• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simple Modulation of Side-chains of Near-infrared Absorbing Non-fullerene Acceptor for Higher Short-circuit Current Density

    2023-10-10 03:34:32WANGJiachengCAIGuilongZHANGYajingWANGJiayuLUXinhuiZHANXiaoweiCHENXingguo
    關(guān)鍵詞:辛基富勒烯側(cè)鏈

    WANG Jiacheng, CAI Guilong, ZHANG Yajing, WANG Jiayu, LU Xinhui, ZHAN Xiaowei*, CHEN Xingguo*

    Simple Modulation of Side-chains of Near-infrared Absorbing Non-fullerene Acceptor for Higher Short-circuit Current Density

    WANGJiacheng1, CAIGuilong3, ZHANGYajing1, WANGJiayu2, LUXinhui3, ZHANXiaowei2*, CHENXingguo1*

    (,,,430072,;,,100871,;,,999077,)

    A long flexible side-chain of-octyl group has been simultaneously introduced at indacenodithieno[3,2-b]thiophene(IDT) central core and (1,1-dicyanomethylene)rhodanine end-group to build a new “A--D--A” type non-fullerene acceptor(NFA)(JC11) with thiophene-fused benzothiadiazole(BTT) unit as a-bridge, which has been proposed to investigate the influence of different side-chains at different sites of the same conjugated backbone on the properties. Compared with the previous reported acceptors A2 and JC1, the introduction of a suitable long alkyl side-chain of octyl groups at central core and terminal group not only endows JC11 to show more favorable intermolecular stacking, thus exhibiting more red-shifted absorption and better improved crystallinity than A1 with a more rigid and steric hexylphenyl group at central core, but also ensures its better solubility to avoid the poor phase-separation morphology in the blend film with PTB7-Th than JC1 with a short ethyl side-chain at end-group. Moreover, JC11 owns a higher molar extinction coefficient of up to 1.14×105L?mol-1?cm-1and a higher electron mobility of 1.01×10-3cm2?V-1?s-1as well as more balanced electron/hole mobilities(e/h=2.72)in the D/A blend film than A2 and JC1. Therefore, the optimized PTB7-Th∶JC11 based device achieves a more promising power conversion efficiency(PCE) of 10.09% with a much higher short circuit current density(SC) value of 24.20 mA/cm2, which greatly surpass the PCE of 8.20% and 8.16% with relatively lowSCvalues of less than 20 mA/cm2for the optimized devices based on PTB7-Th∶A2 and PTB7-Th∶JC1, respectively. This work indicates that the regulation of side-chains is a simple but very effective strategy to improve the absorption and crystallization properties of the NFAs, thus resulting in higherSCand PCE for bulk heterojunction organic solar cells.

    A--D--A structure; Non-fullerene acceptors(NFAs); Side-chain engineering; Organic solar cell

    1 Introduction

    Solution-processed bulk heterojunction organic solar cells(BHJ-OSCs) have drawn great attention in the past two decades. Due to the inherent advantages, such as low cost, mechanical flexibility, light weight and short energy payback time, BHJ-OSCs have been intensively studied[1—9]. Electron donor materials and acceptor materials are the main constituents that form the photoactive layer in OSCs devices[10—12]. For electron acceptor materials, fullerenes and their derivatives were once favored based on their excellent electron transport properties, and the power conversion efficiencies(PCEs) of fullerene-based devices are 11%—12%[13—18]. However, inherent drawbacks of fullerene-based acceptors(such as weak absorption in the visible region, difficult structural modification, and morphological instability) constrain the further improvement of device efficiency[19]. In 2015, Zhan and coworkers[4]creatively designed a new fused-ring electron acceptor(FREA), ITIC that achieved a promising PCE of 6.8% at that time. Since then, the FREAs have attracted a great attention for OSCs. Generally, The FREAs adopt an A-D-A type structure, in which a fused-ring electron-donating unit(D) acts as the central core to connect two strong electron-withdrawing end groups as the electron-accepting unit(A)[20—24]. Compared to fullerene derivatives, these FREAs own strong absorption in the visible and even near-infrared region, and tunable energy levels to well match with various high-performance donor materials[25—33]. Up to now, the FREAs-based single-junction OSCs and tandem OSCs have exhibited excellent device performances with PCEs over 17% and even up to 20%[34—42].

    For A-D-A type FREAs, the electron-donating cores and terminal electron-withdrawing groups have been widely explored and thoroughly studied. At the same time, some aromatic units have been chosen as the “-bridge” to build another kind of FREAs, A--D--A type structures[43—46], in which the multiple components of conjugated backbones can synergistically regulate the frontier orbital levels, absorption property and crystallinity of the FREAs and ultimately the performance of the devices[47—52]. Moreover, the introduction of the suitable side-chain substituents at the conjugated backbone has also exerted great influence on the properties of FREAs[53,54]. As known, side-chains can ensure good solubility and hinder the formation of large aggregates of the FREAs, which promote the formation of an appropriate nanoscale phase separation in photoactive layers[55]. Since the stable triaryl cations are conducive to the synthesis of the fused-ring electron cores under Friedel-Crafts reaction conditions, some groups such as alkylphenyl and alkylthienyl groups are commonly introduced onto the ladder type backbone as side-chains to regulate the solubility and the intermolecular aggregation[55,56]. However, the steric effect of rigid alkylphenyl side-chains always hinders the intermolecular?stacking that is unfavorable to the charge transport. To overcome this drawback, some flexible side-chains have been introduced onto the ladder type backbone of NFAs to strengthen the intermolecularinteraction for improving the charge transport[57]. In the reported literatures, long linear alkyl-chain-based FREAs usually exhibited better photovoltaic performances than the alkylphenyl-based ones[58]. Therefore, systematic investigation on the side-chains is necessary to realize high-efficiency FREAs.

    Recently, a series of “A--D--A” type FREAs has been reported by our group[59—64]and it has been found that some thiophene-fused aromatic rings such as thiophene-fused benzothiadiazole(BTT) and thiophene-fused benzotriazole(BTAZT) units as-bridge can strengthen the intramolecular charge transfer(ICT) of the conjugated backbone and further broaden the absorption spectrum to improve the short circuit current density(SC). For example, the acceptor A2[59]and JC1[60]with BTT unit showed more red-shifted absorption than that of the non-fused benzothiadiazole-based ones. Both of them extended their absorption to the near-infrared(. 950 nm) region and obtained a competitiveSCvalue when blend with the corresponding donor materials to fabricate the OSC devices, indicating that the BTT-based FREAs are the promising FREAs for OSCs. As can be seen from Fig.1, A2 and JC1 showed the same conjugated skeleton, but different side-chains have been introduced onto conjugated backbone, which may affect the photophysical, electrochemical and crystallization properties of the BTT-based A--D--A type FREAs. However, we did not pay much attention to systematic comparison of substituent effect. Obviously, it deserves to be investigated for deeply understanding the structure-property correlation. Herein, we designed another new BTT-based non-fullerene acceptor(namely, JC11), in which a flexible-octyl group as the side-chain has been simultaneously introduced at indacenodithiophene(IDT) central core and (1,1-dicyanomethylene)rhodamine end group. It can be seen in Fig.1 that JC11 shows the same conjugated skeleton as A2 and JC1, so we can conveniently investigate the influence of different side-chains at different sites on their properties by comparison with each other. In such a design, the long flexible alkyl side-chains introduced at central core and end-groups can not only improve the crystallinity and intermolecular packing, but also ensure good solubility of the acceptor to avoid poor morphology in the donor/acceptor(D/A) blend films. The experimental results show that linear alkyl-substituted acceptors JC1 and JC11 exhibit more red-shifted absorption than that of alkylphenyl-substituted acceptor A2. Moreover, JC11 shows a higher molar extinction coefficient of up to 1.14×105L?mol-1?cm-1and a higher electron mobility of 1.01×10-3cm2?V-1?s-1than A2 and JC1. Considering that all of them show the strong and broad absorption extending to the near-infrared region, the classical low-bandgap polymer PTB7-Th is selected as the donor material to form photoactive layers. As expected, the optimized PTB7-Th∶JC11 based device achieves a promising PCE of 10.09% with a much higherSCvalue of 24.20 mA/cm2, while the PCE of the optimized devices based on PTB7-Th∶A2 and PTB7-Th∶JC1 are only 8.20% and 8.16% with relatively lowSCvalues of less than 20 mA/cm2.

