• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Beta-alanine as a Dual Modification Additive in Organic Solar Cells

    2023-10-10 05:20:22ZAFARSauduzZHANGWeichaoYANGShuoLIShilinZHANGYingyuZHANGYuanZHANGHongZHOUHuiqiong
    關(guān)鍵詞:張弘丙氨酸中國科學(xué)院

    ZAFAR Saud uz, ZHANG Weichao, YANG Shuo, LI Shilin, ZHANG Yingyu, ZHANG Yuan, ZHANG Hong*, ZHOU Huiqiong*

    Beta-alanine as a Dual Modification Additive in Organic Solar Cells

    ZAFARSaud uz1, ZHANGWeichao2, YANGShuo3, LIShilin2, ZHANGYingyu1, ZHANGYuan2, ZHANGHong1*, ZHOUHuiqiong1*

    (,,,,100190,;,,100191,;,,101100,)

    Beta-alanine; Additive; Dual-modification; Transporting layer; Organic solar cell

    1 Introduction

    In recent years, the efficiency of organic solar cells(OSCs)[1]has surpassed 19%[2], owing to the emergence of non-fullerene acceptors(NFAs)[3]. While efforts to design new active[4,5]layer materials, optimize morphology[6], and develop advanced device structures[7], researchers are also exploring novel interfacial materials[8], including 0D—3D materials[9], self-assembled monolayers(SAMs), organic compounds, and eco-friendly compounds[10—13], to enhance the performance parameters of OSCs. These interfacial materials form new functional bond links[14]with the interface layer compounds and can significantly improve cell efficiency if optimized appropriately. To achieve better performance and properties in OSCs, it is crucial to optimize both the hole transport layer(HTL)[15,16]and electron transport layer(ETL) interface layers[17,18]. This can be accomplished by introducing ionic materials, polar compounds, zwitterions, and high-boiling materials into the interface layers[19—22]. However, classic interfacial materials such as poly(3,4-ethylenedioxythiophene)∶poly(styrenesulfonate)(PEDOT∶PSS)[23]and poly[9,9-bis(3′-(,-dimethyl)--ethylammoinium-propyl-2,7-fluorene)-alt-2,7-9,9-dioctylfluorene)] dibromide(PFN-Br)[24]exhibit limitations. PEDOT∶PSS undergoes shortcomings including acidity(pH=1.5—2.5)[25], hygroscopicity(absorbs moisture from the surrounding while preparing thin films), anisotropic charge injection[26], moderate conductivity, inhomogeneities in electronic and structural morphologies with batch-to-batch variation[27,28], and for PFN-Br detrimental contact resistance arising from their interfacial properties[29], scarcity of delocalized electrons, molecular aggregation of conjugated structure along with insulating properties[30—32]. The PFN-Br based devices also suffered from instability[33], and mismatched energy levels between the cathode and acceptors. To overcome these drawbacks, the adoption of new materials or the use of additives is essential to attain higher efficiency OSCs.

    In this study, beta-alanine(-alanine)[34]was employed as a small molecule additive with hydroxyl (—OH)/carboxyl group(—COOH) on one side and amine(—NH2)[35]on the other side, with a chemical formula of C3H7NO2. Despite its antioxidant properties[36],-alanine has received limited attention in the context of organic solar cells. In this work, we utilized-alanine as a dual modifier to modify both transporting layers on PEDOT∶PSS(HTL) and PFN-Br(ETL) in the same device through a simple solution-processed technique, resulting in the synthesis of new interface layers. The modified PEDOT∶PSS(A-PEDOT∶PSS) exhibited superior properties compared to pristine PEDOT∶PSS, as evidenced by improvements in morphology, efficiency, and characteristic properties[37]. Positive influences were also observed for modified PFN-Br (A-PFN-Br). Our findings indicate that the addition of-alanine resulted in an enhanced power conversion efficiency(PCE) of PM6∶Y6 solar cells, increasing from 14.99% to 15.78%. Furthermore, the addition of-alanine did not have a detrimental effect on light absorption, as shown by UV absorption and transmission data. FTIR analysis was conducted to confirm the modification, while surface morphology was analyzed using AFM. The current density-voltage(-) curve and dark current measurements also demonstrated an improvement. This study presents a unique modification that utilizes the same molecule in different materials to enhance device performance and stability, representing a novel approach that has not been previously explored in organic solar cells.

