• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SMEFT is falsifiable through multi-Higgs measurements (even in the absence of new light particles)

    2023-10-11 05:30:38RaquelmezAmbrosioFelipeLlanesEstradaAlexandreSalasBernrdezandJuanSanzCillero
    Communications in Theoretical Physics 2023年9期

    Raquel Gómez-Ambrosio,Felipe J Llanes-Estrada,Alexandre Salas-Bernárdez,* and Juan J Sanz-Cillero

    1 Dipartimento di Fisica,Univ.di Torino,and INFN,Sezione di Torino,Via P.Giuria 1,Torino,10125,Italy

    2 Univ.Complutense de Madrid,Dept.Fisica Teorica and IPARCOS,Plaza de las Ciencias 1,Madrid,28040,Spain

    Abstract By embedding the Standard Model effective field theory (SMEFT) in the more general Higgs effective field theory (HEFT),we expose correlations among the coefficients of the latter that,if found to be violated in future data,would lead to the experimental falsification of the SMEFT framework.These are derived from the necessary symmetric point of HEFT and analyticity of the SMEFT Lagrangian that allows the construction of the SMEFT expansion,as laid out by other groups,and properties at that point of the Higgs-flare function F(h) coupling Goldstone and Higgs bosons,of the Higgs potential V(h) and of the Higgs-top quark coupling function G(h).

    Keywords: SMEFT,HEFT,EFT,effective field theories,electroweak,LHC,quantum field theories

    1.Introduction

    Discovering new particles would entail the Standard Model(SM)being falsified in Popper’s sense[1]and force us to extend it.Absent such discovery,the SM is still falsifiable upon finding new forces among the known particles.Because the SM has a characteristic energy scale of 100 GeV (the mass of the Higgs boson at mh=125 GeV,as well as the vacuum constant v=246 GeV exemplify it),but no new particles below 1000 GeV have been found,there is a scale separation that begs the use of effective field theory.

    The popular Standard Model effective field theory(SMEFT) extension of the SM electroweak symmetry breaking sector (EWSBS) adds operators classified by their mass dimension,

    It is easy to ask oneself how the whole framework of SMEFT can be tested.Effective theories include all the possible interactions that are compatible with known particle content and the symmetries believed to hold.Would it not be that any separation from the SM could be recast in SMEFT form? In that case,absent some new light particle,any phenomena could be described by adding an operator with a parameter to the SM.This is not so,as we will detail.

    The particle content of the electroweak symmetry breaking sector is packaged in a Higgs doublet field in the SM as in the SMEFT

    where the Cartesian coordinates φacan be rearranged to thepolar decomposition in terms of the ωiGoldstone bosons(which set the orientation of H through the unitary matrix U(ω) and the radial coordinate hSMEFT(with ∣H∣=(v+hSMEFT).

    Table 1.Correlations between the ai HEFT coefficients necessary for the SMEFT to exist,at order Λ-2(first and second columns,with the numbers in the second consistent with 95% confidence level experimental bounds a1/2 ∈[0.97,1.09] [21]).The right column provides the corresponding numerical values at the next order [5].They are quoted in terms of Δa1:=a1-2 and Δa2:=a2-1,so that all objects in the table vanish in the SM,with all the equalities becoming 0=0.

    An additional non-linear redefinition of hSMEFTallows us to rearrange the SMEFT Lagrangian in the form of a more general theory,the Higgs effective field theory (HEFT):

    Our current focus therein is the flare function [3,4]:

    which amounts to a radial‘scale’(think of a(t)in a Friedmann-Robertson-Walker cosmology)in the field space of the(h,ωi) electroweak bosons (with ωianalogous to the spatial coordinates).What we call attention here is that the Taylorseries coefficients ofF as defined in equation(4)must satisfy experimental correlations or constraints as given in table 1 similar to the ones in[5]if the SMEFT is a valid description.3Our advance since our previous publication in [5] consists of the new correlations among the HEFT t quark-Yukawa sector coefficients,see equation(19)and the improvements to the correlations among the Higgs selfinteraction presented in equation (18) due to the cH□operator.The results presented here have been reported to the Quark Confinement and the Hadron Spectrum conference resulting in a preliminary publication [6].It is clear that an experimental program aimed at these correlations via the key process to accessF,ωω →nh as sketched in figure 1,mh →nh to access V(hHEFT) (the Higgs potential),ortˉt→nhto access the tree-level function modifying the Yukawa couplings,see equation (7),G(h),can test the validity of the SMEFT itself and not only its parameters.As an example,the SMEFT correlation among a1and a2is shown in figure 2.