    2 Experimental

    2.1 Reagents

    Unless stated otherwise, solvents and chemicals were obtained commercially and used without further purification. M1 was prepared according to our previous work[59,60].

    2.2 Synthesis of JC11

    M1(75 mg, 0.058 mmol), 3-octyl-2-(1,1-dicyanomethylene)rhodanine(160 mg, 0.58 mmol) and ammonium acetate(90 mg, 1.16 mmol) were dissolved in CH3COOH/CHCl3(volume ratio 1∶4, 20 mL), which was refluxed for 24 h under argon atmosphere. After cooling to room temperature, the mixture was poured into methanol. After filtration, the residue was washed with methanol for several times. And then it was further purified by column chromatography over silica gel with petroleum/CHCl3mixtures as the eluent to give JC11 as a green solid(80 mg, 76%).1H NMR(400 MHz, CDCl3),: 8.80(s, 2H), 8.38(s, 2H), 8.01(s, 2H), 7.53(s, 2H), 4.51(q,=8 Hz, 4H), 4.29(t,=8 Hz, 4H), 2.17(m, 4H), 2.01(m, 4H), 1.82(m, 4H), 1.48—1.00(m, 74H), 0.92—0.7(m, 18H).13C NMR(100 MHz, CDCl3),: 166.94, 166.91, 161.48, 157.04, 154.63, 151.52, 150.73, 150.10, 148.66, 138.43, 137.04, 136.54, 136.32, 128.56, 128.28, 127.58, 121.06, 115.93, 114.50, 113.30, 112.55, 62.55, 55.49, 54.58, 45.51, 39.17, 31.82, 31.76, 30.12, 29.41, 29.30, 29.15, 29.10, 28.87, 26.07, 24.59, 22.66, 22.63, 14.35, 14.13, 14.10. MS(MALDI-TOF),/calculated for C100H120N10O6S8: 1813.72; found: 1813.73. Elemental anal.(%) calcd. for C100H120N10O6S8: C 66.19, H 6.67, N 7.72; found: C 66.84, H 6.55, N 7.72.

    3 Results and Discussion

    3.1 Synthesis

    The synthetic route of JC11 is presented in Scheme 1. The starting material M1 that contains-octyl- substituted IDT core and BTT-bridge was prepared according to our previous work[59,60]. Then, the Knoevenagel condensation of M1 with 3-octyl-2-(1,1-dicyanomethylene)rhodanine produced JC11 in a yield of 76%. The structure of JC11 was verified by1H NMR,13C NMR, TOF-MS, and elemental analysis. Certainly, JC11 shows better solubility in common organic solvents such as chloroform(CF) and-dichlorobenzene(-DCB) at room temperature than JC1, which will prevent JC11 to form large self-aggregation. Thermogravimetric analysis(TGA) was performed to investigate the thermal stability of the acceptors(Fig.S1, see the Supporting Information of the paper). It is found that JC11 exhibits the decomposition temperature(5% mass loss) up to 372 ℃, while A2 and JC1 show the decomposition temperature of 374 ℃ and 347 ℃, respectively. Obviously, despite having different side-chain types and lengths, all of them exhibit excellent thermal stability.

    Scheme 1Synthetic route of small molecular acceptor JC11

    3.2 Optical and Electrochemical Properties

    The UV-Vis absorption spectra of JC11, A2 and JC1 as well as PTB7-Th in dilute CF solution are shown in Fig.2(A). By comparison, JC11 and JC1 with linear alkyl-substituted groups as side-chains exhibit more red-shifted absorption with maximum at 723 nm than that of alkylphenyl-substituted acceptor A2(max=708 nm) in solution, indicating that less steric effect of the flexible alkyl group at central core in JC1 and JC11 than-hexylphenyl group in A2 does some favor for the interchain-stacking for aggregation to be responsible for their red-shifted absorption. Additionally, JC11 owns improved light-harvesting ability with higher molar extinction coefficient() of up to 1.14×105L?mol-1?cm-1compared to those of JC1(=0.88×105L?mol-1?cm-1) and A2(=0.85×105L?mol-1?cm-1) in Fig.S2(see the Supporting Information of this paper). The higher ε for JC11 indicates that the long flexible alkyl side-chains at the IDT core and end group can enhance the absorption capacity of the FREAs. In addition, in the neat films, JC11, A2 and JC1 show the similar absorption tendency to the solution, but the neat films of JC11, A2 and JC1 exhibit a broader and more significantly red-shifted absorption than those in solution with the absorption peaks at 831, 771 and 828 nm, respectively, as shown in Fig.2(B). From solution to film, the larger red-shift for JC11(108 nm) and JC1 (105 nm) than that of A2(63 nm) indicates that linear alkyl-substituted acceptors own stronger intermolecular-interaction and closer intermolecular stacking in the aggregation state. Remarkably, JC11, A2 and JC1 extended their absorption range to the near-infrared region with optical bandgap of 1.33, 1.37 and 1.30 eV, respectively, calculated from the absorption edges[65], suggesting that they show good complementary absorption with PTB7-Th donor material. The optical data are summarized in Table 1.

    Table 1 Optical and electrochemical properties of JC1 and JC2

    The electrochemical properties of FREAs were studied by the cyclic voltammetry(CV) method with Ag/Ag+as reference electrode. Fig.2(C) shows the CV curves of JC11 as well as A2 and JC1 for comparison. Based on the reductive potentials, the lowest unoccupied molecular orbital(LUMO) levels have been estimated from the equationLUMO=-[red-1/2(c/c+)+4.8](eV) and summarized in Table 1. The LUMO energy levels of alkyl-substituted acceptors JC1 and JC11 are slightly lower than that of phenylalkyl-substituted acceptor A2, indicating potentially lower open-circuit voltage(OC) values for JC11-based and JC1-based devices.

    Fig.2 Normalized UV?Vis absorption spectra of acceptors in CF solution(A), acceptors and donor material PTB7?Th in thin film(B), CV curves of acceptors in CH3CN/0.1 mol/L Bu4NPF6 at 100 mV/s(C) and the inverted device fabrication structure(D)

    3.3 Photovoltaic Performances

    The OSC devices were fabricated with the inverted configuration[shown in Fig.2(D)] to investigate the photovoltaic performances of the three FREAs, in which the active layer was casted onto the ZnO by spin- coating process. To optimize the performance of PTB7-Th∶FREA based OSCs, different solvents, D/A mass ratios and additives were explored and the optimization process is described in the Supporting Information. The as-cast and optimized photovoltaic parameters are summarized in Table 2. The as-cast OSC devices based on PTB7-Th∶A2 and PTB7-Th∶JC1 exhibit PCE values of 7.02%(OCof 0.722 V,SCof 15.85 mA/cm2and FF of 61.3%) and 6.42%(OCof 0.662 V,SCof 15.48 mA/cm2and FF of 62.7%), respectively. The as-cast JC11 based device shows a relatively high PCE value of 7.53% withOCof 0.688 V,SCof 19.71 mA/cm2and FF of 55.5%. After addition of solvent additives chloronaphthalene(CN) or 1,8-diiodooctane(DIO), allSCvalues of the processed device are significantly improved, while allOCvalues are slightly reduced. The optimized PTB7-Th∶A2 and PTB7-Th∶JC1 based devices yield the best PCE values of 8.20%(OCof 0.701 V,SCof 19.47 mA/cm2, and FF of 60.1%) and 8.16%(OCof 0.656 V,SCof 19.12 mA/cm2, and FF of 65.0%), respectively. However, the optimized JC11-based device achieves a more promising PCE of up to 10.09% withOCof 0.674 V, FF of 61.9%, and a much higherSCvalue of 24.20 mA/cm2than A2 and JC1, which can be attributed to the higher absorptivity and better absorption complementarity with PTB7-Th for JC11 because its long flexible alkyl side-chains endows JC11 to show more favorable intermolecular stacking with more red-shifted absorption and better improved crystallinity as well as its better solubility to avoid the poor phase-separation morphology in the D/A blend. Furthermore, the addition of additives has a significant positive effect on the FF of alkyl-substituted acceptors JC1-based and JC11-based devices, but little improvement on alkylphenyl-substituted acceptor A2-based ones. This result means that the active layers containing the alkyl-substituted acceptors are more sensitive to the additive, which would facilitate the regulation of the morphology to form better phase separation.

