direct access to the ai coefficients of the flare functionF and hence to their correlations,as listed in table 1.Current experimental constraints do not really extend beyond n=2 and it will be challenging to examine higher coefficients.Better reconstruction techniques at the high-luminosity LHC run but especially a future high-energy collider (either hadronic or muonic)will hopefully improve the situation.

    Fig.2.The correlation a2=2a1-3 that the SMEFT predicts at order 1/Λ2 is plotted against the current 95% confidence intervals for these two HEFT parameters [21,22].The dashed blue lines correspond to the direct experimental bounds prior to this work,while the solid green lines represent the bounds in table 1 coming from our 1/Λ2 correlation analysis.

    There are several reasons why the experimental tests of those correlations need large energies and statistics,at the limit of what is possible today at the Large Hadron Collider(LHC) and beyond.First,theF function multiplies terms with derivatives of the Goldstone bosons ?μωi→qμωithat yield couplings proportional to their four momenta and become more relevant at higher energies.Second,the equivalence theorem [7,8] tells us that the scattering of longitudinal gauge bosons is related to scattering of Goldstone bosons(ωi~,ZL): the EW gauging of the HEFT Lagrangian(3) leads to the WW →nh interaction

    which for longitudinal gauge bosons clearly dominates over the non-derivative interactions from V only at high energies[9,10].Third,an increasing number of Higgs bosons(necessary to access each hnorder ofF,the Higgs-flarefunction) requires an ample phase space and,thus,high energy.

    Table 2.Correlations among the coefficients Δv3:=v3-1,Δv4:=v4-1/4,v5 and v6 of the HEFT Higgs potential expansion in equation (6) that need to hold,at O(1Λ2),if the SMEFT is a valid description of the electroweak sector.Based on the current bound Δv3 ∈[-2.5,5.7] in Ref.[23],O(1 Λ2),the SMEFT predicts the coefficient intervals in the last column,testable in few-Higgs final states.A coupling cH□≠0 induces the correction Δa1 ∝cH□,nevertheless numerically negligible since v3 experimental uncertainties much exceed those of a1.Likewise,we include the leading correlations for the Yukawa G(h) function of equation (8),constraining c2 and c3 by c1 and a1(from the correction to the value of the symmetric point h*).We make use of current 95%confidence interval for the top Yukawa coupling c1 ∈[0.84,1.22] [24].

    Table 2.Correlations among the coefficients Δv3:=v3-1,Δv4:=v4-1/4,v5 and v6 of the HEFT Higgs potential expansion in equation (6) that need to hold,at O(1Λ2),if the SMEFT is a valid description of the electroweak sector.Based on the current bound Δv3 ∈[-2.5,5.7] in Ref.[23],O(1 Λ2),the SMEFT predicts the coefficient intervals in the last column,testable in few-Higgs final states.A coupling cH□≠0 induces the correction Δa1 ∝cH□,nevertheless numerically negligible since v3 experimental uncertainties much exceed those of a1.Likewise,we include the leading correlations for the Yukawa G(h) function of equation (8),constraining c2 and c3 by c1 and a1(from the correction to the value of the symmetric point h*).We make use of current 95%confidence interval for the top Yukawa coupling c1 ∈[0.84,1.22] [24].

    2.Correlations in HEFT parameters induced by assuming the SMEFT’s validity

    As we show after equation (12),the correlations mentioned above arise from the need for consistency of the SMEFT formulation when a change of variable hHEFT→hSMEFTis performed.This change affects any other piece of the Lagrangian involving the Higgs bosons,such as the Yukawa couplings to fermions,saliently the top quark,or the interactions among Higgs bosons themselves (both of which we examine here),as well as couplings to transversal gauge bosons (that we leave for future works).

    The much-discussed V(H) Higgs potential,experimentally accessible at ‘low’because it contains no derivative couplings,

    acquires in the HEFT additional non-renormalizable couplings organized in a power-series expansion

    with v3=1,v4=1/4 and vn≥5=0 in the SM.Its coefficients also need to satisfy constraints that are exposed in table 2 and figure 3 if and when the SMEFT applies.