    Fig.1.The ωω →nh processes can be the key to disentangling the nature of the EWSBS.They give direct access to the ai coefficients of the flare functionF and hence to their correlations,as listed in table 1.Current experimental constraints do not really extend beyond n=2 and it will be challenging to examine higher coefficients.Better reconstruction techniques at the high-luminosity LHC run but especially a future high-energy collider (either hadronic or muonic)will hopefully improve the situation.

    Fig.2.The correlation a2=2a1-3 that the SMEFT predicts at order 1/Λ2 is plotted against the current 95% confidence intervals for these two HEFT parameters [21,22].The dashed blue lines correspond to the direct experimental bounds prior to this work,while the solid green lines represent the bounds in table 1 coming from our 1/Λ2 correlation analysis.

    There are several reasons why the experimental tests of those correlations need large energies and statistics,at the limit of what is possible today at the Large Hadron Collider(LHC) and beyond.First,theF function multiplies terms with derivatives of the Goldstone bosons ?μωi→qμωithat yield couplings proportional to their four momenta and become more relevant at higher energies.Second,the equivalence theorem [7,8] tells us that the scattering of longitudinal gauge bosons is related to scattering of Goldstone bosons(ωi~,ZL): the EW gauging of the HEFT Lagrangian(3) leads to the WW →nh interaction

    which for longitudinal gauge bosons clearly dominates over the non-derivative interactions from V only at high energies[9,10].Third,an increasing number of Higgs bosons(necessary to access each hnorder ofF,the Higgs-flarefunction) requires an ample phase space and,thus,high energy.

    Table 2.Correlations among the coefficients Δv3:=v3-1,Δv4:=v4-1/4,v5 and v6 of the HEFT Higgs potential expansion in equation (6) that need to hold,at O(1Λ2),if the SMEFT is a valid description of the electroweak sector.Based on the current bound Δv3 ∈[-2.5,5.7] in Ref.[23],O(1 Λ2),the SMEFT predicts the coefficient intervals in the last column,testable in few-Higgs final states.A coupling cH□≠0 induces the correction Δa1 ∝cH□,nevertheless numerically negligible since v3 experimental uncertainties much exceed those of a1.Likewise,we include the leading correlations for the Yukawa G(h) function of equation (8),constraining c2 and c3 by c1 and a1(from the correction to the value of the symmetric point h*).We make use of current 95%confidence interval for the top Yukawa coupling c1 ∈[0.84,1.22] [24].

    Table 2.Correlations among the coefficients Δv3:=v3-1,Δv4:=v4-1/4,v5 and v6 of the HEFT Higgs potential expansion in equation (6) that need to hold,at O(1Λ2),if the SMEFT is a valid description of the electroweak sector.Based on the current bound Δv3 ∈[-2.5,5.7] in Ref.[23],O(1 Λ2),the SMEFT predicts the coefficient intervals in the last column,testable in few-Higgs final states.A coupling cH□≠0 induces the correction Δa1 ∝cH□,nevertheless numerically negligible since v3 experimental uncertainties much exceed those of a1.Likewise,we include the leading correlations for the Yukawa G(h) function of equation (8),constraining c2 and c3 by c1 and a1(from the correction to the value of the symmetric point h*).We make use of current 95%confidence interval for the top Yukawa coupling c1 ∈[0.84,1.22] [24].

    2.Correlations in HEFT parameters induced by assuming the SMEFT’s validity

    As we show after equation (12),the correlations mentioned above arise from the need for consistency of the SMEFT formulation when a change of variable hHEFT→hSMEFTis performed.This change affects any other piece of the Lagrangian involving the Higgs bosons,such as the Yukawa couplings to fermions,saliently the top quark,or the interactions among Higgs bosons themselves (both of which we examine here),as well as couplings to transversal gauge bosons (that we leave for future works).

    The much-discussed V(H) Higgs potential,experimentally accessible at ‘low’because it contains no derivative couplings,

    acquires in the HEFT additional non-renormalizable couplings organized in a power-series expansion

    with v3=1,v4=1/4 and vn≥5=0 in the SM.Its coefficients also need to satisfy constraints that are exposed in table 2 and figure 3 if and when the SMEFT applies.

    Similarly,the SM piece coupling the top quark to the Higgs boson is extended in the HEFT[11]by a multiplicative functionG(h)

    with a Taylor expansion around the physical h=0 vacuum given by

    (with c1=1,ci≥2=0 in the SM).The correlations among these coefficients induced by the SMEFT at order 1/Λ2are then again given in table 2 and figure 4.

