• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    General teleparallel gravity from Finsler geometry

    2023-10-17 01:22:05YehengTong
    Communications in Theoretical Physics 2023年9期

    Yeheng Tong

    Interdisciplinary Center for Theoretical Study,University of Science and Technology of China,Hefei,Anhui 230026,China

    Peng Huanwu Center for Fundamental Theory,Hefei,Anhui 230026,China

    Abstract Riemannian geometry,as a basis for general relativity,can be obtained from the more general Finsler geometry in terms of the Cartan connection and Chern connection,as discussed frequently in the literature.However,there are other gravity theories that can be made to be equivalent to general relativity but are based on non-Riemannian geometry.Famous examples are the Teleparallel and Symmetric Teleparallel gravity theories.In this paper,we show how to obtain the geometry for Teleparallel gravity from Finsler geometry in terms of a ‘Teleparallel type’ connection.

    Keywords: Finsler geometry,teleparallel gravity,Finsler connection

    1.Introduction

    However,there are other frameworks that can be used to hatch gravity theories but are not based on the Riemannian geometry.One example is the ‘Teleparallel’ framework,in which the connection is constrained to be curvature-freeRλρμν=0and metric-compatible ?αgμν=0,so the gravity is attributed to the torsionTλμν[5–8].Another similar example is the so-called‘Symmetric Teleparallel’framework,in which the connection is constrained to be curvature-freeRλρμν=0 and torsion-freeTλμν=0,and the gravity is attributed entirely to the non-metricity tensor Qαμν=?αgμν[9,10].Within both frameworks,gravity models can be constructed to be equivalent to GR,i.e.the Teleparallel equivalent General Relativity (TEGR) model [5–8] in the Teleparallel framework and Symmetric Teleparallel equivalent General Relativity (STGR) model [9,10] in Symmetric Teleparallel framework,respectively.Interestingly,these two frameworks can be used to hatch some modified gravity models which are very difficult (if not impossible) to be constructed within the Riemannian geometry,for instance,the Nieh–Yan modified Teleparallel Gravity [11,12] in the Teleparallel framework,and the parity-violating gravity models discussed in [13,14]within the Symmetric Teleparallel framework.All these frameworks including the Riemannian geometry can be considered as special cases of the metric-affine geometry under different constraints.

    There are frameworks more general than metric-affine geometry.The conception of ‘metric’ may also be generalized.In Riemannian geometry,the length of the world line of a particle is.In a general case,the length of the world line of a particle may be ds=F(x,dx) as long as the function F is smooth enough and homogeneous for the displacement dx[15,16].Such generalization leads us to the so-called Finsler geometry.Some interesting phenomena may come out from such a generalization,e.g.,the geodesic equations are direction-dependent now,or a curve is a geodesic curve from A to B,but not from B to A.Also,more abundant connection structures are contained in Finsler geometry and it may induce the normal metric-affine theory with a specially selected section of the tangent bundle of the base manifold.Hence,it would exist at least three different kinds of connection structure: the ‘GR type’ that may lead to Riemannian geometry,‘Teleparallel type’ and‘Symmetric Teleparallel type’ lead to corresponding frameworks,respectively.The ‘GR type’ at least includes two connections: the so-called ‘Cartan connection’ [17] and‘Chern connection’ [18],as discussed a lot in the literature.On the other hand,the other two types of connection structures are rarely discussed.In this paper,we come up with an example of ‘Teleparallel type’ connection and show how to obtain a generalized teleparallel gravity model from this connection structure.

    In this paper,we will use the metric signature{+,-,-,-}.As usual,the Greek letters μ,ν,ρ,…=0,1,2,3 are tensor indicators and Capital Latins A,B,C,…=0,1,2,3 are internal space indicators.In sections 2 and 3 we review the basic structure of Finsler Geometry.In section 4,we present our connection as an example of ‘Teleparallel type’ connection.In section 5,we use a toy model based on our connection to compare with TEGR or GR,and show the similarities and differences between them.

    2.Basics of Finsler geometry

    2.1.Metric structure

    A Finsler space is an n-dimensional manifold Mnwith a Finsler metric functionF:TM? R+.The function F satisfies the following properties [15,16]:

    1.Regularity: F is C∞on the entire tangent bundle except the origin TM{0}.

    2.Positive homogeneity: F(x,λy)=λF(x,y) for all λ >0.