    Similarly,the SM piece coupling the top quark to the Higgs boson is extended in the HEFT[11]by a multiplicative functionG(h)

    with a Taylor expansion around the physical h=0 vacuum given by

    (with c1=1,ci≥2=0 in the SM).The correlations among these coefficients induced by the SMEFT at order 1/Λ2are then again given in table 2 and figure 4.

    Let us then see,very briefly,how the various correlations come about.Instead of relying on the powerful geometric methods of [3,12—15],we use the more pedestrian coordinate-dependent approach,more familiar to phenomenologists working on LHC physics.The goal is to see when is it possible to cast equation (3) into the specific SMEFT one,equation (1).This we write as

    where the non-derivative and derivative terms,respectively given by V and B,collect typical SMEFT operators (think of them as expressed in the Warsaw basis).Note that we have only kept the partial derivative part of the SM Higgs doublet kinetic term |DH|2in the right-hand side of equation(9),as we are considering the equivalence theorem and focused on the scalar sector of the theory.At the lowest order correction,1/Λ2,the relevant dimension-six SMEFT operators for our analysis are

    There are also other operators,such as,e.g.OHD=(H?Dμ H)*(H?D μH),but they break custodial symmetry,and Large Electron—Positron Collider studies suggest that the SU(2)×SU(2)→SU(2) electroweak symmetry breaking mechanism is the appropriate pattern,leaving the residual custodial SU(2) as a good approximate global symmetry of the scalar sector.The additional A(H) structure pointed out in [16]for Lagrangian(9) can be eliminated through partial integration and the use of the equations of motion [5].

    To proceed,we need to perform the following conversion to pass from the SMEFT to the HEFT and vice versa:

    The change from the SMEFT to the HEFT is straightforward and always possible,with the canonical,non-linear change of variables given in differential form as

    where the flare function is provided by the relation

    However,the reverse conversion from the HEFT to the SMEFT,

    runs into difficulty.This is because of the need to reconstruct squared operators of the Higgs doublet field H that is the basis of the SMEFT,such as

    The extra |H|2on the right-hand side of the second equation ends in a denominator

    As the SMEFT is assumed to have the analytical power expansion in equation (1),such singularity precludes its existence and needs to be cancelled by the preceding bracket in the second line of equation (16).

    The result is the same as that obtained by geometric methods [16];there must be a double zero ofF and a symmetric point with respect to the global SU(2)×SU(2) group so that the SMEFT expansion can be performed.Furthermore,analyticity requires that all its odd derivatives vanish at the symmetric point.

    The particular case of the SM is given by F=(1+hSMEFTv)2.As already pointed out,at higher orders in h/v,the existence of the SMEFT requires that the odd derivatives ofF at the symmetric point h* vanish.

    The correlations from table 1 can then be obtained by matching the Taylor expansion ofF around such symmetric point hHEFT=h* with the expansion around our physical vacuum hHEFT=0.Instead of that matching,one can also obtain the correlations by eliminating the SMEFT Wilson coefficients order-by-order.For example,at O(1Λ2),there is only one operator,HO□,in equation(10),that controls all the HEFT coefficients ofF:

    The elimination,by substitution,of this cH□coefficient from the HEFT ais yields the 1/Λ2correlations of the second column of table 1.Proceeding to the next 1/Λ4order in the SMEFT expansion brings in the Wilson coefficientHence,one can likewise extract the weaker 1/Λ4correlations among the HEFT parameters.The potential V(hHEFT) is in turn also affected byHO,

    Also,the ciinG(hHEFT) modifying the Yukawa coupling receive analogous contributions from both SMEFT coefficients cH□and cuHin standard notation,the second alternatively namedctH+in [17].The correction

    can be carried on to the higher coefficients using the relations in table 2 (with Δa1=2cH□vΛ2+O(1Λ4)).

