• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling the dynamics of information propagation in the temporal and spatial environment

    2023-10-11 05:30:26YiZhangandLinheZhu
    Communications in Theoretical Physics 2023年9期

    Yi Zhang and Linhe Zhu

    School of Mathematical Sciences,Jiangsu University,Zhenjiang,212013,China

    Abstract In this paper,we try to establish a non-smooth susceptible–infected–recovered (SIR) rumor propagation model based on time and space dimensions.First of all,we prove the existence and uniqueness of the solution.Secondly,we divide the system into two parts and discuss the existence of equilibrium points for each of them.For the left part,we define R0 to study the relationship between R0 and the existence of equilibrium points.For the right part,we classify many different cases by discussing the coefficients of the equilibrium point equation.Then,on this basis,we perform a bifurcation analysis of the non-spatial system and find conditions that lead to the existence of saddle-node bifurcation.Further,we consider the effect of diffusion.We specifically analyze the stability of equilibrium points.In addition,we analyze the Turing instability and Hopf bifurcation occurring at some equilibrium points.According to the Lyapunov number,we also determine the direction of the bifurcation.When I=Ic,we discuss conditions for the existence of discontinuous Hopf bifurcation.Finally,through numerical simulations and combined with the practical meaning of the parameters,we prove the correctness of the previous theoretical theorem.

    Keywords: non-smooth system,rumor propagation,Turing instability,Hopf bifurcation

    1.Introduction

    Rumors are unverified pieces of information that lack authenticity and have been extensively disseminated through various communication channels.In the social realm,rumors possess a significant capacity to mislead,capturing people’s attention to a greater extent than the actual events they concern.Many rumors have a great impact on social stability as they spread in a wider area,and most of these effects are negative;for example,in 2013,the salt looting that followed the nuclear plant leak in Japan was misguided by rumors.At the same time,with the development of science and technology,the rapid development of the Internet media and its widespread impact on Internet users,the influence of rumors has reached an unprecedented level.In order to predict the development of rumor propagation and control the harm of rumor propagation to society,more and more scholars have begun to be engaged in the research of spreading rumors.

    Following observations and research on rumor propagation,the prevailing approach involves constructing mathematical models to simulate the process of rumor dissemination.By studying the dynamic characteristics of these mathematical models,researchers aim to predict the tendencies of rumor propagation.Before rumor propagation,infectious disease models we a hot topic of research for many scholars.It has been found that rumor propagation and infectious disease propagation have very similar transmission mechanisms.Therefore,many mathematical models of infectious disease propagation are used in the study of rumor propagation.Daley and Kendall put forward the first rumor spreading model [1,2],which was called the DK model.It has been widely investigated by many scholars.However,this simple model cannot well reflect the dynamic characteristics of rumor propagation,so many other types of rumor propagation models have been established.For example,the susceptible–infected–recovered (SIR) model [3–9],which is a common ordinary differential equation model utilized to study rumor propagation,divides a population into three categories: rumor unknowns,rumor spreaders and rumor suppressors.In recent years,people have also considered the influence of the forgetting mechanism,information transmission rate,hesitation mechanism,constraint mechanism and external control on rumor propagation.On this basis,new rumor propagation models have been established [10–12].Moreover,many rumor propagation models have been established based on complex social networks,such as in[13–16] and the susceptible–exposed–infected–removed(SEIR) model [17–20],which mainly considers the large influence of hesitating constitution mechanisms in the process of rumor spreading.In [21],Li et al proposed a partial differential equation (PDE) based on the rumor propagation model.Li et al believed that in addition to considering the diffusion in space and time dimensions,rumor also had latency,so the delay factor also needed to be discussed.On this basis,Li et al analyzed and studied the dynamic characteristics of the spatial diffusion rumor propagation model with delay.At present,research on the PDE rumor propagation model is still in the development stage and there are many problems waiting to be solved.Therefore,research on this kind of model provides a new research idea for us to analyze the rumor propagation model.

    The mathematical models mentioned above are all smooth rumor propagation models.However,similar to the threshold for disease transmission in [22],there is also a threshold for rumor propagation.When a rumor’s influence is not very big,people often take a liberal approach to it,but when the tale number exceeds a predetermined threshold and the rumor’s influence increases gradually,people take the necessary steps to control the rumor.Therefore,there exists a discontinuous function in regard to tales and the threshold.The rumor spreading model also has a non-smooth characteristic.This is an important research point in this paper.

    The purpose of this paper is to establish a more realistic non-smooth rumor propagation model and study its dynamic characteristics on the existing basis.The structure of this paper is as follows.In the second part,we establish a mathematical model based on practical significance.In the third part,the existence of the solution of the system is proved.In the fourth part,we discuss the existence of non-spatial bifurcations,mainly including saddle-node bifurcation.In the fifth part,we calculate the Lyapunov number to discuss the stability of equilibrium,Turing instability and the existence of Hopf bifurcation.In the sixth part,we carry out a simulation based on the theory to verify the correctness of the theory.