    3.Signature: The Hessian Matrix

    has a Lorentzian signature.3The original requirement of the Hessian matrix in Finsler Geometry is to be positive definite.However,considering the connection between the Hessian matrix and metric tensor,we change the requirement to having a Lorentzian signature.

    Since for any point x ∈M with local coordinate (xμ),any tangent vector can be expanded as(xμ,yλ) can be chosen as a local coordinate on TM.Then a function F defined on TM can be locally expressed as F=F(xμ,yλ).

    Besides the fundamental tensor (1),one can define the so-called Cartan tensor [15,16]:

    It is clear that the Cartan tensor is totally symmetric.Moreover,the homogeneity leads to the following identities:

    The Finsler Function F defines the length of a curve C(t)in the base manifold M:

    It is easy to see that when taking,the fundamental tensor(1)is just aμν(x),and the length of a curve is the same as that in (pseudo-)Riemann geometry.So the fundamental tensor (1) plays a similar role in Finsler geometry to the metric tensor in (pseudo-)Riemann geometry,while the Cartan tensor (2) implies the difference between Finsler geometry and (pseudo-)Riemann Geometry.

    2.2.(α,β)-metric

    A family of special metric functions is the so-called (α,β)-metric.These metric functions satisfy F=F(α,β),whereα=and β=Aμ(x)yμ.The homogeneity then requires that F(λα,λβ)=λF(α,β).Denoting that

    where yμ?aμνyν,we have the fundamental tensor

    and Cartan tensor

    where the lower indices α,β of L indicate the partial differentiation with respect to α and β.

    where the arguments of functions f are all β/α.When f ≡1,(pseudo-)Riemann geometry is recovered.

    As examples,we have two simpler cases:Randers metric[19] F=α+β or f(x)=1+x,in which

    2.3.Connection structure: basis and non-linear connection

    Since the local coordinate on TM has been chosen to be (xμ,yλ),the natural basis on TM is also determined [16]:

    so the transformations of basis (12) are [16]

    Hence they are not covariant under a coordinate transformation on the base manifold.In order to receive a group of covariant bases,a non-linear connectionshould be introduced,and a group of covariant bases are

    with transformations

    These bases have the following commutative relations:

    In addition,we have the dual basis of (13):

    2.4.Connection structure: linear connection on the bundle

    The Vertical BundleV is the linear space spanned by the basisin (13),and its complement space is called the Horizontal BundleH,i.e.

    Then a linear connection can be defined onV [15,16]:

    Such a connection induces two covariant derivatives of a vector X=Xμ(x,y)?μ: the horizontal covariant derivative?HX

    and the vertical covariant derivative ?VX

    One can continue this connection to the entire tangent bundle if and only if the Deflection condition

    is satisfied [16].At this time,we have the connection

    and two covariant derivatives (17,18) defined on the entire TM.

    2.5.Curvature and torsion

    On TM,we have an outer differential of a function f(x,y):

    Now from connection(16)one can immediately figure out the curvature and torsion with Cartan Structure equations.

    Curvature 2-form is defined as

    with the tensor structure

    Again,such a neat structure requires the Deflection condition(19).Then from the Cartan Curvature Structure equations we have [15,16]

    There is something different about the torsion.The tensor structure of the torsion is

    with 2 torsion 2-forms

    Then from the Cartan Curvature Structure equations we have

    3.Finsler-Bathrel geometry

    One can always induce a (pseudo-)Riemannian geometry from a Finsler geometry with a determined vector field.From this section on,we will use ‘^’ to distinguish the parameters defined on the base manifold M from the ones on TM with similar names.For example,the curvature 2-form on M is denoted as

    The (pseudo-)Riemannian geometry induced from a given Finsler geometry is constructed as follows.We always have a natural map [16]

    While a vector field Y(x) on M,or a section of TM,restricts the map (24) to

    And the connection is the pull back of linear connection(16)[15,16]:

    The tensor is the pull back of τλ:

    And the non-metricity tensor is

    One can examine that(28-30)are indeed constructed with the connection (27).

