• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solving local constraint condition problem in slave particle theory with the BRST quantization

    2023-10-11 05:31:10XiLuoJianqiaoLiuandYueYu
    Communications in Theoretical Physics 2023年9期

    Xi Luo,Jianqiao Liu and Yue Yu,*

    1 College of Science,University of Shanghai for Science and Technology,Shanghai 200093,China

    2 Department of Physics,Fudan University,Shanghai 200433,China

    Abstract With the Becchi–Rouet–Stora–Tyutin (BRST) quantization of gauge theory,we solve the longstanding difficult problem of the local constraint conditions,i.e.the single occupation of a slave particle per site,in the slave particle theory.This difficulty is actually caused by inconsistently dealing with the local Lagrange multiplier λi which ensures the constraint: in the Hamiltonian formalism of the theory,λi is time-independent and commutes with the Hamiltonian while in the Lagrangian formalism,λi(t) becomes time-dependent and plays a role of gauge field.This implies that the redundant degrees of freedom of λi(t)are introduced and must be removed by the additional constraint,the gauge fixing condition (GFC) ?tλi(t)=0.In literature,this GFC was missed.We add this GFC and use the BRST quantization of gauge theory for Dirac’s first-class constraints in the slave particle theory.This GFC endows λi(t) with dynamics and leads to important physical results.As an example,we study the Hubbard model at half-filling and find that the spinon is gapped in the weak U and the system is indeed a conventional metal,which resolves the paradox that the weak coupling state is a superconductor in the previous slave boson mean field(MF)theory.For the t–J model,we find that the dynamic effect of λi(t)substantially suppresses the d-wave pairing gap and then the superconducting critical temperature may be lowered at least a factor of one-fifth of the MF value which is of the order of 1000 K.The renormalized Tc is then close to that in cuprates.

    Keywords: slave particle,BRST,gauge theory,high Tc superconductivity,Hubbard model t–J model

    1.Introductions

    The Hubbard model,though it is simple,is in the central position for understanding strongly correlated electron systems [1,2].The single-band Hubbard model [3] was considered as the starting point to explain the high-Tcsuperconductivity (SC) [4].The strong Hubbard repulsion limit of the Hubbard model tends to the t–J model,which also was derived from a more realistic model for cuprates [5–7].Numerous subsequent studies on these two models were done either analytically or numerically.Many numerical simulation results are very impressive but they are basically subject to the computational resources and so are far from conclusive ones.Useful analytical approaches include the Gutzwiller approximation [8],mean field (MF) theories [9–17],and the gauge theory [18–24] based on the slave particle formalism[25–31].Analog to the slave particle models,a large class of models,e.g.spin-fermion models,were developed to study the strongly correlated systems such as cuprates based on the spin fluctuations [32–36].

    Recently,the renormalized MF theory based on the Gutzwiller projection [14–17] has been generalized to that in the form of statistically-consistent Gutzwiller approximation[37],which was proved to be equivalent to the slave boson theory.The results in terms of the further subsequent generalization,i.e.a systematic diagrammatic expansion of the variational Gutzwiller-type wave function may be quantitatively compared with the experimental properties of cuprates [38].

    We are not going to focus on the results obtained by these methods because they are too fruitful to be summarized.We will try to improve the slave boson method and fix some shortcomings of the theory.For example,the slave particle theory looks very powerful because it exactly maps a strongly correlated electron system to a weakly coupled slave particle one but things become difficult when dealing with local constraint conditions Ti=0 (see equation (3)),i.e.only one type of the single slave particle can occupy a lattice site i.The temporal component of the gauge field,λi(t) and the spatial components of the gauge field which are introduced to compensate for the gauge symmetry breaking by the MF approximation are not dynamic so the conventional perturbation theory is not applicable.In this paper,we try to solve these problems.

    In terms of Dirac’s approach to solve the first-class constraint systems,a term -∑iλiTiwith λibeing the Lagrange multiplier is added to the Hamiltonian H.Since there are no temporal or spatial derivatives of λiin the Hamiltonian,[H,λi]=0 and then λiwill not evolve with time.In literature,λiwas simply relaxed to a time-dependent field λi(t) and as the temporal component of the gauge field.This introduces the redundant degrees of freedom because λishould be kept static,i.e.an additional constraint?t λi(t)≡λ˙i(t)=0must be enforced.This point was missed before.Instead,in the MF approximation,a conventional approximationλi(t)=a constant with no spatial and temporal dependence,was taken.Althoughis zero,obviously this brings many unphysical degrees of freedom so that the MF theory after this approximation is not reliable or controllable.Many further improvements are proposed to deal with this issue but they do not bring conclusive results[18–21].Recent development in the statistical Gutzwiller approximation sheds light to systematically relieving the difficulties that original renormalization MF theory meets[37,38].In this paper,we make efforts to improve the slave particle theory by considering the additional constraint(t)=0instead ofλi=