    2.Mathematical modeling

    In this part,we will propose an SIR model of rumor propagation.Our model takes into account temporal and spatial differences,which will be reflected in the form of unknowns.Moreover,according to actual people’s attitudes to rumors,we can divide people into three categories: rumor unknown individual S(x,t) who has not been exposed to rumor at position x and time t,rumor propagation individual I(x,t)who comes into contact with rumors and spreads them at position x and time t,and rumor immune individual R(x,t) who is exposed to rumors but will not spread them at position x and time t.In addition,we try to use a non-smooth control function to represent the rumor control process.When rumor spreaders reach a critical value Ic(Ic>0),then we need to strengthen the control of rumor propagation.Thus,we establish the following rumor control function H(I,Ic),namely

    where c is the conversion rate of rumor spreaders to rumor suppressors.By introducing the threshold control function,we establish the following reaction–diffusion rumor propagation model

    with the Neumann boundary conditions

    and the initial conditions

    where di(i=1,2,3)is the diffusion rate of S(x,t),I(x,t)and R(x,t),rA represents the latest increase in the number of rumor spreaders and (1-r)A represents the newly added rumor unknowns,β is the rumor transmission rate,μ is the rate at which rumors disappear naturally,nΩ ∈R is a bounded domain of rumor diffusion,and ˉΩ is the closed set of Ω.Moreover,all the parameters of system (2) are positive.

    Obviously,R(x,t) is independent of the first and second equations of system (2).Therefore,we can consider the following simplified system instead of system (2)

    with the Neumann boundary conditions

    where ?Ω is the boundary of Ω and the initial conditions

    Next,we will focus on the complex dynamical behavior of system (5).

    3.The existence of the positive equilibrium points

    In this section,we will discuss the distribution of equilibrium points for system (5).

    3.1.The case for 0 ≤I ≤Ic

    In this case,the equilibrium points of system (5) satisfy

    3.2.The case for 0 <Ic <I

    In this case,the equilibrium points of system (5) satisfy

    (1) Supposeb2> 0,then Δ2> 0,we have the following results.

    4.Bifurcation analysis without diffusion

    In this section,we will analyze the possibility of the existence of bifurcation for the non-spatial system to further explore the dynamic characteristics of system(5).The non-spatial system is as follows

    where Hi(I) has been given in equation (1).

    Therefore,we have the following characteristic equation

    Through calculation,we obtain the equation as follows

    In an attempt to analyse the stability of E*,we just need to analyse the distribution of roots for equation (15).For convenience,when 0 ≤I ≤Ic,we consider system (12) as system(12)1;when I >Ic,we consider system(12)as system(12)2.

    From theorem 3.1,we know when 0 ≤I ≤Ic,g1′(I*)<0 holds.System (12)1only has one positive equilibrium point,thus collisions at equilibrium points cannot occur.While,from theorem 3.2,we can find conditions that equilibrium points coexist and collide.Therefore,we only consider system (12)2.

    From the second equation of system (12)2and equation (14),we have

    According to theorem 3.2,we know

    Fromg′2(I*)=0,we obtain A22(E*)=0.

    It follows that 0,-A11(E*) are the two eigenvalues of J(E*),the eigenvectors of 0 and-A11(E*)are,respectively,as follows

    Then,we do the zero transformation x=S-S*,y=I-I*.System (12)2becomes

    By simplifying, system (17) can be translated into the following form

    5.Local stability and bifurcation analysis with diffusion

    After considering the existence of bifurcation for system(5)without diffusion, we will consider the influence of diffusion coefficients on the system according to [29].On this basis, the stability of equilibria points and the existence of bifurcations for system (5) will be discussed in detail.Firstly, we will make some conceptual preparation for the theorem proof.

    Definition 1.AssumeE*=(S*,I*)is any equilibrium point of system (5).Denote

    where i=1, 2.By calculating, we obtain the following equation

    Next, we need to discuss three cases: (1) 0 ≤I <Ic;(2)0 <Ic<I;(3) I=Ic.

    Case 1:0 ≤I <Ic

    Theorem 5.1.The positive equilibrium E2of system (5) is locally asymptotically stable.

    Proof.Whatever R0is, we findg′1(I2)<0always holds.Moreover, according to the same method in theorem 4.1, we have

    Hence, equation (20) has two negative roots, which means that E2of system (5) is locally asymptotically stable.

    Theorem 5.2.Assume that(H)1holds.Then,for system (5),we have the following results.

    (i) According to theorems 3.2 and 4.1,we have

    Therefore,equation (20) has at least one positive root without diffusion,which means E4is unstable.

    (ii) Firstly,we denote

    LettingΔ1be the discriminant of f1=0 with respect to γ,we obtain that

    Since A22(E3)>0,we have

    Then we obtain

    Moreover,itis obvious that(βI3+μ)2>0,G(I3)2> 0.Hence,according to the signs of coefficients of f1,we can easily find that f1=0 has two positive roots

    (iii) We define

    From theorem 3.2,we haveg′2(I5)<0,which implies that the solution for investigating the locally stability of E5is the same as that of E3.So we omit the proof here.

    Next,we will study the Tuning instability of the positive equilibria E3and E5.We only discuss the Tuning instability of E5,because E3and E5have similar dynamic characteristics.The Turing instability occurs when the positive equilibria point satisfies two conditions that are linearly stable in the absence of diffusion and are linearly unstable in the presence of diffusion.

    Theorem 5.3.Assume(H1) andA11(E5)> 0hold.Ifγ<γ3,then E5is Turing unstable.

    Thus equation (20) has two negative roots.Hence,E5in linearly stable in the absence of diffusion.