    4.The Finsler-Teleparallel connection

    We have a group of connections that would lead to Riemannian geometry which hosts GR when the metric is restricted to be the Riemannian metric,and they have been discussed under different cases.On the other hand,as we know,there are other frameworks to host Teleparallel and Symmetric Teleparallel gravities.Then a question comes out that whether these frameworks can be popularized in Finsler Geometry.We will focus on the popularization of the framework hosting the Teleparallel gravity in this paper.

    whereηAB=diag {1,-1,-1,-1}is the flat metric,EAμis a matrix and its inverse is expressed asEAλ.As the natural generalization of ones in Teleparallel Geometry,equations(31),(32)imply the existence of local flat spacetime at each point and keep Einstein’s Equivalent Principle.And from (31),we have the connection coefficients

    withEAμto be determined.Here we have taken the Weitzenb?ck condition.

    We should point out that condition (32) is not easy to satisfy,because gμνis not a fundamental parameter,but is derived from the Finsler metric.Thus (32) would impose restrictions on the matrixEAμ.In the following sections,we will try to determineEAμ.

    4.1.The non-linear connection

    We will discuss the (α,β)-metric only,and denote that

    where eAμis the tetrad associated with aμν.Identities(3)lead to equation

    Now we can make up the non-linear connection from the Deflection condition (19).From (33) it is easy to derive

    Then to contract it with yμwe have

    Finally,we have the non-linear connection

    Up to now we did not specify the form of the matrixmρμ,and the result(42)is independent of it.So a conclusion comes that as long as the matrixEAμtakes the form (37) and the Deflection condition is satisfied,the non-linear connection always takes the form (42).

    From now on,we will rewrite the 1-form

    Then we have

    So the non-linear connection (42) has a simpler form:

    4.2.Matrix mαμ and linear connection

    We now need to determine the matrixmαμby the metriccompatible condition (32).The fundamental tensor (1) of a Finsler metric F=αf is

    It is not easy to find a matrix to satisfy(32).However,we may have a connection structure,which slightly breaks the metric-compatibility on TM,but keep this condition after being pulled back to the base manifold M.In this way,we have a satisfying matrix:

    and it leads to

    Compared with equation (46),there is a slight difference ff″pμpν,which would be seen that have no effect after being pulled back to the base manifold M.And the inverse of this matrix is

    With the matrices (47,49),the linear connection is determined from (33):

    wherehλμ?hμ ν aλν.

    Then the two covariant derivatives of the fundamental tensor (46) can be calculated.The calculation details can be found in the appendix,and here we just give the conclusions directly:

    where {*p} refers to the terms that are proportional to pμ,pμpν,or higher order of pμ.Thus we see that the two covariant derivatives are both proportional to pμor its higher order.We will show that they vanish when pulled back to the base manifold in the following sections,which means that the metric-compatible condition is satisfied on the base manifold.

    4.3.The induced Finsler–Bathrel geometry

    Then the non-linear connection is

    And the induced tetrads are

    The induced metric is

    these two results are indeed equal to each other.Finally,the result is

    and induced torsion is

    One can directly verify that this connection (57) is flat and compatible with the metric (56).On the other hand,the covariant derivative of metric (56) can be also written as

    So we have a connection of the Teleparallel type that is induced from Finsler geometry,and we may call it Finsler–Teleparallel–Bathrel geometry.Within this geometry,one may come up with a group of Teleparallel gravity models.These models should take the tetrad on the base manifoldeAμand the vector field Aλas fundamental variables,for they are defined on the base manifold,i.e.the physical spacetime;while the Finsler metric F(α,β),or the function f,should rely on the model selection,and considered not to be a fundamental variable.

    5.A toy model based on Finsler-Teleparallel-Bathrel connection

    As a simple example,we lay out a toy model in which the induced metric(56)is dynamical,while the primordial metric aμνis‘geometrical’,i.e.it is aμνinstead ofthat couples to the matter fields.Such convention is to remain the dynamics of matter unchanged.Hence,this simple model has the action

    is the torsion scalar determined by the induced tetradAμ.The action of matter Smkeeps the same as that in GR;as an example,considering a scalar field to mimic the matter field,with the following action

    where Gαβis the Einstein Tensor of gμν,and Tμνis the normal energy-momentum tensor.Obviously,the form of the function f,or the Finsler metric,greatly influences the evolution of spacetime,and the special case f ≡1 just gives the Einstein field equations in GR.

    6.Conclusion

    with connection coefficients

    We also used a toy model with action (60) to show this,withbeing dynamical and aμνcoupled with matter.We showed that when f ≡1 or F=α,both the action and the EoMs are induced to the same as ones in TEGR or GR,so the model based on the connection(16)can indeed be considered as a generalization of Teleparallel gravity.

