• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    General teleparallel gravity from Finsler geometry

    2023-10-17 01:22:05YehengTong
    Communications in Theoretical Physics 2023年9期

    Yeheng Tong

    Interdisciplinary Center for Theoretical Study,University of Science and Technology of China,Hefei,Anhui 230026,China

    Peng Huanwu Center for Fundamental Theory,Hefei,Anhui 230026,China

    Abstract Riemannian geometry,as a basis for general relativity,can be obtained from the more general Finsler geometry in terms of the Cartan connection and Chern connection,as discussed frequently in the literature.However,there are other gravity theories that can be made to be equivalent to general relativity but are based on non-Riemannian geometry.Famous examples are the Teleparallel and Symmetric Teleparallel gravity theories.In this paper,we show how to obtain the geometry for Teleparallel gravity from Finsler geometry in terms of a ‘Teleparallel type’ connection.

    Keywords: Finsler geometry,teleparallel gravity,Finsler connection

    1.Introduction

    However,there are other frameworks that can be used to hatch gravity theories but are not based on the Riemannian geometry.One example is the ‘Teleparallel’ framework,in which the connection is constrained to be curvature-freeRλρμν=0and metric-compatible ?αgμν=0,so the gravity is attributed to the torsionTλμν[5–8].Another similar example is the so-called‘Symmetric Teleparallel’framework,in which the connection is constrained to be curvature-freeRλρμν=0 and torsion-freeTλμν=0,and the gravity is attributed entirely to the non-metricity tensor Qαμν=?αgμν[9,10].Within both frameworks,gravity models can be constructed to be equivalent to GR,i.e.the Teleparallel equivalent General Relativity (TEGR) model [5–8] in the Teleparallel framework and Symmetric Teleparallel equivalent General Relativity (STGR) model [9,10] in Symmetric Teleparallel framework,respectively.Interestingly,these two frameworks can be used to hatch some modified gravity models which are very difficult (if not impossible) to be constructed within the Riemannian geometry,for instance,the Nieh–Yan modified Teleparallel Gravity [11,12] in the Teleparallel framework,and the parity-violating gravity models discussed in [13,14]within the Symmetric Teleparallel framework.All these frameworks including the Riemannian geometry can be considered as special cases of the metric-affine geometry under different constraints.

    There are frameworks more general than metric-affine geometry.The conception of ‘metric’ may also be generalized.In Riemannian geometry,the length of the world line of a particle is.In a general case,the length of the world line of a particle may be ds=F(x,dx) as long as the function F is smooth enough and homogeneous for the displacement dx[15,16].Such generalization leads us to the so-called Finsler geometry.Some interesting phenomena may come out from such a generalization,e.g.,the geodesic equations are direction-dependent now,or a curve is a geodesic curve from A to B,but not from B to A.Also,more abundant connection structures are contained in Finsler geometry and it may induce the normal metric-affine theory with a specially selected section of the tangent bundle of the base manifold.Hence,it would exist at least three different kinds of connection structure: the ‘GR type’ that may lead to Riemannian geometry,‘Teleparallel type’ and‘Symmetric Teleparallel type’ lead to corresponding frameworks,respectively.The ‘GR type’ at least includes two connections: the so-called ‘Cartan connection’ [17] and‘Chern connection’ [18],as discussed a lot in the literature.On the other hand,the other two types of connection structures are rarely discussed.In this paper,we come up with an example of ‘Teleparallel type’ connection and show how to obtain a generalized teleparallel gravity model from this connection structure.

    In this paper,we will use the metric signature{+,-,-,-}.As usual,the Greek letters μ,ν,ρ,…=0,1,2,3 are tensor indicators and Capital Latins A,B,C,…=0,1,2,3 are internal space indicators.In sections 2 and 3 we review the basic structure of Finsler Geometry.In section 4,we present our connection as an example of ‘Teleparallel type’ connection.In section 5,we use a toy model based on our connection to compare with TEGR or GR,and show the similarities and differences between them.

    2.Basics of Finsler geometry

    2.1.Metric structure

    A Finsler space is an n-dimensional manifold Mnwith a Finsler metric functionF:TM? R+.The function F satisfies the following properties [15,16]:

    1.Regularity: F is C∞on the entire tangent bundle except the origin TM{0}.

    2.Positive homogeneity: F(x,λy)=λF(x,y) for all λ >0.