    When an electron operator is decomposed into slave particles,a gauge symmetry is induced and λi(t)behaves as a gauge potential in the temporal direction.To remove the redundant gauge degrees of freedom,one has to introduce a GFC while keeping the physical observables is gauge invariant.Simply settingλi(t)=is a GFC but it is not a good GFC because it violates the constraint Ti=0 and brings unphysical degrees of freedom.For a gauge theory with constraints,the GFC must be consistent with the constraints.

    In this paper,we focus on the pairing states of the spinons and study the BCS-type MF states.In this case,the spatial components of the gauge field are not necessary to be introduced.We examine the spinion pairing gap of the Hubbard and t–J models.For the Hubbard model,it was found that the MF state of the slave bosons at half-filling in a small U is an s-wave SC state [41,42].This is obviously wrong because the Hubbard model in the weak coupling limit is a conventional metal.We show that after considering the dynamics of λi(t)induced by the constraint(t)=0,the SC state is not stable because integrating over λi(t) induces an unusual pairing instability of spinon’s Fermi surface and the spinon is gapped.This destroys the SC at half-filling.

    Similarly,for the t–J model at the spinon pairing gap state or the SC state,integrating over λi(t) contributes an additional unusual term to the spinon pairing.This additional contribution does not destroy the MF SC gap but may substantially suppress it.Numerically,the gap will be smaller than at least a factor of one-fifth of the MF SC gap.Thus,one can expect the d-wave SC critical temperature Tc,whose MF value is of the order 1000 K,is substantially lowered and might be comparable with that of cuprates.

    This paper is organized as follows: in section 2,weexplain why the additional constraint(t)=0is necessary for the slave particle theory.We relate this additional constraint to the BRST quantization of the gauge theory.In section 3,we apply our theory to the Hubbard model at halffilling and show the SC state in the small U is unstable.In section 4,we study the spinon gap suppression by λi(t)'s fluctuation in the t–J model and discuss the implication to Tcof curpates.In section 5,we conclude this work and schematically look forward to the prospect of the applications of our theory to the strongly correlated systems.

    2.Constraint to the Lagrange multiplier and BRST quantization

    For a strongly correlated electron many-body system,a conventional perturbation theory based on the Fermi liquid theory does not work.In order to turn the strong interacting electron model to an equivalent weak coupling theory,a powerful method called the slave boson/fermion theory is applied[25–28].For the electron operator ciσat a lattice site i,the local quantum space is{|0〉,|↑〉,|↓〉,|↑↓〉}.The completeness condition reads

    and so on.The completeness condition (1) maps to a local constraint

    2.1.Additional constraint

    For a Hamilton system with constraints,we follow Dirac’s method to solve the constrained system and introduce a Lagrange multiplier λi.The Hamiltonian for the constrained problem is given by

    In Schr?dinger’s picture,H,λiand Tiare all time-independent.Notice that [Hλ,λi]=0 and then λidoes not evolve as time.

    where∏Φiare the canonical conjugate fields of Φi.The Lagrangian (7) is exactly the same as (6).

    2.2.Gauge symmetry

    One way to remove the redundant gauge degrees of freedom is replacing LGIby the Lagrangian (6)

    where

    This is a correct gauge fixing Lagrangian of the Abelian gauge theory but equation (11) is not gauge invariant.In order to resolve this paradox,we recall the Faddeev–Popov quantization of the gauge theory.We insert 1 into the gauge invariant (9) to fix the redundant gauge degrees of freedom in terms of

    and finally [43]

    where N(ξ)is an unimportant infinity constant.The path integral(14) is gauge invariant.Comparing (14) and (11),they differ from a factordet()after dropping N(ξ).At the present case,this determinant does not contain any fields and is a constant.This means that (11) is equivalent to (14).Therefore,up to a constant determinant,(11) is gauge invariant.However,for a non-Abelian gauge theory,the determinant in general is dependent on the gauge field and can not be dropped.This is why Faddeev–Popov ghost fields are introduced.

