• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Beta-alanine as a Dual Modification Additive in Organic Solar Cells

    2023-10-10 05:20:22ZAFARSauduzZHANGWeichaoYANGShuoLIShilinZHANGYingyuZHANGYuanZHANGHongZHOUHuiqiong
    關(guān)鍵詞:張弘丙氨酸中國科學(xué)院

    ZAFAR Saud uz, ZHANG Weichao, YANG Shuo, LI Shilin, ZHANG Yingyu, ZHANG Yuan, ZHANG Hong*, ZHOU Huiqiong*

    Beta-alanine as a Dual Modification Additive in Organic Solar Cells

    ZAFARSaud uz1, ZHANGWeichao2, YANGShuo3, LIShilin2, ZHANGYingyu1, ZHANGYuan2, ZHANGHong1*, ZHOUHuiqiong1*

    (,,,,100190,;,,100191,;,,101100,)

    Beta-alanine; Additive; Dual-modification; Transporting layer; Organic solar cell

    1 Introduction

    In recent years, the efficiency of organic solar cells(OSCs)[1]has surpassed 19%[2], owing to the emergence of non-fullerene acceptors(NFAs)[3]. While efforts to design new active[4,5]layer materials, optimize morphology[6], and develop advanced device structures[7], researchers are also exploring novel interfacial materials[8], including 0D—3D materials[9], self-assembled monolayers(SAMs), organic compounds, and eco-friendly compounds[10—13], to enhance the performance parameters of OSCs. These interfacial materials form new functional bond links[14]with the interface layer compounds and can significantly improve cell efficiency if optimized appropriately. To achieve better performance and properties in OSCs, it is crucial to optimize both the hole transport layer(HTL)[15,16]and electron transport layer(ETL) interface layers[17,18]. This can be accomplished by introducing ionic materials, polar compounds, zwitterions, and high-boiling materials into the interface layers[19—22]. However, classic interfacial materials such as poly(3,4-ethylenedioxythiophene)∶poly(styrenesulfonate)(PEDOT∶PSS)[23]and poly[9,9-bis(3′-(,-dimethyl)--ethylammoinium-propyl-2,7-fluorene)-alt-2,7-9,9-dioctylfluorene)] dibromide(PFN-Br)[24]exhibit limitations. PEDOT∶PSS undergoes shortcomings including acidity(pH=1.5—2.5)[25], hygroscopicity(absorbs moisture from the surrounding while preparing thin films), anisotropic charge injection[26], moderate conductivity, inhomogeneities in electronic and structural morphologies with batch-to-batch variation[27,28], and for PFN-Br detrimental contact resistance arising from their interfacial properties[29], scarcity of delocalized electrons, molecular aggregation of conjugated structure along with insulating properties[30—32]. The PFN-Br based devices also suffered from instability[33], and mismatched energy levels between the cathode and acceptors. To overcome these drawbacks, the adoption of new materials or the use of additives is essential to attain higher efficiency OSCs.

    In this study, beta-alanine(-alanine)[34]was employed as a small molecule additive with hydroxyl (—OH)/carboxyl group(—COOH) on one side and amine(—NH2)[35]on the other side, with a chemical formula of C3H7NO2. Despite its antioxidant properties[36],-alanine has received limited attention in the context of organic solar cells. In this work, we utilized-alanine as a dual modifier to modify both transporting layers on PEDOT∶PSS(HTL) and PFN-Br(ETL) in the same device through a simple solution-processed technique, resulting in the synthesis of new interface layers. The modified PEDOT∶PSS(A-PEDOT∶PSS) exhibited superior properties compared to pristine PEDOT∶PSS, as evidenced by improvements in morphology, efficiency, and characteristic properties[37]. Positive influences were also observed for modified PFN-Br (A-PFN-Br). Our findings indicate that the addition of-alanine resulted in an enhanced power conversion efficiency(PCE) of PM6∶Y6 solar cells, increasing from 14.99% to 15.78%. Furthermore, the addition of-alanine did not have a detrimental effect on light absorption, as shown by UV absorption and transmission data. FTIR analysis was conducted to confirm the modification, while surface morphology was analyzed using AFM. The current density-voltage(-) curve and dark current measurements also demonstrated an improvement. This study presents a unique modification that utilizes the same molecule in different materials to enhance device performance and stability, representing a novel approach that has not been previously explored in organic solar cells.

    2 Experimental

    2.1 Materials and Measurements

    Poly[[4,8-bis[5-2-ethylhexyl]-4-fluoro-2-thienyl]benzo[1,2-b∶4,5-b∶4,5-b′]dithiophene-2,6-diyl)- 2,5 th-iophenediyl[5,7-bis(2-ethylhexyl)-4,8-dioxo-4H,8H-benzo[1,2-c∶4,5-c′]dithiophene-1,3-diyl]- 2,5-thiophene-diyl]), PBDB-T-2F∶PM6, along with an acceptor material which was analyzed and used during the following work is Y6,(BTP-4F∶2,2′-((2Z.2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl- 12,13-dihydro-[1,2,5]thiadiazol[3,4-e]thieno[2″,3″∶4′,5′]thieno[2′,3′∶4,5]pyrrolo[3,2-g]thieno[2′,3′∶4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1-indene-2,1-diylidene))dimalononitri-le))both were acquired from Solarmer Materials Inc. Chloroform(CF) and 1-chloronaphthalene(CN) were purchased from Sigma Aldrich and TCL, respectively. PEDOT∶PSS and PFN-Br were bought for buffer layer utilization, along with-alanine additive, which was purchased from Sigma Aldrich. Then, Isopropanol and acetone were obtained from Alfa Aesar Inc.

    -characteristics of solar cells was measured on a Keithley 2400 source meter under AM 1.5G illumination(100 mW/cm2) provided by an Oriel solar simulator. The incident light intensity was adjusted with a silicon calibration photodiode(Peccell Technologies). Single carrier devices were characterized by using a Keithley 2400 source in a dark environment. The Fourier transform infrared spectroscopy(FTIR) analysis was done by Spotlight 200i FT-IR microscopy system. The samples were prepared on CaF2substrates while spin-coating the solutions. The transmittance and absorbance spectra were attained by using a UV-Vis spectrometer(PerkinElmer Lamba 650/850/950 UV-Vis spectrometer). The thin film samples were prepared on ITO substrates while spin-coating the solution of transporting layers(ETL/HTL) on it under the same conditions as for device fabrication. The contact angle analysis was done by DSA-100 static drop analyzer(KRüSS Co., Ltd.). A water drop was dropped on the sample for the measurement. Atomic force microscope(AFM) height and phase images were taken by Bruker Multimode-8 microscope systemusing tapping mode. The samples were of thin films for the required conditions. The external quantum efficiency(EQE) spectra for solar cells were measured by using an Oriel Newport EQE measurement system(Model 66902) calibrated with a standard Si reference cell and equipped with a Newport Xenon lamp. Carrier mobility was measured using the space-charge-limit current(SCLC) method. The devices were fabricated under optimized conditions. The mobility was determined by fitting the dark current to the model of a single carrier SCLC, according to the equation:

    = 90r2/83

    where(A/cm2) is the current density,(V) is the applied voltage,(m) is the film thickness of the active layer,(cm2·V?1·s?1) is the charge carrier mobility,ris the relative dielectric constant of the transport medium, and0(C2·N?1·m?2) is the permittivity of free space. The carrier mobility was calculated from the slope of the0.5-curves.