    2 Experimental

    2.1 Materials and Measurements

    Poly[[4,8-bis[5-2-ethylhexyl]-4-fluoro-2-thienyl]benzo[1,2-b∶4,5-b∶4,5-b′]dithiophene-2,6-diyl)- 2,5 th-iophenediyl[5,7-bis(2-ethylhexyl)-4,8-dioxo-4H,8H-benzo[1,2-c∶4,5-c′]dithiophene-1,3-diyl]- 2,5-thiophene-diyl]), PBDB-T-2F∶PM6, along with an acceptor material which was analyzed and used during the following work is Y6,(BTP-4F∶2,2′-((2Z.2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl- 12,13-dihydro-[1,2,5]thiadiazol[3,4-e]thieno[2″,3″∶4′,5′]thieno[2′,3′∶4,5]pyrrolo[3,2-g]thieno[2′,3′∶4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1-indene-2,1-diylidene))dimalononitri-le))both were acquired from Solarmer Materials Inc. Chloroform(CF) and 1-chloronaphthalene(CN) were purchased from Sigma Aldrich and TCL, respectively. PEDOT∶PSS and PFN-Br were bought for buffer layer utilization, along with-alanine additive, which was purchased from Sigma Aldrich. Then, Isopropanol and acetone were obtained from Alfa Aesar Inc.

    -characteristics of solar cells was measured on a Keithley 2400 source meter under AM 1.5G illumination(100 mW/cm2) provided by an Oriel solar simulator. The incident light intensity was adjusted with a silicon calibration photodiode(Peccell Technologies). Single carrier devices were characterized by using a Keithley 2400 source in a dark environment. The Fourier transform infrared spectroscopy(FTIR) analysis was done by Spotlight 200i FT-IR microscopy system. The samples were prepared on CaF2substrates while spin-coating the solutions. The transmittance and absorbance spectra were attained by using a UV-Vis spectrometer(PerkinElmer Lamba 650/850/950 UV-Vis spectrometer). The thin film samples were prepared on ITO substrates while spin-coating the solution of transporting layers(ETL/HTL) on it under the same conditions as for device fabrication. The contact angle analysis was done by DSA-100 static drop analyzer(KRüSS Co., Ltd.). A water drop was dropped on the sample for the measurement. Atomic force microscope(AFM) height and phase images were taken by Bruker Multimode-8 microscope systemusing tapping mode. The samples were of thin films for the required conditions. The external quantum efficiency(EQE) spectra for solar cells were measured by using an Oriel Newport EQE measurement system(Model 66902) calibrated with a standard Si reference cell and equipped with a Newport Xenon lamp. Carrier mobility was measured using the space-charge-limit current(SCLC) method. The devices were fabricated under optimized conditions. The mobility was determined by fitting the dark current to the model of a single carrier SCLC, according to the equation:

    = 90r2/83

    where(A/cm2) is the current density,(V) is the applied voltage,(m) is the film thickness of the active layer,(cm2·V?1·s?1) is the charge carrier mobility,ris the relative dielectric constant of the transport medium, and0(C2·N?1·m?2) is the permittivity of free space. The carrier mobility was calculated from the slope of the0.5-curves.

    2.2 Experimental Process

    2.2.1Interface MaterialFor the interface modification, we used-alanine as an additive in both the electron and hole transporting layer(ETL and HTL) of organic solar cells, respectively. The pH of this additive is in the 6—7 dimension range.

    2.2.2Interface Solution PreparationFor the preparation of the-alanine solution, its crystal powder was mixed with different fractions to form a new modified and optimized HTL and ETL to fabricate organic solar cell devices.

    For HTL: We took an old classic HTL, PEDOT∶PSS, and dissolved 1 mg of-alanine in it.-alanine is a water-soluble compound so it swiftly gets dissolved into PEDOT∶PSS. The stirring time to form a new modified PEDOT∶PSS(in this work named A-PEDOT∶PSS) was 3 h at room temperature before use.

    For ETL: We used PFN-Br as an ETL(at a concentration of 0.5 mg/mL in methanol) and for a modified ETL, we used 0.1 mg of-alanine into 0.4 mg of PFN-Br to one milliliter of methanol to form a modified PFN-Br solution(as A-PFN-Br). The stirring time was overnight at room temperature in a nitrogen glovebox atmosphere.

    2.2.3Bulk Heterojunction PreparationIn this study, we mainly used a non-fullerene acceptor(Y6), and a polymer donor(PM6) to form a Bulk Heterojunction(BHJ) solution. The ratio of both donor and acceptor was 1∶1.2 at a total concentration of 16 mg/mL in chloroform(CF) solvent with an additive 1-chloronaphthalene(CN) of 0.5%(mass fraction). The additive was dropped into the BHJ solution half an hour before coating on the interface HTL. The BHJ solution was stirred for 2 h at 40 ℃.