    3.Signature: The Hessian Matrix

    has a Lorentzian signature.3The original requirement of the Hessian matrix in Finsler Geometry is to be positive definite.However,considering the connection between the Hessian matrix and metric tensor,we change the requirement to having a Lorentzian signature.

    Since for any point x ∈M with local coordinate (xμ),any tangent vector can be expanded as(xμ,yλ) can be chosen as a local coordinate on TM.Then a function F defined on TM can be locally expressed as F=F(xμ,yλ).

    Besides the fundamental tensor (1),one can define the so-called Cartan tensor [15,16]:

    It is clear that the Cartan tensor is totally symmetric.Moreover,the homogeneity leads to the following identities:

    The Finsler Function F defines the length of a curve C(t)in the base manifold M:

    It is easy to see that when taking,the fundamental tensor(1)is just aμν(x),and the length of a curve is the same as that in (pseudo-)Riemann geometry.So the fundamental tensor (1) plays a similar role in Finsler geometry to the metric tensor in (pseudo-)Riemann geometry,while the Cartan tensor (2) implies the difference between Finsler geometry and (pseudo-)Riemann Geometry.

    2.2.(α,β)-metric

    A family of special metric functions is the so-called (α,β)-metric.These metric functions satisfy F=F(α,β),whereα=and β=Aμ(x)yμ.The homogeneity then requires that F(λα,λβ)=λF(α,β).Denoting that

    where yμ?aμνyν,we have the fundamental tensor

    and Cartan tensor

    where the lower indices α,β of L indicate the partial differentiation with respect to α and β.

    where the arguments of functions f are all β/α.When f ≡1,(pseudo-)Riemann geometry is recovered.

    As examples,we have two simpler cases:Randers metric[19] F=α+β or f(x)=1+x,in which

    2.3.Connection structure: basis and non-linear connection

    Since the local coordinate on TM has been chosen to be (xμ,yλ),the natural basis on TM is also determined [16]:

    so the transformations of basis (12) are [16]

    Hence they are not covariant under a coordinate transformation on the base manifold.In order to receive a group of covariant bases,a non-linear connectionshould be introduced,and a group of covariant bases are

    with transformations

    These bases have the following commutative relations:

    In addition,we have the dual basis of (13):

    2.4.Connection structure: linear connection on the bundle

    The Vertical BundleV is the linear space spanned by the basisin (13),and its complement space is called the Horizontal BundleH,i.e.

    Then a linear connection can be defined onV [15,16]:

    Such a connection induces two covariant derivatives of a vector X=Xμ(x,y)?μ: the horizontal covariant derivative?HX

    and the vertical covariant derivative ?VX

    One can continue this connection to the entire tangent bundle if and only if the Deflection condition

    is satisfied [16].At this time,we have the connection

    and two covariant derivatives (17,18) defined on the entire TM.

    2.5.Curvature and torsion

    On TM,we have an outer differential of a function f(x,y):

    Now from connection(16)one can immediately figure out the curvature and torsion with Cartan Structure equations.

    Curvature 2-form is defined as

    with the tensor structure

    Again,such a neat structure requires the Deflection condition(19).Then from the Cartan Curvature Structure equations we have [15,16]

    There is something different about the torsion.The tensor structure of the torsion is

    with 2 torsion 2-forms

    Then from the Cartan Curvature Structure equations we have

    3.Finsler-Bathrel geometry

    One can always induce a (pseudo-)Riemannian geometry from a Finsler geometry with a determined vector field.From this section on,we will use ‘^’ to distinguish the parameters defined on the base manifold M from the ones on TM with similar names.For example,the curvature 2-form on M is denoted as

    The (pseudo-)Riemannian geometry induced from a given Finsler geometry is constructed as follows.We always have a natural map [16]

    While a vector field Y(x) on M,or a section of TM,restricts the map (24) to

    And the connection is the pull back of linear connection(16)[15,16]:

    The tensor is the pull back of τλ:

    And the non-metricity tensor is

    One can examine that(28-30)are indeed constructed with the connection (27).