    2.2 Experimental Process

    2.2.1Interface MaterialFor the interface modification, we used-alanine as an additive in both the electron and hole transporting layer(ETL and HTL) of organic solar cells, respectively. The pH of this additive is in the 6—7 dimension range.

    2.2.2Interface Solution PreparationFor the preparation of the-alanine solution, its crystal powder was mixed with different fractions to form a new modified and optimized HTL and ETL to fabricate organic solar cell devices.

    For HTL: We took an old classic HTL, PEDOT∶PSS, and dissolved 1 mg of-alanine in it.-alanine is a water-soluble compound so it swiftly gets dissolved into PEDOT∶PSS. The stirring time to form a new modified PEDOT∶PSS(in this work named A-PEDOT∶PSS) was 3 h at room temperature before use.

    For ETL: We used PFN-Br as an ETL(at a concentration of 0.5 mg/mL in methanol) and for a modified ETL, we used 0.1 mg of-alanine into 0.4 mg of PFN-Br to one milliliter of methanol to form a modified PFN-Br solution(as A-PFN-Br). The stirring time was overnight at room temperature in a nitrogen glovebox atmosphere.

    2.2.3Bulk Heterojunction PreparationIn this study, we mainly used a non-fullerene acceptor(Y6), and a polymer donor(PM6) to form a Bulk Heterojunction(BHJ) solution. The ratio of both donor and acceptor was 1∶1.2 at a total concentration of 16 mg/mL in chloroform(CF) solvent with an additive 1-chloronaphthalene(CN) of 0.5%(mass fraction). The additive was dropped into the BHJ solution half an hour before coating on the interface HTL. The BHJ solution was stirred for 2 h at 40 ℃.

    2.2.4Cleaning of SubstratesThe ITO substrates were scrubbed with detergent and then rinsed with distilled water, acetone, and IPA(isopropanol alcohol) followed by ultra-sonication for 15 min each. Then the substrates were sent for the UV-ozone treatment for 15 min.

    2.2.5Device FabricationFor the device fabrication, the ITO substrates were taken out from the UVO3machine, and then the HTL solutions, PEDOT∶PSS and A-PEDOT∶PSS were spin-coated on ITO substrates at 4000 r/min to form a homogenous film and then baked at 150 ℃. Subsequently, the HTL-coated substrates were transferred to the N2-filled glovebox for the BHJ coating. The BHJ solution was spin-coated on HTL at 3000 r/min followed by annealing of 10 min at 110 ℃. Afterward, the ETL(PFN-Br and/or A-PFN-Br) was also spin-coated on BHJ at 3000 r/min. Finally, the metal deposition of Aluminium(Al) of 100 nm was done(shadow mask with an active area of 0.04 cm2) thermally at a vacuum pressure of 1×10?4Pa.

    3 Results and Discussion

    The chemical structure of-alanine is depicted in Fig.1(A), while Fig.1(B) illustrates PEDOT∶PSS, and Fig.1(C) depicts PFN-Br. Fig.1(D) demonstrates the dissolving technique employed in the fabrication process, and the resulting device architecture structure(conventional) is shown in Fig.1(E). The compound-alanine is three carbons(C3) amino acid with amine as well as a carboxyl functional group on each side, respectively, both of these functional compounds are nucleophilic due to it has a strong polarity[38]. Although then the next question was which group will interact with which respective group of both PEDOT∶PSS and PFN-Br. To find out the answer to this, firstly we checked the solubility of-alanine in various solvents to have a simple clear thought about the miscibility of the compound. However, due to the general rule of “l(fā)ike dissolves like”[39]. We elected water(totally miscible just by shaking a small container), alcohol(methanol and ethanol: soluble after stirring), and DMF(required temperature and stirring). Given that PEDOT∶PSS and PFN-Br are both soluble in polar solvents, with PEDOT∶PSS being soluble in aqueous solvents and PFN-Br being soluble in methanol, it is hypothesized that-alanine, being soluble in both solvents, would be suitable for modifying the interfacial layer materials of both PEDOT∶PSS and PFN-Br.

    Fig.1 Chemical structures of β?alanine(A), PEDOT∶PSS(B) and PFN?Br(C), schematic illustration of mixing both transporting layers with β?alanine(D), schematic device structure representation of OSCs(E)

    3.1 Device Performance

    We explored the device performance of A-PEDOT∶PSS as HTL and A-PFN-Br as ETL in OSCs with the architecture of ITO/HTL/active layer/ETL/Al, where PM6 and Y6 are used as a donor and an acceptor in the active layer, respectively. Fig.1(E) represented the device structure. The devices which were used in this work are listed in Table 1. The-curves of the devices are summarized in Fig.2(A). The control device(with normal PEDOT∶PSS and normal PFN-Br) obtained a PCE of 14.99% with an open-circuit voltage(OC) of 0.821 V, current density(SC) of 24.52 mA/cm2and fill factor(FF) of 74.43%. After analyzing the various concentrations for-alanine in PEDOT∶PSS and in PFN-Br, the optimized concentration was 1 mg/mL for A-PEDOT∶PSS, and volume ratio of-alanine/PFN-Br is 1∶4 for A-PFN-Br. The detailed preparation method is mentioned in the experimental section. The device with the A-PEDOT∶PSS showed a PCE of 15.56%, with aOC,SCand FF of 0.829 V, 25.35 mA/cm2and 73.96%, respectively. Next, the device with A-PFN-Br, disclosed a PCE of 15.65%, with aOCof 0.827 V,SCand FF of 25.91 mA/cm2and 73.39%, respectively. Lastly when we tried to use both transporting layers A-PEDOT∶PSS and A-PFN-Br at the same time in the same device, this dual-modified device revealed a PCE of 15.78% with aOCandSCof 0.828 V and 26 mA/cm2, respectively, along with a FF of 73.67%. Here, we noticed a decrease in the FF in the modified devices parameter, as we know FF decreases due to the presence of high series resistance. Reduction in depletion region causes further enhancement in the resistance that causes a reduction in FF. The FF of a solar cell is often the most difficult parameter to optimize because it is sensitive to a range of parasitic loss mechanisms, such as resistance losses. Shunt and series resistance can further reduce the FF of a practical device. In a simple cell model, these resistances are Ohmic elements. However, in practice both shunt and series resistance are not Ohmic in nature, therefore these non-Ohmic resistance greatly complicates the process of deconvoluting the various mechanisms responsible for a low FF. In the modified devices(single or dual) the FF is lower than that of the control devices due to the presence of higher resistances in the modified devices that resulted in the lower FF. The corresponding performance parameters are tabulated in Table 1.