    2.2.4Cleaning of SubstratesThe ITO substrates were scrubbed with detergent and then rinsed with distilled water, acetone, and IPA(isopropanol alcohol) followed by ultra-sonication for 15 min each. Then the substrates were sent for the UV-ozone treatment for 15 min.

    2.2.5Device FabricationFor the device fabrication, the ITO substrates were taken out from the UVO3machine, and then the HTL solutions, PEDOT∶PSS and A-PEDOT∶PSS were spin-coated on ITO substrates at 4000 r/min to form a homogenous film and then baked at 150 ℃. Subsequently, the HTL-coated substrates were transferred to the N2-filled glovebox for the BHJ coating. The BHJ solution was spin-coated on HTL at 3000 r/min followed by annealing of 10 min at 110 ℃. Afterward, the ETL(PFN-Br and/or A-PFN-Br) was also spin-coated on BHJ at 3000 r/min. Finally, the metal deposition of Aluminium(Al) of 100 nm was done(shadow mask with an active area of 0.04 cm2) thermally at a vacuum pressure of 1×10?4Pa.

    3 Results and Discussion

    The chemical structure of-alanine is depicted in Fig.1(A), while Fig.1(B) illustrates PEDOT∶PSS, and Fig.1(C) depicts PFN-Br. Fig.1(D) demonstrates the dissolving technique employed in the fabrication process, and the resulting device architecture structure(conventional) is shown in Fig.1(E). The compound-alanine is three carbons(C3) amino acid with amine as well as a carboxyl functional group on each side, respectively, both of these functional compounds are nucleophilic due to it has a strong polarity[38]. Although then the next question was which group will interact with which respective group of both PEDOT∶PSS and PFN-Br. To find out the answer to this, firstly we checked the solubility of-alanine in various solvents to have a simple clear thought about the miscibility of the compound. However, due to the general rule of “l(fā)ike dissolves like”[39]. We elected water(totally miscible just by shaking a small container), alcohol(methanol and ethanol: soluble after stirring), and DMF(required temperature and stirring). Given that PEDOT∶PSS and PFN-Br are both soluble in polar solvents, with PEDOT∶PSS being soluble in aqueous solvents and PFN-Br being soluble in methanol, it is hypothesized that-alanine, being soluble in both solvents, would be suitable for modifying the interfacial layer materials of both PEDOT∶PSS and PFN-Br.

    Fig.1 Chemical structures of β?alanine(A), PEDOT∶PSS(B) and PFN?Br(C), schematic illustration of mixing both transporting layers with β?alanine(D), schematic device structure representation of OSCs(E)

    3.1 Device Performance

    We explored the device performance of A-PEDOT∶PSS as HTL and A-PFN-Br as ETL in OSCs with the architecture of ITO/HTL/active layer/ETL/Al, where PM6 and Y6 are used as a donor and an acceptor in the active layer, respectively. Fig.1(E) represented the device structure. The devices which were used in this work are listed in Table 1. The-curves of the devices are summarized in Fig.2(A). The control device(with normal PEDOT∶PSS and normal PFN-Br) obtained a PCE of 14.99% with an open-circuit voltage(OC) of 0.821 V, current density(SC) of 24.52 mA/cm2and fill factor(FF) of 74.43%. After analyzing the various concentrations for-alanine in PEDOT∶PSS and in PFN-Br, the optimized concentration was 1 mg/mL for A-PEDOT∶PSS, and volume ratio of-alanine/PFN-Br is 1∶4 for A-PFN-Br. The detailed preparation method is mentioned in the experimental section. The device with the A-PEDOT∶PSS showed a PCE of 15.56%, with aOC,SCand FF of 0.829 V, 25.35 mA/cm2and 73.96%, respectively. Next, the device with A-PFN-Br, disclosed a PCE of 15.65%, with aOCof 0.827 V,SCand FF of 25.91 mA/cm2and 73.39%, respectively. Lastly when we tried to use both transporting layers A-PEDOT∶PSS and A-PFN-Br at the same time in the same device, this dual-modified device revealed a PCE of 15.78% with aOCandSCof 0.828 V and 26 mA/cm2, respectively, along with a FF of 73.67%. Here, we noticed a decrease in the FF in the modified devices parameter, as we know FF decreases due to the presence of high series resistance. Reduction in depletion region causes further enhancement in the resistance that causes a reduction in FF. The FF of a solar cell is often the most difficult parameter to optimize because it is sensitive to a range of parasitic loss mechanisms, such as resistance losses. Shunt and series resistance can further reduce the FF of a practical device. In a simple cell model, these resistances are Ohmic elements. However, in practice both shunt and series resistance are not Ohmic in nature, therefore these non-Ohmic resistance greatly complicates the process of deconvoluting the various mechanisms responsible for a low FF. In the modified devices(single or dual) the FF is lower than that of the control devices due to the presence of higher resistances in the modified devices that resulted in the lower FF. The corresponding performance parameters are tabulated in Table 1.