    After passing some hours of the night, not without considerable fear and trembling, he noticed a light shining at a little distance, and hoping it might proceed from some house where he could find a better shelter than in the top of the tree, he cautiously descended5 and went towards the light

    Next,we will investigate the stability of E5for equation (20) in the presence of diffusion.We can easily obtain that

    According to theorem 4.2,we obtain that

    Proof.For system (5),under the condition(H)1,the positive equilibrium point E5exists.First,we will prove the existence of Hopf bifurcation at E5.We assume there existsβ* >0,whenβ=β*,A11(E5)=0holds.Then for i0=0,we have

    Moreover,combining with the proof of theorem 5.2,whenγ>γ3andA11(E5)=0hold,for any i∈N0andi≠ 0,we have

    Assume there exists a unique pair of eigenvalues δ(β)±iω(β) near the imaginary.Taking the derivative of equation (20) with respect to β,referring to the methods of[27],then we obtain

    Thus,there exists β=β*such that

    Second,we will investigate the direction of spatially homogeneous Hopf bifurcation at E5.We perform the Taylor expansion of system(12)at the equilibrium point E5,then we have

    Thus,if σ >0,then the direction of Hopf bifurcation is supercritical,that is to say,the periodic solutions are unstable;if σ <0,then the direction of Hopf bifurcation is subcritical,that is to say,the periodic solutions are locally asymptotically stable.

    Case 3:I=Ic

    In this section,we need to investigate the stability ofE′,whereE′=(Sc,Ic)is the positive equilibrium at I=Ic.Since system (5) is not smooth at I=Ic,it is difficult to determine the stability ofE′.Next,we consider the following two systems

    Fig.1.The equilibrium point E2 is locally asymptotically stable.

    Fig.2.The equilibrium point E5 is locally asymptotically stable.

    Fig.3.The influence of rumor propagation rate β on rumor spreaders.

    Obviously,when I=Ic,system (25) is equal to system (26),which means that system(25)and system(26)share the same positive equilibriumE′.Moreover,from theorem 5.1,we know that system(25)is always stable.Thus,if we can prove system (26) is unstable,then the discontinuous Hopf bifurcation may occur at I=Ic.Moreover,we noteJ-(E′)andJ+(E′)be the left and right Jacobian of system (5) atE′,respectively,where

    Next,we introduce the approximately smooth system as follows

    where 0 ≤α ≤1,then the Jacobian matrix atE′ is

    Then we have the characteristic equation of system(27)atE′as follows

    Fig.4.The equilibrium point E5 is unstable.

    Fig.5.The Turing instability of E5.

    Fig.6.The change of stabilities for the equilibrium point E5.

    It is obvious that when α=0,equation (28) has two negative roots,which means system (27) is stable;when α=1 and (H1) hold,equation (28) has at least one positive root,which means system (27) is unstable.Thus,the discontinuous Hopf bifurcation will occur.Moreover,there exists a α*,0 ≤α*≤1,when α=α*,equation(28)has a pair of pure imaginary roots λ=±iω(ω >0).

    Next,we need to find out α*and ω*satisfying our conditions.Fori=0,=0,substituting iω(ω >0) into equation(28)and separating the real and imaginary parts,we obtain that

    For ω >0,then we haveC22(E′)>0and equation (29) can be reduced to

    For i∈N0and i ≠0,whenC11(E′)>0andC22(E′)> 0hold,we have that

    Hence,for i∈N0,when 0 ≤α ≤α*,system(27)is stable;when α >α*,system (27) is unstable;thus,the spatially homogeneous Hopf bifurcation atE′ for system (27) occurs.In other words,the discontinuous Hopf bifurcation occurs atE′ for system(5)when α crosses through α*,so we have the following results.

    Theorem 5.5.When(H1),C11(E′) > 0andC22(E′)> 0hold,system(5)undergoes a discontinuous Hopf bifurcation atE′.

    Proof.From Theorem 5.1,we can obtain that the positive equilibriumE′=E2of system (5) is locally asymptotically stable;when(H1) holds,system(5)has a positive equilibriumE′=E4andE′ is unstable.Thus,system (5) undergoes a discontinuous Hopf bifurcation atE′.

    6.Simulation

    In this section,we will conduct numerical simulations according to the theories of equilibrium point and some bifurcations.We divide the argument into 0 ≤I <Icand 0 <Ic<I.

    6.1.Case 1: 0 ≤I <Ic

    When 0 ≤I <Ic,we mainly verify the stability of equilibrium point E2.According to theorem 5.1,the equilibrium point E2is always asymptotically stable.Let the parameters of system(5) be A=0.8,r=0.3,μ=0.4,β=0.1,c=0.4,Ic=1 and let d1,d2vary in [0,1],we assume d1=0.01,d2=0.02.By calculating,we get the equilibrium point E2of system (5) is(1.1561,0.8439).It is obvious that E2is locally asymptotically stable as shown in figure 1.

    6.2.Case 2: I >Ic

    When I >Ic,we need to verify the dynamic characteristics of the right-semi system.First,we take the parameter of the system (5) with A=0.5,r=0.1,μ=0.1,β=0.4,c=0.6,Ic=0.4,then we obtain b2=0.0790 >0,b3=0.0250 >0,Δ2=0.0514 >0,which satisfies the existence condition of E5.According to equation (11),we have three solutions,one of them is E5=(0.8743,1.0367).Next,we need to change the value of diffusion coefficients to prove the stability of equilibria.When we let d1=0.01,d2=0.03,we find A11(E5)=0.7361 >0 and γ=3 >γ3=0.0004.According to theorem 5.2,E5is locally asymptotically stable as shown in figure 2.