    3.Conclusions

    Various authors,see e.g.[18],have pointed out differences between the SMEFT and HEFT formulations [19].For example,in the SMEFT the Goldstone ωiand Higgs hSMEFTbosons are arranged in a left-SU(2)doublet while in the HEFT hHEFTis an SU(2)?SU(2) singlet,independent of the Goldstone triplet ωi.In addition,in the SMEFT,the Higgs field always appears in the combination (hSMEFT+v) and,thus,the HEFT deploys more independent higher-dimension effective operators (in exchange,it is less model-dependent).This means that the SMEFT is natural when hSMEFTis a fundamental field while the HEFT is typical for composite models of the EWSBS (such as those with hHEFTas a Goldstone boson).Finally,the counting of the SMEFT is based in a cutoff Λ expansion taking the canonical operator dimensions,O(d)Λd-4(independently of Nloops),whereas the HEFT is a derivative expansion (independently of Nparticles) like the older electroweak chiral Lagrangian,with F(h) inserted in the derivative Goldstone term.

    Nevertheless,a lot of this is cosmetic and can be reorganized by changing variables hSMEFT?hHEFT.What is key is the San Diego criterion[3,12]:F(hHEFT)must have a point h*symmetric under the global SU(2)×SU(2)group and,due to its existence and convergence in the h field space,the SMEFT is deployable if and only if (which is a statement about the HEFT Lagrangian)

    ·?h*∈ R where F(h*)=0,and

    ·because of the need for LSMEFTanalyticity,F is analytic between our vacuum h=0 and h*,particularly around h*.Moreover its odd derivatives vanish.We have presented new relations that implement this criterion at O(1Λ2)and O(1Λ4)in the 1/Λ counting;more precision is unnecessary until (if) separations from the SM are found.Then only with the scale Λ at hand out of separations of effective field theory coefficients from the SM can we decide how relevant the corrections due to the higher orders are expected to be and whether further work is warranted.

    Among the three types of correlations that we have presented in tables 1 and 2,those for the coefficients ofF are more interesting for large values of the energy?mh~mW~mZ,whereas those for V andG,that do not involve Goldstone bosons,are therefore of greater interest at low energies,when the potential competes with the derivative operators on equal ground,as~mi.

    In conclusion,we have newly translated these conditions into correlations among HEFT coefficients whose violation falsifies the SMEFT.Moreover,since many extensions of the SM incorporating supersymmetry,supergravity or other possibilities can be cast as an SMEFT,they can be likewise simultaneously falsified.

    For the time being,no separations from the SM have been found [20] and one can only infer direct experimental bounds on the first terms,a1and,perhaps,a2,so we have to wait for data with a larger number of Higgs bosons before assessing them.However,when this is done,the correlations will allow us to falsify the SMEFT in experiments even without new particles.We believe that this possibility improves the standing of the SMEFT as a scientific theory.

    Acknowledgments

    Supported by Spanish MICINN PID2019-108655GB-I00/AEI/10.13039/501100011033 grant,and Universidad Complutense de Madrid under research group 910309 and the IPARCOS institute;ERC Starting Grant REINVENT- 714788;UCM CT42/18-CT43/18;the Fondazione Cariplo and Regione Lombardia,grant 2017-2070: and by Grant DataSMEFT23 (EUNextGeneration—PNRR—DM 247 08/22).