    A group of gravity models can be built in terms of this scheme.These models can have new predictions beyond GR and how they are constrained by current observations are questions deserving of further studies.We will visit these problems in the future.

    Acknowledgments

    We thank the anonymous referees for useful suggestions,Prof.Mingzhe Li for instructions and Dr.Haomin Rao and Dr.Dehao Zhao for helpful discussions.

    This work is supported in part by NSFC under Grant No.12075231 and 12047502.

    Appendix.Proof of equations (51) and (52)

    For vertical covariant derivative,using (9),we have

    so it is proportional to pμor its higher order.

    The horizontal covariant derivative is more complicated.The following results are needed:

    Noticing that the arguments of functions f,g,…are β/α,we have

    Use results (A2–A5) we have

    So the horizontal covariant derivative is

    中文字幕久久专区| 久久午夜综合久久蜜桃| 久久青草综合色| 精品卡一卡二卡四卡免费| 99热全是精品| 精品人妻在线不人妻| 欧美最新免费一区二区三区| av福利片在线| 卡戴珊不雅视频在线播放| 丰满饥渴人妻一区二区三| 久久久精品免费免费高清| 欧美三级亚洲精品| 久久久久视频综合| 亚洲综合精品二区| 国产日韩欧美在线精品| 永久免费av网站大全| av免费在线看不卡| 日韩欧美精品免费久久| 日本91视频免费播放| 国产成人精品福利久久| 亚洲国产av新网站| 亚洲欧美清纯卡通| 日韩视频在线欧美| 美女大奶头黄色视频| 国产精品人妻久久久影院| 久久午夜福利片| 精品99又大又爽又粗少妇毛片| av专区在线播放| 人妻夜夜爽99麻豆av| 日韩大片免费观看网站| 国产精品嫩草影院av在线观看| 狠狠精品人妻久久久久久综合| 黄色欧美视频在线观看| 男女免费视频国产| 国产亚洲午夜精品一区二区久久| 午夜激情av网站| 精品久久久噜噜| 亚洲av不卡在线观看| 一区二区日韩欧美中文字幕 | 欧美精品一区二区大全| 多毛熟女@视频| 五月天丁香电影| 国产色爽女视频免费观看| 久久久久久久久久人人人人人人| 免费播放大片免费观看视频在线观看| 久久99热这里只频精品6学生| 99热6这里只有精品| av专区在线播放| 交换朋友夫妻互换小说| 亚洲综合色网址| 国产精品久久久久成人av| 国产日韩欧美亚洲二区| 波野结衣二区三区在线| 又大又黄又爽视频免费| 精品少妇久久久久久888优播| 丰满饥渴人妻一区二区三| 尾随美女入室| 免费观看a级毛片全部| 天美传媒精品一区二区| 99久久人妻综合| 女性生殖器流出的白浆| 十分钟在线观看高清视频www| 99久久综合免费| 九九爱精品视频在线观看| 女性生殖器流出的白浆| 色吧在线观看| 熟女人妻精品中文字幕| 