    Table 1 Photovoltaic parameters of the conventional architecture of OSCs based on PM6∶Y6 system with pristine PEDOT∶PSS, PFN∶Br and modified versions with β?alanine(A?PEDOT∶PSS and A?PFN?Br)a

    .Substrate(ITO) and metal(Al) deposition were all the same for every device;. the average values/standard deviation for PCE are (14.88± 0.10) for control, (15.3±0.25) for A-PEDOT∶PSS, (15.50±0.12) for A-PFN-Br, and (15.51±0.18) for both. These calculations were based on 16 devices.

    Fig.2 Current density versus voltage(J?V) curves of PM6∶Y6 active layer using different ETL and HTL modified layers(control, A?PEDOT∶PSS, A?PFN?Br and both)(A), dark J?V characteristics of various devices(B) and EQE spectra for PEDOT∶PSS and A?PEDOT∶PSS(C) and for PFN?Br and A?PFN?Br(D)

    (A) The inset picture is a zoom-in on the curves.

    The dark-graph is in Fig.2(B). A dark current-voltage investigation is divided into three dominant regions. In region I(at low voltages) the-characteristics is primarily leakage currents determined bysh(shunt resistance). Region II(intermediate voltages) accounts for recombination currents, and region III(at high voltages) accounts for series resistance[40,41]. When there was a dual modification(Both) device, dark-characteristics also spectated that the use of-alanine passivate the defects[30]of polymers of both the transpor-ting layers(ETL and HTL), which is why the curve showed the lowest dark reverse[42,43]current among all. The dual-modified devices were better at blocking the activities[44]of electrons as well as holes in their respective interfaces and improving charge carrier selectivity. From the dark-graph, we also observed an increase in built-in voltage(bi)[45]for the condition of ‘Both’ to 1.05 V from the control device of 0.95 V. Thus, the increase inOCin the modified devices might be due to the increment of thebivalues. Then in the case of A-PEDOT∶PSS and A-PFN-Br, there are minor differences observed which might be due to the unmodified interface layer side, respectively. After that, EQE was tested for both the transporting layers(ETL and HTL) along with their modified versions. Fig.2(C) represents the PEDOT∶PSS and A-PEDOT∶PSS EQE, which showed a small increment in the 330—860 nm wavelength range for the modified layer. Fig.2(D) represents the EQE for the ETL devices of PFN-Br and A-PFN-Br. The increase in the EQE is due to the addition of-alanine that enhanced theSCof the modified devices for better charge transportation[46].

    3.2 Charge Carrier Mobility

    Furthermore, we performed the SCLC characterization to count the charge carrier mobilities in the hole and electron-only devices. Fig.3(A)—(D) depicted the SCLC measurements for the interface layers. Fig.3(A) showed the PEDOT∶PSS SCLC charge mobility graph, the charge mobility was found to beh=2.18×10?4cm2·V?1·s?1. The A-PEDOT∶PSS SCLC graph in Fig.3(C) showed that the charge mobilities increased to 2.48×10?4cm2·V?1·s?1, this counts for an increase of 13.76% from the PEDOT∶PSS mobility. Next for PFN-Br, SCLC charge mobility ise=2.66×10?4cm2·V?1·s?1[Fig.3(B)], which also later in the A-PFN-Br elevated toe=2.98×10?4cm2·V?1·s?1depicted in Fig.3(D). For the electron mobilities, 12% increase has been shown for A-PFN-Br devices. Hence, it was concluded that-alanine addition aids in improved carrier mobilities. The respective device architecture structures are also illustrated in the SCLC graph of each layer(insets in Fig.3).

    Fig.3 SCLC carrier mobility graphs for hole transporting layers PEDOT∶PSS(A), electron transporting layer PFN?Br(B), modified HTL(A?PEDOT∶PSS)(C) and modified ETL(A?PFN?Br)(D)

    Insets are device architecture structures.