    Table 2 Photovoltaic performance of the devices based on the PTB7-Th:acceptor under the illumination of AM 1.5G, 100 mW/cm2

    . Volume fraction;. the average value with standard deviation was obtained from 10 devices

    Consistent with the absorption properties of acceptors and donor, all the external quantum efficiency(EQE) spectra of the optimized A2-, JC1-, and JC11-based devices exhibit wide photoresponse ranges as illustrated in Fig.3(B). The EQE maxima of the optimized PTB7-Th∶A2, PTB7-Th∶JC1, and PTB7-Th∶JC11 blends are 74%, 72%, and 83%, respectively; the higher EQE response of JC11-based devices could be attributed to its stronger absorption. In addition, the PTB7-Th∶JC11 device shows EQE over 70% in the range of 570—850 nm, which is far superior to that of A2 and JC1, indicating a more efficient photoelectric conversion process and eventually obtaining higherSCvalue in the JC11-based device. The calculatedSCvalues from integration of EQE spectra of all as-cast and optimized devices match well with thecurves[Fig.3(A)] within the error range of <5%, as summarized in Table 2.

    Fig.3 J?V characteristics(A), and EQE curves(B), Jph?Veff curves and JSC?light intensity plots(D) of the optimized OSCs devices

    To further investigate and compare the charge collection capacity, we measured the photocurrent density (ph)the effective voltage(eff) of optimized devices[66], as shown in Fig.3(C).phcan be defined asph=L-D, whereLandDrepresent theSCvalues under illumination and dark condition, respectively.efffollows the formulaeff=0-a, whereais the applied bias voltage and0is the voltage whenphequals to 0. Generally, photogenerated excitons among the active layer would all be dissociated into free charge carriers and thephreaches saturated condition(sat) at higheff. Therefore, thesc/satratio can characterize the ability of charge extraction under short-circuit condition. Both the optimized A2-based and JC1-based devices show lowsc/satratios of 93% and 91%, respectively, while the ratio climbs to 99% for optimized JC11-based device. This result indicates more effective charge extraction in JC11-based device, which is beneficial to higherSC. In addition, we measured theSCvalues at different incident light intensities() to investigate the degree of bimolecular recombination in OSC devices, and the relation between theandSCfollows the formulaSCP[67]. When all free carriers are collected by electrodes completely, recombination phenomenon is nonexistent and the exponentis equal to 1.00. If<1, it means a certain degree of bimole-cular recombination. As shown in Fig.3(D), thevalues of the optimized PTB7-Th∶A2, PTB7-Th∶JC1, and PTB7-Th∶JC11 devices are calculated to be 0.95, 0.96, and 0.99, respectively, indicating that there are negligible bimolecular recombination phenomena among these devices.

    At the same time, exploring the effect of carrier transport on the photovoltaic performance is essential. As shown in Fig.S2, the space-charge limited current(SCLC) method was performed to measure the hole mobility (h) and electron mobility(e) of neat films and optimized blend films[68]. The electron mobilities of A2, JC1, and JC11 neat films are 7.46×10-4, 5.00×10-4, and 1.01×10-3cm2?V-1?s-1, respectively. Thanks to the superiority of the BTT-based structure, all the FREAs exhibit relatively high mobility. Moreover, the electron mobility of JC11 is one order of magnitude higher than that of A2 and JC1, indicating that alkyl side-chain in the IDT core and suitable side-chain length in end group could synergistically enhance the intermolecular interaction and stacking. For blend films, the optimized PTB7-Th∶A2 blend film shows thehof 1.27×10-3cm2?V-1?s-1andeof 2.27×10-4cm2?V-1?s-1withh/eratio of 5.59, and the optimized PTB7-Th∶JC1 blend film owns an exaggeratedh/eratio of up to 66.67 with thehof 1.50×10-3cm2?V-1?s-1andeof 2.25×10-5cm2?V-1?s-1, which may be related to its poor phase morphology. By contrast, the optimized PTB7-Th∶JC11 blend film shows a much smallerh/eratio of 2.72 with thehof 1.66×10-3cm2?V-1?s-1andeof 6.10×10-4cm2?V-1?s-1. Apparently, the more balanced charge mobility and higher electron mobility do some favor for improving theSC.

    3.4 Morphology Characterization

    To further investigate the influence of side-chains on the morphology, optimized FREAs-based blend films were characterized by atomic force microscopy(AFM) and transmission electron microscopy(TEM). As shown in Fig.4, all the optimized PTB7-Th∶A2, PTB7-Th∶JC1, and PTB7-Th∶JC11 blend films exhibit smooth and uniform surfaces with the root mean square(RMS) roughness of 2.11, 1.25, and 1.19 nm, respectively. Although no valid information is obtained from the AFM height images, the phase distribution can be clearly distinguished from the TEM images. As for optimized PTB7-Th∶A2 blend film, a relatively homogeneous feature is observed[Fig.4(D)]. However, optimized PTB7-Th∶JC1 blend film exhibits large domains and obvious phase separation, as shown in Fig.4(E), which could be attributed to the strong crystallinity of JC1 with short alkyl side-chain at the end group. In comparison, the optimized PTB7-Th∶JC11 blend film shows well-proportioned aggregation domains with suitable phase separation[Fig.4(F)] due to the good crystallinity of JC11 with long flexible alkyl side-chains at the end group, which can effectively prevent the excessive self-aggregation. These results indicate that the optimized JC11-based blend film has more efficient exciton separation and charge transfer capability, therefore, realizing higherSCvalue for corresponding device.

    Fig.4 AFM height images(A—C) and TEM images(D—F) of the optimized PTB7?Th∶A2(A, D), PTB7?Th∶JC1(B, E), and PTB7?Th∶JC11(C, F) blend films

    Moreover, the grazing-incidence wide-angle X-ray scattering(GIWAXS) was also used to investigate the influence of side chains replacement on the film morphologies[69]. Fig.5 and Fig.S5(see the Supporting Information of this paper) show the two-dimensional(2D) patterns and the corresponding intensity profiles of the pure and blend films, respectively. The polymer donor PTB7-Th film shows strong lamellar peak atr=0.273 ?-1(=23.0 ?)(1 ?=0.1 nm) and broad-peak atz=1.66 ?-1(=3.78 ?) in in-plane(IP) and out-of-plane(OOP) direction, respectively. Pure A2 film displays a lamellar peak atr=0.327 ?-1(=19.2 ?), while JC11 exhibits obvious lamellar peak atr=0.337 ?-1(=18.6 ?) and-peak atq= 1.85 ?-1(=3.39 ?). In addition to intense-peak atq=1.87 ?-1(=3.36 ?), JC1 shows obvious lamellar peaks atr=0.308/0.371 ?-1(=20.4/16.9 ?) andq=0.531 ?-1(=11.8 ?) in both IP and OOP direction. Compared to A2 and JC1, JC11 exhibits higher crystallinity and more predominant face-on orientation, which is consistent with the higher electron mobility. Optimized PTB7-Th∶A2 blend film exhibits very strong lamellar peak atq=0.327 ?-1(=19.2 ?) but weak lamellar and-peak atr/q=0.273/1.67 ?-1, indicating preferred edge-on orientation. The JC11-based blend film presents the similar scattering features as the JC1-based film in terms of molecular packing orientation and crystallinity. However, JC1-based film displays two lamellar peaks atq=0.408/0.527 ?-1(=15.4/11.9 ?) in OOP direction relative to PTB7-Th∶JC11 film, which can hinder the regular packing of molecules. Therefore, appropriate extension of alkyl side chains in end groups is an effective strategy for the regulation of molecular packing in the active layer.