    Moreover,we consider if the rumor spreading rate β changes,whether the positive equilibrium point will change.Fixing A=0.5,r=0.01,μ=0.1,c=0.55,Ic=0.001,d1=0.01,d2=0.02 and only changing β from 0.3 to 0.7.Then as vividly shown in figure 3,we find as the rate of rumor spreading rate β increases,the number of people who spread rumors has also increased,and the stability of the component I for the equilibrium point E5increases,which is in contradiction with the actual phenomenon.

    Fig.7.The Hopf bifurcation at E5.

    Accordingly,we can study the instability of E5.Fixing A=0.3,r=0.001,μ=0.05,β=0.3,c=0.8,Ic=0.01,d1=0.01,d2=0.02.By simple calculation,we can find A11(E5)=-0.0035 <0,then the equilibrium point E5=(0.2007,2.7194) is unstable according to theorem 5.2,which is shown in figure 4.

    Next,we think about the Turing instability of E5for system (5).Letting A=0.5,r=0.01,μ=0.1,β=0.3,c=0.59,Ic=0.01,d1=3.05,d2=0.1,then we have the equilibrium point E5=(2.2460,0.4013).We calculate A11(E5)=0.0081 >0,γ=0.0328 <γ3=0.2040.Thus E5is Turing unstable according to theorem 5.3.Observing the figure below,we can see when t=100,the (figure 5(b)) is dominated by fuzzy bars.As time t gets bigger by 200,the main pattern of the figure is dotted bars.Then,the strips are separated into blue dots and stabilize in a stable form when t=300.From figure 5(d),we can find three different values of S(x,t) asMAX(S),AVE(S),MIN(S)stabilize at about 2.25 when t <40,and then bifurcate from t=40 and stabilize at a certain value around t=180,respectively.Turing instability suggests that diffusion will cause an imbalance in the system,which is in line with the practical implications of rumor propagation;when the effects of catalysing rumor outbreaks are not aligned with curbing the spread of rumors,rumors will become uncontrollable.

    Finally,we study the occurrence of Hopf bifurcation at E5by changing the value of the parameter c.Taking A=0.5,r=0.01,μ=0.1,β=0.3,Ic=0.001,d1=0.01,d2=0.02 at the same time,changing c from 0.5 to 0.9,then we find the stability of equilibrium point E5switches.When c=0.5,figure 6 shows that E5is locally asymptotically stable,while c changes to 0.6,E5becomes unstable,and it stabilizes again when c=0.8.

    We now study a concrete example.Taking A=0.5,r=0.01,μ=0.1,β=0.3,c=0.6,Ic=0.01,d1=0.01,d2=0.02,then we obtain E5=(2.2764,0.3915),A11(E5)=0.0082 >0,and γ=2 >γ3=0.1986.According to theorem 5.2,E5is locally asymptotically stable,which is shown in figure 7(a) and (b).Then change the value of parameter Ic=0.001,we have E5=(2.3478,0.3695),A11(E5)=-0.0097 <0,from theorem 5.2,we know E5is unstable,which is shown in figure 7(c) and (d).In short,Hopf bifurcation will occur at E5when Icchanges from 0.001 to 0.01.

    7.Conclusion

    In this article,we observe the actual relationship between I and the threshold Icto establish a non-smooth rumor spreading model based on the time and space dimensions.Contrary to the smooth rumor propagation model of time delay,the non-smooth system is obviously a new addition to rumor propagation model collection.First of all,we prove the existence and uniqueness of the solution for system (5)according to the existence theorem of solutions.Secondly,we divide the system into two parts according to H(I,Ic)function and discuss the existence of the equilibrium points.For the left half of system (5),we define R0to study the relationship between R0and equilibrium points.Then we find that there is always an equilibrium point for the left half of the system.For the right half of system (5),we classify many different cases by discussing the coefficients of the equilibrium point equation.Then,on this basis,we perform a bifurcation analysis for the non-spatial system (12) and find conditions that make saddle-knot bifurcation exist.Further,we consider the effect of diffusion.According to the size relationship between I and Ic,we make specifically analyze the stability of equilibrium points for spatial system (5).In addition,we analyze the Turing instability and Hopf bifurcation occurring at equilibrium point E5.According to Lyapunov number,we determine the direction of the bifurcation.When I=Ic,we analyze and discuss conditions for the existence of discontinuous Hopf bifurcation.Finally,through numerical simulations and combined with the practical meaning of the parameters,we proved the correctness of the previous theoretical theorem.

    In real life,rumor propagation is influenced by rumor control means and rumor propagation channels,and the nonsmooth rumor propagation system can reflect this characteristic of rumor propagation.In addition,rumor propagation will change with time and the scope of rumor propagation.Therefore,the PDE model has more practical significance[24–26].