    3.3 Electrochemical Properties and Stability

    Fig.4 FTIR analysis of PEDOT∶PSS with different percentages of β?alanine(A), FTIR of pristine PEDOT∶PSS(a) and PEDOT∶PSS with 2.0 mg of β?alanine(b)(B), UV?Vis absorption of PEDOT∶PSS and A?PEDOT∶PSS(C), UV?Vis absorption of PFN?Br and A?PFN?Br(D), transmittance of PEDOT∶PSS and A?PEDOT∶PSS(E) and transmittance of PFN?Br and A?PFN?Br(F), the normalized stability graph of different devices(G)

    3.4 Morphology Characterization and Contact Angle Measurements

    Fig.5 AFM images of PEDOT∶PSS height(A), phase(B) and A?PEDOT∶PSS height(C) and phase(D), PFN?Br height(E), phase(F), A?PFN?Br height(G), phase(H), the contact angle(water) of PEDOT∶PSS, A?PEDOT∶PSS(I) and PFN?Br and A?PFN?Br(J)

    4 Conclusions

    [1] Zhou Z., Xu S., Song J., Jin Y., Yue Q., Qian Y., Liu F., Zhang F., Zhu X.,.,2018,(11), 952—959

    [2] Gao W., Qi F., Peng Z., Lin F. R., Jiang K., Zhong C., Kaminsky W., Guan Z., Lee C. S., Marks T. J., Ade H., Jen A. K. Y.,..,2022,(32), 2202089

    [3] Armin A., Li W., Sandberg O. J., Xiao Z., Ding L., Nelson J., Neher D., Vandewal K., Shoaee S., Wang T., Ade H., Heumüller T., Brabec C., Meredith P.,..,2021,, 2003570

    [4] Duan C., Huang F., Cao Y.,..,2015,(47), 8081—8098

    [5] Wang J., Zheng Z., Zhang D., Zhang J., Zhou J., Liu J., Xie S., Zhao Y., Zhang Y., Wei Z., Hou J., Tang Z., Zhou H.,..,2019,(17), 1806921

    [6] Du X., Heumueller T., Gruber W., Almora O., Classen A., Qu J., He F., Unruh T., Li N., Brabec C. J.,..,2020,(16), e1908305

    [7] Che X., Li Y., Qu Y., Forrest S. R.,.,2018,(5), 422—427

    [8] Yin Z., Wei J., Zheng Q.,.., 2016,(8), 1500362

    [9] Li Y., Ding J., Liang C., Zhang X., Zhang J., Jakob D. S., Wang B., Li X., Zhang H., Li L., Yang Y., Zhang G., Zhang X., Du W., Liu X., Zhang Y., Zhang Y., Xu X., Qiu X., Zhou H.,, 2021,(12), 3154—3168

    [10] Chen M., Wang J., Yin F., Du Z., Belfiore L. A., Tang J.,...,2021,(8), 4505—4527

    [11] Kalkan S. B., Najafidehaghani E., Gan Z., Apfelbeck F. A. C., Hübner U., George A., Turchanin A., Nickel B.,..,2021,(1), 92

    [12] Kang H., Hong S., Lee J., Lee K.,..,2012,(22), 3005—3009

    [13] Liu M., Xu Y., Gao Z., Zhang C., Yu J., Wang J., Ma X., Hu H., Yin H., Zhang F., Man B., Sun Q.,,2021,(25), 11128—11137

    [14] Wu J., Gao M., Chai Y., Liu P., Zhang B., Liu J., Ye L.,.,2021,(4), 100062

    [15] Kim H. I., Bui T. T. T., Kim G. W., Kang G., Shin W. S., Park T.,..,2014,(18), 15875—15880

    [16] Zhang X., Zhang H., Li Y., Zafar S. U., Yang S., Chen J., Zhou H., Zhang Y.,...,2022,(44), 2205398

    [17] Pei S., Xiong X., Zhong W., Xue X., Zhang M., Hao T., Zhang Y., Liu F., Zhu L.,..,2022,(30), 34814—34821

    [18] Zheng Z., Hu Q., Zhang S., Zhang D., Wang J., Xie S., Wang R., Qin Y., Li W., Hong L., Liang N., Liu F., Zhang Y., Wei Z., Tang Z., Russell T. P., Hou J., Zhou H.,..,2018,(34), 1801801

    [19] Mengistie D. A., Chen C. H., Boopathi K. M., Pranoto F. W., Li L. J., Chu C. W.,..,2015,, 94—100

    [20] Zhang L., Yang K., Chen R., Zhou Y., Chen S., Zheng Y., Li M., Xu C., Tang X., Zang Z., Sun K.,..., 2020,(1), 1900648