    一边亲一边摸免费视频| 亚洲第一青青草原| 国产成人免费无遮挡视频| 久久综合国产亚洲精品| 亚洲国产精品一区三区| 操美女的视频在线观看| 国产97色在线日韩免费| 极品人妻少妇av视频| 免费人妻精品一区二区三区视频| 日本午夜av视频| 交换朋友夫妻互换小说| 最新的欧美精品一区二区| 国产欧美亚洲国产| 久久亚洲国产成人精品v| 免费在线观看完整版高清| 亚洲精品久久成人aⅴ小说| 免费看不卡的av| 国产伦理片在线播放av一区| 看十八女毛片水多多多| 你懂的网址亚洲精品在线观看| 日本91视频免费播放| 国产在线观看jvid| 久久鲁丝午夜福利片| 大香蕉久久网| 精品国产乱码久久久久久男人| 大香蕉久久网| 成人免费观看视频高清| 永久免费av网站大全| 亚洲av日韩精品久久久久久密 | 在线亚洲精品国产二区图片欧美| 一边摸一边做爽爽视频免费| 欧美日韩精品网址| 久久人人爽人人片av| 丝瓜视频免费看黄片| 午夜福利一区二区在线看| 天天添夜夜摸| 国产亚洲精品久久久久5区| 国产伦人伦偷精品视频| 国产免费现黄频在线看| 91麻豆精品激情在线观看国产 | 波野结衣二区三区在线| 欧美黄色片欧美黄色片| 国产不卡av网站在线观看| 久久精品人人爽人人爽视色| 汤姆久久久久久久影院中文字幕| 免费观看人在逋| 中文字幕人妻丝袜制服| 宅男免费午夜| 捣出白浆h1v1| 国产成人精品久久久久久| 1024香蕉在线观看| 欧美日本中文国产一区发布| 女人久久www免费人成看片| av欧美777| 国产又色又爽无遮挡免| 欧美日本中文国产一区发布| 天堂中文最新版在线下载| 国产精品成人在线| 18禁裸乳无遮挡动漫免费视频| av又黄又爽大尺度在线免费看| 国产成人免费观看mmmm| 在线av久久热| 亚洲 欧美一区二区三区| 啦啦啦视频在线资源免费观看| netflix在线观看网站| a级毛片黄视频| 人妻人人澡人人爽人人| 午夜激情av网站| 9热在线视频观看99| 久久人人97超碰香蕉20202| 天天躁夜夜躁狠狠躁躁| 欧美日韩国产mv在线观看视频| 国产男人的电影天堂91| av网站在线播放免费| 国产97色在线日韩免费| 中文字幕高清在线视频| 老司机深夜福利视频在线观看 | 久久 成人 亚洲| 校园人妻丝袜中文字幕| 一级片'在线观看视频| 久久青草综合色| 午夜91福利影院| 最近手机中文字幕大全| 9热在线视频观看99| 啦啦啦啦在线视频资源| 午夜两性在线视频| 亚洲精品中文字幕在线视频| 新久久久久国产一级毛片| 日韩电影二区| 欧美成狂野欧美在线观看| 亚洲精品久久午夜乱码| 亚洲少妇的诱惑av| 一级毛片黄色毛片免费观看视频| 一级毛片 在线播放| 91精品伊人久久大香线蕉| 91字幕亚洲| www.av在线官网国产| 交换朋友夫妻互换小说| 大陆偷拍与自拍| 亚洲欧美一区二区三区黑人| 纵有疾风起免费观看全集完整版| 国产亚洲精品久久久久5区| 中文精品一卡2卡3卡4更新| 在现免费观看毛片| 人妻 亚洲 视频| 一级片免费观看大全| av又黄又爽大尺度在线免费看| 夜夜骑夜夜射夜夜干| 搡老岳熟女国产| 亚洲一码二码三码区别大吗| 国产精品一区二区免费欧美 | 午夜福利一区二区在线看| 欧美亚洲 丝袜 人妻 在线| 亚洲情色 制服丝袜| 老汉色∧v一级毛片| 黄色视频不卡| 国产成人91sexporn| 午夜福利影视在线免费观看| 人妻 亚洲 视频| 青草久久国产| 人妻人人澡人人爽人人| 18禁国产床啪视频网站| 国产一区二区在线观看av| 