    Acknowledgments

    This research is partly supported by the National Natural Science Foundation of China (Grant No.12002135),China Postdoctoral Science Foundation(Grand No.2023M731382),and the Young Science and Technology Talents Lifting Project of Jiangsu Association for Science and Technology.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    十八禁网站免费在线| 日本一二三区视频观看| 一区福利在线观看| 又黄又爽又免费观看的视频| 亚洲国产精品久久男人天堂| 中国美女看黄片| 丰满的人妻完整版| 亚洲熟女毛片儿| 一级毛片精品| av片东京热男人的天堂| 夜夜爽天天搞| 亚洲激情在线av| 精品电影一区二区在线| 无限看片的www在线观看| 国产片内射在线| 毛片女人毛片| av超薄肉色丝袜交足视频| 日韩欧美三级三区| 亚洲真实伦在线观看| 国产精品久久久久久久电影 | 国产免费男女视频| 亚洲avbb在线观看| а√天堂www在线а√下载| 久久精品夜夜夜夜夜久久蜜豆 | 欧美日韩瑟瑟在线播放| 欧美中文综合在线视频| 国产视频内射| 亚洲五月天丁香| 日韩欧美三级三区| 在线永久观看黄色视频| 中文字幕人成人乱码亚洲影| 中文资源天堂在线| 精品久久久久久成人av| 久久九九热精品免费| 国产精品爽爽va在线观看网站| 亚洲真实伦在线观看| 国产视频一区二区在线看| 看片在线看免费视频| 久久国产乱子伦精品免费另类| 国产乱人伦免费视频| 久久久久国产精品人妻aⅴ院| 欧美日韩瑟瑟在线播放| 亚洲第一电影网av| 成人av在线播放网站| 久久中文字幕一级| 熟妇人妻久久中文字幕3abv| 久久精品成人免费网站| 久久久国产精品麻豆| 久久久水蜜桃国产精品网| 国产免费av片在线观看野外av| 2021天堂中文幕一二区在线观| 日本黄色视频三级网站网址| 精品少妇一区二区三区视频日本电影| 国产激情偷乱视频一区二区| 99热这里只有精品一区 | 国产视频一区二区在线看| 欧美高清成人免费视频www| 久久久久精品国产欧美久久久| 狂野欧美白嫩少妇大欣赏| 国产精品久久视频播放| 亚洲无线在线观看| 高清日韩中文字幕在线| 国产精品国产高清国产av| 国内精品一区二区在线观看| 欧美变态另类bdsm刘玥| 国产亚洲精品av在线| 熟妇人妻久久中文字幕3abv| 亚洲成av人片在线播放无| 亚洲成av人片在线播放无| 看黄色毛片网站| 国产精品麻豆人妻色哟哟久久 | 精品少妇黑人巨大在线播放 | 国产中年淑女户外野战色| 一区二区三区免费毛片| 青春草亚洲视频在线观看| 深夜精品福利| 久久精品国产自在天天线| 亚洲精品亚洲一区二区| 你懂的网址亚洲精品在线观看 | 中国美白少妇内射xxxbb| 亚洲在线自拍视频| 国产91av在线免费观看| 热99re8久久精品国产| 国产亚洲av嫩草精品影院| 99国产精品一区二区蜜桃av| a级毛片免费高清观看在线播放| 99久久精品热视频| 91aial.com中文字幕在线观看| 1000部很黄的大片| 国产极品精品免费视频能看的| 国产精品.久久久| 欧美人与善性xxx| 免费av观看视频| 在线播放无遮挡| 亚洲第一电影网av| 啦啦啦啦在线视频资源| 中文字幕精品亚洲无线码一区| 三级毛片av免费| 亚洲内射少妇av| 91麻豆精品激情在线观看国产| av免费观看日本| 蜜臀久久99精品久久宅男| 国产精品,欧美在线| 亚洲av成人av| 久久久久久伊人网av| 亚洲一级一片aⅴ在线观看| 黑人高潮一二区| 少妇丰满av| 你懂的网址亚洲精品在线观看 | 精品久久久久久久久久免费视频| 黄色一级大片看看| 边亲边吃奶的免费视频| 国产精品久久久久久久电影| 一级黄色大片毛片| 变态另类成人亚洲欧美熟女| 欧美最新免费一区二区三区| 少妇高潮的动态图| 在线观看66精品国产| 午夜福利在线观看免费完整高清在 | 国产精品麻豆人妻色哟哟久久 | 日韩精品青青久久久久久| 人妻夜夜爽99麻豆av| 美女脱内裤让男人舔精品视频 | avwww免费| 神马国产精品三级电影在线观看| 亚洲一级一片aⅴ在线观看| 亚洲最大成人av| 国产国拍精品亚洲av在线观看| 九九热线精品视视频播放| 最近中文字幕高清免费大全6| 