国产成人午夜福利电影在线观看| 日本av免费视频播放| 美女xxoo啪啪120秒动态图| 99热6这里只有精品| 亚洲精品一二三| 欧美亚洲 丝袜 人妻 在线| 伦理电影免费视频| 飞空精品影院首页| 日本免费在线观看一区| 欧美另类一区| 国产69精品久久久久777片| 欧美老熟妇乱子伦牲交| 亚洲av成人精品一二三区| 国产精品久久久久久av不卡| 久久精品国产亚洲av天美| 色94色欧美一区二区| 这个男人来自地球电影免费观看 | 插逼视频在线观看| 男女免费视频国产| 欧美日韩视频精品一区| 最近最新中文字幕免费大全7| 制服人妻中文乱码| 王馨瑶露胸无遮挡在线观看| 午夜激情av网站| 自线自在国产av| 国产午夜精品一二区理论片| 欧美最新免费一区二区三区| 久久久午夜欧美精品| 日韩制服骚丝袜av| 精品久久久久久久久av| 91精品伊人久久大香线蕉| 国产精品一区www在线观看| 国产深夜福利视频在线观看| 亚洲无线观看免费| 一区二区av电影网| 中文乱码字字幕精品一区二区三区| 美女中出高潮动态图| 欧美精品一区二区大全| 黑人欧美特级aaaaaa片| 亚洲国产精品国产精品| 国产女主播在线喷水免费视频网站| 又粗又硬又长又爽又黄的视频| 黄色视频在线播放观看不卡| 精品少妇黑人巨大在线播放| 一级毛片 在线播放| 精品久久久精品久久久| 久热这里只有精品99| 亚洲精品自拍成人| 亚洲婷婷狠狠爱综合网| 久久精品熟女亚洲av麻豆精品| 伊人亚洲综合成人网| 中国国产av一级| 999精品在线视频| 亚洲中文av在线| 亚洲综合色惰| 狂野欧美白嫩少妇大欣赏| 国产毛片在线视频| 日本色播在线视频| 丰满少妇做爰视频| 美女中出高潮动态图| 最新的欧美精品一区二区| 人人妻人人添人人爽欧美一区卜| 免费黄网站久久成人精品| 99精国产麻豆久久婷婷| 精品一区在线观看国产| 精品99又大又爽又粗少妇毛片| 九九在线视频观看精品| 精品久久国产蜜桃| 熟妇人妻不卡中文字幕| 三级国产精品欧美在线观看| 18禁在线播放成人免费| 久久久久久久久久久丰满| 亚洲国产精品一区二区三区在线| 亚洲情色 制服丝袜| 久热久热在线精品观看| 亚洲成色77777| 五月玫瑰六月丁香| 亚洲精品成人av观看孕妇| 日本黄色日本黄色录像| 欧美精品国产亚洲| 婷婷成人精品国产| 日本-黄色视频高清免费观看| 免费久久久久久久精品成人欧美视频 | 国产高清不卡午夜福利| 2018国产大陆天天弄谢| 亚洲国产欧美日韩在线播放| 久久人妻熟女aⅴ| 一级毛片电影观看| 黑人巨大精品欧美一区二区蜜桃 | 各种免费的搞黄视频| 丝袜脚勾引网站| 久久av网站| 99热国产这里只有精品6| 春色校园在线视频观看| 国产伦理片在线播放av一区| 亚洲伊人久久精品综合| 久久人人爽人人片av| 黄色一级大片看看| 欧美少妇被猛烈插入视频| 超碰97精品在线观看| 成人亚洲欧美一区二区av| 九色成人免费人妻av| 免费观看无遮挡的男女| 少妇精品久久久久久久| av在线观看视频网站免费| av国产精品久久久久影院| 免费黄网站久久成人精品| 在线看a的网站| 中国国产av一级| 国产深夜福利视频在线观看| 免费高清在线观看视频在线观看| 高清欧美精品videossex| 国产精品国产av在线观看| 亚洲天堂av无毛| 18禁在线无遮挡免费观看视频| 美女中出高潮动态图| 午夜av观看不卡| 夜夜骑夜夜射夜夜干| 一级爰片在线观看| 婷婷色综合大香蕉| 精品人妻熟女av久视频| 色94色欧美一区二区| 日韩av免费高清视频| 韩国av在线不卡| 国产成人精品福利久久| 国产亚洲欧美精品永久| 热re99久久精品国产66热6| 亚洲人成77777在线视频| 中文精品一卡2卡3卡4更新| 国产黄色视频一区二区在线观看| 精品国产一区二区三区久久久樱花| 午夜久久久在线观看| 丝袜在线中文字幕| 高清黄色对白视频在线免费看| 黄片播放在线免费| 