    2.3.BRST quantization

    Integrating over the ghost fields,the path integral WBRSTrecovers the path integral (11).Therefore,the BRST quantization of the gauge theory is exactly equivalent to the conventional path integral quantization.Notice that this BRST quantization may also be applied to non-Abelian gauge theory such as the SU(2)gauge theory of the slave boson[20].In the quantization of the non-Abelian gauge theory,the determinant for the non-Abelian gauge theory will not be easily treated without introducing the Faddeev–Popov ghosts.

    The benefits gained from the BRST quantization are that:

    (1) Because the BRST symmetry is a global symmetry with respect to the fermionic constant ∈,one can define the conservation fermionic charge from Nother’s theorem

    All the physical states which are ghost-free obey

    This recovers Ti=0 and(t)=0because ξ is an arbitrary constant.From the gauge theory point of view,λi(t)=is also a GFC,which removes the redundant degrees of freedom but the constraint Ti=0 is relaxed to 〈Ti〉=0.This brings other unphysical degrees of freedom into the quantum state space.The gauge theory developed in [18–21] tried to solve this problem in a different way from ours.

    (2) The nilpotency Q2=0 resembles the external differential operator d2=0 in the deRahm cohomology.The constraint (18) is called a BRST cocycle condition and all physical states form the BRST cohomology group which topologically classifies the strongly correlated systems.

    (3) Introducing the ghost fields greatly simplifies the quantization of the non-Abelian gauge theory which we will not involve in here.For the Abelian gauge theory considered in this paper,the ghost fields are decoupled to the gauge field and can be integrated away.Therefore,we will use the path integral(11).For finite temperature T,if mapping t →iτ,the path integral turns to the partition function

    3.The Hubbard model at half-filling

    To be concrete,we take the repulsive Hubbard model on a square lattice at half-filling as an example.The model Hamiltonian is given by

    As we have argued,to study the detailed properties the various phases,we need to do various MF approximations fluctuated by the spatial components of the gauge field which is not the task in this work.We only restrict on the fluctuation from λi(t)and examine the instability of the BCS MF states at half-filling for small U.The original Hubbard model at halffilling is metallic for small U,while the previous slave boson MF theory gave a SC phase[41,42].In this SC phase,charge and spin excitations are gapless and the slave bosons condense [41].Neglecting the boson fluctuation of the condensate,the effective Lagrangian reads

    where g is a constant which is arbitrary according to the constraint Ti=0.The a-dependent part inreads

    Integrating away ak(ω),the effective interacting Lagrangian between the spinons reads

    The pairing Hamiltonian is then given by

    4.t-J model

    We are going to the large U limit.It was known that the SC MF theory of the t–J model has a SC Tc~1000 K.Let us see if λifluctuation can suppress it.The t–J model Hamiltonian on the square lattice is given by

    The effective slave boson t–J Lagrangian then reads

    Replacing Leffin equation (11) by,one has the path integral for the t–J model.If we ignore the condensed holon fluctuation,the effective low-lying Lagrangian in the SC MF state is given by

    Fig.2.Numerical result ofof ξ.We choose the material data of cuprates [44],i.e.J~0.12 eV,χf~0.2-0.3,ρh~0.18-0.25,and μf~-0.05 eV.The four curves in the diagram,from the top to bottom,correspond to Jχf/4+tρh=0.10 eV,0.11 eV,0.12 eV,and 0.13 eV,respectively.

    5.Conclusions and prospects

    We have properly dealt with the local constraint conditions in the slave boson representation of the strongly correlated systems.We argued that as a gauge theory with Dirac’s firstclass constraint,taking the GFC that removes the redundant gauge degrees of freedom must be consistent with the constraint.The BRST quantization is a consistent method to do that although the final path integral for the Abelian gauge theory is decoupled to the ghost fields.We have applied our theory to the Hubbard model at half-filling and found that the ground state of the system in small U is indeed a conventional metal.We showed that the MF s-wave SC state obtained by the slave boson representation in a previous study is not stable against the gauge fluctuation of the gauge field λi(t).For the strong coupling system,we studied the t–J model.We focused on the gauge fluctuation to the d-wave SC gap and found that it was substantially suppressed to a factor of onefifth.For cuprates,this means that the MF SC Tcis lowered from 1000 to 200 K.As we have mentioned,the gauge fluctuation from the spatial components of the gauge field was not considered.It might further reduce Tcto be comparable to that of the cuprates materials.