    4.The Finsler-Teleparallel connection

    We have a group of connections that would lead to Riemannian geometry which hosts GR when the metric is restricted to be the Riemannian metric,and they have been discussed under different cases.On the other hand,as we know,there are other frameworks to host Teleparallel and Symmetric Teleparallel gravities.Then a question comes out that whether these frameworks can be popularized in Finsler Geometry.We will focus on the popularization of the framework hosting the Teleparallel gravity in this paper.

    whereηAB=diag {1,-1,-1,-1}is the flat metric,EAμis a matrix and its inverse is expressed asEAλ.As the natural generalization of ones in Teleparallel Geometry,equations(31),(32)imply the existence of local flat spacetime at each point and keep Einstein’s Equivalent Principle.And from (31),we have the connection coefficients

    withEAμto be determined.Here we have taken the Weitzenb?ck condition.

    We should point out that condition (32) is not easy to satisfy,because gμνis not a fundamental parameter,but is derived from the Finsler metric.Thus (32) would impose restrictions on the matrixEAμ.In the following sections,we will try to determineEAμ.

    4.1.The non-linear connection

    We will discuss the (α,β)-metric only,and denote that

    where eAμis the tetrad associated with aμν.Identities(3)lead to equation

    Now we can make up the non-linear connection from the Deflection condition (19).From (33) it is easy to derive

    Then to contract it with yμwe have

    Finally,we have the non-linear connection

    Up to now we did not specify the form of the matrixmρμ,and the result(42)is independent of it.So a conclusion comes that as long as the matrixEAμtakes the form (37) and the Deflection condition is satisfied,the non-linear connection always takes the form (42).

    From now on,we will rewrite the 1-form

    Then we have

    So the non-linear connection (42) has a simpler form:

    4.2.Matrix mαμ and linear connection

    We now need to determine the matrixmαμby the metriccompatible condition (32).The fundamental tensor (1) of a Finsler metric F=αf is

    It is not easy to find a matrix to satisfy(32).However,we may have a connection structure,which slightly breaks the metric-compatibility on TM,but keep this condition after being pulled back to the base manifold M.In this way,we have a satisfying matrix:

    and it leads to

    Compared with equation (46),there is a slight difference ff″pμpν,which would be seen that have no effect after being pulled back to the base manifold M.And the inverse of this matrix is

    With the matrices (47,49),the linear connection is determined from (33):

    wherehλμ?hμ ν aλν.

    Then the two covariant derivatives of the fundamental tensor (46) can be calculated.The calculation details can be found in the appendix,and here we just give the conclusions directly:

    where {*p} refers to the terms that are proportional to pμ,pμpν,or higher order of pμ.Thus we see that the two covariant derivatives are both proportional to pμor its higher order.We will show that they vanish when pulled back to the base manifold in the following sections,which means that the metric-compatible condition is satisfied on the base manifold.

    4.3.The induced Finsler–Bathrel geometry

    Then the non-linear connection is

    And the induced tetrads are

    The induced metric is

    these two results are indeed equal to each other.Finally,the result is

    and induced torsion is

    One can directly verify that this connection (57) is flat and compatible with the metric (56).On the other hand,the covariant derivative of metric (56) can be also written as

    So we have a connection of the Teleparallel type that is induced from Finsler geometry,and we may call it Finsler–Teleparallel–Bathrel geometry.Within this geometry,one may come up with a group of Teleparallel gravity models.These models should take the tetrad on the base manifoldeAμand the vector field Aλas fundamental variables,for they are defined on the base manifold,i.e.the physical spacetime;while the Finsler metric F(α,β),or the function f,should rely on the model selection,and considered not to be a fundamental variable.

    5.A toy model based on Finsler-Teleparallel-Bathrel connection

    As a simple example,we lay out a toy model in which the induced metric(56)is dynamical,while the primordial metric aμνis‘geometrical’,i.e.it is aμνinstead ofthat couples to the matter fields.Such convention is to remain the dynamics of matter unchanged.Hence,this simple model has the action

    is the torsion scalar determined by the induced tetradAμ.The action of matter Smkeeps the same as that in GR;as an example,considering a scalar field to mimic the matter field,with the following action

    where Gαβis the Einstein Tensor of gμν,and Tμνis the normal energy-momentum tensor.Obviously,the form of the function f,or the Finsler metric,greatly influences the evolution of spacetime,and the special case f ≡1 just gives the Einstein field equations in GR.

    6.Conclusion

    with connection coefficients

    We also used a toy model with action (60) to show this,withbeing dynamical and aμνcoupled with matter.We showed that when f ≡1 or F=α,both the action and the EoMs are induced to the same as ones in TEGR or GR,so the model based on the connection(16)can indeed be considered as a generalization of Teleparallel gravity.