少妇精品久久久久久久| av播播在线观看一区| videossex国产| 欧美变态另类bdsm刘玥| 亚洲一级一片aⅴ在线观看| 欧美xxxx性猛交bbbb| 女性生殖器流出的白浆| 精品久久久久久久久av| 国产亚洲av片在线观看秒播厂| 亚洲av国产av综合av卡| 99九九线精品视频在线观看视频| 亚洲成人一二三区av| 色94色欧美一区二区| 亚洲第一区二区三区不卡| 18禁裸乳无遮挡动漫免费视频| 欧美人与善性xxx| 久久鲁丝午夜福利片| 日韩成人伦理影院| 国产一区二区在线观看日韩| 精品卡一卡二卡四卡免费| 亚洲国产毛片av蜜桃av| 男的添女的下面高潮视频| 亚洲av福利一区| 精品人妻熟女av久视频| 99久久精品一区二区三区| 天天操日日干夜夜撸| 女人精品久久久久毛片| 99久久精品国产国产毛片| 女的被弄到高潮叫床怎么办| 性高湖久久久久久久久免费观看| 色婷婷av一区二区三区视频| 一本大道久久a久久精品| 亚洲精品乱码久久久v下载方式| 99re6热这里在线精品视频| 天天躁夜夜躁狠狠久久av| 日韩大片免费观看网站| 99久国产av精品国产电影| 男人添女人高潮全过程视频| 寂寞人妻少妇视频99o| 精品午夜福利在线看| 国产片特级美女逼逼视频| tube8黄色片| 亚洲国产精品一区二区三区在线| 国产国拍精品亚洲av在线观看| 免费日韩欧美在线观看| 免费少妇av软件| 纵有疾风起免费观看全集完整版| 最新中文字幕久久久久| 91精品伊人久久大香线蕉| 成年av动漫网址| 国产在线免费精品| 国产精品秋霞免费鲁丝片| 亚洲成人手机| 高清在线视频一区二区三区| 精品熟女少妇av免费看| 97超视频在线观看视频| 婷婷色综合www| 老熟女久久久| 高清午夜精品一区二区三区| 久久久亚洲精品成人影院| 一级二级三级毛片免费看| 久久人人爽人人片av| 女人久久www免费人成看片| 亚洲国产精品专区欧美| 免费看av在线观看网站| av网站免费在线观看视频| 精品少妇内射三级| av视频免费观看在线观看| 亚洲国产av新网站| 晚上一个人看的免费电影| 永久免费av网站大全| 高清不卡的av网站| 日韩成人伦理影院| 国产精品欧美亚洲77777| 国产在线一区二区三区精| 亚洲一区二区三区欧美精品| 我要看黄色一级片免费的| 高清视频免费观看一区二区| 夫妻午夜视频| 在线观看人妻少妇| 亚洲欧美成人综合另类久久久| 日韩 亚洲 欧美在线| 亚洲av二区三区四区| 久久影院123| 免费少妇av软件| 国产伦精品一区二区三区视频9| 韩国高清视频一区二区三区| 亚洲欧美精品自产自拍| 午夜老司机福利剧场| 亚洲无线观看免费| 国产片内射在线| 精品亚洲成a人片在线观看| 日本av免费视频播放| 精品一区二区三区视频在线| 欧美日韩一区二区视频在线观看视频在线| 久久韩国三级中文字幕| 麻豆成人av视频| av福利片在线| 在线观看www视频免费| 亚洲精品aⅴ在线观看| 亚洲国产最新在线播放| 岛国毛片在线播放| 国产高清有码在线观看视频| 高清视频免费观看一区二区| 国产日韩一区二区三区精品不卡 | 精品国产一区二区三区久久久樱花| 久久青草综合色| a级片在线免费高清观看视频| 啦啦啦在线观看免费高清www| 亚洲国产精品国产精品| 精品久久久久久电影网| av线在线观看网站| 美女主播在线视频| 嘟嘟电影网在线观看| freevideosex欧美| 一级黄片播放器| 午夜福利网站1000一区二区三区| 一本一本综合久久| 国产熟女欧美一区二区| videossex国产| 国产成人精品福利久久| 最近中文字幕高清免费大全6| 在线播放无遮挡| 有码 亚洲区| 国产深夜福利视频在线观看| 国产精品秋霞免费鲁丝片| 美女视频免费永久观看网站| av免费观看日本| 久久久精品区二区三区| 街头女战士在线观看网站| 熟女人妻精品中文字幕| 日韩av不卡免费在线播放| 国产免费视频播放在线视频| 岛国毛片在线播放| 亚洲av在线观看美女高潮| 