狂野欧美激情性xxxx在线观看| 亚洲综合色惰| 久久精品久久久久久噜噜老黄 | 日韩一本色道免费dvd| 国产免费一级a男人的天堂| 全区人妻精品视频| 一级黄色大片毛片| 免费av不卡在线播放| 国产毛片a区久久久久| 亚洲欧美日韩东京热| 搞女人的毛片| 春色校园在线视频观看| 麻豆国产97在线/欧美| 久久综合国产亚洲精品| 淫秽高清视频在线观看| 精品免费久久久久久久清纯| 给我免费播放毛片高清在线观看| 国产亚洲av嫩草精品影院| 久久久国产成人免费| 男插女下体视频免费在线播放| 日韩高清综合在线| 午夜福利在线观看吧| 免费搜索国产男女视频| 91久久精品国产一区二区成人| 最近中文字幕高清免费大全6| 校园人妻丝袜中文字幕| 成人漫画全彩无遮挡| 最近视频中文字幕2019在线8| 青春草亚洲视频在线观看| 97超视频在线观看视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲久久久久久中文字幕| 国产av一区在线观看免费| 看黄色毛片网站| 小蜜桃在线观看免费完整版高清| 91狼人影院| av.在线天堂| 插逼视频在线观看| 欧美一区二区精品小视频在线| 国产三级在线视频| 热99在线观看视频| 久久久久久久久久黄片| 黑人高潮一二区| 亚洲av成人av| 国产精品日韩av在线免费观看| 丰满乱子伦码专区| 乱人视频在线观看| 青春草亚洲视频在线观看| 成人漫画全彩无遮挡| 亚洲av一区综合| 亚洲av熟女| 夜夜爽天天搞| 禁无遮挡网站| 国产人妻一区二区三区在| 三级毛片av免费| 免费看av在线观看网站| 老司机福利观看| 色尼玛亚洲综合影院| 丝袜喷水一区| 亚洲丝袜综合中文字幕| 中文资源天堂在线| 精品人妻偷拍中文字幕| av.在线天堂| 亚洲精品亚洲一区二区| 又粗又硬又长又爽又黄的视频 | 狂野欧美白嫩少妇大欣赏| 校园春色视频在线观看| 精品99又大又爽又粗少妇毛片| 国产色爽女视频免费观看| 美女被艹到高潮喷水动态| 看片在线看免费视频| 黄色日韩在线| 永久网站在线| 婷婷色综合大香蕉| 18禁黄网站禁片免费观看直播| 深夜精品福利| or卡值多少钱| 国产黄色小视频在线观看| 日韩成人av中文字幕在线观看| 91久久精品国产一区二区成人| 久久久久九九精品影院| 熟女人妻精品中文字幕| 男人狂女人下面高潮的视频| 国产av一区在线观看免费| 久久久久久久久中文| 可以在线观看的亚洲视频| 亚洲精品456在线播放app| 亚洲在线自拍视频| 99久久九九国产精品国产免费| 国产精品1区2区在线观看.| 国产亚洲精品久久久久久毛片| 天天躁夜夜躁狠狠久久av| 久久这里只有精品中国| 亚州av有码| a级毛片a级免费在线| 亚洲av第一区精品v没综合| 一区二区三区免费毛片| 久99久视频精品免费| 男人狂女人下面高潮的视频| 国产精品永久免费网站| 联通29元200g的流量卡| 亚洲性久久影院| 国产亚洲精品久久久久久毛片| 亚洲激情五月婷婷啪啪| 男人舔女人下体高潮全视频| 国产一区亚洲一区在线观看| 精品久久国产蜜桃| 卡戴珊不雅视频在线播放| 日本欧美国产在线视频| 成人鲁丝片一二三区免费| av黄色大香蕉| 看片在线看免费视频| 少妇高潮的动态图| 精品一区二区三区人妻视频| 村上凉子中文字幕在线| 色吧在线观看| 国产精品女同一区二区软件| 插阴视频在线观看视频| 麻豆乱淫一区二区| 中文字幕人妻熟人妻熟丝袜美| 嘟嘟电影网在线观看| 国产成人a区在线观看| 色综合色国产| eeuss影院久久| 亚洲精品色激情综合| 国产国拍精品亚洲av在线观看| 久久综合国产亚洲精品| 禁无遮挡网站| 欧美极品一区二区三区四区| 国产午夜精品一二区理论片| 欧美最新免费一区二区三区| 只有这里有精品99| 国产高清视频在线观看网站| 免费人成视频x8x8入口观看| 乱系列少妇在线播放| 中文字幕人妻熟人妻熟丝袜美| 内射极品少妇av片p| 国产免费一级a男人的天堂| 黄片wwwwww| 精品久久久久久久久av| 春色校园在线视频观看| 校园春色视频在线观看| 波多野结衣巨乳人妻| 岛国毛片在线播放| 91久久精品电影网| 久久精品夜夜夜夜夜久久蜜豆| 国产精品日韩av在线免费观看| 国产精品久久久久久av不卡| 99热全是精品| 久久久a久久爽久久v久久| 搞女人的毛片| 悠悠久久av| 亚洲欧洲国产日韩| 久久精品综合一区二区三区| 中国美女看黄片| 免费看av在线观看网站| 联通29元200g的流量卡| 黄色日韩在线| 国产精品福利在线免费观看| 亚洲国产欧美在线一区| 91久久精品国产一区二区成人| 麻豆乱淫一区二区| 