    Let us then see,very briefly,how the various correlations come about.Instead of relying on the powerful geometric methods of [3,12—15],we use the more pedestrian coordinate-dependent approach,more familiar to phenomenologists working on LHC physics.The goal is to see when is it possible to cast equation (3) into the specific SMEFT one,equation (1).This we write as

    where the non-derivative and derivative terms,respectively given by V and B,collect typical SMEFT operators (think of them as expressed in the Warsaw basis).Note that we have only kept the partial derivative part of the SM Higgs doublet kinetic term |DH|2in the right-hand side of equation(9),as we are considering the equivalence theorem and focused on the scalar sector of the theory.At the lowest order correction,1/Λ2,the relevant dimension-six SMEFT operators for our analysis are

    There are also other operators,such as,e.g.OHD=(H?Dμ H)*(H?D μH),but they break custodial symmetry,and Large Electron—Positron Collider studies suggest that the SU(2)×SU(2)→SU(2) electroweak symmetry breaking mechanism is the appropriate pattern,leaving the residual custodial SU(2) as a good approximate global symmetry of the scalar sector.The additional A(H) structure pointed out in [16]for Lagrangian(9) can be eliminated through partial integration and the use of the equations of motion [5].

    To proceed,we need to perform the following conversion to pass from the SMEFT to the HEFT and vice versa:

    The change from the SMEFT to the HEFT is straightforward and always possible,with the canonical,non-linear change of variables given in differential form as

    where the flare function is provided by the relation

    However,the reverse conversion from the HEFT to the SMEFT,

    runs into difficulty.This is because of the need to reconstruct squared operators of the Higgs doublet field H that is the basis of the SMEFT,such as

    The extra |H|2on the right-hand side of the second equation ends in a denominator

    As the SMEFT is assumed to have the analytical power expansion in equation (1),such singularity precludes its existence and needs to be cancelled by the preceding bracket in the second line of equation (16).

    The result is the same as that obtained by geometric methods [16];there must be a double zero ofF and a symmetric point with respect to the global SU(2)×SU(2) group so that the SMEFT expansion can be performed.Furthermore,analyticity requires that all its odd derivatives vanish at the symmetric point.

    The particular case of the SM is given by F=(1+hSMEFTv)2.As already pointed out,at higher orders in h/v,the existence of the SMEFT requires that the odd derivatives ofF at the symmetric point h* vanish.

    The correlations from table 1 can then be obtained by matching the Taylor expansion ofF around such symmetric point hHEFT=h* with the expansion around our physical vacuum hHEFT=0.Instead of that matching,one can also obtain the correlations by eliminating the SMEFT Wilson coefficients order-by-order.For example,at O(1Λ2),there is only one operator,HO□,in equation(10),that controls all the HEFT coefficients ofF:

    The elimination,by substitution,of this cH□coefficient from the HEFT ais yields the 1/Λ2correlations of the second column of table 1.Proceeding to the next 1/Λ4order in the SMEFT expansion brings in the Wilson coefficientHence,one can likewise extract the weaker 1/Λ4correlations among the HEFT parameters.The potential V(hHEFT) is in turn also affected byHO,

    Also,the ciinG(hHEFT) modifying the Yukawa coupling receive analogous contributions from both SMEFT coefficients cH□and cuHin standard notation,the second alternatively namedctH+in [17].The correction

    can be carried on to the higher coefficients using the relations in table 2 (with Δa1=2cH□vΛ2+O(1Λ4)).

    3.Conclusions

    Various authors,see e.g.[18],have pointed out differences between the SMEFT and HEFT formulations [19].For example,in the SMEFT the Goldstone ωiand Higgs hSMEFTbosons are arranged in a left-SU(2)doublet while in the HEFT hHEFTis an SU(2)?SU(2) singlet,independent of the Goldstone triplet ωi.In addition,in the SMEFT,the Higgs field always appears in the combination (hSMEFT+v) and,thus,the HEFT deploys more independent higher-dimension effective operators (in exchange,it is less model-dependent).This means that the SMEFT is natural when hSMEFTis a fundamental field while the HEFT is typical for composite models of the EWSBS (such as those with hHEFTas a Goldstone boson).Finally,the counting of the SMEFT is based in a cutoff Λ expansion taking the canonical operator dimensions,O(d)Λd-4(independently of Nloops),whereas the HEFT is a derivative expansion (independently of Nparticles) like the older electroweak chiral Lagrangian,with F(h) inserted in the derivative Goldstone term.

    Nevertheless,a lot of this is cosmetic and can be reorganized by changing variables hSMEFT?hHEFT.What is key is the San Diego criterion[3,12]:F(hHEFT)must have a point h*symmetric under the global SU(2)×SU(2)group and,due to its existence and convergence in the h field space,the SMEFT is deployable if and only if (which is a statement about the HEFT Lagrangian)

    ·?h*∈ R where F(h*)=0,and

    ·because of the need for LSMEFTanalyticity,F is analytic between our vacuum h=0 and h*,particularly around h*.Moreover its odd derivatives vanish.We have presented new relations that implement this criterion at O(1Λ2)and O(1Λ4)in the 1/Λ counting;more precision is unnecessary until (if) separations from the SM are found.Then only with the scale Λ at hand out of separations of effective field theory coefficients from the SM can we decide how relevant the corrections due to the higher orders are expected to be and whether further work is warranted.