    [21] Tang H., Liu Z., Hu Z., Liang Y., Huang F., Cao Y.,..,2020,(6), 802—809

    [22] Cassinelli M., Park W. T., Kim Y., Kim J. H., Noh Y. Y., Caironi M.,.., 2021,3), 033301

    [23] Hu L., Song J., Yin X., Su Z., Li Z.,,2020,(1), 145

    [24] Li B., Xiang Y., Jayawardena K. D. G. I., Luo D., Wang Z., Yang X., Watts J. F., Hinder S., Sajjad M. T., Webb T., Luo H., Marko I., Li H., Thomson S. A. J., Zhu R., Shao G., Sweeney S. J., Silva S. R. P., Zhang W.,,2020,, 105249

    [25] Chen S., Song L., Tao Z., Shao X., Huang Y., Cui Q., Guo X.,..,2014,(12), 3654—3659

    [26] Liu D., Xu H., Liu X., Xie Z., Yang B., Ma Y.,..,2011,(1), 174—180

    [27] Cameron J., Skabara P. J.,.,2020,(7), 1759—1772

    [28] Ionescu?Zanetti C., Mechler A., Carter S. A., Lal R.,..,2004,(7), 579

    [29] Liao Q., Kang Q., Yang Y., An C., Xu B., Hou J.,..,2020,(7), 1906557

    [30] Liu Y., Cole M. D., Jiang Y., Kim P. Y., Nordlund D., Emrick T., Russell T. P.,..,2018,(15), 1705976

    [31] Li Y.,..,2016,(11), 1430—1431

    [32] Jia J., Fan B., Xiao M., Jia T., Jin Y., Li Y., Huang F., Cao Y.,,2018,(6), 2195—2202

    [33] Hu Z., Chen Z., Zhang K., Zheng N.,Xie R., Liu X., Yang X., Huang F., Cao Y.,,2017,(6), 1700055

    [34] Guan L., Yu L., Wu L., Zhang S., Lin Y., Jiao Y., Zhang S., Zhao F., Ren Y., Zhou X., Liu Z.,,2021,, 138770

    [35] Ming Y., Zhu Y., Chen Y., Jin B., Duan C., Liang Z., Zhao L., Wang S., Dong B., Li H., Wu C.,..,2021,(48), 57163—57170

    [36] Yuan H., Zhang Z., Guo T., Yu L., Deng Z., Zhao R., Zhang J., Zhu Y.,..,2021,, 160140

    [37] Zheng Z., Zhang S., Zhang J., Qin Y., Li W., Yu R., Wei Z., Hou J.,..,2016,(25), 5133—5138

    [38] Sun P., Liu Y., Du S., Yu B., Wang Y., Sun M., Shi P., Liu Y., Gong J.,..,2017,, 522—531

    [39] Zou F., Zhuang W., Wu J., Zhou J., Liu Q., Chen Y., Xie J., Zhu C., Guo T., Ying H.,...,2014,, 14—22

    [40] Servaites J. D., Ratner M. A., Marks T. J.,...,2011,(11), 4410—4422

    [41] Servaites J. D., Yeganeh S., Marks T. J., Ratner M. A.,...,2010,(1), 97—104

    [42] Wu N., Luo Q., Bao Z., Lin J., Li Y. Q., Ma C. Q.,...,2015,, 248—259

    [43] Wolf U., Arkhipov V. I., B?ssler H.,.,1999,(11), 7507—7513

    [44] Waldauf C., Scharber M. C., Schilinsky P., Hauch J. D., Brabec C. J.,...,2006,, 104503

    [45] Zhou H., Zhang Y., Seifter J., Collins S. D., Luo C., Bazan G. C., Nguyen T. Q., Heeger A. J.,..,2013,(11), 1646—1652

    [46] Lee B. R., Lee S., Park J. H., Jung E. D., Yu J. C., Nam Y. S., Heo J., Kim J. Y., Kim B. S., Song M. H.,..,2015,(23), 3553—3559

    [47] Konwar L. J., M?ki?Arvela P., Mikkola J. P.,.,2019,(22), 11576—11630

    [48] Hara M., Yoshida T., Takagaki A., Takata T., Kondo J. N., Hayashi S., Domen K.,...,2004,(22), 2955—2958

    [49] Li H., Zhang C., Ma Y., Mai Y., Xu Y.,..,2018,, 468—473

    [50] Aleshin A. N., Williams S. R., Heeger A. J.,..,1998,(2), 173—177

    [51] Greczynski G., Kugler T., Salaneck W. R.,,1999,(1), 129—135

    [52] Kemerink M., Timpanaro S., de Kok M. M., Meulenkamp E. A., Touwslager F. J.,...,2004,(49), 18820—18825