国产日韩欧美在线精品| 伦理电影大哥的女人| 国产精品久久久久久亚洲av鲁大| 又粗又硬又长又爽又黄的视频 | 最近手机中文字幕大全| 少妇人妻精品综合一区二区 | 国产精品人妻久久久久久| 边亲边吃奶的免费视频| 2022亚洲国产成人精品| 97人妻精品一区二区三区麻豆| 国产成人福利小说| 欧美成人一区二区免费高清观看| 亚洲在线观看片| 看十八女毛片水多多多| 91aial.com中文字幕在线观看| 亚洲国产欧洲综合997久久,| 毛片一级片免费看久久久久| 日韩一区二区三区影片| 国产色婷婷99| 波野结衣二区三区在线| 少妇人妻一区二区三区视频| 欧美一区二区国产精品久久精品| 禁无遮挡网站| 别揉我奶头 嗯啊视频| 亚洲在久久综合| 神马国产精品三级电影在线观看| 国产高清视频在线观看网站| 天天躁日日操中文字幕| 婷婷色av中文字幕| 人人妻人人看人人澡| 麻豆久久精品国产亚洲av| 亚洲av男天堂| 欧美在线一区亚洲| 久久精品久久久久久久性| 国产欧美日韩精品一区二区| 国产精品久久久久久久电影| 草草在线视频免费看| 夜夜爽天天搞| 欧美3d第一页| 少妇高潮的动态图| 婷婷色综合大香蕉| 久久6这里有精品| 成人亚洲精品av一区二区| 日韩,欧美,国产一区二区三区 | 国产精品一区二区在线观看99 | 一区二区三区四区激情视频 | 国产精品久久久久久亚洲av鲁大| 99在线人妻在线中文字幕| 久99久视频精品免费| 国产伦精品一区二区三区四那| 亚洲欧美精品自产自拍| 亚洲熟妇中文字幕五十中出| 国产淫片久久久久久久久| 国产精品电影一区二区三区| 免费观看在线日韩| 26uuu在线亚洲综合色| 少妇裸体淫交视频免费看高清| 成人av在线播放网站| 久久人妻av系列| 九九在线视频观看精品| 国内揄拍国产精品人妻在线| 国产精品女同一区二区软件| 免费看av在线观看网站| 国产精品乱码一区二三区的特点| 欧美日韩精品成人综合77777| 乱人视频在线观看| 熟女人妻精品中文字幕| 成人欧美大片| 国产免费一级a男人的天堂| 国产高清视频在线观看网站| 在线免费十八禁| 亚洲丝袜综合中文字幕| 在线观看av片永久免费下载| 国产精品人妻久久久影院| 国产真实乱freesex| 国产在线男女| 国产乱人视频| 国产国拍精品亚洲av在线观看| 熟女人妻精品中文字幕| 久久久久免费精品人妻一区二区| 天天躁夜夜躁狠狠久久av| 乱人视频在线观看| 国产单亲对白刺激| 在线播放无遮挡| 2021天堂中文幕一二区在线观| 中文字幕熟女人妻在线| 午夜激情欧美在线| 97超碰精品成人国产| av在线观看视频网站免费| 麻豆久久精品国产亚洲av| 色综合亚洲欧美另类图片| 欧美成人a在线观看| 国内久久婷婷六月综合欲色啪| av天堂中文字幕网| 国产私拍福利视频在线观看| 最近手机中文字幕大全| 国产日韩欧美在线精品| 成人毛片60女人毛片免费| 又粗又硬又长又爽又黄的视频 | 特大巨黑吊av在线直播| 伦理电影大哥的女人| 亚洲美女视频黄频| 男插女下体视频免费在线播放| 久久久精品大字幕| 此物有八面人人有两片| 岛国在线免费视频观看| 久久久久久久亚洲中文字幕| 久久久久久九九精品二区国产| 国产av不卡久久| 青春草国产在线视频 | 12—13女人毛片做爰片一| 欧美一区二区国产精品久久精品| 极品教师在线视频| 久久久久久久久久久免费av| 久久久久久久久久黄片| 日韩一区二区三区影片| 黄色日韩在线| 国产精品国产三级国产av玫瑰| 亚洲国产色片| 国产午夜精品一二区理论片| 最新中文字幕久久久久| 99riav亚洲国产免费| 亚洲丝袜综合中文字幕| 亚洲成人精品中文字幕电影| 久久午夜福利片| 国产伦精品一区二区三区四那| 黄片无遮挡物在线观看| 99国产精品一区二区蜜桃av| 尤物成人国产欧美一区二区三区| 国产一级毛片七仙女欲春2| 有码 亚洲区| 国产69精品久久久久777片| www.av在线官网国产| 精品国内亚洲2022精品成人| 男人舔奶头视频| 一区二区三区四区激情视频 | 日韩欧美精品v在线| 麻豆成人午夜福利视频| 国产成人freesex在线| 久久久久久伊人网av| 久久午夜亚洲精品久久| 日韩欧美在线乱码| 亚洲成人精品中文字幕电影| 亚洲婷婷狠狠爱综合网| 国产探花在线观看一区二区| 2021天堂中文幕一二区在线观| 亚洲国产精品成人综合色| 爱豆传媒免费全集在线观看| 久久久久九九精品影院| 亚洲成av人片在线播放无| 亚洲欧美成人综合另类久久久 | 亚洲最大成人手机在线| 赤兔流量卡办理| 亚洲欧美精品专区久久| 中国美女看黄片| 亚洲人成网站在线观看播放| 男人舔女人下体高潮全视频| 