    Fig.5 2D GIWAXS patterns of PTB7?Th∶A2(A), PTB7?Th∶JC1(B) and PTB7?Th∶JC11(C) optimized films and the corresponding intensity profiles along the in?plane and out?of?plane directions(D)

    4 Conclusions

    In summary, a new BTT-based non-fullerene acceptor JC11 withoctyl group as the side-chains introduced simultaneously at IDT core and rhodanine end group was designed and synthesized. The influence of different side-chains at different sites of the same conjugated skeleton on the properties was investigated and compared with each other. It is found that a suitable flexible alkyl side-chain simultaneously introduced at central core and terminal group for JC11 is favorable for its intermolecular stacking and solubility that endows it to show more red-shifted absorption and better improved crystallinity than A1 as well as better phase-separation morphologies mixed with PTB7-Th than JC1. Moreover, JC11 owns higher molar extinction coefficient of up to 1.14×105L?mol-1?cm-1and higher electron mobility of 1.01×10-3cm2?V-1?s-1. For photovoltaic performances, the optimized PTB7-Th∶JC11 based device achieves a promising PCE of 10.09% with a much higherSCvalue of 24.20 mA/cm2, while the PCE of the optimized devices based on PTB7-Th∶A2 and PTB7-Th∶JC1 are only 8.20% and 8.16% with relatively lowSCvalues of less than 20 mA/cm2. Overall, this work demonstrates that the regulation of side-chains is a simple but very effective strategy to improve the absorption and crystallization properties of the FREAs, thus resulting in higherSCand PCE for BHJ-OSCs.

    The supporting information of this paper see http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20230163.

    [1] Li G., Zhu R., Yang Y.,, 2012,, 153—161

    [2] Lu L., Zheng T., Wu Q., Schneider A. M., Zhao D., Yu L.,,2015,, 12666—12731

    [3] Lin Y., Zhan X.,.,2016,, 175—183

    [4] Lin Y., Wang J., Zhang Z. G., Bai H., Li Y., Zhu D., Zhan X.,,2015,, 1170—1174

    [5] Dai S., Zhao F., Zhang Q., Lau T. K., Li T., Liu K., Ling Q., Wang C., Lu X., You W., Zhan X.,.,2017,, 1336—1343

    [6] Li Y.,,2012,, 723—733

    [7] Wang J., Xue P., Jiang Y., Huo Y., Zhan X.,,2022,, 614—634

    [8] Xue P., Cheng P., Han R. P. S., Zhan X.,.,2022,, 194—219

    [9] Yan C., Barlow S., Wang Z., Yan H., Jen A. K. Y., Marder S. R., Zhan X.,., 2018,, 18003

    [10] Cheng P., Li G., Zhan X., Yang Y.,,2018,, 131—142

    [11] Zhang G., Lin F. R., Qi F., Heumu?ller T., Distler A., Egelhaaf H.-J., Li N., Chow P. C. Y., Brabec C. J., Jen A. K. Y., Yip H. L.,,2022,, 14180—14274

    [12] Jia B., Zhan X.,, 2020,, 1179—1181

    [13] Liu Y., Zhao J., Li Z., Mu C., Ma W., Hu H., Jiang K., Lin H., Ade H., Yan H.,.,2014,, 5293

    [14] Zhao J., Li Y., Yang G., Jiang K., Lin H., Ade H., Ma W., Yan H.,,2016,, 15027

    [15] Vohra V., Kawashima K., Kakara T., Koganezawa T., Osaka I., Takimiya K., Murata H.,,2015,, 403—408

    [16] Wan Q., Guo X., Wang Z., Li W., Guo B., Ma W., Zhang M., Li Y.,.,2016,, 6635—6640

    [17] Zhang S., Ye L., Zhao W., Yang B., Wang Q., Hou J.,.,2015,, 248—256

    [18] Deng D., Zhang Y., Zhang J., Wang Z., Zhu L., Fang J., Xia B., Wang Z., Lu K., Ma W., Wei Z.,.,2016,, 13740

    [19] Ross R. B., Cardona C. M., Guldi D. M., Sankaranarayanan S. G., Reese M. O., Kopidakis N., Peet J., Walker B., Bazan G. C., van Keuren E., Holloway B. C., Drees M.,,2009,, 208—212

    [20] Zhu J., Ke Z., Zhang Q., Wang J., Dai S., Wu Y., Xu Y., Lin Y., Ma W., You W., Zhan X.,.,2018,, 1704713

    [21] Wang W., Yan C., Lau T. K., Wang J., Liu K., Fan Y., Lu X., Zhan X.,,2017,, 1701308

    [22] Lin Y., He Q., Zhao F., Huo L., Mai J., Lu X., Su C. J., Li T., Wang J., Zhu J., Sun Y., Wang C., Zhan X.,.,2016,, 2973—2976

    [23] Wang J., Zhan X.,,2021,, 132—143

    [24] Meng L., Zhang Y., Wan X., Li C., Zhang X., Wang Y., Ke X., Xiao Z., Ding L., Xia R., Yip H. L., Cao Y., Chen Y.,,2018,, 1094—1098

    [25] Zhang G., Zhang K., Yin Q., Jiang X., Wang Z., Xin J., Ma W., Yan H., Huang F., Cao Y.,.,2017,, 2387—2395

    [26] Luo Z., Bin H., Liu T., Zhang Z.-G., Yang Y., Zhong C., Qiu B., Li G., Gao W., Xie D., Wu K., Sun Y., Liu F., Li Y., Yang C.,,2018,, 1706124

    [27] Shi X., Zuo L., Jo S. B., Gao K., Lin F., Liu F., Jen A. K. Y.,,2017,, 8369—8376

    [28] Wang Y., Price M. B., Bobba R. S., Lu H., Xue J., Wang Y., Li M., Ilina A., Hume P. A., Jia B., Li T., Zhang Y., Davis N. J. L. K., Tang Z., Ma W., Qiao Q., Hodgkiss J. M., Zhan X.,, 2022, 34, 2206717

    [29] Xu X., Li Z., Zhang W., Meng X., Zou X., Rasi D. D. C., Ma W., Yartsev A., Andersson M. R., Janssen R. A. J., Wang E.,,2018,, 1700908

    [30] Wang J., Wang W., Wang X., Wu Y., Zhang Q., Yan C., Ma W., You W., Zhan X.,.,2017,, 1702125

    [31] Li T., Dai S., Ke Z., Yang L., Wang J., Yan C., Ma W., Zhan X.,., 2018,, 1705969

    [32] Chandrabose S., Chen K., Barker A. J., Sutton J. J., Prasad S. K. K., Zhu J., Zhou J., Gordon K. C., Xie Z., Zhan X., Hodgkiss J. M.,.,2019,, 6922—6929

    [33] Dai S., Li T., Wang W.,Xiao Y., Lau T., Li Z., Liu K., Lu X., Zhan X.,., 2018,30, 1706571

    [34] Bi P., Wang J., Cui Y., Zhang J., Zhang T., Chen Z., Qiao J., Dai J., Zhang S., Hao X., Wei Z., Hou J.,,2023,, 2210865

    [35] Yuan J., Zhang Y., Zhou L., Zhang G.,Yip H., Lau T., Lu X., Zhu C., Peng H., Johnson P., Leclerc M., Cao Y., Ulanski J., Li Y., Zou Y.,2019,, 1140—1151

    [36] Ou Z., Qin J., Jin K., Zhang J., Zhang L., Yi C., Jin Z., Song Q., Sun K., Yang J., Xiao Z., Ding L.,,2022,, 3314—3320