    Among the three types of correlations that we have presented in tables 1 and 2,those for the coefficients ofF are more interesting for large values of the energy?mh~mW~mZ,whereas those for V andG,that do not involve Goldstone bosons,are therefore of greater interest at low energies,when the potential competes with the derivative operators on equal ground,as~mi.

    In conclusion,we have newly translated these conditions into correlations among HEFT coefficients whose violation falsifies the SMEFT.Moreover,since many extensions of the SM incorporating supersymmetry,supergravity or other possibilities can be cast as an SMEFT,they can be likewise simultaneously falsified.

    For the time being,no separations from the SM have been found [20] and one can only infer direct experimental bounds on the first terms,a1and,perhaps,a2,so we have to wait for data with a larger number of Higgs bosons before assessing them.However,when this is done,the correlations will allow us to falsify the SMEFT in experiments even without new particles.We believe that this possibility improves the standing of the SMEFT as a scientific theory.

    Acknowledgments

    Supported by Spanish MICINN PID2019-108655GB-I00/AEI/10.13039/501100011033 grant,and Universidad Complutense de Madrid under research group 910309 and the IPARCOS institute;ERC Starting Grant REINVENT- 714788;UCM CT42/18-CT43/18;the Fondazione Cariplo and Regione Lombardia,grant 2017-2070: and by Grant DataSMEFT23 (EUNextGeneration—PNRR—DM 247 08/22).