亚洲欧美日韩高清专用| 日日摸夜夜添夜夜添av毛片| 热99在线观看视频| 精品人妻熟女av久视频| 成人高潮视频无遮挡免费网站| 丰满人妻一区二区三区视频av| 在线免费观看不下载黄p国产| 久久久久国产网址| 国产成人精品婷婷| 麻豆av噜噜一区二区三区| 欧美最新免费一区二区三区| 精品久久国产蜜桃| 成人亚洲精品av一区二区| 不卡一级毛片| 嫩草影院新地址| 成人美女网站在线观看视频| 日本与韩国留学比较| 性色avwww在线观看| 日韩欧美在线乱码| 久久这里只有精品中国| 国产成人aa在线观看| 成年版毛片免费区| 成年女人永久免费观看视频| 欧美极品一区二区三区四区| 三级国产精品欧美在线观看| 一夜夜www| 中文字幕久久专区| 欧美日韩精品成人综合77777| 亚洲欧美日韩高清专用| 不卡视频在线观看欧美| 波多野结衣高清作品| 久久草成人影院| 色哟哟哟哟哟哟| av在线播放精品| av专区在线播放| 亚洲av男天堂| 亚洲一区高清亚洲精品| 不卡一级毛片| 国模一区二区三区四区视频| 国产伦在线观看视频一区| 有码 亚洲区| 国产 一区 欧美 日韩| 黄片wwwwww| 麻豆精品久久久久久蜜桃| 国产午夜福利久久久久久| 一夜夜www| 美女被艹到高潮喷水动态| 国产伦精品一区二区三区视频9| 亚洲一区高清亚洲精品| 我的老师免费观看完整版| 色播亚洲综合网| 日韩欧美在线乱码| 亚洲自偷自拍三级| 蜜桃亚洲精品一区二区三区| 成人毛片60女人毛片免费| 卡戴珊不雅视频在线播放| 天堂av国产一区二区熟女人妻| 久久精品国产亚洲av香蕉五月| 三级毛片av免费| 日本黄色视频三级网站网址| 最近中文字幕高清免费大全6| 一级毛片aaaaaa免费看小| 久久精品国产亚洲av香蕉五月| 人妻系列 视频| 不卡一级毛片| 嫩草影院入口| 尾随美女入室| 一边亲一边摸免费视频| 在线播放国产精品三级| 中文欧美无线码| 乱系列少妇在线播放| 亚洲一区二区三区色噜噜| 国产成人a∨麻豆精品| 国产伦一二天堂av在线观看| 久久精品综合一区二区三区| 99热这里只有是精品50| 久久这里只有精品中国| 91精品国产九色| 成人三级黄色视频| 午夜激情欧美在线| 天堂中文最新版在线下载 | 看非洲黑人一级黄片| 人妻系列 视频| 国产爱豆传媒在线观看| 99久国产av精品国产电影| 欧美日韩综合久久久久久| 亚洲aⅴ乱码一区二区在线播放| 麻豆成人av视频| 青春草亚洲视频在线观看| 麻豆一二三区av精品| 床上黄色一级片| 免费观看精品视频网站| 国产精品,欧美在线| 日本三级黄在线观看| 日韩中字成人| 婷婷色av中文字幕| 亚洲乱码一区二区免费版| 在线免费观看不下载黄p国产| 两个人的视频大全免费| 国产精华一区二区三区| 三级男女做爰猛烈吃奶摸视频| 亚洲av第一区精品v没综合| 亚洲欧美成人精品一区二区| 日韩三级伦理在线观看| 国产乱人偷精品视频| 亚洲欧美成人综合另类久久久 | 热99re8久久精品国产| 夜夜看夜夜爽夜夜摸| 一区二区三区免费毛片| 看免费成人av毛片| 亚洲av一区综合| 久久亚洲国产成人精品v| 久久久久久国产a免费观看| 成人综合一区亚洲| 免费不卡的大黄色大毛片视频在线观看 | 日日啪夜夜撸| 日韩一区二区三区影片| 自拍偷自拍亚洲精品老妇| 国产单亲对白刺激| 久久久午夜欧美精品| 久久精品夜色国产| 日韩人妻高清精品专区| 国产淫片久久久久久久久| 日本黄大片高清| 一本一本综合久久| 国产极品精品免费视频能看的| 国产成人影院久久av| 日本成人三级电影网站| 国产精品久久视频播放| 婷婷精品国产亚洲av| 性插视频无遮挡在线免费观看| 免费看光身美女| 嫩草影院新地址| 日韩,欧美,国产一区二区三区 | 国产视频首页在线观看| 看片在线看免费视频| 久久精品综合一区二区三区| 99久久精品一区二区三区| 国产一区二区亚洲精品在线观看| 午夜视频国产福利| 听说在线观看完整版免费高清| 色5月婷婷丁香| 校园人妻丝袜中文字幕| 成人高潮视频无遮挡免费网站| 国产黄片视频在线免费观看| 人妻制服诱惑在线中文字幕| av在线播放精品| 亚洲av二区三区四区| 午夜福利在线观看吧| 九九在线视频观看精品| 一本久久中文字幕| 国产亚洲精品久久久久久毛片| 亚洲精品久久国产高清桃花| 精品不卡国产一区二区三区| 亚洲va在线va天堂va国产| 亚洲第一区二区三区不卡| 在线免费十八禁| 久久久午夜欧美精品| 成人鲁丝片一二三区免费| 精华霜和精华液先用哪个| 成人亚洲精品av一区二区| 久久这里只有精品中国| 天堂影院成人在线观看| 久久久久久久久久黄片| 黄色欧美视频在线观看|