    Historically,the MF phase diagram of the t–J model was studied in the early days when the high TcSC was found in cuprates.The gauge fluctuation to various MF states was studied.However,as we see here,the GFC might not be introduced properly because the spatial components of the gauge field also play a role of the Lagrange multiplier to the constraint on the currents.Additional constraints are also needed.This may endow the gauge field with dynamics.Then,the gauge invariant physical quantities can be calculated with perturbation theory.For instance,one can calculate the renormalized pairing gap by Dyson’s equation using the perturbation theory

    Acknowledgments

    This work is in memory of Professor Zhong-Yuan Zhu for his discussions with YY in the possible application of the BRST quantization to strongly correlated systems thirty years ago.The authors thank Professor Qian Niu for his insightful comments and resultful discussions.We are grateful to Jianhui Dai and Long Liang for useful discussions.This work is supported by NNSF of China with No.12174067.

    Appendix.Dispersion and renormalized pairing gap

    The SC dispersion relation in the t–J model can be solved by equation (37)

    This gives the dispersion relation.Defining the renormalized gap by

    we have

    The ground state energy is given by

    where the … stands for the ξ-independent part.In the numerical calculation,we choose the parameters of cuprates,i.e.J~0.12 eV, χf~0.2-0.3, ρh~0.18-0.25,and Jχf/4+tρh~0.1-0.13 eV [44].The spinon chemical potential μfis determined by

    where ρfis the spinon density and G is the Gibbs free energy.To the zeroth order of ξ,it reduces to