    A group of gravity models can be built in terms of this scheme.These models can have new predictions beyond GR and how they are constrained by current observations are questions deserving of further studies.We will visit these problems in the future.

    Acknowledgments

    We thank the anonymous referees for useful suggestions,Prof.Mingzhe Li for instructions and Dr.Haomin Rao and Dr.Dehao Zhao for helpful discussions.

    This work is supported in part by NSFC under Grant No.12075231 and 12047502.

    Appendix.Proof of equations (51) and (52)

    For vertical covariant derivative,using (9),we have

    so it is proportional to pμor its higher order.

    The horizontal covariant derivative is more complicated.The following results are needed:

    Noticing that the arguments of functions f,g,…are β/α,we have

    Use results (A2–A5) we have

    So the horizontal covariant derivative is

    在线播放国产精品三级| 在线观看免费高清a一片| 日本av手机在线免费观看| 91九色精品人成在线观看| 久久久精品区二区三区| 久久精品国产亚洲av香蕉五月 | 国产不卡av网站在线观看| 亚洲精品国产精品久久久不卡| 亚洲精华国产精华精| 中文字幕人妻熟女乱码| 看免费av毛片| 久久久久久人人人人人| 91精品三级在线观看| 亚洲欧美一区二区三区黑人| 最新在线观看一区二区三区| 亚洲av成人一区二区三| 天天躁夜夜躁狠狠躁躁| 日本黄色日本黄色录像| 日本av免费视频播放| 国产精品久久电影中文字幕 | 欧美激情久久久久久爽电影 | 国产成人啪精品午夜网站| 9191精品国产免费久久| 人人妻,人人澡人人爽秒播| 人妻一区二区av| 1024视频免费在线观看| 国产精品欧美亚洲77777| 日韩免费高清中文字幕av| 在线观看www视频免费| 日韩 欧美 亚洲 中文字幕| 国产三级黄色录像| 最黄视频免费看| 久久影院123| 在线观看66精品国产| 一个人免费看片子| 亚洲国产精品一区二区三区在线| 成人国语在线视频| 高清欧美精品videossex| 亚洲专区中文字幕在线| 久久久久精品人妻al黑| a在线观看视频网站| 欧美日韩亚洲国产一区二区在线观看 | 国产色视频综合| 成人影院久久| 婷婷成人精品国产| 久久久国产精品麻豆| 国产精品成人在线| 怎么达到女性高潮| 亚洲国产欧美日韩在线播放| 亚洲第一青青草原| 午夜精品久久久久久毛片777| 中文字幕色久视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲欧美色中文字幕在线| 午夜福利免费观看在线| 国产欧美日韩综合在线一区二区| 日日摸夜夜添夜夜添小说| 黄网站色视频无遮挡免费观看| 99re在线观看精品视频| 国产精品久久久久久人妻精品电影 | 男女边摸边吃奶| 免费观看a级毛片全部| 