    [37] Sun R., Wu Y., Yang X., Gao Y., Chen Z., Li K., Qiao J., Wang., Guo J., Liu C., Hao X., Zhu H., Min J.,,2022,, 2110147

    [38] Chen T., Li S., Li Y., Chen Z., Wu H., Lin Y., Gao Y., Wang M., Ding G., Min J., Ma Z., Zhu H., Zuo L., Chen H.,,2023, 35, 202300400

    [39] Li S., Zhang R., Zhang M., Yao J., Peng Z., Chen Q., Zhang C., Chang B., Bai Y., Fu H., Ouyang Y., Zhang C., Steele J. A., Alshahrani T., Roeffaers M. B.J., Solano E., Meng L., Gao F., Li Y., Zhang Z. G.,,2023, 35, 2206563

    [40] Cai Y., Xie C., Li Q., Liu C., Gao J., Jee M. H., Qiao J., Li Y., Song J., Hao X., Woo H. Y., Tang Z., Zhou Y., Zhang C., Huang H., Sun Y.,,2023, 35, 2208165

    [41] Yang X., Sun R., Wang Y., Chen M., Xia X., Lu X., Lu G., Min J.,, 2023, 35, 2209350

    [42] Chen H., Zhang Z., Wang P., Zhang Y., Ma K., Lin Y., Duan T., He T., Ma Z., Long G., Li C., Kan B., Yao Z., Wan X., Chen Y.,, 2023, 16, 1773—1782

    [43] Liu F.,Zhou Z., Zhang C., Vergote T., Fan H., Liu F., Zhu X.,.,2016,, 15523—15526

    [44] Yao H., Cui Y., Yu R., Gao B., Zhang H., Hou J., Design,.,2017,, 3045—3049

    [45] Wu J., Xu Y., Yang Z., Chen Y., Sui X., Yang L., Ye P., Zhu T., Wu X., Liu X., Cao H., Peng A., Huang H.,,2019,, 1803012

    [46] Chen S., Yao H., Hu B., Zhang G., Arunagiri L., Ma L., Huang J., Zhang J., Zhu Z., Bai F., Ma W., Yan H.,.,2018,, 1800529

    [47] Wu Y., Bai H., Wang Z., Cheng P., Zhu S., Wang Y., Ma W., Zhan X.,.,2015,, 3215—3221

    [48] Xiao B., Tang A., Cheng L., Zhang J., Wei Z., Zeng Q., Zhou E.,2017,, 1700166

    [49] Holliday S., Ashraf R. S., Wadsworth A., Baran D., Yousaf S. A., Nielsen C. B., Tan C., Dimitrov S. D., Shang Z., Gasparini N., Alamoudi M., Laquai F., Brabec C. J., Salleo A., Durrant J. R., McCulloch I.,.,2016,, 11585

    [50] Wadsworth A., Ashraf R. S., Abdelsamie M., Pont S., Little M., Moser M., Hamid Z., Neophytou M., Zhang W., Amassian A., Durrant J. R., Baran D., McCulloch I.,.,2017,, 1494—1500

    [51] Xiao B., Tang A., Zhang J., Mahmood A., Wei Z., Zhou E.,.,2017,, 1602269

    [52] Tang A., Xiao B., Chen F., Zhang J., Wei Z., Zhou E.,,2018,, 1801582

    [53] Liu Y., Zhang Z., Feng S., Li M., Wu L., Hou R., Xu X., Chen X., Bo Z.,,2017,, 3356—3359

    [54] Deng M., Xu X., Duan Y., Yu L., Li R., Peng Q.,, 2023, 35, 2210760

    [55] Feng S., Zhang C., Liu Y., Bi Z., Zhang Z., Xu X., Ma W., Bo Z.,., 2017,, 1703527

    [56] Fei Z., Eisner F. D., Jiao X., Azzouzi M., R?hr J. A., Han Y., Shahid M., Chesman A. S. R., Easton C. D., McNeill C. R., Anthopoulos T. D., Nelson J., Heeney M.,,2018,, 1705209

    [57] Li H., Zhao Y., Fang J., Zhu X., Xia B., Lu K., Wang Z., Zhang J., Guo X., Wei Z.,.,2018,, 1702377

    [58] Lin Y., Zhang Z.-G., Bai H., Wang J., Yao Y., Li Y., Zhu D., Zhan X.,.,2015,, 610—616

    [59] Xu H., Yang Y., Zhong C., Zhan X., Chen X.,,2018,, 6393—6401

    [60] Wang J., Li T., Wang X., Xiao Y., Zhong C., Wang J., Liu K., Lu X., Zhan X, Chen X.,,2019,, 26005—26016

    [61] Wang J., Xu H., Xiao Y., Li T., Wang J., Liu K., Lu X., Zhan X., Chen X.,2020,, 105705

    [62] Yang Y., Wang J., Xu H., Zhan X., Chen X.,,2018,, 18984—18992

    [63] Yang Y., Jiang X., Zhan X., Chen X.,2019,, 257—267

    [64] Wang J., Cai G., Jia B., Lu H., Lu X., Zhan X., Chen X.,,2021, 9, 6520—6528

    [65] Wang Y., Qian D., Cui Y., Zhang H., Hou J., Vandewal K., Kirchartz T., Gao F.,,2018,, 1801352

    [66] Blom P. W. M., Mihailetchi V. D., Koster L. J. A., Markov D. E.,,2007,, 1551—1566

    [67] Riedel I., Parisi J., Dyakonov V., Lutsen L., Vanderzande D., Hummelen J. C.,,2004,, 38—44

    [68] Shen Y., Hosseini A. R., Wong M. H., Malliaras G. G.,,2004,, 16—25

    [69] Mai J., Xiao Y., Zhou G., Wang J., Zhu J., Zhao N., Zhan X., Lu X.,,2018,, 1802888

    側(cè)鏈的簡(jiǎn)單調(diào)制使近紅外吸收的非富勒烯受體實(shí)現(xiàn)更高的短路電流密度

    王家成1,蔡貴龍3,張亞靜1,王嘉宇2,路新慧3,占肖衛(wèi)2,陳興國(guó)1

    (1. 湖北省有機(jī)高分子光電功能材料重點(diǎn)實(shí)驗(yàn)室, 武漢大學(xué)化學(xué)與分子科學(xué)學(xué)院, 武漢 430072; 2. 北京大學(xué)材料科學(xué)與工程學(xué)院, 北京 100871; 3. 香港中文大學(xué)物理系, 香港 999077)

    為了探究相同共軛骨架中不同位點(diǎn)引入不同側(cè)鏈對(duì)相應(yīng)小分子非富勒烯受體光電性能的影響, 本文通過(guò)在中心核茚并二噻吩并[3,2-b]噻吩(IDT)單元和端基(1,1-二氰基亞甲基)繞丹寧單元上同時(shí)引入正辛基柔性側(cè)鏈并以噻吩稠合苯并噻二唑(BTT)單元為“-橋”而構(gòu)建了一個(gè)新的A--D--A型非富勒烯受體(JC11). 與以往研究得到的兩個(gè)A--D--A型非富勒烯受體(A2和JC1)相比, 在中心核和端基同時(shí)引入適宜長(zhǎng)度的正辛基側(cè)鏈不僅賦予JC11更有利的分子間堆疊, 而且使JC11比在中心核引入剛性更強(qiáng)和空間位阻更大的己基取代苯基側(cè)鏈的A1表現(xiàn)出了更大的吸收紅移和更好的結(jié)晶度; 同時(shí)也比在端基僅引入短鏈乙基側(cè)鏈的JC1表現(xiàn)出了更好的溶解性能, 避免了其與PTB7-Th給體共混時(shí)出現(xiàn)過(guò)度聚集而導(dǎo)致相分離尺度過(guò)大. 此外, JC11在 給體/受體共混膜中展現(xiàn)了比A2和JC1更高的摩爾消光系數(shù)(高達(dá)1.14×105L?mol-1?cm-1)和更高的電子遷移率(e=1.01×10-3cm?V-1?s-1)以及更平衡的電子/空穴遷移率(e/h=2.72). 因此, 基于PTB7-Th∶JC11的太陽(yáng)能電池器件經(jīng)優(yōu)化后實(shí)現(xiàn)了10.09%的光電轉(zhuǎn)換效率(PCE)和高達(dá)24.20 mA/cm2的短路電流密度(SC), 超過(guò)PTB7-Th∶A2和PTB7-Th∶JC1優(yōu)化器件8.20%和8.16%的PCE以及低于20 mA/cm2的SC值. 研究結(jié)果表明, 調(diào)節(jié)共軛主鏈側(cè)鏈?zhǔn)且环N簡(jiǎn)單且有效的調(diào)控非富勒烯小分子受體材料的吸收性能和結(jié)晶性能的分子設(shè)計(jì)策略, 可大幅提高異質(zhì)結(jié)有機(jī)太陽(yáng)能電池的SC和PCE.