22中文网久久字幕| 美女国产高潮福利片在线看| 永久免费av网站大全| 欧美 亚洲 国产 日韩一| 亚洲成色77777| 一级毛片电影观看| 国产精品人妻久久久久久| 国产精品三级大全| 欧美变态另类bdsm刘玥| 丰满乱子伦码专区| 99热这里只有精品一区| 看非洲黑人一级黄片| 亚洲精品中文字幕在线视频| 日本色播在线视频| 亚洲av不卡在线观看| 国产一区二区三区av在线| 麻豆乱淫一区二区| 91午夜精品亚洲一区二区三区| 中文乱码字字幕精品一区二区三区| 免费观看在线日韩| 在现免费观看毛片| 日本黄大片高清| 性色avwww在线观看| 久久精品人人爽人人爽视色| 午夜91福利影院| 欧美最新免费一区二区三区| 一级毛片我不卡| 国产男女超爽视频在线观看| 最后的刺客免费高清国语| 成人亚洲欧美一区二区av| 久久午夜福利片| 亚洲人成77777在线视频| av卡一久久| 欧美激情极品国产一区二区三区 | 999精品在线视频| 如日韩欧美国产精品一区二区三区 | 国产在线一区二区三区精| 少妇人妻 视频| 中文字幕亚洲精品专区| 亚洲av成人精品一二三区| 自线自在国产av| 搡女人真爽免费视频火全软件| 成年av动漫网址| 国产国语露脸激情在线看| 丝袜在线中文字幕| 搡女人真爽免费视频火全软件| 免费黄网站久久成人精品| 亚洲美女视频黄频| 亚洲精品一区蜜桃| 我的女老师完整版在线观看| 黄色欧美视频在线观看| 国国产精品蜜臀av免费| 国产精品不卡视频一区二区| 午夜免费鲁丝| 五月开心婷婷网| 精品少妇内射三级| 欧美日韩一区二区视频在线观看视频在线| 五月天丁香电影| 国产女主播在线喷水免费视频网站| 国产老妇伦熟女老妇高清| 天天操日日干夜夜撸| 国产精品99久久99久久久不卡 | 三级国产精品片| 国产精品国产三级专区第一集| 久久99热6这里只有精品| av播播在线观看一区| 999精品在线视频| 日韩中字成人| 99久久人妻综合| 国产成人免费观看mmmm| 国产免费又黄又爽又色| 激情五月婷婷亚洲| 久久精品国产亚洲av涩爱| 免费观看性生交大片5| 人妻制服诱惑在线中文字幕| av国产久精品久网站免费入址| 精品国产一区二区三区久久久樱花| av电影中文网址| av.在线天堂| 在线 av 中文字幕| 国产成人精品无人区| 人妻少妇偷人精品九色| freevideosex欧美| 晚上一个人看的免费电影| 少妇人妻 视频| 在线观看人妻少妇| 亚洲欧洲日产国产| 麻豆成人av视频| 免费观看无遮挡的男女| 全区人妻精品视频| 亚洲欧美中文字幕日韩二区| 在线观看免费日韩欧美大片 | 街头女战士在线观看网站| 晚上一个人看的免费电影| 亚洲高清免费不卡视频| 肉色欧美久久久久久久蜜桃| 人妻少妇偷人精品九色| 成人手机av| 18禁观看日本| 日韩中文字幕视频在线看片| 午夜免费男女啪啪视频观看| 黄色怎么调成土黄色| 国产精品.久久久| 精品国产国语对白av| 人体艺术视频欧美日本| 丝袜脚勾引网站| 蜜臀久久99精品久久宅男| 欧美3d第一页| 日韩不卡一区二区三区视频在线| 亚洲图色成人| xxx大片免费视频| 成人午夜精彩视频在线观看| 搡老乐熟女国产| 中文字幕制服av| 七月丁香在线播放| 80岁老熟妇乱子伦牲交| 校园人妻丝袜中文字幕| 欧美日韩综合久久久久久| 亚洲精品国产av成人精品| 成人毛片a级毛片在线播放| 亚洲国产色片| 亚洲欧美中文字幕日韩二区| 国产一区二区三区综合在线观看 | 少妇丰满av| 啦啦啦啦在线视频资源| 亚洲一区二区三区欧美精品| 少妇 在线观看| 日韩人妻高清精品专区| 国产老妇伦熟女老妇高清| 寂寞人妻少妇视频99o| av不卡在线播放| 你懂的网址亚洲精品在线观看| 99九九在线精品视频| 伊人久久精品亚洲午夜| 国产精品女同一区二区软件| 人妻 亚洲 视频| 国产成人精品婷婷| 亚洲第一av免费看| 亚洲精品色激情综合| 涩涩av久久男人的天堂| 亚洲综合色惰| av黄色大香蕉| 