人妻人人澡人人爽人人| 亚洲成人国产一区在线观看 | 97在线人人人人妻| 亚洲一区二区三区欧美精品| 王馨瑶露胸无遮挡在线观看| 国产av一区二区精品久久| 最新的欧美精品一区二区| 久久青草综合色| 亚洲少妇的诱惑av| 国产精品国产三级专区第一集| 国产亚洲午夜精品一区二区久久| 黄色 视频免费看| 国产免费现黄频在线看| 成年女人毛片免费观看观看9 | 精品国产一区二区三区久久久樱花| xxx大片免费视频| 日韩 亚洲 欧美在线| 熟女av电影| 日本一区二区免费在线视频| 久久久久网色| 岛国毛片在线播放| 午夜激情久久久久久久| 国产日韩欧美视频二区| 最近中文字幕2019免费版| 各种免费的搞黄视频| 欧美日韩av久久| 深夜精品福利| 桃花免费在线播放| 亚洲精品在线美女| 性高湖久久久久久久久免费观看| 久久久久久亚洲精品国产蜜桃av| 午夜两性在线视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品久久午夜乱码| 久久精品熟女亚洲av麻豆精品| 18在线观看网站| 免费在线观看日本一区| 成年动漫av网址| 91国产中文字幕| 国产免费视频播放在线视频| 免费黄频网站在线观看国产| 亚洲天堂av无毛| 亚洲精品国产av成人精品| 在线观看免费视频网站a站| 大香蕉久久成人网| 中文字幕高清在线视频| 1024香蕉在线观看| 日韩大片免费观看网站| 悠悠久久av| 欧美日韩亚洲综合一区二区三区_| 一边亲一边摸免费视频| 黑人巨大精品欧美一区二区蜜桃| 久久久久久久久久久久大奶| 黑人欧美特级aaaaaa片| 日本91视频免费播放| 婷婷色麻豆天堂久久| 亚洲,一卡二卡三卡| 国产亚洲精品第一综合不卡| 成年人黄色毛片网站| 大片免费播放器 马上看| 精品国产一区二区三区四区第35| 国产黄色免费在线视频| 一级毛片我不卡| 国产欧美日韩一区二区三 | 国产精品秋霞免费鲁丝片| 婷婷色综合www| 午夜免费男女啪啪视频观看| 欧美日韩福利视频一区二区| 曰老女人黄片| 99国产精品免费福利视频| 99久久精品国产亚洲精品| 老司机在亚洲福利影院| 夫妻性生交免费视频一级片| 精品第一国产精品| 免费少妇av软件| 后天国语完整版免费观看| 人妻人人澡人人爽人人| www.av在线官网国产| av网站在线播放免费| 国产成人一区二区在线| 精品一区二区三区四区五区乱码 | 色94色欧美一区二区| 大片电影免费在线观看免费| 日韩制服丝袜自拍偷拍| 交换朋友夫妻互换小说| 在线观看免费高清a一片| 久久精品aⅴ一区二区三区四区| 久9热在线精品视频| 99九九在线精品视频| 国产欧美日韩一区二区三 | 夫妻午夜视频| 新久久久久国产一级毛片| 欧美亚洲 丝袜 人妻 在线| 人妻人人澡人人爽人人| 一本一本久久a久久精品综合妖精| 国产成人一区二区三区免费视频网站 | 欧美成人精品欧美一级黄| 亚洲av日韩在线播放| 黄色a级毛片大全视频| 国产日韩欧美在线精品| 国产成人一区二区三区免费视频网站 | avwww免费| 日本色播在线视频| 一区二区三区四区激情视频| 久久久久网色| 日本vs欧美在线观看视频| 91精品伊人久久大香线蕉| 精品少妇一区二区三区视频日本电影| 亚洲国产看品久久| 天堂中文最新版在线下载| 欧美黄色淫秽网站| 啦啦啦视频在线资源免费观看| 在现免费观看毛片| 丝袜喷水一区| 波野结衣二区三区在线| av福利片在线| 丁香六月欧美| 91字幕亚洲| 成人亚洲欧美一区二区av| 性少妇av在线| 