久久午夜综合久久蜜桃| 国产精品一区二区精品视频观看| 人妻 亚洲 视频| 夜夜爽天天搞| 久久影院123| 国产精品亚洲一级av第二区| 两个人免费观看高清视频| 亚洲av日韩在线播放| 国产区一区二久久| 在线十欧美十亚洲十日本专区| 国产精品影院久久| 久久人妻福利社区极品人妻图片| 女人精品久久久久毛片| 超碰成人久久| 日韩视频在线欧美| 视频在线观看一区二区三区| 久久国产精品人妻蜜桃| 国产一区二区三区视频了| 国产欧美日韩一区二区三| 在线看a的网站| 日韩中文字幕视频在线看片| 无限看片的www在线观看| 乱人伦中国视频| 大陆偷拍与自拍| 成人国语在线视频| 又紧又爽又黄一区二区| 1024香蕉在线观看| 精品熟女少妇八av免费久了| 亚洲av成人一区二区三| 在线观看一区二区三区激情| 免费女性裸体啪啪无遮挡网站| 99热网站在线观看| 午夜激情av网站| 欧美午夜高清在线| 欧美日韩一级在线毛片| 99久久99久久久精品蜜桃| 自线自在国产av| 精品国产一区二区三区久久久樱花| 一进一出抽搐动态| 精品久久久精品久久久| 国产男靠女视频免费网站| 亚洲精品国产精品久久久不卡| 免费观看a级毛片全部| 久久久久久久久免费视频了| 欧美亚洲日本最大视频资源| 十八禁网站免费在线| 久久性视频一级片| 搡老熟女国产l中国老女人| 日韩制服丝袜自拍偷拍| 少妇裸体淫交视频免费看高清 | 国产亚洲精品久久久久5区| 久久这里只有精品19| 精品少妇内射三级| 精品一区二区三卡| 黄片大片在线免费观看| 久久青草综合色| 大型黄色视频在线免费观看| 肉色欧美久久久久久久蜜桃| 午夜成年电影在线免费观看| 婷婷成人精品国产| 亚洲欧美一区二区三区黑人| 美女扒开内裤让男人捅视频| 日本黄色视频三级网站网址 | 亚洲熟女精品中文字幕| 亚洲 欧美一区二区三区| 老熟妇仑乱视频hdxx| 啦啦啦 在线观看视频| 69精品国产乱码久久久| 丰满少妇做爰视频| 国产精品久久久人人做人人爽| 一级片免费观看大全| 成人18禁在线播放| 精品一区二区三区视频在线观看免费 | 男女之事视频高清在线观看| www.999成人在线观看| 亚洲av美国av| 叶爱在线成人免费视频播放| 久久中文字幕一级| 91国产中文字幕| 久久久国产一区二区| 国产99久久九九免费精品| 757午夜福利合集在线观看| 男人舔女人的私密视频| 午夜福利一区二区在线看| 午夜福利免费观看在线| 十八禁人妻一区二区| 中文字幕色久视频| av电影中文网址| 国产精品影院久久| 大香蕉久久网| 日本黄色视频三级网站网址 | 欧美在线一区亚洲| 黑人欧美特级aaaaaa片| 丝瓜视频免费看黄片| 亚洲性夜色夜夜综合| 成人国产av品久久久| 国产有黄有色有爽视频| 国产男女内射视频| 日韩免费av在线播放| 免费高清在线观看日韩| 国产97色在线日韩免费| 精品福利观看| 午夜福利免费观看在线| 色综合欧美亚洲国产小说| 手机成人av网站| 一进一出好大好爽视频| 国产国语露脸激情在线看| 亚洲午夜理论影院| av视频免费观看在线观看| 免费看十八禁软件| av电影中文网址| 日韩欧美一区二区三区在线观看 | 日本wwww免费看| 欧美精品啪啪一区二区三区| 99精品欧美一区二区三区四区| 亚洲天堂av无毛| 无限看片的www在线观看| av欧美777| 男人操女人黄网站| 曰老女人黄片| 亚洲精品国产精品久久久不卡| 亚洲成a人片在线一区二区| av不卡在线播放| 亚洲第一青青草原| 在线 av 中文字幕| 高清视频免费观看一区二区| 久久久久久亚洲精品国产蜜桃av| 国产精品免费视频内射| 在线天堂中文资源库| 国产一区二区在线观看av| 欧美性长视频在线观看| 久久久精品免费免费高清| 久久午夜亚洲精品久久| 夜夜骑夜夜射夜夜干| 午夜福利乱码中文字幕| 国产极品粉嫩免费观看在线| 下体分泌物呈黄色| 99国产综合亚洲精品| 人妻久久中文字幕网| 亚洲五月色婷婷综合| 日韩欧美三级三区| 高清av免费在线| 少妇粗大呻吟视频| 国产福利在线免费观看视频| 