    高清视频免费观看一区二区| 观看免费一级毛片| 国产成人a∨麻豆精品| 亚洲综合色惰| 亚洲最大成人中文| 欧美成人午夜免费资源| av国产久精品久网站免费入址| 久久久成人免费电影| 国产av国产精品国产| 成人国产av品久久久| 精品熟女少妇av免费看| 夜夜爽夜夜爽视频| 午夜爱爱视频在线播放| 我要看日韩黄色一级片| 蜜臀久久99精品久久宅男| 97超碰精品成人国产| 久久久久久久大尺度免费视频| 国产av国产精品国产| 国产成人91sexporn| av在线蜜桃| 高清视频免费观看一区二区| 久久精品国产亚洲av天美| 美女cb高潮喷水在线观看| 亚洲一级一片aⅴ在线观看| 国产高潮美女av| 熟女av电影| 亚洲美女搞黄在线观看| 亚洲最大成人手机在线| 91久久精品国产一区二区三区| 日本与韩国留学比较| 看十八女毛片水多多多| 国产 一区 欧美 日韩| 日韩 亚洲 欧美在线| 成人漫画全彩无遮挡| 国内揄拍国产精品人妻在线| 亚洲第一区二区三区不卡| 亚洲欧美成人精品一区二区| 大香蕉久久网| 国产精品麻豆人妻色哟哟久久| 狂野欧美激情性bbbbbb| 91在线精品国自产拍蜜月| av又黄又爽大尺度在线免费看| 午夜福利在线在线| 三级经典国产精品| 中文字幕久久专区| 蜜桃亚洲精品一区二区三区| 午夜老司机福利剧场| 国产一区二区亚洲精品在线观看| 欧美日韩视频精品一区| 夜夜看夜夜爽夜夜摸| 在线播放无遮挡| 涩涩av久久男人的天堂| 韩国av在线不卡| 嫩草影院入口| 久久久精品94久久精品| 男女下面进入的视频免费午夜| 在线看a的网站| 亚洲国产精品999| 尤物成人国产欧美一区二区三区| 97精品久久久久久久久久精品| 天天躁日日操中文字幕| 午夜激情久久久久久久| 国产真实伦视频高清在线观看| 五月开心婷婷网| 国产大屁股一区二区在线视频| 最近的中文字幕免费完整| 一二三四中文在线观看免费高清| 各种免费的搞黄视频| 国产黄色免费在线视频| 亚洲成色77777| 国产亚洲av片在线观看秒播厂| 国产成人aa在线观看| 国产成人免费无遮挡视频| 在线 av 中文字幕| 热re99久久精品国产66热6| 亚洲av成人精品一区久久| 日日啪夜夜爽| 少妇 在线观看| 一区二区三区免费毛片| 我要看日韩黄色一级片| 国产精品国产三级国产av玫瑰| 只有这里有精品99| 肉色欧美久久久久久久蜜桃 | 亚洲自拍偷在线| 欧美最新免费一区二区三区| 老女人水多毛片| 久久久久性生活片| 色播亚洲综合网| 在线观看国产h片| 国产欧美另类精品又又久久亚洲欧美| 亚洲熟女精品中文字幕| videossex国产| 国产综合精华液| 国产欧美另类精品又又久久亚洲欧美| 午夜日本视频在线| 日本免费在线观看一区| 欧美人与善性xxx| 免费少妇av软件| 性色av一级| 一本一本综合久久| 国产免费视频播放在线视频| 青春草亚洲视频在线观看| 国产成人91sexporn| 2021天堂中文幕一二区在线观| 亚洲av日韩在线播放| 亚洲经典国产精华液单| 日韩成人伦理影院| 亚洲三级黄色毛片| 亚洲精品一区蜜桃| 婷婷色av中文字幕| 亚洲国产成人一精品久久久| 草草在线视频免费看| 26uuu在线亚洲综合色| 高清午夜精品一区二区三区| 搞女人的毛片| 成人午夜精彩视频在线观看| 丝袜喷水一区| 午夜爱爱视频在线播放| 欧美高清性xxxxhd video| 国产视频内射| 在线免费十八禁| 最后的刺客免费高清国语| 久久6这里有精品| 噜噜噜噜噜久久久久久91| 亚洲自偷自拍三级| www.色视频.com| 欧美bdsm另类| 久久99蜜桃精品久久| 免费高清在线观看视频在线观看| 人妻夜夜爽99麻豆av| 日韩,欧美,国产一区二区三区| 亚洲精品一二三| 亚洲丝袜综合中文字幕| videos熟女内射| 久久久久久久国产电影| 免费看av在线观看网站| 99热6这里只有精品| 亚洲国产精品成人久久小说| 亚洲高清免费不卡视频| 天美传媒精品一区二区| 成人漫画全彩无遮挡| 国产亚洲最大av| 日韩av免费高清视频| av免费在线看不卡| 99久久精品热视频| 亚洲av成人精品一二三区| 日韩欧美精品v在线| 久久久午夜欧美精品| 日韩一本色道免费dvd| 亚洲av欧美aⅴ国产| 欧美日韩综合久久久久久| 伦理电影大哥的女人| 岛国毛片在线播放| 亚洲最大成人中文| 日韩国内少妇激情av| 国产成人一区二区在线| 中国美白少妇内射xxxbb| 18+在线观看网站| 