精品国产国语对白av| videos熟女内射| 欧美日韩视频精品一区| 97精品久久久久久久久久精品| 国产精品av久久久久免费| 亚洲国产精品一区三区| 另类亚洲欧美激情| 婷婷丁香在线五月| 十八禁高潮呻吟视频| 亚洲人成电影观看| 亚洲国产精品成人久久小说| 欧美xxⅹ黑人| 国产在视频线精品| 久久国产精品大桥未久av| 青春草亚洲视频在线观看| 免费黄频网站在线观看国产| 老司机午夜十八禁免费视频| 国产亚洲一区二区精品| 18在线观看网站| 不卡av一区二区三区| 日韩,欧美,国产一区二区三区| 美女扒开内裤让男人捅视频| 久久国产精品男人的天堂亚洲| 操出白浆在线播放| 久久久久久免费高清国产稀缺| 天天操日日干夜夜撸| 精品高清国产在线一区| 久久鲁丝午夜福利片| 久久ye,这里只有精品| 国产日韩欧美在线精品| 国产精品亚洲av一区麻豆| 亚洲av综合色区一区| 国产成人精品久久二区二区91| 午夜日韩欧美国产| 欧美黑人欧美精品刺激| 国产一区二区 视频在线| 天天影视国产精品| 十分钟在线观看高清视频www| 久久久久久人人人人人| 欧美精品一区二区免费开放| 亚洲精品日本国产第一区| 人人妻人人澡人人爽人人夜夜| 黄片播放在线免费| 亚洲男人天堂网一区| 又粗又硬又长又爽又黄的视频| 嫩草影视91久久| 在线观看免费日韩欧美大片| 侵犯人妻中文字幕一二三四区| 中文字幕另类日韩欧美亚洲嫩草| 在线观看免费高清a一片| 18禁国产床啪视频网站| 欧美大码av| 欧美97在线视频| 亚洲人成电影观看| 麻豆乱淫一区二区| 亚洲激情五月婷婷啪啪| 97精品久久久久久久久久精品| 亚洲七黄色美女视频| 精品一区二区三区av网在线观看 | 中文字幕高清在线视频| 亚洲中文av在线| 精品一区二区三区av网在线观看 | 99国产精品一区二区三区| 亚洲av电影在线进入| 人人妻人人添人人爽欧美一区卜| a级片在线免费高清观看视频| 婷婷丁香在线五月| 精品国产一区二区三区四区第35| 成人三级做爰电影| 精品一区二区三卡| 国产亚洲欧美精品永久| 国产免费又黄又爽又色| 国产亚洲欧美精品永久| 久久精品熟女亚洲av麻豆精品| 国产精品亚洲av一区麻豆| 黑人巨大精品欧美一区二区蜜桃| 国产成人一区二区三区免费视频网站 | 久久亚洲国产成人精品v| 亚洲欧洲日产国产| 久热这里只有精品99| 亚洲综合色网址| 97在线人人人人妻| 亚洲欧美成人综合另类久久久| 欧美日韩黄片免| 十八禁人妻一区二区| 9热在线视频观看99| 久久国产精品大桥未久av| 国精品久久久久久国模美| 免费在线观看完整版高清| 国产成人啪精品午夜网站| 国产又爽黄色视频| 欧美日韩亚洲国产一区二区在线观看 | 午夜福利在线免费观看网站| 亚洲色图综合在线观看| 捣出白浆h1v1| 91老司机精品| 国产成人一区二区在线| xxxhd国产人妻xxx| 五月开心婷婷网| 亚洲色图综合在线观看| 成人免费观看视频高清| 午夜福利视频精品| 亚洲国产日韩一区二区| 国产免费视频播放在线视频| 亚洲国产日韩一区二区| 在线观看免费高清a一片| 九草在线视频观看| 啦啦啦视频在线资源免费观看| 亚洲国产日韩一区二区| 91精品国产国语对白视频| 国产欧美日韩精品亚洲av| 中国国产av一级| 在线观看免费视频网站a站| 国产亚洲欧美精品永久| 午夜福利一区二区在线看| 黑人猛操日本美女一级片| 黄网站色视频无遮挡免费观看| 精品国产乱码久久久久久男人| 欧美乱码精品一区二区三区| 丝袜美腿诱惑在线| 在现免费观看毛片| 