    [53] Galatopoulos F., Papadas I. T., Ioakeimidis A., Eleftheriou P., Choulis S. A.,,2020,(10), 1961

    [54] Müller C., Hamedi M., Karlsson R., Jansson R., Marcilla R., Hedhammar M., Ingan?s O.,..,2011,(7), 898—901

    [55] Liao C., Zhang M., Yao M. Y., Hua T., Li L., Yan F.,..,2015,(46), 7493—7527

    [56] Crispin X., Jakobsson F. L. E., Crispin A., Grim P. C. M., Andersson P., Volodin A., van Haesendonck C., Van der Auweraer M., Salaneck W. R., Berggren M.,..,2006,(18), 4354—4360

    [57] Xu H., Yuan F., Zhou D., Liao X., Chen L., Chen Y.,...,2020,(23), 11478—11492

    [58] Li W., Zhang W., Van Reenen S., Sutton R. J., Fan J., Haghighirad A. A., Johnston M. B., Wang L., Snaith H. J.,...,2016,(2), 490—498

    [59] Dag I., Lifshitz E.,...,1996,(21), 8962—8972

    [60] Chang S. H., Chiang C. H., Kao F. S., Tien C. L., Wu C. G.,..,2014,(4), 1—7

    [61] Hwang J., Schwendeman I., Ihas B. C., Clark R. J., Cornick M., Nikolou M., Argun A., Reynolds J. R., Tanner D. B.,.,2011,(19), 195121

    [62] Akkerman H. B., Naber R. C. G., Jongbloed B., van Hal P. A., Blom P. W. M., de Leeuw D. M., de Boer B.,....,2007,(27), 11161—11166

    [63] Yun D. J., Jung J., Sung Y. M., Ra H., Kim J. M., Chung J., Kim S. Y., Kim Y. S., Heo S., Kim K. H., Jeong Y. J., Jang J.,...,2020,(11), 2000620

    [64] Wang Q., Chueh C. C., Eslamian M., Jen A. K. Y.,..,2016,(46), 32068—32076

    [65] Hosseini E., Ozhukil Kollath V., Karan K.,...,2020,(12), 3982—3990

    [66] Vorobyev A. Y., Guo C.,.,2011,(Suppl 5), A1031

    [67] Chao Y. C., Chen C. Y., Lin C. A., Dai Y. A., He J. H.,...,2010,(37), 8134—8138

    [68] Li J., Wang N., Wang Y., Liang Z., Peng Y., Yang C., Bao X., Xia Y.,.,2020,, 168—176

    [69] Shi Z., Liu H., Li J., Wang F., Bai Y., Bian X., Zhang B., Alsaedi A., Hayat T., Tan Z. A.,...,2018,, 1—9

    [70] Bi S., Leng X., Li Y., Zheng Z., Zhang X., Zhang Y., Zhou H.,.., 2019,(45), 1805708

    [71] Li Y., Zhang Z., Han X., Li T., Lin Y.,.,2022,(3), 1087—1097

    [72] Cha H., Wu J., Wadsworth A., Nagitta J., Limbu S., Pont S., Li Z., Searle J., Wyatt M. F., Baran D., Kim J. S., McCulloch I., Durrant J. R.,..,2017,(33), 1701156

    [73] Lee S. J., Pil Kim H., Mohd Yusoff A. R. B., Jang J.,...,2014,, 238—243

    [74] Hermenau M., Riede M., Leo K., Gevorgyan S. A., Krebs F. C., Norrman K.,...,2011,(5), 1268—1277

    [75] Wang J., Yu H., Hou C., Zhang J.,..,2020,(23), 26543—26554

    [76] Mateker W. R., McGehee M. D.,..,2017,(10), 1603940

    [77] Lin X., Wang Y., Wu J., Tang Z., Lin W., Nian L.,Yi G.,..,2021,(6), 5905—5912

    [78] Cho A., Kim S., Kim S., Cho W., Park C., Kim F. S., Kim J. H.,....,2016,(15), 1530—1536

    [79] Lee T. W., Chung Y.,...,2008,(15), 2246—2252

    [80] Zhou Y., Fuentes?Hernandez C., Shim J., Meyer J., Giordano A. J., Li H., Winget P., Papadopoulos T., Cheun H., Kim J., Fenoll M., Dindar A., Haske W., Najafabadi E., Khan T. M., Sojoudi H., Barlow S., Graham S., Brédas J. L., Marder S. R., Kahn A., Kippelen B.,,2012,(6079), 327—332