    啦啦啦观看免费观看视频高清 | 成人18禁高潮啪啪吃奶动态图| 日韩大尺度精品在线看网址 | 国产欧美日韩一区二区精品| 午夜福利成人在线免费观看| 天天一区二区日本电影三级 | 国产精品 欧美亚洲| 精品高清国产在线一区| 12—13女人毛片做爰片一| 国产精品香港三级国产av潘金莲| 久久久精品欧美日韩精品| 99香蕉大伊视频| 国产精品一区二区免费欧美| 色哟哟哟哟哟哟| 亚洲视频免费观看视频| 久久人妻熟女aⅴ| 日本撒尿小便嘘嘘汇集6| 成人欧美大片| 日韩中文字幕欧美一区二区| 亚洲熟妇中文字幕五十中出| 精品欧美国产一区二区三| 亚洲男人的天堂狠狠| 国产免费男女视频| 亚洲少妇的诱惑av| or卡值多少钱| 97超级碰碰碰精品色视频在线观看| 一级毛片精品| 精品电影一区二区在线| 亚洲狠狠婷婷综合久久图片| av片东京热男人的天堂| 少妇熟女aⅴ在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一码二码三码区别大吗| 日本三级黄在线观看| 国产精品国产高清国产av| 日韩成人在线观看一区二区三区| 国产精品自产拍在线观看55亚洲| 国产单亲对白刺激| 激情在线观看视频在线高清| 亚洲激情在线av| 免费搜索国产男女视频| 成人18禁在线播放| 激情视频va一区二区三区| 国产91精品成人一区二区三区| 中国美女看黄片| 午夜成年电影在线免费观看| 激情视频va一区二区三区| 欧美老熟妇乱子伦牲交| 丝袜人妻中文字幕| 久久久久精品国产欧美久久久| 欧美激情久久久久久爽电影 | 亚洲情色 制服丝袜| 在线观看免费视频日本深夜| 亚洲成人国产一区在线观看| 在线观看日韩欧美| 欧美乱码精品一区二区三区| 午夜福利欧美成人| 中国美女看黄片| 亚洲欧洲精品一区二区精品久久久| 国产精品99久久99久久久不卡| 在线观看一区二区三区| 日韩大码丰满熟妇| 免费观看精品视频网站| 最好的美女福利视频网| cao死你这个sao货| 亚洲天堂国产精品一区在线| 久久香蕉精品热| 欧美激情 高清一区二区三区| 又大又爽又粗| 亚洲色图综合在线观看| 国产成人欧美| 国产精品一区二区三区四区久久 | 欧美丝袜亚洲另类 | 又大又爽又粗| 黄色毛片三级朝国网站| 亚洲美女黄片视频| 国内毛片毛片毛片毛片毛片| 国产激情久久老熟女| 久久久久国产精品人妻aⅴ院| 亚洲国产毛片av蜜桃av| 性色av乱码一区二区三区2| 中文字幕色久视频| 亚洲专区国产一区二区| 国产精品二区激情视频| 可以在线观看的亚洲视频| 日日摸夜夜添夜夜添小说| ponron亚洲| 琪琪午夜伦伦电影理论片6080| 女警被强在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲avbb在线观看| 国产精品亚洲一级av第二区| 99在线人妻在线中文字幕| 久久久国产成人免费| 麻豆一二三区av精品| 亚洲av成人不卡在线观看播放网| 狠狠狠狠99中文字幕| 成熟少妇高潮喷水视频| 在线观看www视频免费| 深夜精品福利| 精品一区二区三区四区五区乱码| www日本在线高清视频| 亚洲国产看品久久| 一边摸一边抽搐一进一小说| 窝窝影院91人妻| 好男人电影高清在线观看| 成人亚洲精品一区在线观看| 国产精品久久视频播放| 最新在线观看一区二区三区| 国产免费av片在线观看野外av| 日韩欧美三级三区| 最近最新中文字幕大全免费视频| 欧美大码av| 少妇 在线观看| 日韩欧美一区视频在线观看| 国产成人影院久久av| 国产精品一区二区在线不卡| 老熟妇仑乱视频hdxx| 啦啦啦 在线观看视频| 午夜精品久久久久久毛片777| 国产激情欧美一区二区| 人人妻人人澡欧美一区二区 | 中文字幕色久视频| 国产视频一区二区在线看| 国产私拍福利视频在线观看| 日本一区二区免费在线视频| 搞女人的毛片| 免费av毛片视频| 亚洲人成电影观看| 久久国产亚洲av麻豆专区| 成人国产一区最新在线观看| 精品免费久久久久久久清纯| 午夜久久久久精精品| 亚洲国产高清在线一区二区三 | 露出奶头的视频| 亚洲人成伊人成综合网2020| 成人国产综合亚洲| 88av欧美| 女人被狂操c到高潮| 欧美国产精品va在线观看不卡| 国产真人三级小视频在线观看| av网站免费在线观看视频| www.