久久99热这里只频精品6学生| 黑人巨大精品欧美一区二区蜜桃| 日韩人妻精品一区2区三区| 两个人看的免费小视频| 99久久人妻综合| 中亚洲国语对白在线视频| 黑人欧美特级aaaaaa片| 国产亚洲精品第一综合不卡| 国产黄频视频在线观看| 久久精品亚洲精品国产色婷小说| 美女高潮喷水抽搐中文字幕| av片东京热男人的天堂| 亚洲成人免费电影在线观看| 久久中文字幕人妻熟女| 丰满迷人的少妇在线观看| 韩国精品一区二区三区| 国产黄色免费在线视频| 成人永久免费在线观看视频 | 中文字幕av电影在线播放| 亚洲成人免费av在线播放| 亚洲精品自拍成人| 一本大道久久a久久精品| 在线永久观看黄色视频| av片东京热男人的天堂| 国产精品久久久久久精品古装| 亚洲性夜色夜夜综合| 夫妻午夜视频| 国产一区有黄有色的免费视频| 最新的欧美精品一区二区| 成人精品一区二区免费| 考比视频在线观看| 国产成人免费观看mmmm| 国产无遮挡羞羞视频在线观看| 国产精品一区二区在线观看99| 大片电影免费在线观看免费| 天天躁夜夜躁狠狠躁躁| 一边摸一边抽搐一进一小说 | 久久精品国产a三级三级三级| 狠狠狠狠99中文字幕| 国产人伦9x9x在线观看| 色在线成人网| 热99re8久久精品国产| 午夜激情av网站| 一个人免费在线观看的高清视频| 99热国产这里只有精品6| 丰满人妻熟妇乱又伦精品不卡| 亚洲午夜理论影院| av线在线观看网站| 久久人妻福利社区极品人妻图片| 久久久久久久久久久久大奶| 一二三四在线观看免费中文在| 欧美日韩国产mv在线观看视频| 麻豆成人av在线观看| 亚洲第一av免费看| 如日韩欧美国产精品一区二区三区| xxxhd国产人妻xxx| 啦啦啦免费观看视频1| 亚洲av国产av综合av卡| 精品国产乱子伦一区二区三区| 亚洲国产欧美日韩在线播放| 欧美老熟妇乱子伦牲交| 久久中文字幕一级| 久久午夜亚洲精品久久| 亚洲国产中文字幕在线视频| 精品久久久精品久久久| 亚洲av成人不卡在线观看播放网| 一进一出好大好爽视频| 交换朋友夫妻互换小说| 精品第一国产精品| 男女午夜视频在线观看| 天天添夜夜摸| 一级片'在线观看视频| 激情在线观看视频在线高清 | 国产精品麻豆人妻色哟哟久久| 亚洲精品中文字幕一二三四区 | 两个人免费观看高清视频| 精品福利永久在线观看| 中文字幕色久视频| 麻豆乱淫一区二区| 90打野战视频偷拍视频| 精品午夜福利视频在线观看一区 | 日韩免费av在线播放| 一进一出好大好爽视频| tocl精华| 亚洲av成人一区二区三| 热re99久久精品国产66热6| a级片在线免费高清观看视频| 久久久久久久久久久久大奶| 丰满人妻熟妇乱又伦精品不卡| 欧美人与性动交α欧美软件| 国产野战对白在线观看| 日韩欧美一区二区三区在线观看 | 狠狠精品人妻久久久久久综合| 两个人免费观看高清视频| 国产一区二区三区在线臀色熟女 | 美女高潮到喷水免费观看| 国产欧美日韩综合在线一区二区| 男女高潮啪啪啪动态图| 最新美女视频免费是黄的| 亚洲自偷自拍图片 自拍| 久久久精品免费免费高清| 一级,二级,三级黄色视频| 91国产中文字幕| 国精品久久久久久国模美| 热re99久久精品国产66热6| 男女床上黄色一级片免费看| 国产成人欧美在线观看 | 久久久水蜜桃国产精品网| www.精华液| tube8黄色片| 亚洲人成伊人成综合网2020| 亚洲国产欧美日韩在线播放| 桃红色精品国产亚洲av| www日本在线高清视频| 国产老妇伦熟女老妇高清| 中文字幕人妻丝袜一区二区| 在线播放国产精品三级| 在线观看一区二区三区激情| aaaaa片日本免费| 成人av一区二区三区在线看| 亚洲一区二区三区欧美精品| www日本在线高清视频| 露出奶头的视频| xxxhd国产人妻xxx| 久久久水蜜桃国产精品网| 亚洲精品国产色婷婷电影| 午夜福利视频在线观看免费| 一区二区av电影网| 99久久人妻综合| 操出白浆在线播放| 狠狠精品人妻久久久久久综合| 免费人妻精品一区二区三区视频| 水蜜桃什么品种好| 