亚洲av中文字字幕乱码综合| 欧美97在线视频| 成人美女网站在线观看视频| 最近最新中文字幕大全电影3| 国产日韩欧美亚洲二区| 九九爱精品视频在线观看| 亚洲av不卡在线观看| 如何舔出高潮| 久久久久久久国产电影| 成年av动漫网址| 极品教师在线视频| 91精品国产九色| 在线亚洲精品国产二区图片欧美 | 亚洲精品第二区| 国产 精品1| 国产精品一区www在线观看| 人妻少妇偷人精品九色| 国产精品一区www在线观看| 国产精品99久久99久久久不卡 | 国产极品天堂在线| 婷婷色麻豆天堂久久| 日产精品乱码卡一卡2卡三| 久久99精品国语久久久| 免费高清在线观看视频在线观看| 午夜福利在线在线| 2021天堂中文幕一二区在线观| 91aial.com中文字幕在线观看| 一区二区三区精品91| 日韩欧美精品v在线| 婷婷色综合大香蕉| 亚洲欧洲国产日韩| 九九久久精品国产亚洲av麻豆| 日韩制服骚丝袜av| 成人国产av品久久久| 久久久国产一区二区| 国产成人福利小说| 99久国产av精品国产电影| 午夜福利视频1000在线观看| 男人和女人高潮做爰伦理| 丝袜脚勾引网站| 亚洲精品成人av观看孕妇| 国产乱来视频区| 亚洲精品中文字幕在线视频 | 人妻一区二区av| 人妻制服诱惑在线中文字幕| 国产白丝娇喘喷水9色精品| 99精国产麻豆久久婷婷| 高清午夜精品一区二区三区| 在线看a的网站| 亚洲精品乱码久久久久久按摩| 欧美亚洲 丝袜 人妻 在线| 日本色播在线视频| 日韩不卡一区二区三区视频在线| 国产成人91sexporn| 又粗又硬又长又爽又黄的视频| 一级a做视频免费观看| 激情 狠狠 欧美| 久久久久久久精品精品| 亚洲,一卡二卡三卡| 好男人视频免费观看在线| 国产亚洲av嫩草精品影院| 午夜爱爱视频在线播放| 激情 狠狠 欧美| 一区二区三区四区激情视频| videossex国产| 亚洲国产色片| 久久久久性生活片| 亚洲人成网站在线播| 涩涩av久久男人的天堂| 欧美潮喷喷水| 99re6热这里在线精品视频| 伦理电影大哥的女人| 天堂中文最新版在线下载 | 大码成人一级视频| 我要看日韩黄色一级片| 亚洲欧美日韩卡通动漫| 丰满少妇做爰视频| 熟女人妻精品中文字幕| 91精品国产九色| 免费黄频网站在线观看国产| 成人午夜精彩视频在线观看| 汤姆久久久久久久影院中文字幕| 日韩不卡一区二区三区视频在线| 精品一区在线观看国产| 亚洲精品国产色婷婷电影| 观看美女的网站| 亚洲综合精品二区| 少妇人妻精品综合一区二区| 久热久热在线精品观看| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美一区视频在线观看 | 偷拍熟女少妇极品色| 大片免费播放器 马上看| 午夜爱爱视频在线播放| 免费看日本二区| 又黄又爽又刺激的免费视频.| 18+在线观看网站| .国产精品久久| 日韩一本色道免费dvd| 久久精品久久久久久噜噜老黄| 国产男人的电影天堂91| 少妇裸体淫交视频免费看高清| 王馨瑶露胸无遮挡在线观看| 99久国产av精品国产电影| 啦啦啦啦在线视频资源| 中文字幕免费在线视频6| 男女那种视频在线观看| 国产午夜精品一二区理论片| 成年版毛片免费区| 国产成人精品久久久久久| 国产免费福利视频在线观看| 三级国产精品欧美在线观看| 哪个播放器可以免费观看大片| 亚洲自偷自拍三级| 久久久久久久精品精品| 99久国产av精品国产电影| 国产精品伦人一区二区| 国产高清三级在线| 搞女人的毛片| 午夜福利网站1000一区二区三区| 91aial.com中文字幕在线观看| 亚州av有码| 69人妻影院| 成年人午夜在线观看视频| 中文字幕制服av| 久久精品熟女亚洲av麻豆精品| 女人久久www免费人成看片| 在线观看av片永久免费下载| 日韩不卡一区二区三区视频在线| 欧美国产精品一级二级三级 | 人妻制服诱惑在线中文字幕| 交换朋友夫妻互换小说| 久久久久精品久久久久真实原创| 麻豆国产97在线/欧美| 性插视频无遮挡在线免费观看| 99热6这里只有精品| 国产亚洲av片在线观看秒播厂| 国产精品99久久久久久久久| 国产爱豆传媒在线观看| 99久久中文字幕三级久久日本| 嫩草影院精品99| 一本久久精品| 欧美 日韩 精品 国产| 联通29元200g的流量卡| 亚洲色图av天堂| av在线观看视频网站免费| 国产一区亚洲一区在线观看| 嫩草影院新地址| 国产黄色视频一区二区在线观看| 尤物成人国产欧美一区二区三区| 