熟女人妻精品国产| 亚洲成人久久性| 成人免费观看视频高清| 精品日产1卡2卡| 午夜激情av网站| 久久精品国产清高在天天线| 国产麻豆成人av免费视频| 国产亚洲精品av在线| 一级a爱片免费观看的视频| 人成视频在线观看免费观看| 国产成人av激情在线播放| 午夜视频精品福利| 男女之事视频高清在线观看| 亚洲在线自拍视频| 欧美日本亚洲视频在线播放| 久久精品成人免费网站| 波多野结衣高清无吗| 亚洲欧美激情在线| 变态另类丝袜制服| 欧美日韩亚洲国产一区二区在线观看| 久久精品91蜜桃| 亚洲精品国产精品久久久不卡| 久久这里只有精品19| 无限看片的www在线观看| 国产又色又爽无遮挡免费看| 精品欧美国产一区二区三| 色播在线永久视频| 久久亚洲精品不卡| 久99久视频精品免费| 国产熟女xx| 亚洲国产精品999在线| 久久亚洲真实| 久久 成人 亚洲| 国产亚洲精品第一综合不卡| 久久性视频一级片| 一本大道久久a久久精品| 国产高清激情床上av| 男人操女人黄网站| 色婷婷久久久亚洲欧美| 久久久久久国产a免费观看| 在线av久久热| 久久久久久免费高清国产稀缺| 黑丝袜美女国产一区| 色综合欧美亚洲国产小说| 在线观看免费视频日本深夜| 香蕉丝袜av| 美女扒开内裤让男人捅视频| 久久人人97超碰香蕉20202| 黄频高清免费视频| 啦啦啦韩国在线观看视频| 欧美日本亚洲视频在线播放| 如日韩欧美国产精品一区二区三区| 亚洲午夜理论影院| 欧美激情 高清一区二区三区| 可以在线观看的亚洲视频| 欧美性长视频在线观看| 国产精品日韩av在线免费观看 | 国产av一区二区精品久久| 波多野结衣一区麻豆| 欧美乱码精品一区二区三区| 88av欧美| 欧美中文综合在线视频| 国产精品影院久久| 12—13女人毛片做爰片一| 精品国产乱码久久久久久男人| 法律面前人人平等表现在哪些方面| 女人被躁到高潮嗷嗷叫费观| av视频在线观看入口| 黑人欧美特级aaaaaa片| 免费少妇av软件| 久久性视频一级片| 9热在线视频观看99| 国产精品一区二区三区四区久久 | av天堂久久9| 午夜免费成人在线视频| 亚洲五月婷婷丁香| 欧美不卡视频在线免费观看 | 午夜福利,免费看| 国内精品久久久久久久电影| 日本黄色视频三级网站网址| av视频在线观看入口| 精品国内亚洲2022精品成人| 婷婷六月久久综合丁香| 国产亚洲欧美98| 国产视频一区二区在线看| 成在线人永久免费视频| 午夜免费鲁丝| 国产精品久久久人人做人人爽| 日本一区二区免费在线视频| 一区二区三区激情视频| av视频在线观看入口| 欧美最黄视频在线播放免费| 久久精品国产清高在天天线| 一卡2卡三卡四卡精品乱码亚洲| 麻豆久久精品国产亚洲av| 男女之事视频高清在线观看| 在线国产一区二区在线| 男女床上黄色一级片免费看| 法律面前人人平等表现在哪些方面| 欧美精品亚洲一区二区| 搡老妇女老女人老熟妇| 99国产精品99久久久久| 亚洲男人天堂网一区| 在线av久久热| 亚洲av成人不卡在线观看播放网| 制服诱惑二区| 亚洲人成网站在线播放欧美日韩| 欧美成人性av电影在线观看| 国产成人精品久久二区二区免费| 人人妻人人爽人人添夜夜欢视频| 欧美中文综合在线视频| 丁香欧美五月| 国产亚洲欧美98| 亚洲一区二区三区色噜噜| 两个人视频免费观看高清| 日日摸夜夜添夜夜添小说| 国产精品久久久人人做人人爽| 日本撒尿小便嘘嘘汇集6| 国产午夜福利久久久久久| 国产伦人伦偷精品视频| 久久久久久久久中文| 免费av毛片视频| 久久精品国产99精品国产亚洲性色 | 午夜影院日韩av| 真人一进一出gif抽搐免费| www日本在线高清视频| 久久精品人人爽人人爽视色| 午夜免费鲁丝| 午夜福利,免费看| 婷婷丁香在线五月| 最好的美女福利视频网| 美女 人体艺术 gogo| 久久香蕉精品热| 最近最新中文字幕大全免费视频| 国产成+人综合+亚洲专区| 91精品三级在线观看| 日韩欧美在线二视频| 国产精品久久久久久亚洲av鲁大| 一区在线观看完整版| 9热在线视频观看99| 黑丝袜美女国产一区| 50天的宝宝边吃奶边哭怎么回事| 精品国产美女av久久久久小说| 欧美黄色淫秽网站| 亚洲少妇的诱惑av| 国产麻豆69| 成人特级黄色片久久久久久久| 男女之事视频高清在线观看| 国产成+人综合+亚洲专区| 亚洲精品国产精品久久久不卡| 国产精品一区二区在线不卡| 午夜福利一区二区在线看| 亚洲免费av在线视频| 日本免费一区二区三区高清不卡 | 欧美+亚洲+日韩+国产| 禁无遮挡网站| 亚洲 欧美 日韩 在线 免费| 久久精品成人免费网站| 一级a爱视频在线免费观看| 久久人妻福利社区极品人妻图片| 色播在线永久视频| 欧美日韩中文字幕国产精品一区二区三区 | 免费无遮挡裸体视频| 