最近最新免费中文字幕在线| 精品久久久精品久久久| 90打野战视频偷拍视频| 丁香六月欧美| 女性生殖器流出的白浆| 国产av国产精品国产| 久久天堂一区二区三区四区| 国产精品欧美亚洲77777| 天天躁狠狠躁夜夜躁狠狠躁| e午夜精品久久久久久久| 欧美 日韩 精品 国产| 99riav亚洲国产免费| 99国产精品一区二区三区| 90打野战视频偷拍视频| 国产1区2区3区精品| 日韩欧美三级三区| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品一二三| 欧美中文综合在线视频| av在线播放免费不卡| 极品人妻少妇av视频| 成人av一区二区三区在线看| 男人操女人黄网站| 日韩免费av在线播放| 香蕉国产在线看| 黄网站色视频无遮挡免费观看| 精品福利永久在线观看| 国产精品熟女久久久久浪| 久久精品人人爽人人爽视色| 正在播放国产对白刺激| 免费黄频网站在线观看国产| 日本vs欧美在线观看视频| 三上悠亚av全集在线观看| 两性夫妻黄色片| 日本黄色视频三级网站网址 | 欧美黄色淫秽网站| 十八禁高潮呻吟视频| 久久性视频一级片| 欧美日韩亚洲高清精品| 99riav亚洲国产免费| 美女国产高潮福利片在线看| 黑丝袜美女国产一区| 亚洲精品av麻豆狂野| 亚洲成人国产一区在线观看| 成人18禁在线播放| 午夜福利,免费看| 久久人人爽av亚洲精品天堂| 80岁老熟妇乱子伦牲交| 自拍欧美九色日韩亚洲蝌蚪91| 国产日韩欧美亚洲二区| 日本vs欧美在线观看视频| 男人舔女人的私密视频| 中亚洲国语对白在线视频| 国产99久久九九免费精品| 日韩中文字幕欧美一区二区| 久久中文看片网| av又黄又爽大尺度在线免费看| 亚洲午夜理论影院| 国产日韩欧美在线精品| 又大又爽又粗| 搡老熟女国产l中国老女人| 日韩 欧美 亚洲 中文字幕| 又大又爽又粗| 天天躁日日躁夜夜躁夜夜| 国产不卡一卡二| 国产成人av教育| 妹子高潮喷水视频| 男女边摸边吃奶| 日韩人妻精品一区2区三区| 女警被强在线播放| 中文字幕精品免费在线观看视频| 亚洲精品美女久久av网站| 亚洲精品国产一区二区精华液| 亚洲伊人色综图| 女警被强在线播放| 欧美 日韩 精品 国产| 天天操日日干夜夜撸| 免费久久久久久久精品成人欧美视频| 丁香六月天网| 免费不卡黄色视频| 久久人人97超碰香蕉20202| 99riav亚洲国产免费| 啦啦啦视频在线资源免费观看| 少妇被粗大的猛进出69影院| 国产区一区二久久| 乱人伦中国视频| 国产麻豆69| 伊人久久大香线蕉亚洲五| 成人手机av| 亚洲精品在线美女| 国产精品成人在线| 国产精品亚洲一级av第二区| 久久中文字幕一级| 99九九在线精品视频| 19禁男女啪啪无遮挡网站| 纵有疾风起免费观看全集完整版| 777米奇影视久久| 亚洲成人免费av在线播放| 免费观看a级毛片全部| 国产精品一区二区精品视频观看| 考比视频在线观看| 女警被强在线播放| 老汉色∧v一级毛片| 高清黄色对白视频在线免费看| 99精品在免费线老司机午夜| av视频免费观看在线观看| 成人国语在线视频| 丝瓜视频免费看黄片| 中亚洲国语对白在线视频| 日本av免费视频播放| 中文欧美无线码| 亚洲 欧美一区二区三区| 成年动漫av网址| 亚洲成a人片在线一区二区| 在线十欧美十亚洲十日本专区| 在线天堂中文资源库| 欧美国产精品一级二级三级| 国产一区二区三区视频了| 欧美在线一区亚洲| 成人永久免费在线观看视频 | 久久这里只有精品19| 精品一区二区三区视频在线观看免费 | 两性夫妻黄色片| 老司机在亚洲福利影院| 国产在线视频一区二区| 欧美国产精品一级二级三级| 精品人妻1区二区| 99热国产这里只有精品6| 又紧又爽又黄一区二区| 黄频高清免费视频| 咕卡用的链子| 侵犯人妻中文字幕一二三四区| 19禁男女啪啪无遮挡网站| 欧美国产精品一级二级三级| 丝瓜视频免费看黄片| 免费看十八禁软件| 757午夜福利合集在线观看| 国产欧美日韩一区二区三| 