欧美+日韩+精品| 午夜福利网站1000一区二区三区| 日韩精品有码人妻一区| 欧美性感艳星| 好男人在线观看高清免费视频| 欧美极品一区二区三区四区| 亚洲精华国产精华液的使用体验| 亚洲电影在线观看av| 婷婷色综合大香蕉| 91久久精品国产一区二区三区| 国产亚洲av嫩草精品影院| 狠狠精品人妻久久久久久综合| 人妻 亚洲 视频| 精品国产一区二区三区久久久樱花 | 国产精品一及| 在线 av 中文字幕| 免费av观看视频| eeuss影院久久| 丝袜美腿在线中文| 下体分泌物呈黄色| 国产乱人偷精品视频| 久久鲁丝午夜福利片| 边亲边吃奶的免费视频| av免费在线看不卡| 91久久精品国产一区二区成人| 人妻系列 视频| 秋霞伦理黄片| 天堂中文最新版在线下载 | 日韩成人av中文字幕在线观看| 亚洲欧美一区二区三区国产| 久久久久久久亚洲中文字幕| 成人免费观看视频高清| 精品人妻视频免费看| 激情 狠狠 欧美| 国产黄色视频一区二区在线观看| 天堂网av新在线| 国产熟女欧美一区二区| 日韩精品有码人妻一区| 日本av手机在线免费观看| 国产乱来视频区| 精品久久久久久久人妻蜜臀av| 国产免费一级a男人的天堂| 国产精品国产三级国产av玫瑰| 嫩草影院入口| 欧美极品一区二区三区四区| 亚洲在久久综合| 国产黄频视频在线观看| 久久精品综合一区二区三区| 久久久久网色| 国产成人精品一,二区| 一级毛片黄色毛片免费观看视频| 亚洲国产av新网站| 欧美zozozo另类| 亚洲av不卡在线观看| 亚洲欧美日韩东京热| 欧美日韩在线观看h| 嫩草影院精品99| 久久精品国产亚洲网站| 少妇的逼水好多| 亚洲激情五月婷婷啪啪| 久久久久久久午夜电影| 亚洲欧美中文字幕日韩二区| 亚洲三级黄色毛片| 人妻夜夜爽99麻豆av| 国产亚洲91精品色在线| 2021少妇久久久久久久久久久| 国产高清三级在线| 肉色欧美久久久久久久蜜桃 | 欧美极品一区二区三区四区| 日本熟妇午夜| 久久国产乱子免费精品| 搡老乐熟女国产| 国产黄色视频一区二区在线观看| 国产淫语在线视频| 亚洲av日韩在线播放| 色吧在线观看| 插阴视频在线观看视频| 国产乱人偷精品视频| 夫妻性生交免费视频一级片| 亚洲伊人久久精品综合| 日韩欧美精品免费久久| 别揉我奶头 嗯啊视频| 国产成人一区二区在线| 我的老师免费观看完整版| 一级毛片 在线播放| 亚洲最大成人手机在线| 国产免费又黄又爽又色| 欧美精品一区二区大全| 97在线视频观看| 少妇熟女欧美另类| 国产成人一区二区在线| 日韩欧美精品v在线| 91在线精品国自产拍蜜月| 国产91av在线免费观看| 日韩,欧美,国产一区二区三区| av国产免费在线观看| 久久久久久久午夜电影| 久久人人爽人人片av| 高清视频免费观看一区二区| 97人妻精品一区二区三区麻豆| 欧美zozozo另类| 熟妇人妻不卡中文字幕| 天天一区二区日本电影三级| 亚洲欧美日韩无卡精品| 亚洲精品久久午夜乱码| 国产爽快片一区二区三区| 国产毛片a区久久久久| 精品久久久久久电影网| 一级毛片我不卡| 天堂网av新在线| 久久精品人妻少妇| 超碰av人人做人人爽久久| 久久久久久久国产电影| 亚洲成色77777| 国产一区亚洲一区在线观看| 欧美极品一区二区三区四区| 亚洲精品成人久久久久久| 91精品国产九色| 成人黄色视频免费在线看| 蜜桃亚洲精品一区二区三区| 亚洲成人精品中文字幕电影| 国产视频内射| 一区二区三区精品91| 国产亚洲av嫩草精品影院| 精品视频人人做人人爽| 蜜臀久久99精品久久宅男| 亚洲色图综合在线观看| 中文在线观看免费www的网站| 永久免费av网站大全| 99九九线精品视频在线观看视频| 午夜精品国产一区二区电影 | 蜜臀久久99精品久久宅男| 国产高清有码在线观看视频| 精品人妻一区二区三区麻豆| 1000部很黄的大片| 久久久精品94久久精品| 青春草国产在线视频| 成人亚洲精品一区在线观看 | 国产av码专区亚洲av| 色哟哟·www| 国产精品蜜桃在线观看| 欧美三级亚洲精品| 91久久精品国产一区二区三区| 欧美 日韩 精品 国产| 一级毛片黄色毛片免费观看视频| 国产亚洲午夜精品一区二区久久 | 久久久亚洲精品成人影院| 精品少妇久久久久久888优播| av在线app专区| 男女边摸边吃奶| 久热久热在线精品观看| 久久久久国产网址| 亚洲一级一片aⅴ在线观看| 久久久久国产精品人妻一区二区| 国产探花极品一区二区| 色吧在线观看| 国产乱来视频区| .