    A--D--A結(jié)構(gòu);非富勒烯受體;側(cè)鏈工程;有機(jī)太陽(yáng)能電池

    O649.5

    A

    10.7503/cjcu20230163

    網(wǎng)絡(luò)首發(fā)日期: 2023-06-05.

    聯(lián)系人簡(jiǎn)介:陳興國(guó), 男, 博士, 教授, 主要從事光電功能材料的分子設(shè)計(jì)與合成及性能研究. E?mail: xgchen@whu.edu.cn

    占肖衛(wèi), 男, 博士, 教授, 主要從事有機(jī)高分子光電功能材料的設(shè)計(jì)合成、器件構(gòu)筑與性能研究. E-mail: xwzhan@pku.edu.cn

    2023-04-01

    國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào): 51973163)資助.

    Supported by the National Natural Science Foundation of China(No.51973163).

    (Ed.: N, K, M)

    猜你喜歡
    辛基富勒烯側(cè)鏈
    基于側(cè)鏈技術(shù)及優(yōu)化DPoS機(jī)制的電能交易模型
    酞菁鋅的側(cè)鏈修飾及光動(dòng)力活性研究
    鉆石級(jí)抗衰 諾貝爾獎(jiǎng)光環(huán)揭開“富勒烯”的神秘面紗
    含聚醚側(cè)鏈?zhǔn)嵝途埕人猁}分散劑的合成及其應(yīng)用
    富勒烯基聚合物制備研究的進(jìn)展
    辛基二茂鐵分子結(jié)構(gòu)特性的量子化學(xué)計(jì)算
    磁性石墨烯修飾辛基酚印跡傳感器制備及應(yīng)用研究
    新型富勒烯的合成
    全氟辛基磺酰氟的制備工藝
    紫杉醇C13側(cè)鏈的硒代合成及其結(jié)構(gòu)性質(zhì)
    三级毛片av免费| a 毛片基地| 亚洲欧美激情在线| 1024香蕉在线观看| 久久精品成人免费网站| 国产高清videossex| 精品卡一卡二卡四卡免费| 婷婷色av中文字幕| 欧美黄色片欧美黄色片| 日韩大码丰满熟妇| 丰满迷人的少妇在线观看| 国产精品熟女久久久久浪| 精品亚洲乱码少妇综合久久| 天天添夜夜摸| 国产精品秋霞免费鲁丝片| 淫妇啪啪啪对白视频 | 91成人精品电影| 亚洲精品国产精品久久久不卡| 国产精品成人在线| 窝窝影院91人妻| 热re99久久精品国产66热6| 精品人妻在线不人妻| 亚洲欧美精品自产自拍| 国产亚洲欧美精品永久| 超碰成人久久| 欧美在线黄色| 午夜福利视频在线观看免费| 视频区欧美日本亚洲| 国产av又大| 久久影院123| 一级a爱视频在线免费观看| 国产淫语在线视频| 国产精品久久久久久人妻精品电影 | 一级,二级,三级黄色视频| 国产男女内射视频| 亚洲欧美清纯卡通| 精品国产一区二区三区四区第35| 久久久久久久久久久久大奶| 久久久久精品国产欧美久久久 | 国产欧美日韩精品亚洲av| 欧美日韩成人在线一区二区| 精品国产乱子伦一区二区三区 | 久久久精品国产亚洲av高清涩受| 中文字幕精品免费在线观看视频| 国产xxxxx性猛交| 成在线人永久免费视频| av网站在线播放免费| 欧美 亚洲 国产 日韩一| 国产亚洲精品第一综合不卡| 亚洲七黄色美女视频| 99热网站在线观看| 国产精品熟女久久久久浪| 亚洲欧美色中文字幕在线| 叶爱在线成人免费视频播放| 中文精品一卡2卡3卡4更新| 一本大道久久a久久精品| 极品少妇高潮喷水抽搐| 中文字幕人妻丝袜制服| 欧美中文综合在线视频| 黄网站色视频无遮挡免费观看| 国产精品国产av在线观看| 一级片免费观看大全| 亚洲avbb在线观看| 麻豆乱淫一区二区| 亚洲精品国产精品久久久不卡| 国产极品粉嫩免费观看在线| 无限看片的www在线观看| 精品亚洲成国产av| 欧美精品一区二区大全| 国产激情久久老熟女| 手机成人av网站| 精品视频人人做人人爽| 久久免费观看电影| 亚洲欧洲精品一区二区精品久久久| a 毛片基地| 久久毛片免费看一区二区三区| 色精品久久人妻99蜜桃| 黄色怎么调成土黄色| 啦啦啦啦在线视频资源| 视频区欧美日本亚洲| 99久久精品国产亚洲精品| 搡老熟女国产l中国老女人| 精品人妻一区二区三区麻豆| 亚洲精华国产精华精| 久久久精品94久久精品| 欧美精品亚洲一区二区| 精品福利观看| 成年人黄色毛片网站| 99久久精品国产亚洲精品| 午夜日韩欧美国产| 美女午夜性视频免费| 男女下面插进去视频免费观看| 亚洲精品国产一区二区精华液| 男人爽女人下面视频在线观看| 久久精品熟女亚洲av麻豆精品| 久久久久久久久久久久大奶| 久久久久久久久免费视频了| 国产精品影院久久| 欧美精品一区二区大全| 亚洲精品久久午夜乱码| 极品少妇高潮喷水抽搐| 色精品久久人妻99蜜桃| 国产日韩一区二区三区精品不卡| 久久人人97超碰香蕉20202| 国产成人精品在线电影| 欧美另类亚洲清纯唯美| 飞空精品影院首页| 中文字幕人妻丝袜制服| 9色porny在线观看| 乱人伦中国视频| 美女脱内裤让男人舔精品视频| 色综合欧美亚洲国产小说| 手机成人av网站| 亚洲成人国产一区在线观看| 国产精品秋霞免费鲁丝片| 高清欧美精品videossex| 美女午夜性视频免费| 中国美女看黄片| 精品第一国产精品| 女人高潮潮喷娇喘18禁视频| 色精品久久人妻99蜜桃| 99久久综合免费| 啦啦啦免费观看视频1| 十八禁网站免费在线| www.999成人在线观看| 日韩 亚洲 欧美在线| 午夜激情av网站| 日韩电影二区| 一区在线观看完整版| 午夜福利视频精品| 日本欧美视频一区| 制服诱惑二区| 亚洲自偷自拍图片 自拍| 精品视频人人做人人爽| 免费在线观看黄色视频的| 国产成+人综合+亚洲专区| 国产淫语在线视频| 国产成人av教育| 亚洲精品国产av成人精品| 男女无遮挡免费网站观看| 亚洲精品日韩在线中文字幕| 免费在线观看日本一区| 91成人精品电影| 一级片免费观看大全| 高潮久久久久久久久久久不卡| 天天躁夜夜躁狠狠躁躁| 欧美精品人与动牲交sv欧美| 日日摸夜夜添夜夜添小说| 涩涩av久久男人的天堂| 黄片大片在线免费观看| 99久久综合免费| 国产淫语在线视频| av福利片在线| 一本综合久久免费| 午夜福利,免费看| 一进一出抽搐动态| 国产精品免费视频内射| 国产成人精品在线电影| 国产一区二区 视频在线| 老熟女久久久| 18在线观看网站| 91精品国产国语对白视频| 久久久国产欧美日韩av| 午夜福利在线观看吧| 成年动漫av网址| a在线观看视频网站| 国产av国产精品国产| 97在线人人人人妻| 国产黄频视频在线观看| 亚洲中文日韩欧美视频| 国产又色又爽无遮挡免| 桃花免费在线播放| 国产无遮挡羞羞视频在线观看| 国产一区二区激情短视频 | 好男人电影高清在线观看| 日本a在线网址| 中文字幕最新亚洲高清| www.