一级毛片 在线播放| 中文字幕人妻熟人妻熟丝袜美| 亚洲色图 男人天堂 中文字幕 | 国产老妇伦熟女老妇高清| 亚洲av日韩在线播放| 色婷婷久久久亚洲欧美| 高清午夜精品一区二区三区| 亚洲精品国产av成人精品| 你懂的网址亚洲精品在线观看| 一区二区三区乱码不卡18| 精品国产一区二区三区久久久樱花| 最后的刺客免费高清国语| 夜夜看夜夜爽夜夜摸| 大香蕉97超碰在线| 国产av码专区亚洲av| 午夜老司机福利剧场| 插逼视频在线观看| 我要看黄色一级片免费的| 在线天堂最新版资源| 久久午夜福利片| 亚洲成人av在线免费| 好男人视频免费观看在线| 最近中文字幕2019免费版| 热re99久久国产66热| 91精品三级在线观看| 在线观看美女被高潮喷水网站| 在线精品无人区一区二区三| 亚洲欧洲精品一区二区精品久久久 | 插阴视频在线观看视频| 国产成人精品福利久久| 久久精品久久精品一区二区三区| 亚洲国产精品999| 国国产精品蜜臀av免费| 在线观看人妻少妇| 观看av在线不卡| 免费看av在线观看网站| 男女啪啪激烈高潮av片| a 毛片基地| 22中文网久久字幕| 丝袜脚勾引网站| 国产精品 国内视频| 国产精品久久久久久精品电影小说| 永久网站在线| 在现免费观看毛片| 在线看a的网站| 久久久久精品性色| 伊人亚洲综合成人网| 欧美xxxx性猛交bbbb| 久久免费观看电影| 在线免费观看不下载黄p国产| 亚洲精品自拍成人| 99热6这里只有精品| 汤姆久久久久久久影院中文字幕| 久久精品夜色国产| 亚洲av国产av综合av卡| 麻豆精品久久久久久蜜桃| 在线观看免费日韩欧美大片 | 亚洲精品日韩在线中文字幕| 九色亚洲精品在线播放| 午夜日本视频在线| 韩国高清视频一区二区三区| 国产 一区精品| 国产日韩欧美视频二区| 又大又黄又爽视频免费| 久热这里只有精品99| 亚洲精品av麻豆狂野| 熟女电影av网| 欧美3d第一页| 自拍欧美九色日韩亚洲蝌蚪91| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 只有这里有精品99| 日本91视频免费播放| 国产综合精华液| 制服丝袜香蕉在线| 人妻系列 视频| 日韩大片免费观看网站| 高清视频免费观看一区二区| 日本欧美国产在线视频| 国产熟女午夜一区二区三区 | 色视频在线一区二区三区| 免费观看在线日韩| 飞空精品影院首页| 精品久久国产蜜桃| 老司机影院毛片| 人妻系列 视频| 爱豆传媒免费全集在线观看| 国产在线视频一区二区| av女优亚洲男人天堂| 99热国产这里只有精品6| 80岁老熟妇乱子伦牲交| 最后的刺客免费高清国语| 国产黄频视频在线观看| 免费少妇av软件| 高清不卡的av网站| 男女啪啪激烈高潮av片| 新久久久久国产一级毛片| 青青草视频在线视频观看| 日本-黄色视频高清免费观看| 婷婷色av中文字幕| 一边亲一边摸免费视频| 久久女婷五月综合色啪小说| 97精品久久久久久久久久精品| 七月丁香在线播放| 一个人看视频在线观看www免费| 中文乱码字字幕精品一区二区三区| 免费播放大片免费观看视频在线观看| 日本91视频免费播放| 最近中文字幕高清免费大全6| 久久久久久久久久久久大奶| 熟妇人妻不卡中文字幕| 一级毛片电影观看| 插逼视频在线观看| 如何舔出高潮| 精品久久久久久久久av| 久久久久久久久久久免费av| a级毛色黄片| 欧美精品国产亚洲| 久久女婷五月综合色啪小说| 久久精品久久久久久久性| 国产国拍精品亚洲av在线观看| 亚洲成色77777| 性色av一级| 有码 亚洲区| 美女脱内裤让男人舔精品视频| 国产无遮挡羞羞视频在线观看| 亚洲综合色网址| 久久女婷五月综合色啪小说| 欧美3d第一页| 男女边吃奶边做爰视频| 最近中文字幕2019免费版| 91精品国产九色| 欧美另类一区| 日本-黄色视频高清免费观看| 免费黄网站久久成人精品| 一级二级三级毛片免费看| 天天操日日干夜夜撸|