    Table 1 Photovoltaic parameters of the conventional architecture of OSCs based on PM6∶Y6 system with pristine PEDOT∶PSS, PFN∶Br and modified versions with β?alanine(A?PEDOT∶PSS and A?PFN?Br)a

    .Substrate(ITO) and metal(Al) deposition were all the same for every device;. the average values/standard deviation for PCE are (14.88± 0.10) for control, (15.3±0.25) for A-PEDOT∶PSS, (15.50±0.12) for A-PFN-Br, and (15.51±0.18) for both. These calculations were based on 16 devices.

    Fig.2 Current density versus voltage(J?V) curves of PM6∶Y6 active layer using different ETL and HTL modified layers(control, A?PEDOT∶PSS, A?PFN?Br and both)(A), dark J?V characteristics of various devices(B) and EQE spectra for PEDOT∶PSS and A?PEDOT∶PSS(C) and for PFN?Br and A?PFN?Br(D)

    (A) The inset picture is a zoom-in on the curves.

    The dark-graph is in Fig.2(B). A dark current-voltage investigation is divided into three dominant regions. In region I(at low voltages) the-characteristics is primarily leakage currents determined bysh(shunt resistance). Region II(intermediate voltages) accounts for recombination currents, and region III(at high voltages) accounts for series resistance[40,41]. When there was a dual modification(Both) device, dark-characteristics also spectated that the use of-alanine passivate the defects[30]of polymers of both the transpor-ting layers(ETL and HTL), which is why the curve showed the lowest dark reverse[42,43]current among all. The dual-modified devices were better at blocking the activities[44]of electrons as well as holes in their respective interfaces and improving charge carrier selectivity. From the dark-graph, we also observed an increase in built-in voltage(bi)[45]for the condition of ‘Both’ to 1.05 V from the control device of 0.95 V. Thus, the increase inOCin the modified devices might be due to the increment of thebivalues. Then in the case of A-PEDOT∶PSS and A-PFN-Br, there are minor differences observed which might be due to the unmodified interface layer side, respectively. After that, EQE was tested for both the transporting layers(ETL and HTL) along with their modified versions. Fig.2(C) represents the PEDOT∶PSS and A-PEDOT∶PSS EQE, which showed a small increment in the 330—860 nm wavelength range for the modified layer. Fig.2(D) represents the EQE for the ETL devices of PFN-Br and A-PFN-Br. The increase in the EQE is due to the addition of-alanine that enhanced theSCof the modified devices for better charge transportation[46].

    3.2 Charge Carrier Mobility

    Furthermore, we performed the SCLC characterization to count the charge carrier mobilities in the hole and electron-only devices. Fig.3(A)—(D) depicted the SCLC measurements for the interface layers. Fig.3(A) showed the PEDOT∶PSS SCLC charge mobility graph, the charge mobility was found to beh=2.18×10?4cm2·V?1·s?1. The A-PEDOT∶PSS SCLC graph in Fig.3(C) showed that the charge mobilities increased to 2.48×10?4cm2·V?1·s?1, this counts for an increase of 13.76% from the PEDOT∶PSS mobility. Next for PFN-Br, SCLC charge mobility ise=2.66×10?4cm2·V?1·s?1[Fig.3(B)], which also later in the A-PFN-Br elevated toe=2.98×10?4cm2·V?1·s?1depicted in Fig.3(D). For the electron mobilities, 12% increase has been shown for A-PFN-Br devices. Hence, it was concluded that-alanine addition aids in improved carrier mobilities. The respective device architecture structures are also illustrated in the SCLC graph of each layer(insets in Fig.3).

    Fig.3 SCLC carrier mobility graphs for hole transporting layers PEDOT∶PSS(A), electron transporting layer PFN?Br(B), modified HTL(A?PEDOT∶PSS)(C) and modified ETL(A?PFN?Br)(D)

    Insets are device architecture structures.

    3.3 Electrochemical Properties and Stability

    Fig.4 FTIR analysis of PEDOT∶PSS with different percentages of β?alanine(A), FTIR of pristine PEDOT∶PSS(a) and PEDOT∶PSS with 2.0 mg of β?alanine(b)(B), UV?Vis absorption of PEDOT∶PSS and A?PEDOT∶PSS(C), UV?Vis absorption of PFN?Br and A?PFN?Br(D), transmittance of PEDOT∶PSS and A?PEDOT∶PSS(E) and transmittance of PFN?Br and A?PFN?Br(F), the normalized stability graph of different devices(G)

    3.4 Morphology Characterization and Contact Angle Measurements

    Fig.5 AFM images of PEDOT∶PSS height(A), phase(B) and A?PEDOT∶PSS height(C) and phase(D), PFN?Br height(E), phase(F), A?PFN?Br height(G), phase(H), the contact angle(water) of PEDOT∶PSS, A?PEDOT∶PSS(I) and PFN?Br and A?PFN?Br(J)

    4 Conclusions

    [1] Zhou Z., Xu S., Song J., Jin Y., Yue Q., Qian Y., Liu F., Zhang F., Zhu X.,.,2018,(11), 952—959

    [2] Gao W., Qi F., Peng Z., Lin F. R., Jiang K., Zhong C., Kaminsky W., Guan Z., Lee C. S., Marks T. J., Ade H., Jen A. K. Y.,..,2022,(32), 2202089

    [3] Armin A., Li W., Sandberg O. J., Xiao Z., Ding L., Nelson J., Neher D., Vandewal K., Shoaee S., Wang T., Ade H., Heumüller T., Brabec C., Meredith P.,..,2021,, 2003570

    [4] Duan C., Huang F., Cao Y.,..,2015,(47), 8081—8098

    [5] Wang J., Zheng Z., Zhang D., Zhang J., Zhou J., Liu J., Xie S., Zhao Y., Zhang Y., Wei Z., Hou J., Tang Z., Zhou H.,..,2019,(17), 1806921

    [6] Du X., Heumueller T., Gruber W., Almora O., Classen A., Qu J., He F., Unruh T., Li N., Brabec C. J.,..,2020,(16), e1908305

    [7] Che X., Li Y., Qu Y., Forrest S. R.,.,2018,(5), 422—427

    [8] Yin Z., Wei J., Zheng Q.,.., 2016,(8), 1500362

    [9] Li Y., Ding J., Liang C., Zhang X., Zhang J., Jakob D. S., Wang B., Li X., Zhang H., Li L., Yang Y., Zhang G., Zhang X., Du W., Liu X., Zhang Y., Zhang Y., Xu X., Qiu X., Zhou H.,, 2021,(12), 3154—3168

    [10] Chen M., Wang J., Yin F., Du Z., Belfiore L. A., Tang J.,...,2021,(8), 4505—4527

    [11] Kalkan S. B., Najafidehaghani E., Gan Z., Apfelbeck F. A. C., Hübner U., George A., Turchanin A., Nickel B.,..,2021,(1), 92

    [12] Kang H., Hong S., Lee J., Lee K.,..,2012,(22), 3005—3009

    [13] Liu M., Xu Y., Gao Z., Zhang C., Yu J., Wang J., Ma X., Hu H., Yin H., Zhang F., Man B., Sun Q.,,2021,(25), 11128—11137