日韩人妻精品一区2区三区| 在线 av 中文字幕| 国产精品久久久久久人妻精品电影 | 日韩伦理黄色片| 中文字幕亚洲精品专区| 亚洲国产av新网站| 丝袜喷水一区| 日韩av免费高清视频| 欧美97在线视频| 大片电影免费在线观看免费| 考比视频在线观看| 9色porny在线观看| 老汉色av国产亚洲站长工具| 午夜福利视频精品| 精品国产乱码久久久久久男人| 国产在视频线精品| 永久免费av网站大全| 丝袜脚勾引网站| 久久免费观看电影| 啦啦啦啦在线视频资源| 国产欧美日韩综合在线一区二区| 日韩制服丝袜自拍偷拍| 首页视频小说图片口味搜索 | 国产视频首页在线观看| 久久av网站| 久久影院123| 在线观看人妻少妇| 亚洲黑人精品在线| 十八禁网站网址无遮挡| 一级毛片电影观看| 欧美+亚洲+日韩+国产| 纵有疾风起免费观看全集完整版| 日日爽夜夜爽网站| 宅男免费午夜| 中文字幕色久视频| 麻豆乱淫一区二区| 亚洲一码二码三码区别大吗| 中文字幕av电影在线播放| 人妻 亚洲 视频| 精品熟女少妇八av免费久了| 久久精品亚洲熟妇少妇任你| 91精品三级在线观看| 青青草视频在线视频观看| 亚洲国产日韩一区二区| 夫妻午夜视频| 涩涩av久久男人的天堂| 久久99一区二区三区| 久久久精品94久久精品| 超碰97精品在线观看| 久久精品人人爽人人爽视色| 91老司机精品| 久久久久精品人妻al黑| 亚洲中文日韩欧美视频| 少妇裸体淫交视频免费看高清 | 美女福利国产在线| 狠狠婷婷综合久久久久久88av| 国产精品久久久久成人av| 纵有疾风起免费观看全集完整版| 亚洲欧美激情在线| 女警被强在线播放| 国产精品久久久av美女十八| 夫妻午夜视频| 精品少妇黑人巨大在线播放| 99国产精品99久久久久| 51午夜福利影视在线观看| 成年人午夜在线观看视频| 伊人亚洲综合成人网| 亚洲精品第二区| 国产色视频综合| 18禁观看日本| 精品一区二区三区四区五区乱码 | 亚洲熟女精品中文字幕| 成人国产一区最新在线观看 | 久久天堂一区二区三区四区| 国产精品 欧美亚洲| kizo精华| 久久精品久久精品一区二区三区| 亚洲九九香蕉| 午夜日韩欧美国产| 人成视频在线观看免费观看| 久久久久国产精品人妻一区二区| 嫁个100分男人电影在线观看 | 国产成人欧美在线观看 | 久久 成人 亚洲| 人体艺术视频欧美日本| 国产精品久久久久成人av| 亚洲av欧美aⅴ国产| 亚洲欧美中文字幕日韩二区| 免费看十八禁软件| 丰满迷人的少妇在线观看| 一区二区日韩欧美中文字幕| 50天的宝宝边吃奶边哭怎么回事| 国产成人精品在线电影| 亚洲国产精品成人久久小说| 成年人黄色毛片网站| av线在线观看网站| 午夜久久久在线观看| 18禁国产床啪视频网站| 热re99久久国产66热| 亚洲欧美一区二区三区黑人| 国产精品一二三区在线看| 视频区图区小说| tube8黄色片| 午夜久久久在线观看| 国产精品二区激情视频| 99久久99久久久精品蜜桃| 亚洲一码二码三码区别大吗| 婷婷色av中文字幕| 日韩大片免费观看网站| 亚洲视频免费观看视频| 中文字幕av电影在线播放| 免费观看av网站的网址| 亚洲中文字幕日韩| 性少妇av在线| 考比视频在线观看| av在线播放精品| 你懂的网址亚洲精品在线观看| 一二三四在线观看免费中文在| 两性夫妻黄色片| 精品人妻1区二区| 亚洲欧洲日产国产| 国产精品九九99| 免费日韩欧美在线观看| 一区二区三区精品91| 嫩草影视91久久| 高清av免费在线| 午夜福利,免费看| 