99热网站在线观看| 天天躁夜夜躁狠狠躁躁| 69av精品久久久久久 | 一进一出好大好爽视频| 最新在线观看一区二区三区| 久久婷婷成人综合色麻豆| 黄色视频不卡| 我的亚洲天堂| 成年动漫av网址| 亚洲综合色网址| 欧美av亚洲av综合av国产av| 99香蕉大伊视频| 狠狠精品人妻久久久久久综合| 亚洲精品自拍成人| 国产精品99久久99久久久不卡| 丝袜美腿诱惑在线| 亚洲午夜理论影院| 亚洲人成77777在线视频| 久久青草综合色| 欧美激情极品国产一区二区三区| 黄片播放在线免费| 久久久水蜜桃国产精品网| 午夜免费鲁丝| 99在线人妻在线中文字幕 | 午夜福利视频精品| 岛国毛片在线播放| 中文字幕av电影在线播放| 高清视频免费观看一区二区| 欧美国产精品一级二级三级| 国产精品久久久av美女十八| 老司机午夜十八禁免费视频| 国产成人欧美| 香蕉国产在线看| 美女视频免费永久观看网站| 欧美亚洲 丝袜 人妻 在线| 下体分泌物呈黄色| 久久99一区二区三区| 欧美日韩国产mv在线观看视频| 日韩三级视频一区二区三区| av天堂久久9| 一进一出好大好爽视频| 大片电影免费在线观看免费| 亚洲专区中文字幕在线| 免费观看a级毛片全部| 少妇 在线观看| 久久精品91无色码中文字幕| 久久久久网色| 99国产精品一区二区蜜桃av | 水蜜桃什么品种好| 国产精品 国内视频| 欧美性长视频在线观看| 精品久久久久久久毛片微露脸| av天堂久久9| 99精品欧美一区二区三区四区| 国产片内射在线| 国产一卡二卡三卡精品| 精品午夜福利视频在线观看一区 | 51午夜福利影视在线观看| 丝袜美足系列| 亚洲人成77777在线视频| 黑人欧美特级aaaaaa片| 亚洲第一av免费看| 久久久久视频综合| 日韩视频在线欧美| 熟女少妇亚洲综合色aaa.| 国产在线观看jvid| 国产成人免费观看mmmm| 亚洲伊人色综图| 久久精品国产99精品国产亚洲性色 | 高清在线国产一区| 啦啦啦免费观看视频1| 日本wwww免费看| videos熟女内射| 成人三级做爰电影| 亚洲精品久久成人aⅴ小说| 亚洲成a人片在线一区二区| 人人妻,人人澡人人爽秒播| 亚洲一卡2卡3卡4卡5卡精品中文| 女同久久另类99精品国产91| 一夜夜www| av免费在线观看网站| 国产成人精品久久二区二区91| 精品国产国语对白av| 国产精品av久久久久免费| 亚洲欧美一区二区三区久久| 女性生殖器流出的白浆| 久久 成人 亚洲| 99国产综合亚洲精品| 亚洲av片天天在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲av第一区精品v没综合| 一本综合久久免费| 电影成人av| 美女视频免费永久观看网站| 操出白浆在线播放| 无遮挡黄片免费观看| av又黄又爽大尺度在线免费看| 极品人妻少妇av视频| 久久久久久人人人人人| 操出白浆在线播放| 一个人免费看片子| 亚洲欧洲精品一区二区精品久久久| 精品亚洲成国产av| 蜜桃在线观看..| av国产精品久久久久影院| 成年人免费黄色播放视频| 国产99久久九九免费精品| 国产一区二区三区综合在线观看| 久久久久久久久免费视频了| 国产精品香港三级国产av潘金莲| 国产成人一区二区三区免费视频网站| 好男人电影高清在线观看| 午夜老司机福利片| 99re在线观看精品视频| 亚洲综合色网址| 久久中文看片网| 日日爽夜夜爽网站| 精品免费久久久久久久清纯 | 亚洲精品一卡2卡三卡4卡5卡| 一级,二级,三级黄色视频| 亚洲精品一卡2卡三卡4卡5卡| 汤姆久久久久久久影院中文字幕| 国产亚洲av高清不卡| 大香蕉久久成人网| 黑人巨大精品欧美一区二区蜜桃| 日本一区二区免费在线视频| 男人舔女人的私密视频| 菩萨蛮人人尽说江南好唐韦庄| 国产精品影院久久| 久久久久国产一级毛片高清牌| 丝袜喷水一区| 夫妻午夜视频| 日韩三级视频一区二区三区| 大片免费播放器 马上看| 亚洲性夜色夜夜综合| 超碰成人久久| 久久免费观看电影| 999精品在线视频|