    [14] Wu J., Gao M., Chai Y., Liu P., Zhang B., Liu J., Ye L.,.,2021,(4), 100062

    [15] Kim H. I., Bui T. T. T., Kim G. W., Kang G., Shin W. S., Park T.,..,2014,(18), 15875—15880

    [16] Zhang X., Zhang H., Li Y., Zafar S. U., Yang S., Chen J., Zhou H., Zhang Y.,...,2022,(44), 2205398

    [17] Pei S., Xiong X., Zhong W., Xue X., Zhang M., Hao T., Zhang Y., Liu F., Zhu L.,..,2022,(30), 34814—34821

    [18] Zheng Z., Hu Q., Zhang S., Zhang D., Wang J., Xie S., Wang R., Qin Y., Li W., Hong L., Liang N., Liu F., Zhang Y., Wei Z., Tang Z., Russell T. P., Hou J., Zhou H.,..,2018,(34), 1801801

    [19] Mengistie D. A., Chen C. H., Boopathi K. M., Pranoto F. W., Li L. J., Chu C. W.,..,2015,, 94—100

    [20] Zhang L., Yang K., Chen R., Zhou Y., Chen S., Zheng Y., Li M., Xu C., Tang X., Zang Z., Sun K.,..., 2020,(1), 1900648

    [21] Tang H., Liu Z., Hu Z., Liang Y., Huang F., Cao Y.,..,2020,(6), 802—809

    [22] Cassinelli M., Park W. T., Kim Y., Kim J. H., Noh Y. Y., Caironi M.,.., 2021,3), 033301

    [23] Hu L., Song J., Yin X., Su Z., Li Z.,,2020,(1), 145

    [24] Li B., Xiang Y., Jayawardena K. D. G. I., Luo D., Wang Z., Yang X., Watts J. F., Hinder S., Sajjad M. T., Webb T., Luo H., Marko I., Li H., Thomson S. A. J., Zhu R., Shao G., Sweeney S. J., Silva S. R. P., Zhang W.,,2020,, 105249

    [25] Chen S., Song L., Tao Z., Shao X., Huang Y., Cui Q., Guo X.,..,2014,(12), 3654—3659

    [26] Liu D., Xu H., Liu X., Xie Z., Yang B., Ma Y.,..,2011,(1), 174—180

    [27] Cameron J., Skabara P. J.,.,2020,(7), 1759—1772

    [28] Ionescu?Zanetti C., Mechler A., Carter S. A., Lal R.,..,2004,(7), 579

    [29] Liao Q., Kang Q., Yang Y., An C., Xu B., Hou J.,..,2020,(7), 1906557

    [30] Liu Y., Cole M. D., Jiang Y., Kim P. Y., Nordlund D., Emrick T., Russell T. P.,..,2018,(15), 1705976

    [31] Li Y.,..,2016,(11), 1430—1431

    [32] Jia J., Fan B., Xiao M., Jia T., Jin Y., Li Y., Huang F., Cao Y.,,2018,(6), 2195—2202

    [33] Hu Z., Chen Z., Zhang K., Zheng N.,Xie R., Liu X., Yang X., Huang F., Cao Y.,,2017,(6), 1700055

    [34] Guan L., Yu L., Wu L., Zhang S., Lin Y., Jiao Y., Zhang S., Zhao F., Ren Y., Zhou X., Liu Z.,,2021,, 138770

    [35] Ming Y., Zhu Y., Chen Y., Jin B., Duan C., Liang Z., Zhao L., Wang S., Dong B., Li H., Wu C.,..,2021,(48), 57163—57170

    [36] Yuan H., Zhang Z., Guo T., Yu L., Deng Z., Zhao R., Zhang J., Zhu Y.,..,2021,, 160140

    [37] Zheng Z., Zhang S., Zhang J., Qin Y., Li W., Yu R., Wei Z., Hou J.,..,2016,(25), 5133—5138

    [38] Sun P., Liu Y., Du S., Yu B., Wang Y., Sun M., Shi P., Liu Y., Gong J.,..,2017,, 522—531

    [39] Zou F., Zhuang W., Wu J., Zhou J., Liu Q., Chen Y., Xie J., Zhu C., Guo T., Ying H.,...,2014,, 14—22

    [40] Servaites J. D., Ratner M. A., Marks T. J.,...,2011,(11), 4410—4422

    [41] Servaites J. D., Yeganeh S., Marks T. J., Ratner M. A.,...,2010,(1), 97—104

    [42] Wu N., Luo Q., Bao Z., Lin J., Li Y. Q., Ma C. Q.,...,2015,, 248—259

    [43] Wolf U., Arkhipov V. I., B?ssler H.,.,1999,(11), 7507—7513

    [44] Waldauf C., Scharber M. C., Schilinsky P., Hauch J. D., Brabec C. J.,...,2006,, 104503

    [45] Zhou H., Zhang Y., Seifter J., Collins S. D., Luo C., Bazan G. C., Nguyen T. Q., Heeger A. J.,..,2013,(11), 1646—1652

    [46] Lee B. R., Lee S., Park J. H., Jung E. D., Yu J. C., Nam Y. S., Heo J., Kim J. Y., Kim B. S., Song M. H.,..,2015,(23), 3553—3559

    [47] Konwar L. J., M?ki?Arvela P., Mikkola J. P.,.,2019,(22), 11576—11630

    [48] Hara M., Yoshida T., Takagaki A., Takata T., Kondo J. N., Hayashi S., Domen K.,...,2004,(22), 2955—2958

    [49] Li H., Zhang C., Ma Y., Mai Y., Xu Y.,..,2018,, 468—473

    [50] Aleshin A. N., Williams S. R., Heeger A. J.,..,1998,(2), 173—177

    [51] Greczynski G., Kugler T., Salaneck W. R.,,1999,(1), 129—135

    [52] Kemerink M., Timpanaro S., de Kok M. M., Meulenkamp E. A., Touwslager F. J.,...,2004,(49), 18820—18825

    [53] Galatopoulos F., Papadas I. T., Ioakeimidis A., Eleftheriou P., Choulis S. A.,,2020,(10), 1961

    [54] Müller C., Hamedi M., Karlsson R., Jansson R., Marcilla R., Hedhammar M., Ingan?s O.,..,2011,(7), 898—901

    [55] Liao C., Zhang M., Yao M. Y., Hua T., Li L., Yan F.,..,2015,(46), 7493—7527

    [56] Crispin X., Jakobsson F. L. E., Crispin A., Grim P. C. M., Andersson P., Volodin A., van Haesendonck C., Van der Auweraer M., Salaneck W. R., Berggren M.,..,2006,(18), 4354—4360

    [57] Xu H., Yuan F., Zhou D., Liao X., Chen L., Chen Y.,...,2020,(23), 11478—11492

    [58] Li W., Zhang W., Van Reenen S., Sutton R. J., Fan J., Haghighirad A. A., Johnston M. B., Wang L., Snaith H. J.,...,2016,(2), 490—498