国产精品久久| 亚洲国产欧美人成| 91精品国产九色| 制服丝袜香蕉在线| 超碰av人人做人人爽久久| 国产综合懂色| 自拍偷自拍亚洲精品老妇| 美女内射精品一级片tv| 亚洲av中文字字幕乱码综合| 26uuu在线亚洲综合色| 精品一区二区三区视频在线| 天天一区二区日本电影三级| 国产欧美另类精品又又久久亚洲欧美| 三级国产精品片| 美女脱内裤让男人舔精品视频| 精品一区在线观看国产| 亚洲图色成人| 久久精品人妻少妇| 美女内射精品一级片tv| 亚洲无线观看免费| 九色成人免费人妻av| 一级毛片aaaaaa免费看小| 日韩制服骚丝袜av| 99热6这里只有精品| 欧美区成人在线视频| 18禁在线播放成人免费| tube8黄色片| 哪个播放器可以免费观看大片| 色婷婷久久久亚洲欧美| 在线精品无人区一区二区三 | 美女主播在线视频| 久久久久精品性色| 成人亚洲精品一区在线观看 | 日本黄大片高清| 午夜亚洲福利在线播放| 日本一本二区三区精品| 汤姆久久久久久久影院中文字幕| 精品久久久久久久末码| 亚洲欧美成人精品一区二区| 免费不卡的大黄色大毛片视频在线观看| 热re99久久精品国产66热6| 亚洲欧美精品自产自拍| 丝袜美腿在线中文| 欧美一级a爱片免费观看看| 哪个播放器可以免费观看大片| 在现免费观看毛片| 白带黄色成豆腐渣| 国产高清国产精品国产三级 | 久久99热6这里只有精品| 国产高清不卡午夜福利| 青青草视频在线视频观看| 亚洲美女搞黄在线观看| 22中文网久久字幕| 18禁裸乳无遮挡免费网站照片| 高清视频免费观看一区二区| 久久人人爽人人爽人人片va| 亚洲人成网站在线播| 汤姆久久久久久久影院中文字幕| 高清欧美精品videossex| 女人久久www免费人成看片| 少妇猛男粗大的猛烈进出视频 | 欧美zozozo另类| 欧美激情国产日韩精品一区| 精品少妇久久久久久888优播| 欧美日本视频| 高清av免费在线| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美精品专区久久| 国产 精品1| 欧美三级亚洲精品| 91精品伊人久久大香线蕉| 亚洲性久久影院| 国产亚洲午夜精品一区二区久久 | 黄片wwwwww| 国产精品一二三区在线看| 国内少妇人妻偷人精品xxx网站| 日韩免费高清中文字幕av| 免费大片黄手机在线观看| 综合色av麻豆| 国产探花在线观看一区二区| 亚洲国产精品专区欧美| 晚上一个人看的免费电影| 一区二区三区精品91| 最近2019中文字幕mv第一页| 制服丝袜香蕉在线| 成人无遮挡网站| 成人免费观看视频高清| 色视频在线一区二区三区| 亚洲精华国产精华液的使用体验| 久久久国产一区二区| 国产一区有黄有色的免费视频| 99久久精品热视频| 亚洲人成网站在线播| av国产免费在线观看| 色视频www国产| 亚洲av国产av综合av卡| 亚洲欧美中文字幕日韩二区| 成年女人看的毛片在线观看| 国产免费一区二区三区四区乱码| 欧美日本视频| 噜噜噜噜噜久久久久久91| 国产伦精品一区二区三区四那| 777米奇影视久久| 又黄又爽又刺激的免费视频.| 国产精品久久久久久精品电影| 特大巨黑吊av在线直播| 深夜a级毛片| 成人二区视频| 国产一区二区三区av在线| 99热全是精品| 久久久午夜欧美精品| 97精品久久久久久久久久精品| 国产高潮美女av| av女优亚洲男人天堂| 在线看a的网站| 男人和女人高潮做爰伦理| 亚洲第一区二区三区不卡| 最近手机中文字幕大全| 99视频精品全部免费 在线| 欧美xxxx黑人xx丫x性爽| 亚洲成色77777| 六月丁香七月| 国产男女超爽视频在线观看| 精品久久久久久久末码| 成人免费观看视频高清| 午夜福利视频精品| 看十八女毛片水多多多| 亚洲高清免费不卡视频| 波野结衣二区三区在线| 久久午夜福利片| 美女脱内裤让男人舔精品视频| 丰满少妇做爰视频| 国产熟女欧美一区二区| 午夜福利视频1000在线观看| 免费观看在线日韩| 日本欧美国产在线视频| 午夜福利在线观看免费完整高清在| 免费观看的影片在线观看| 你懂的网址亚洲精品在线观看| 午夜福利视频1000在线观看| 精品熟女少妇av免费看| 久久久色成人| 成人毛片a级毛片在线播放| 精品人妻熟女av久视频| 亚洲精品乱码久久久久久按摩| 99热6这里只有精品| 国产黄频视频在线观看| 亚洲精品456在线播放app| 黄片wwwwww| 日日啪夜夜爽|