自偷自拍.com| 欧美精品人与动牲交sv欧美| 91九色精品人成在线观看| 一区福利在线观看| 亚洲国产av新网站| 亚洲中文字幕日韩| 男女之事视频高清在线观看| av在线播放精品| 国产又爽黄色视频| 女警被强在线播放| av不卡在线播放| 91麻豆精品激情在线观看国产 | 欧美黑人精品巨大| 女人精品久久久久毛片| 亚洲欧美精品综合一区二区三区| 天天添夜夜摸| 啦啦啦中文免费视频观看日本| 国产精品麻豆人妻色哟哟久久| 中国美女看黄片| 丝袜美足系列| 亚洲男人天堂网一区| 亚洲伊人久久精品综合| 在线观看www视频免费| 午夜福利免费观看在线| 亚洲欧洲日产国产| 精品人妻一区二区三区麻豆| 国产成人影院久久av| 国产成人a∨麻豆精品| 欧美97在线视频| 欧美日韩视频精品一区| 午夜激情av网站| videosex国产| av一本久久久久| 亚洲精品国产av蜜桃| 在线看a的网站| 黄色怎么调成土黄色| 国产又爽黄色视频| 老司机午夜十八禁免费视频| 999久久久精品免费观看国产| 中文字幕人妻丝袜制服| 中文精品一卡2卡3卡4更新| 国产99久久九九免费精品| 国产精品亚洲av一区麻豆| 黑人操中国人逼视频| 建设人人有责人人尽责人人享有的| 考比视频在线观看| 亚洲五月婷婷丁香| 亚洲欧美日韩高清在线视频 | www日本在线高清视频| 日韩精品免费视频一区二区三区| cao死你这个sao货| 国产男女内射视频| 少妇 在线观看| 久久天堂一区二区三区四区| 国产黄色免费在线视频| 十分钟在线观看高清视频www| 国产免费一区二区三区四区乱码| 精品人妻一区二区三区麻豆| 母亲3免费完整高清在线观看| 亚洲 欧美一区二区三区| 午夜精品国产一区二区电影| 视频区欧美日本亚洲| 国产成人影院久久av| 多毛熟女@视频| 咕卡用的链子| 老汉色∧v一级毛片| 国产精品久久久av美女十八| 十八禁网站网址无遮挡| 视频在线观看一区二区三区| 国产精品亚洲av一区麻豆| 王馨瑶露胸无遮挡在线观看| 国产欧美日韩一区二区三区在线| 午夜免费观看性视频| 19禁男女啪啪无遮挡网站| 久9热在线精品视频| 久久久久久久久免费视频了| 老司机亚洲免费影院| 人人妻,人人澡人人爽秒播| 亚洲精品美女久久久久99蜜臀| 久久天躁狠狠躁夜夜2o2o| 精品欧美一区二区三区在线| 国精品久久久久久国模美| 黄网站色视频无遮挡免费观看| 18禁国产床啪视频网站| 一级,二级,三级黄色视频| 国产精品一区二区在线不卡| 丰满饥渴人妻一区二区三| 一区福利在线观看| 美女大奶头黄色视频| 一本—道久久a久久精品蜜桃钙片| 久久青草综合色| 黄网站色视频无遮挡免费观看| 1024香蕉在线观看| 国产av精品麻豆| 日韩一卡2卡3卡4卡2021年| 亚洲欧美日韩高清在线视频 | 王馨瑶露胸无遮挡在线观看| 久久人人97超碰香蕉20202| 欧美日韩中文字幕国产精品一区二区三区 | 1024视频免费在线观看| 搡老乐熟女国产| 欧美 亚洲 国产 日韩一| av线在线观看网站| 黄色视频不卡| 亚洲熟女精品中文字幕| 亚洲欧洲精品一区二区精品久久久| 国产精品一区二区精品视频观看| 少妇被粗大的猛进出69影院| 视频在线观看一区二区三区| www.熟女人妻精品国产| 水蜜桃什么品种好| 国产日韩欧美在线精品| 久久精品国产亚洲av高清一级| 老司机午夜十八禁免费视频| 在线观看免费高清a一片| 国产欧美日韩一区二区三区在线| av有码第一页| 欧美日韩一级在线毛片| 50天的宝宝边吃奶边哭怎么回事| 久热爱精品视频在线9| 久久国产精品男人的天堂亚洲| 狠狠婷婷综合久久久久久88av| 中文字幕色久视频| 热99国产精品久久久久久7| 亚洲国产毛片av蜜桃av| 精品国产乱码久久久久久男人| 久久这里只有精品19| 国产成人精品久久二区二区免费| 国产欧美日韩一区二区三区在线| 久久av网站| 国产欧美日韩一区二区精品| 人人澡人人妻人| 亚洲国产欧美日韩在线播放| 女性生殖器流出的白浆| 国产国语露脸激情在线看| 国产1区2区3区精品| 男人舔女人的私密视频| 黄色视频,在线免费观看| 最新在线观看一区二区三区| 欧美性长视频在线观看| 在线观看一区二区三区激情| 国产av精品麻豆| 中文精品一卡2卡3卡4更新| 久久国产精品影院| 日韩欧美一区视频在线观看| 最近最新免费中文字幕在线| 中文字幕最新亚洲高清| 美女视频免费永久观看网站| 欧美激情极品国产一区二区三区| 国产成人av教育| 一本久久精品| avwww免费| 视频在线观看一区二区三区| 一级毛片女人18水好多| 午夜精品国产一区二区电影| 久久中文字幕一级| 久久久久国产一级毛片高清牌| 亚洲专区字幕在线| 成年动漫av网址| 免费高清在线观看视频在线观看| 高潮久久久久久久久久久不卡| 久久久久久久国产电影| 国产精品九九99| 色婷婷av一区二区三区视频| 欧美精品啪啪一区二区三区 | 久久中文字幕一级| 色综合欧美亚洲国产小说| 欧美成人午夜精品| 日韩三级视频一区二区三区| 一进一出抽搐动态| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美亚洲 丝袜 人妻 在线| 黑人欧美特级aaaaaa片| 精品国产超薄肉色丝袜足j| 亚洲男人天堂网一区| 视频区图区小说| 亚洲自偷自拍图片 自拍| 在线观看免费视频网站a站| 男人操女人黄网站| 久久 成人 亚洲| 免费黄频网站在线观看国产| 国产有黄有色有爽视频| 国产成人欧美在线观看 | 桃红色精品国产亚洲av| 免费一级毛片在线播放高清视频 | 国产一区二区 视频在线| 男人舔女人的私密视频| 香蕉丝袜av| 亚洲国产中文字幕在线视频| 久久久久国产精品人妻一区二区| kizo精华| 久久香蕉激情| 亚洲av片天天在线观看| 欧美av亚洲av综合av国产av| 1024视频免费在线观看| 高潮久久久久久久久久久不卡| 国产精品影院久久| 人成视频在线观看免费观看| 免费av中文字幕在线| 国产精品一区二区精品视频观看| 国产一卡二卡三卡精品| 午夜精品久久久久久毛片777| 国产av国产精品国产| 12—13女人毛片做爰片一| 国产在线视频一区二区| 最黄视频免费看| 黑人操中国人逼视频| 