    [59] Dag I., Lifshitz E.,...,1996,(21), 8962—8972

    [60] Chang S. H., Chiang C. H., Kao F. S., Tien C. L., Wu C. G.,..,2014,(4), 1—7

    [61] Hwang J., Schwendeman I., Ihas B. C., Clark R. J., Cornick M., Nikolou M., Argun A., Reynolds J. R., Tanner D. B.,.,2011,(19), 195121

    [62] Akkerman H. B., Naber R. C. G., Jongbloed B., van Hal P. A., Blom P. W. M., de Leeuw D. M., de Boer B.,....,2007,(27), 11161—11166

    [63] Yun D. J., Jung J., Sung Y. M., Ra H., Kim J. M., Chung J., Kim S. Y., Kim Y. S., Heo S., Kim K. H., Jeong Y. J., Jang J.,...,2020,(11), 2000620

    [64] Wang Q., Chueh C. C., Eslamian M., Jen A. K. Y.,..,2016,(46), 32068—32076

    [65] Hosseini E., Ozhukil Kollath V., Karan K.,...,2020,(12), 3982—3990

    [66] Vorobyev A. Y., Guo C.,.,2011,(Suppl 5), A1031

    [67] Chao Y. C., Chen C. Y., Lin C. A., Dai Y. A., He J. H.,...,2010,(37), 8134—8138

    [68] Li J., Wang N., Wang Y., Liang Z., Peng Y., Yang C., Bao X., Xia Y.,.,2020,, 168—176

    [69] Shi Z., Liu H., Li J., Wang F., Bai Y., Bian X., Zhang B., Alsaedi A., Hayat T., Tan Z. A.,...,2018,, 1—9

    [70] Bi S., Leng X., Li Y., Zheng Z., Zhang X., Zhang Y., Zhou H.,.., 2019,(45), 1805708

    [71] Li Y., Zhang Z., Han X., Li T., Lin Y.,.,2022,(3), 1087—1097

    [72] Cha H., Wu J., Wadsworth A., Nagitta J., Limbu S., Pont S., Li Z., Searle J., Wyatt M. F., Baran D., Kim J. S., McCulloch I., Durrant J. R.,..,2017,(33), 1701156

    [73] Lee S. J., Pil Kim H., Mohd Yusoff A. R. B., Jang J.,...,2014,, 238—243

    [74] Hermenau M., Riede M., Leo K., Gevorgyan S. A., Krebs F. C., Norrman K.,...,2011,(5), 1268—1277

    [75] Wang J., Yu H., Hou C., Zhang J.,..,2020,(23), 26543—26554

    [76] Mateker W. R., McGehee M. D.,..,2017,(10), 1603940

    [77] Lin X., Wang Y., Wu J., Tang Z., Lin W., Nian L.,Yi G.,..,2021,(6), 5905—5912

    [78] Cho A., Kim S., Kim S., Cho W., Park C., Kim F. S., Kim J. H.,....,2016,(15), 1530—1536

    [79] Lee T. W., Chung Y.,...,2008,(15), 2246—2252

    [80] Zhou Y., Fuentes?Hernandez C., Shim J., Meyer J., Giordano A. J., Li H., Winget P., Papadopoulos T., Cheun H., Kim J., Fenoll M., Dindar A., Haske W., Najafabadi E., Khan T. M., Sojoudi H., Barlow S., Graham S., Brédas J. L., Marder S. R., Kahn A., Kippelen B.,,2012,(6079), 327—332

    [81] Mihailetchi V. D., Blom P. W. M., Hummelen J. C., Rispens M. T.,...,2003,(10), 6849—6854

    [82] López Valdivieso A., Sánchez López A. A., Song S.,...,2005,(3), 154—164

    [83] Paredes á., Acu?a S. M., Toledo P. G.,,2019,(11), 1177

    [84] Ouellette R. J., Rawn J. D.,:,, Elsevier, Boston,2015, 169—182

    [85] Penczek S., Kubisa P., Allen G., Bevington J. C.,?, Pergamon, Amsterdam,1989, 751—786

    [86] Savin K. A.,, Academic Press, Boston,2014, 1—53

    [87] Li J., Huang X., Yuan J., Lu K., Yue W., Ma W.,..,2013,(9), 2164—2171

    [88] Hau S. K., Yip H. L., Acton O., Baek N. S., Ma H., Jen A. K. Y.,...,2008,(42), 5113—5119

    [89] Chao L., Niu T., Gu H., Yang Y., Wei Q., Xia Y., Hui W., Zuo S., Zhu Z., Pei C., Zhang J., Fang J., Xing G., Li H., Huang X., Gao X., Ran C., Song L., Fu L., Chen Y., Huang W.,,2020,, 2616345

    [90] Yip H. L., Hau S. K., Baek N. S., Ma H., Jen A. K. Y.,..,2008,(12), 2376—2382

    -丙氨酸作為有機(jī)太陽能電池雙重修飾添加劑的研究

    Zafar Saud uz1,張偉超2,楊朔3,李世麟2,張瑩玉1,張淵2,張弘1,周惠瓊1

    (1. 中國科學(xué)院大學(xué), 中國科學(xué)院納米系統(tǒng)與多級次制造重點(diǎn)實(shí)驗(yàn)室, 中國科學(xué)院納米科學(xué)卓越中心, 國家納米科學(xué)與技術(shù)中心, 北京 100190;2. 北京航空航天大學(xué)化學(xué)學(xué)院, 北京 100191; 3. 北京廷潤膜技術(shù)開發(fā)股份有限公司, 北京 101100)

    -丙氨酸;添加劑;界面改性;傳輸層;有機(jī)太陽能電池

    O647.2

    A

    10.7503/cjcu20230185

    2023-04-12

    網(wǎng)絡(luò)首發(fā)日期: 2023-05-31.

    聯(lián)系人簡介:張弘, 男, 博士, 副研究員, 主要從事半透明柔性太陽能電池方面的研究. E-mail: zhanghong@nanoctr.cn

    周惠瓊, 女, 博士, 研究員, 主要從事有機(jī)太陽能電池和鈣鈦礦太陽能電池方面的研究. E-mail: zhouhq@nanoctr.cn

    國家自然科學(xué)基金(批準(zhǔn)號: 52273245)、中國科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)(批準(zhǔn)號: XDB36000000)和中國科學(xué)院-世界科學(xué)院校長博士獎(jiǎng)學(xué)金計(jì)劃項(xiàng)目資助.

    Supported by the National Natural Science Foundation of China(No. 52273245), the Strategic Priority Research Program of Chinese Academy of Sciences(No. XDB36000000) and the Chinese Academy of Sciences-the World Academy of Sciences(CAS-TWAS) President’s Ph.D. Fellowship Program.