成在线人永久免费视频| 9191精品国产免费久久| 国产精品日韩av在线免费观看 | 香蕉丝袜av| 精品久久久久久久人妻蜜臀av | 黄色丝袜av网址大全| 一级a爱片免费观看的视频| 免费在线观看亚洲国产| 亚洲伊人色综图| 禁无遮挡网站| 精品一区二区三区视频在线观看免费| 桃红色精品国产亚洲av| 久热爱精品视频在线9| 高清黄色对白视频在线免费看| 欧美日本视频| 俄罗斯特黄特色一大片| 精品国产国语对白av| 国产午夜精品久久久久久| 91大片在线观看| 黄色女人牲交| 正在播放国产对白刺激| 91麻豆精品激情在线观看国产| 欧美成人免费av一区二区三区| 人人妻,人人澡人人爽秒播| 久久久国产成人免费| 亚洲精品在线美女| 国产亚洲av嫩草精品影院| 国语自产精品视频在线第100页| 18禁美女被吸乳视频| 国产亚洲精品综合一区在线观看 | www.999成人在线观看| 亚洲精品国产色婷婷电影| 男人舔女人下体高潮全视频| 国产成人啪精品午夜网站| 97人妻精品一区二区三区麻豆 | 最新美女视频免费是黄的| 亚洲片人在线观看| 国内久久婷婷六月综合欲色啪| 欧美日本亚洲视频在线播放| 成人手机av| 老司机深夜福利视频在线观看| av欧美777| 亚洲成人精品中文字幕电影| 给我免费播放毛片高清在线观看| 91九色精品人成在线观看| 国产91精品成人一区二区三区| 色av中文字幕| 午夜福利18| 久9热在线精品视频| 岛国在线观看网站| 久久久国产精品麻豆| 久久热在线av| 最好的美女福利视频网| 别揉我奶头~嗯~啊~动态视频| 精品国产乱子伦一区二区三区| 色综合亚洲欧美另类图片| 亚洲成a人片在线一区二区| 国产亚洲精品久久久久久毛片| 久久久国产精品麻豆| 久久午夜综合久久蜜桃| av欧美777| av有码第一页| 老司机午夜福利在线观看视频| 免费在线观看影片大全网站| 日日干狠狠操夜夜爽| 亚洲欧美日韩高清在线视频| 国产xxxxx性猛交| 无人区码免费观看不卡| 超碰成人久久| 欧美黑人欧美精品刺激| 欧美中文日本在线观看视频| 日本黄色视频三级网站网址| 免费女性裸体啪啪无遮挡网站| 黄片播放在线免费| 精品久久久久久,| 两性夫妻黄色片| 少妇熟女aⅴ在线视频| 亚洲精品美女久久av网站| 欧美中文综合在线视频| 黑人巨大精品欧美一区二区蜜桃| 麻豆av在线久日| 搞女人的毛片| 黄色视频不卡| www.精华液| av中文乱码字幕在线| 大香蕉久久成人网| 又黄又爽又免费观看的视频| 成人亚洲精品一区在线观看| 91大片在线观看| 日韩欧美一区二区三区在线观看| 制服人妻中文乱码| 99在线人妻在线中文字幕| 啦啦啦韩国在线观看视频| 琪琪午夜伦伦电影理论片6080| 91精品国产国语对白视频| 欧美日韩中文字幕国产精品一区二区三区 | 精品久久久精品久久久| 最近最新中文字幕大全免费视频| 变态另类成人亚洲欧美熟女 | 黑人巨大精品欧美一区二区蜜桃| 欧美黄色淫秽网站| 亚洲片人在线观看| 两个人看的免费小视频| av有码第一页| 搞女人的毛片| 1024视频免费在线观看| 亚洲一区二区三区色噜噜| 久99久视频精品免费| 乱人伦中国视频| 欧美中文日本在线观看视频| 久久婷婷人人爽人人干人人爱 | 女性生殖器流出的白浆| 国产成+人综合+亚洲专区| 欧美成人性av电影在线观看| 精品少妇一区二区三区视频日本电影| 两性夫妻黄色片| 午夜精品国产一区二区电影| 国产精品亚洲av一区麻豆| av在线播放免费不卡| 国产精品 欧美亚洲| 精品乱码久久久久久99久播| 伦理电影免费视频| www.999成人在线观看| 99国产精品99久久久久| 一夜夜www| 9热在线视频观看99| 丝袜人妻中文字幕| 纯流量卡能插随身wifi吗| 国产精品秋霞免费鲁丝片| 久久国产乱子伦精品免费另类| 操美女的视频在线观看| 婷婷精品国产亚洲av在线| 久久精品国产99精品国产亚洲性色 | 搡老妇女老女人老熟妇| 又紧又爽又黄一区二区| 91国产中文字幕| 亚洲全国av大片| 国产精品亚洲av一区麻豆| 日本 av在线| 9色porny在线观看| 成人免费观看视频高清| 少妇熟女aⅴ在线视频| 中国美女看黄片| 麻豆久久精品国产亚洲av| 精品无人区乱码1区二区| 免费少妇av软件| 国产人伦9x9x在线观看| 在线天堂中文资源库| 91九色精品人成在线观看| 大型av网站在线播放| 亚洲成人免费电影在线观看| 美女 人体艺术 gogo| 巨乳人妻的诱惑在线观看| 日韩欧美国产在线观看| 亚洲av日韩精品久久久久久密| 搞女人的毛片| 