精品国产国语对白av| 电影成人av| 女人被躁到高潮嗷嗷叫费观| 婷婷丁香在线五月| 久久精品国产亚洲av涩爱| 一本综合久久免费| 免费高清在线观看视频在线观看| 国产在线一区二区三区精| 午夜久久久在线观看| 国产一区二区三区综合在线观看| 最近手机中文字幕大全| 大香蕉久久成人网| 国产野战对白在线观看| 国产日韩一区二区三区精品不卡| 欧美日韩综合久久久久久| 一级a爱视频在线免费观看| 久9热在线精品视频| av在线老鸭窝| 久久午夜综合久久蜜桃| 国产精品一区二区在线观看99| 国产老妇伦熟女老妇高清| 成年人黄色毛片网站| 日本91视频免费播放| 中国国产av一级| 大陆偷拍与自拍| 一级黄片播放器| 99热国产这里只有精品6| 搡老岳熟女国产| 精品一区二区三区av网在线观看 | 精品亚洲成国产av| 国产人伦9x9x在线观看| 天天添夜夜摸| 亚洲成人免费电影在线观看 | 另类亚洲欧美激情| 亚洲国产欧美网| 久久久久久久久久久久大奶| 男人舔女人的私密视频| 欧美国产精品一级二级三级| 国产在线免费精品| 九色亚洲精品在线播放| 免费在线观看黄色视频的| 一区福利在线观看| 国精品久久久久久国模美| cao死你这个sao货| 久久久久久久大尺度免费视频| 高清av免费在线| 大香蕉久久网| 一级a爱视频在线免费观看| 久久久精品国产亚洲av高清涩受| 久久精品aⅴ一区二区三区四区| 中文字幕av电影在线播放| 国产精品久久久久久人妻精品电影 | 黑人欧美特级aaaaaa片| 少妇裸体淫交视频免费看高清 | 国产亚洲精品第一综合不卡| 久久热在线av| 免费观看av网站的网址| 丝袜在线中文字幕| 美女扒开内裤让男人捅视频| videosex国产| 九色亚洲精品在线播放| 亚洲伊人久久精品综合| 亚洲国产精品999| 欧美 亚洲 国产 日韩一| 成人手机av| 丝袜喷水一区| 一级毛片女人18水好多 | 每晚都被弄得嗷嗷叫到高潮| 国产男女内射视频| 成年人免费黄色播放视频| 免费在线观看视频国产中文字幕亚洲 | av片东京热男人的天堂| 在现免费观看毛片| 成人亚洲欧美一区二区av| 婷婷色综合www| 免费女性裸体啪啪无遮挡网站| 又黄又粗又硬又大视频| 亚洲av日韩在线播放| 狠狠精品人妻久久久久久综合| 一级毛片电影观看| 久久中文字幕一级| 午夜激情av网站| 极品人妻少妇av视频| 午夜福利,免费看| 五月天丁香电影| 观看av在线不卡| 久久精品熟女亚洲av麻豆精品| 美女福利国产在线| 只有这里有精品99| 国产精品麻豆人妻色哟哟久久| 脱女人内裤的视频| 交换朋友夫妻互换小说| 亚洲伊人色综图| 91老司机精品| av网站免费在线观看视频| 亚洲 国产 在线| 国产成人欧美在线观看 | 中文字幕av电影在线播放| 日韩一本色道免费dvd| 国产野战对白在线观看| 午夜免费鲁丝| 免费观看av网站的网址| 午夜精品国产一区二区电影| svipshipincom国产片| 一级毛片黄色毛片免费观看视频| 飞空精品影院首页| 久久久久精品国产欧美久久久 | 久久精品亚洲av国产电影网| 欧美在线黄色| 少妇猛男粗大的猛烈进出视频| 国产精品国产三级专区第一集| 天天影视国产精品| 男男h啪啪无遮挡| 18在线观看网站| 国产真人三级小视频在线观看| 大片免费播放器 马上看| 亚洲人成电影观看| 成年av动漫网址| 首页视频小说图片口味搜索 | 91成人精品电影| 自拍欧美九色日韩亚洲蝌蚪91| 久久久欧美国产精品| 脱女人内裤的视频| 美女脱内裤让男人舔精品视频|