    (Ed.: Y, K, S)

    猜你喜歡
    張弘丙氨酸中國科學(xué)院
    溪流
    臨江仙·踏春
    虞美人·蝶為媒
    《中國科學(xué)院院刊》新媒體
    中國科學(xué)院院士
    ——李振聲
    無償獻(xiàn)血采血點(diǎn)初篩丙氨酸轉(zhuǎn)氨酶升高的預(yù)防及糾正措施研究
    祝賀戴永久編委當(dāng)選中國科學(xué)院院
    《中國科學(xué)院院刊》創(chuàng)刊30周年
    論張弘的新編昆劇
    丙氨酸氨基轉(zhuǎn)移酶快速檢測在血站血液采集前應(yīng)用的意義研究
    一区二区av电影网| 纵有疾风起免费观看全集完整版| av网站免费在线观看视频| 岛国毛片在线播放| 成年动漫av网址| 999精品在线视频| 欧美日韩亚洲高清精品| 国产精品免费视频内射| 咕卡用的链子| 国产日韩一区二区三区精品不卡| 国产精品一区二区在线不卡| 中国三级夫妇交换| 国产黄频视频在线观看| 国产精品av久久久久免费| 大香蕉久久网| 男女无遮挡免费网站观看| 乱人伦中国视频| 国产精品99久久99久久久不卡 | 免费看不卡的av| 韩国高清视频一区二区三区| 男男h啪啪无遮挡| 男女边吃奶边做爰视频| 久久久亚洲精品成人影院| 黄色一级大片看看| 亚洲少妇的诱惑av| 美女国产高潮福利片在线看| 黑人欧美特级aaaaaa片| 一本色道久久久久久精品综合| 91国产中文字幕| 欧美xxⅹ黑人| 成年人免费黄色播放视频| 亚洲欧美色中文字幕在线| 另类精品久久| 一本久久精品| 国产综合精华液| 亚洲精品国产一区二区精华液| 亚洲熟女精品中文字幕| 精品国产一区二区三区久久久樱花| 热99久久久久精品小说推荐| 91成人精品电影| 少妇人妻精品综合一区二区| 一级毛片我不卡| 久久综合国产亚洲精品| 高清av免费在线| 久久久精品国产亚洲av高清涩受| 人成视频在线观看免费观看| 五月开心婷婷网| 欧美激情 高清一区二区三区| 国产日韩欧美在线精品| 国产淫语在线视频| 国产免费又黄又爽又色| 亚洲av在线观看美女高潮| 18禁动态无遮挡网站| 性色av一级| 亚洲成人一二三区av| 丰满饥渴人妻一区二区三| 亚洲五月色婷婷综合| 我要看黄色一级片免费的| 美女福利国产在线| 9色porny在线观看| 久久青草综合色| 欧美日韩精品成人综合77777| 欧美亚洲 丝袜 人妻 在线| 国产免费现黄频在线看| 国产成人精品在线电影| 国产白丝娇喘喷水9色精品| 亚洲中文av在线| 高清视频免费观看一区二区| 黄色 视频免费看| 亚洲国产欧美日韩在线播放| 婷婷成人精品国产| 免费看av在线观看网站| 国产片特级美女逼逼视频| 综合色丁香网| 有码 亚洲区| av又黄又爽大尺度在线免费看| 91aial.com中文字幕在线观看| 久久精品国产亚洲av高清一级| 岛国毛片在线播放| 国产福利在线免费观看视频| 丁香六月天网| 久久久a久久爽久久v久久| 自线自在国产av| 丝袜在线中文字幕| 亚洲国产精品成人久久小说| 午夜91福利影院| 91精品伊人久久大香线蕉| 丰满乱子伦码专区| 日韩大片免费观看网站| 一级毛片电影观看| av网站在线播放免费| 亚洲美女视频黄频| 亚洲国产av新网站| 国产成人精品在线电影| 国产免费现黄频在线看| 亚洲av日韩在线播放| 国产精品av久久久久免费| 老司机影院毛片| 日本-黄色视频高清免费观看| 欧美激情极品国产一区二区三区| 成人免费观看视频高清| 丝袜美腿诱惑在线| 国产男女超爽视频在线观看| 老司机影院毛片| 波野结衣二区三区在线| 欧美精品一区二区大全| 黄色怎么调成土黄色| 女人被躁到高潮嗷嗷叫费观| 亚洲国产精品一区二区三区在线| 成人18禁高潮啪啪吃奶动态图| 妹子高潮喷水视频| 国产有黄有色有爽视频| www.精华液| 国产精品国产三级国产专区5o| 亚洲精品美女久久久久99蜜臀 | 国产白丝娇喘喷水9色精品| 久久久久久伊人网av| 免费日韩欧美在线观看| 国产成人一区二区在线| 99热网站在线观看| 亚洲精品成人av观看孕妇| 99国产精品免费福利视频| 日韩精品有码人妻一区| 亚洲国产精品成人久久小说| 九草在线视频观看| 可以免费在线观看a视频的电影网站 | 国产激情久久老熟女| 侵犯人妻中文字幕一二三四区| 人妻一区二区av| 欧美bdsm另类| 国产精品99久久99久久久不卡 | 观看av在线不卡| 在线观看免费高清a一片| 精品亚洲成a人片在线观看| 亚洲欧美一区二区三区黑人 | 国产成人精品福利久久| 国产男人的电影天堂91| 日韩中文字幕欧美一区二区 | 尾随美女入室| 国产精品亚洲av一区麻豆 | 1024香蕉在线观看| 国产一区二区在线观看av| 久久国内精品自在自线图片| 国产不卡av网站在线观看| 国产熟女午夜一区二区三区| 欧美国产精品va在线观看不卡| 国产午夜精品一二区理论片| 国产极品粉嫩免费观看在线| 欧美日韩av久久| 欧美+日韩+精品| 日本vs欧美在线观看视频| 亚洲精品日本国产第一区| 日韩在线高清观看一区二区三区| 亚洲av男天堂| 国产亚洲一区二区精品| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av电影在线观看一区二区三区| 女的被弄到高潮叫床怎么办| 亚洲精品aⅴ在线观看| 人人澡人人妻人| 亚洲av在线观看美女高潮| 欧美激情高清一区二区三区 | 一本久久精品| av不卡在线播放| 人妻少妇偷人精品九色| 天天躁夜夜躁狠狠躁躁| 男人添女人高潮全过程视频| 在线精品无人区一区二区三| 一区二区三区精品91| 久久热在线av| av线在线观看网站| 18在线观看网站| 大片免费播放器 马上看| 欧美97在线视频| 免费人妻精品一区二区三区视频| 在现免费观看毛片| 久久精品人人爽人人爽视色| 免费av中文字幕在线| 国产成人欧美| 天天躁夜夜躁狠狠久久av| 人人澡人人妻人| 国产日韩欧美亚洲二区| 中文字幕另类日韩欧美亚洲嫩草| 精品午夜福利在线看| 一级黄片播放器| 国产又爽黄色视频| 日韩人妻精品一区2区三区| av国产精品久久久久影院| 波多野结衣av一区二区av| 