欧美在线黄色| 男人操女人黄网站| 热re99久久国产66热| 欧美黑人精品巨大| 亚洲色图 男人天堂 中文字幕| 精品少妇久久久久久888优播| 极品少妇高潮喷水抽搐| 麻豆av在线久日| 亚洲精品久久午夜乱码| 丁香六月天网| a级毛片在线看网站| 国产1区2区3区精品| 亚洲精品中文字幕在线视频| 国产野战对白在线观看| 狠狠狠狠99中文字幕| 亚洲欧美成人综合另类久久久| 日日摸夜夜添夜夜添小说| 亚洲精品一二三| 日本vs欧美在线观看视频| 岛国在线观看网站| 他把我摸到了高潮在线观看 | 男女下面插进去视频免费观看| 中国国产av一级| 美女视频免费永久观看网站| 中文字幕另类日韩欧美亚洲嫩草| 久久ye,这里只有精品| 精品国产超薄肉色丝袜足j| 久久精品人人爽人人爽视色| 精品久久蜜臀av无| 午夜两性在线视频| 亚洲av电影在线进入| 午夜久久久在线观看| 丝袜在线中文字幕| 精品国产一区二区三区久久久樱花| 亚洲精品国产一区二区精华液| 动漫黄色视频在线观看| 免费高清在线观看日韩| 色综合欧美亚洲国产小说| 亚洲欧美精品综合一区二区三区| 精品乱码久久久久久99久播| 国产精品秋霞免费鲁丝片| 老熟妇乱子伦视频在线观看 | 高清黄色对白视频在线免费看| 国产高清国产精品国产三级| 男人舔女人的私密视频| 亚洲国产欧美一区二区综合| 精品第一国产精品| 丝瓜视频免费看黄片| cao死你这个sao货| 国产片内射在线| 久久久久久久国产电影| 大陆偷拍与自拍| 一级毛片电影观看| 美女视频免费永久观看网站| 午夜福利免费观看在线| 大片电影免费在线观看免费| 亚洲熟女毛片儿| 丝袜美腿诱惑在线| √禁漫天堂资源中文www| 超碰97精品在线观看| 90打野战视频偷拍视频| www.精华液| 欧美日韩亚洲高清精品| 欧美xxⅹ黑人| 国产精品一区二区在线不卡| 男人舔女人的私密视频| 天天操日日干夜夜撸| 成人18禁高潮啪啪吃奶动态图| 日韩欧美国产一区二区入口| 悠悠久久av| 黑丝袜美女国产一区| 成人影院久久| 亚洲 国产 在线| 啪啪无遮挡十八禁网站| 热re99久久国产66热| 久久精品国产亚洲av香蕉五月 | 亚洲欧美日韩另类电影网站| 亚洲精品粉嫩美女一区| 国产97色在线日韩免费| 9热在线视频观看99| 少妇被粗大的猛进出69影院| 免费人妻精品一区二区三区视频| 久久久久国产一级毛片高清牌| 啦啦啦在线免费观看视频4| 精品福利观看| 99久久人妻综合| 精品少妇黑人巨大在线播放| 欧美在线一区亚洲| 久久午夜综合久久蜜桃| 老熟女久久久| 国产精品久久久久久人妻精品电影 | 性色av乱码一区二区三区2| 91老司机精品| 少妇精品久久久久久久| 欧美日韩视频精品一区| 一边摸一边抽搐一进一出视频| 岛国毛片在线播放| 中文精品一卡2卡3卡4更新| 每晚都被弄得嗷嗷叫到高潮| 永久免费av网站大全| 王馨瑶露胸无遮挡在线观看| 久久中文看片网| 日韩中文字幕视频在线看片| 国产精品久久久久久精品古装| 肉色欧美久久久久久久蜜桃| 亚洲国产精品一区三区| 欧美精品高潮呻吟av久久| 成年人黄色毛片网站| 免费日韩欧美在线观看| 亚洲精品粉嫩美女一区| 成人影院久久| 亚洲欧美色中文字幕在线| 欧美日韩一级在线毛片| 午夜激情av网站| 叶爱在线成人免费视频播放| 精品少妇久久久久久888优播| 一区二区日韩欧美中文字幕| 精品一区二区三区四区五区乱码| 欧美成人午夜精品| 少妇裸体淫交视频免费看高清 | 亚洲全国av大片| 久久99一区二区三区| 精品国产乱子伦一区二区三区 | 桃花免费在线播放| 一边摸一边做爽爽视频免费| 天堂中文最新版在线下载| 国产成人精品久久二区二区免费| 99精品欧美一区二区三区四区| 久久久国产一区二区| 成年av动漫网址| 久久九九热精品免费| 狂野欧美激情性bbbbbb| 国产精品av久久久久免费| 99国产精品99久久久久| 一本一本久久a久久精品综合妖精| 2018国产大陆天天弄谢| 一个人免费看片子| 亚洲熟女精品中文字幕| av免费在线观看网站| 久久人妻熟女aⅴ| 国产免费一区二区三区四区乱码| 成年人免费黄色播放视频| 黑人欧美特级aaaaaa片| 考比视频在线观看| bbb黄色大片| 性色av一级| 亚洲av国产av综合av卡| 国产精品久久久久久精品电影小说| 亚洲人成77777在线视频| 日日爽夜夜爽网站| 精品少妇黑人巨大在线播放| 久久久久视频综合| 极品少妇高潮喷水抽搐| 日本一区二区免费在线视频| 美女视频免费永久观看网站| 亚洲五月婷婷丁香| 又紧又爽又黄一区二区| av超薄肉色丝袜交足视频| 欧美人与性动交α欧美软件| 叶爱在线成人免费视频播放| 亚洲国产欧美网| 久久女婷五月综合色啪小说| 久久 成人 亚洲| 91精品三级在线观看| 亚洲国产精品一区三区| av视频免费观看在线观看| 精品欧美一区二区三区在线| av线在线观看网站| 黄网站色视频无遮挡免费观看| 90打野战视频偷拍视频| 色视频在线一区二区三区| 国产伦理片在线播放av一区| av天堂久久9| 精品乱码久久久久久99久播| 久久久久精品国产欧美久久久 | 久久久国产精品麻豆| 日日夜夜操网爽| 老汉色av国产亚洲站长工具| 精品第一国产精品| 男女床上黄色一级片免费看| 淫妇啪啪啪对白视频 | 最新的欧美精品一区二区| 老司机影院成人| 狠狠婷婷综合久久久久久88av| 亚洲专区字幕在线| 久久中文字幕一级| 人妻人人澡人人爽人人| 成在线人永久免费视频| 亚洲av成人一区二区三| 午夜福利免费观看在线| 国产成人a∨麻豆精品| 日韩三级视频一区二区三区| 黄色a级毛片大全视频| 91精品三级在线观看| 看免费av毛片| 精品乱码久久久久久99久播| 欧美大码av| 亚洲视频免费观看视频| 中国国产av一级| 99精品欧美一区二区三区四区| 人人澡人人妻人| 91精品三级在线观看| 亚洲精品久久午夜乱码| 亚洲精品美女久久久久99蜜臀| 91老司机精品| 国产精品二区激情视频| 久久久久久久精品精品| 岛国毛片在线播放| 亚洲 欧美一区二区三区| 1024香蕉在线观看| 久久影院123| 十八禁网站网址无遮挡| 色视频在线一区二区三区| 在线天堂中文资源库| 精品少妇内射三级| 人人妻人人澡人人爽人人夜夜| 精品久久久精品久久久| 免费女性裸体啪啪无遮挡网站| 在线十欧美十亚洲十日本专区| 国产成人精品久久二区二区91| 一边摸一边抽搐一进一出视频| 中国美女看黄片| 妹子高潮喷水视频| 久久精品亚洲av国产电影网| 老汉色∧v一级毛片| 成年人黄色毛片网站| 欧美日韩亚洲高清精品| 99热国产这里只有精品6| 老熟女久久久| 亚洲第一欧美日韩一区二区三区 | a级毛片黄视频|