嫁个100分男人电影在线观看| 丝袜在线中文字幕| 日韩有码中文字幕| 亚洲国产欧美日韩在线播放| 亚洲精品久久国产高清桃花| 国语自产精品视频在线第100页| 黄频高清免费视频| 色播在线永久视频| 亚洲中文av在线| 久久久久久久久免费视频了| 美女高潮喷水抽搐中文字幕| 久久热在线av| 男人舔女人下体高潮全视频| 老司机福利观看| 巨乳人妻的诱惑在线观看| 精品午夜福利视频在线观看一区| 99国产极品粉嫩在线观看| 国产精品秋霞免费鲁丝片| 日韩精品青青久久久久久| 99精品久久久久人妻精品| 亚洲国产高清在线一区二区三 | 国产蜜桃级精品一区二区三区| 最新在线观看一区二区三区| 涩涩av久久男人的天堂| 美女扒开内裤让男人捅视频| 99在线人妻在线中文字幕| 成人永久免费在线观看视频| 一边摸一边抽搐一进一小说| 精品电影一区二区在线| 91麻豆av在线| av欧美777| 多毛熟女@视频| 国产不卡一卡二| 久久久精品国产亚洲av高清涩受| 精品一区二区三区视频在线观看免费| 性色av乱码一区二区三区2| 精品久久久久久久人妻蜜臀av | 欧美在线一区亚洲| 韩国av一区二区三区四区| 成人免费观看视频高清| 啦啦啦韩国在线观看视频| 午夜福利,免费看| av天堂久久9| 精品国产美女av久久久久小说| 午夜福利成人在线免费观看| 亚洲美女黄片视频| 国产亚洲欧美98| 男女午夜视频在线观看| 极品人妻少妇av视频| 少妇粗大呻吟视频| 日韩有码中文字幕| 午夜福利高清视频| 男人操女人黄网站| 亚洲精品在线美女| 欧美乱妇无乱码| 亚洲国产高清在线一区二区三 | 国内毛片毛片毛片毛片毛片| 丁香六月欧美| 亚洲狠狠婷婷综合久久图片| 免费在线观看视频国产中文字幕亚洲| 国产亚洲av嫩草精品影院| 国产男靠女视频免费网站| 正在播放国产对白刺激| 成在线人永久免费视频| 国产亚洲精品久久久久久毛片| 老司机午夜十八禁免费视频| 久久精品国产清高在天天线| 精品久久久精品久久久| 一区二区三区精品91| 国产野战对白在线观看| 久久人人爽av亚洲精品天堂| 18美女黄网站色大片免费观看| 午夜视频精品福利| 亚洲精品国产一区二区精华液| 亚洲熟妇熟女久久| 9热在线视频观看99| 亚洲人成电影免费在线| 亚洲精品久久成人aⅴ小说| av天堂久久9| 18禁国产床啪视频网站| 成人18禁高潮啪啪吃奶动态图| 国产主播在线观看一区二区| 欧洲精品卡2卡3卡4卡5卡区| 国产高清激情床上av| 国产高清videossex| 丰满的人妻完整版| 国产激情久久老熟女| 精品一品国产午夜福利视频| 免费在线观看亚洲国产| 国产精品久久久久久亚洲av鲁大| 18禁黄网站禁片午夜丰满| 大型黄色视频在线免费观看| 久久久精品国产亚洲av高清涩受| 人人妻人人澡欧美一区二区 | 亚洲第一av免费看| 久久伊人香网站| 欧美黄色片欧美黄色片| 亚洲欧美日韩高清在线视频| 色综合站精品国产| 熟妇人妻久久中文字幕3abv| a级毛片在线看网站| 一区二区三区激情视频| 在线观看日韩欧美| 国产av在哪里看| 成年女人毛片免费观看观看9| 国产高清激情床上av| 9色porny在线观看| 国产亚洲欧美在线一区二区| 一本综合久久免费| 亚洲黑人精品在线| 在线观看免费视频日本深夜| 真人一进一出gif抽搐免费| 神马国产精品三级电影在线观看 | 啦啦啦 在线观看视频| 搡老熟女国产l中国老女人| 男女之事视频高清在线观看| 国产精品98久久久久久宅男小说| 色精品久久人妻99蜜桃| 成年版毛片免费区| 免费人成视频x8x8入口观看| 777久久人妻少妇嫩草av网站| 色播亚洲综合网| 国产精品1区2区在线观看.| 桃红色精品国产亚洲av| 国产成人欧美| 日韩一卡2卡3卡4卡2021年| 无遮挡黄片免费观看| 午夜成年电影在线免费观看| 天堂动漫精品| 韩国av一区二区三区四区| 69av精品久久久久久| 亚洲三区欧美一区| 国产成人av教育| 97人妻精品一区二区三区麻豆 | 亚洲国产精品成人综合色| 午夜两性在线视频| 精品久久蜜臀av无| 亚洲精品粉嫩美女一区| 在线观看免费视频日本深夜| 久久久久国产一级毛片高清牌| 久久久久久久午夜电影| 亚洲中文字幕日韩| 99久久综合精品五月天人人| 久久久久久大精品| 国产一级毛片七仙女欲春2 | 在线观看免费视频日本深夜| 大码成人一级视频| 淫秽高清视频在线观看| 亚洲中文字幕一区二区三区有码在线看 | 欧美亚洲日本最大视频资源| 午夜成年电影在线免费观看| 日韩欧美免费精品| 午夜视频精品福利| 成人18禁高潮啪啪吃奶动态图|