午夜日本视频在线| 一区二区三区乱码不卡18| 午夜福利一区二区在线看| 99香蕉大伊视频| 高清欧美精品videossex| 欧美黄色片欧美黄色片| 成人国产av品久久久| 纯流量卡能插随身wifi吗| 国产精品一区二区在线观看99| 有码 亚洲区| 亚洲国产最新在线播放| 精品一区二区三卡| 电影成人av| xxx大片免费视频| 最近中文字幕2019免费版| 国产精品国产av在线观看| 午夜福利在线观看免费完整高清在| 久久久精品94久久精品| 午夜影院在线不卡| 国产精品无大码| 不卡av一区二区三区| 亚洲精华国产精华液的使用体验| 亚洲精品自拍成人| 免费av中文字幕在线| 国产精品国产三级国产专区5o| 欧美激情极品国产一区二区三区| 国产国语露脸激情在线看| videossex国产| 亚洲精品一区蜜桃| 欧美激情高清一区二区三区 | 美女国产视频在线观看| 啦啦啦在线观看免费高清www| 欧美人与性动交α欧美软件| 国产xxxxx性猛交| 国产免费福利视频在线观看| 精品国产乱码久久久久久小说| 91在线精品国自产拍蜜月| 欧美日韩亚洲高清精品| 国产在线视频一区二区| 免费播放大片免费观看视频在线观看| 大片免费播放器 马上看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美激情高清一区二区三区 | 人人澡人人妻人| 曰老女人黄片| 欧美在线黄色| 亚洲成色77777| 美女大奶头黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 啦啦啦中文免费视频观看日本| 啦啦啦在线免费观看视频4| 欧美成人午夜精品| 精品一品国产午夜福利视频| 人人妻人人澡人人爽人人夜夜| 一级,二级,三级黄色视频| 久久这里只有精品19| 一二三四中文在线观看免费高清| 好男人视频免费观看在线| 777久久人妻少妇嫩草av网站| 欧美日韩亚洲高清精品| 亚洲男人天堂网一区| 国产精品 国内视频| 免费在线观看黄色视频的| 国产成人精品婷婷| 日韩成人av中文字幕在线观看| 中文字幕精品免费在线观看视频| 一级黄片播放器| 波多野结衣av一区二区av| 精品少妇黑人巨大在线播放| 街头女战士在线观看网站| 午夜激情久久久久久久| 国精品久久久久久国模美| 97精品久久久久久久久久精品| 久久精品国产亚洲av天美| 人妻 亚洲 视频| 成人亚洲欧美一区二区av| 国产黄色免费在线视频| 国产成人91sexporn| 色视频在线一区二区三区| 亚洲四区av| 在线亚洲精品国产二区图片欧美| 亚洲三级黄色毛片| 90打野战视频偷拍视频| 2022亚洲国产成人精品| 国产97色在线日韩免费| 制服人妻中文乱码| 亚洲四区av| 乱人伦中国视频| 成年人免费黄色播放视频| 男女边摸边吃奶| 一本色道久久久久久精品综合| 啦啦啦视频在线资源免费观看| 亚洲欧美一区二区三区国产| 在线观看人妻少妇| 亚洲成色77777| 亚洲熟女精品中文字幕| 黑人猛操日本美女一级片| 婷婷色综合www| 韩国精品一区二区三区| 久久精品国产亚洲av涩爱| 日韩一本色道免费dvd| xxx大片免费视频| 好男人视频免费观看在线| 亚洲国产欧美日韩在线播放| 波野结衣二区三区在线| 国产极品粉嫩免费观看在线| 欧美日韩视频高清一区二区三区二| 一边摸一边做爽爽视频免费| 久久婷婷青草| 日本-黄色视频高清免费观看| 一级毛片 在线播放| 午夜福利视频精品| 午夜福利影视在线免费观看| 黄网站色视频无遮挡免费观看| 午夜精品国产一区二区电影| 免费少妇av软件| 国产精品一区二区在线观看99| 最新中文字幕久久久久| 校园人妻丝袜中文字幕| 天堂俺去俺来也www色官网| 日韩精品免费视频一区二区三区| 美女脱内裤让男人舔精品视频| 看非洲黑人一级黄片| 看免费av毛片| 激情视频va一区二区三区| 赤兔流量卡办理| 男的添女的下面高潮视频| 国产男女内射视频| 在现免费观看毛片| 国产成人精品一,二区| 国产成人精品在线电影| 久久精品国产自在天天线| av在线播放精品| 久久精品国产亚洲av天美| 久久久久久伊人网av| 午夜91福利影院| 国产亚洲av片在线观看秒播厂| av.在线天堂| 国产亚洲欧美精品永久| 女性被躁到高潮视频| 免费少妇av软件| av网站免费在线观看视频| 国产片内射在线| 建设人人有责人人尽责人人享有的| 亚洲精华国产精华液的使用体验| 麻豆av在线久日| 欧美中文综合在线视频| 五月天丁香电影| 国产日韩欧美在线精品| 久久99一区二区三区| 精品久久蜜臀av无| 99久国产av精品国产电影| 国产亚洲精品第一综合不卡| 久久久久久久久久人人人人人人| 久久久精品国产亚洲av高清涩受| 精品少妇内射三级| 丝瓜视频免费看黄片| 国产成人精品福利久久| 国产极品粉嫩免费观看在线| 一区二区三区四区激情视频| 晚上一个人看的免费电影| 蜜桃在线观看..| 中文天堂在线官网| 成人国语在线视频| 亚洲欧美清纯卡通| 亚洲精品国产av蜜桃| 九草在线视频观看| 国产精品无大码| 亚洲色图综合在线观看| 欧美精品亚洲一区二区| 美女中出高潮动态图| 精品福利永久在线观看| 国产精品免费大片| 97精品久久久久久久久久精品| 少妇被粗大的猛进出69影院| 日韩av不卡免费在线播放| 国产激情久久老熟女| 97人妻天天添夜夜摸| 午夜福利乱码中文字幕| 亚洲色图 男人天堂 中文字幕| 嫩草影院入口| 在线观看免费视频网站a站| 观看av在线不卡| 久久久久网色| 免费看不卡的av| 欧美日韩精品成人综合77777| 亚洲精品av麻豆狂野| 亚洲av在线观看美女高潮| 叶爱在线成人免费视频播放| 国产一区亚洲一区在线观看| 侵犯人妻中文字幕一二三四区| 欧美黄色片欧美黄色片| 亚洲欧美成人综合另类久久久| 夜夜骑夜夜射夜夜干| 精品国产一区二区三区四区第35| 丝袜人妻中文字幕| 国产成人a∨麻豆精品| 久久婷婷青草| 哪个播放器可以免费观看大片| 好男人视频免费观看在线| 一个人免费看片子| 亚洲av日韩在线播放| 久久热在线av| 国产深夜福利视频在线观看| 亚洲av欧美aⅴ国产| xxxhd国产人妻xxx| 国产野战对白在线观看| 男女下面插进去视频免费观看| 成人18禁高潮啪啪吃奶动态图| 免费黄网站久久成人精品| 国产福利在线免费观看视频| 成人影院久久| 丝袜在线中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 多毛熟女@视频| 久热久热在线精品观看| 国产av码专区亚洲av| 久久热在线av| 极品少妇高潮喷水抽搐| 欧美激情高清一区二区三区 | 亚洲美女黄色视频免费看| 国产免费视频播放在线视频| 在线观看一区二区三区激情| 男女边摸边吃奶| 国产1区2区3区精品| 日本欧美视频一区| 久久99蜜桃精品久久| 久久精品国产综合久久久| 热99久久久久精品小说推荐| 少妇被粗大猛烈的视频| 不卡av一区二区三区| 捣出白浆h1v1| 99香蕉大伊视频| 午夜91福利影院| 亚洲视频免费观看视频| 少妇人妻 视频| 午夜激情av网站| 女人久久www免费人成看片| 中国三级夫妇交换| 青春草国产在线视频| 亚洲,欧美精品.| 精品一区二区三区四区五区乱码 | 成年av动漫网址| 免费观看在线日韩| 国产综合精华液| 建设人人有责人人尽责人人享有的| 另类亚洲欧美激情| 欧美日韩一级在线毛片| 男女边吃奶边做爰视频| 超碰97精品在线观看| 99国产综合亚洲精品| 国产高清国产精品国产三级| 自线自在国产av| 日韩一本色道免费dvd| videossex国产| 捣出白浆h1v1| 国产亚洲欧美精品永久| 激情视频va一区二区三区| 制服丝袜香蕉在线| 伦理电影免费视频| 国产在线一区二区三区精| 日韩一本色道免费dvd| 亚洲情色 制服丝袜| 久久久a久久爽久久v久久| 两性夫妻黄色片| 免费在线观看视频国产中文字幕亚洲 | 午夜老司机福利剧场| 亚洲,欧美精品.| 精品视频人人做人人爽| 国产精品成人在线| 丝袜脚勾引网站| 免费观看av网站的网址| 卡戴珊不雅视频在线播放| 国产又爽黄色视频| 日本vs欧美在线观看视频| 国产亚洲一区二区精品| 免费观看在线日韩| 校园人妻丝袜中文字幕| 巨乳人妻的诱惑在线观看| 国产深夜福利视频在线观看| 1024香蕉在线观看| 性少妇av在线| 国产精品国产三级国产专区5o| 香蕉丝袜av| xxxhd国产人妻xxx| 一区二区日韩欧美中文字幕| 国产麻豆69| 免费黄色在线免费观看| 久久精品国产亚洲av高清一级| 午夜福利影视在线免费观看| 黄色视频在线播放观看不卡| 看十八女毛片水多多多| 激情五月婷婷亚洲| 免费黄频网站在线观看国产| 欧美日韩视频精品一区| 欧美精品亚洲一区二区| 国产av精品麻豆| 久久久久久久精品精品| 国产精品香港三级国产av潘金莲 | 韩国av在线不卡| 99精国产麻豆久久婷婷| 天堂8中文在线网| 黄片小视频在线播放| 国产人伦9x9x在线观看 | 成年女人毛片免费观看观看9 | av免费在线看不卡| 三级国产精品片| 99国产综合亚洲精品| 日本爱情动作片www.在线观看| 美女午夜性视频免费| 两性夫妻黄色片| 午夜激情av网站| 一级毛片黄色毛片免费观看视频| 日日爽夜夜爽网站| 天天影视国产精品| 桃花免费在线播放| 在线亚洲精品国产二区图片欧美| 2022亚洲国产成人精品| 久久精品国产综合久久久| 欧美老熟妇乱子伦牲交| 成年女人毛片免费观看观看9 | 亚洲精品在线美女| av网站免费在线观看视频| 啦啦啦中文免费视频观看日本| 精品少妇黑人巨大在线播放| 中国国产av一级| 久久av网站| 黄片播放在线免费| 人妻一区二区av| 男女国产视频网站| 国产av一区二区精品久久| 国产精品秋霞免费鲁丝片| 精品99又大又爽又粗少妇毛片| 人人妻人人澡人人看| 天天躁夜夜躁狠狠躁躁| av网站在线播放免费| 亚洲精品美女久久av网站| 日本欧美国产在线视频| 日本色播在线视频| 美女中出高潮动态图| 一区二区三区四区激情视频| 亚洲精品aⅴ在线观看| 国产成人欧美| 大片电影免费在线观看免费| 岛国毛片在线播放| 黄色视频在线播放观看不卡| 少妇人妻 视频| 少妇被粗大的猛进出69影院| videossex国产| 最新的欧美精品一区二区| 久久精品国产鲁丝片午夜精品| 国产片内射在线| 国产男女超爽视频在线观看| 国产日韩欧美视频二区| 最近最新中文字幕免费大全7| kizo精华| 9191精品国产免费久久| 只有这里有精品99| 亚洲欧美色中文字幕在线| 校园人妻丝袜中文字幕| 男女下面插进去视频免费观看| 久久久久久久大尺度免费视频| 国产男女内射视频| 亚洲成色77777| 韩国av在线不卡| 日韩大片免费观看网站| 国产探花极品一区二区| 国产老妇伦熟女老妇高清| 欧美bdsm另类| 欧美变态另类bdsm刘玥| 天天躁日日躁夜夜躁夜夜| 91国产中文字幕| 新久久久久国产一级毛片| 久久人人爽av亚洲精品天堂| 男女免费视频国产| 飞空精品影院首页| 多毛熟女@视频| 成人亚洲欧美一区二区av| 天堂俺去俺来也www色官网| 日韩大片免费观看网站| 十八禁网站网址无遮挡| 9热在线视频观看99| 国产精品秋霞免费鲁丝片| 日韩在线高清观看一区二区三区| 婷婷色综合www| 亚洲天堂av无毛| 午夜福利乱码中文字幕| 午夜91福利影院| 香蕉国产在线看| 国产精品香港三级国产av潘金莲 | 亚洲欧洲日产国产| 最近中文字幕2019免费版| 妹子高潮喷水视频| 国产男女内射视频| 成人亚洲欧美一区二区av| 妹子高潮喷水视频| 亚洲精品国产一区二区精华液| videosex国产| 国产亚洲一区二区精品| av网站在线播放免费| 色94色欧美一区二区| 建设人人有责人人尽责人人享有的| 国产一区亚洲一区在线观看| 十八禁网站网址无遮挡| 九色亚洲精品在线播放| 少妇人妻久久综合中文| 欧美老熟妇乱子伦牲交| 亚洲精品日本国产第一区| 亚洲国产av新网站| 欧美人与善性xxx| 午夜激情av网站| av免费在线看不卡| 国产欧美亚洲国产| 在线免费观看不下载黄p国产| 爱豆传媒免费全集在线观看| 99国产精品免费福利视频| 九色亚洲精品在线播放| 成人国语在线视频| 大香蕉久久网| 秋霞在线观看毛片| 国产成人精品婷婷| 夫妻性生交免费视频一级片| 婷婷成人精品国产| av一本久久久久| 中文字幕人妻丝袜制服| 欧美 日韩 精品 国产|