    [81] Mihailetchi V. D., Blom P. W. M., Hummelen J. C., Rispens M. T.,...,2003,(10), 6849—6854

    [82] López Valdivieso A., Sánchez López A. A., Song S.,...,2005,(3), 154—164

    [83] Paredes á., Acu?a S. M., Toledo P. G.,,2019,(11), 1177

    [84] Ouellette R. J., Rawn J. D.,:,, Elsevier, Boston,2015, 169—182

    [85] Penczek S., Kubisa P., Allen G., Bevington J. C.,?, Pergamon, Amsterdam,1989, 751—786

    [86] Savin K. A.,, Academic Press, Boston,2014, 1—53

    [87] Li J., Huang X., Yuan J., Lu K., Yue W., Ma W.,..,2013,(9), 2164—2171

    [88] Hau S. K., Yip H. L., Acton O., Baek N. S., Ma H., Jen A. K. Y.,...,2008,(42), 5113—5119

    [89] Chao L., Niu T., Gu H., Yang Y., Wei Q., Xia Y., Hui W., Zuo S., Zhu Z., Pei C., Zhang J., Fang J., Xing G., Li H., Huang X., Gao X., Ran C., Song L., Fu L., Chen Y., Huang W.,,2020,, 2616345

    [90] Yip H. L., Hau S. K., Baek N. S., Ma H., Jen A. K. Y.,..,2008,(12), 2376—2382

    -丙氨酸作為有機(jī)太陽能電池雙重修飾添加劑的研究

    Zafar Saud uz1,張偉超2,楊朔3,李世麟2,張瑩玉1,張淵2,張弘1,周惠瓊1

    (1. 中國科學(xué)院大學(xué), 中國科學(xué)院納米系統(tǒng)與多級次制造重點(diǎn)實(shí)驗(yàn)室, 中國科學(xué)院納米科學(xué)卓越中心, 國家納米科學(xué)與技術(shù)中心, 北京 100190;2. 北京航空航天大學(xué)化學(xué)學(xué)院, 北京 100191; 3. 北京廷潤膜技術(shù)開發(fā)股份有限公司, 北京 101100)

    -丙氨酸;添加劑;界面改性;傳輸層;有機(jī)太陽能電池

    O647.2

    A

    10.7503/cjcu20230185

    2023-04-12

    網(wǎng)絡(luò)首發(fā)日期: 2023-05-31.

    聯(lián)系人簡介:張弘, 男, 博士, 副研究員, 主要從事半透明柔性太陽能電池方面的研究. E-mail: zhanghong@nanoctr.cn

    周惠瓊, 女, 博士, 研究員, 主要從事有機(jī)太陽能電池和鈣鈦礦太陽能電池方面的研究. E-mail: zhouhq@nanoctr.cn

    國家自然科學(xué)基金(批準(zhǔn)號: 52273245)、中國科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)(批準(zhǔn)號: XDB36000000)和中國科學(xué)院-世界科學(xué)院校長博士獎(jiǎng)學(xué)金計(jì)劃項(xiàng)目資助.

    Supported by the National Natural Science Foundation of China(No. 52273245), the Strategic Priority Research Program of Chinese Academy of Sciences(No. XDB36000000) and the Chinese Academy of Sciences-the World Academy of Sciences(CAS-TWAS) President’s Ph.D. Fellowship Program.

    (Ed.: Y, K, S)

    猜你喜歡
    張弘丙氨酸中國科學(xué)院
    溪流
    臨江仙·踏春
    虞美人·蝶為媒
    《中國科學(xué)院院刊》新媒體
    中國科學(xué)院院士
    ——李振聲
    無償獻(xiàn)血采血點(diǎn)初篩丙氨酸轉(zhuǎn)氨酶升高的預(yù)防及糾正措施研究
    祝賀戴永久編委當(dāng)選中國科學(xué)院院
    《中國科學(xué)院院刊》創(chuàng)刊30周年
    論張弘的新編昆劇
    丙氨酸氨基轉(zhuǎn)移酶快速檢測在血站血液采集前應(yīng)用的意義研究
    精品久久久久久久久亚洲 | 国产精品爽爽va在线观看网站| 久久6这里有精品| 午夜激情欧美在线| 国产av麻豆久久久久久久| 女同久久另类99精品国产91| 草草在线视频免费看| 噜噜噜噜噜久久久久久91| 好男人在线观看高清免费视频| 亚洲人成网站在线播| 亚洲,欧美,日韩| 久久久久久九九精品二区国产| 亚洲激情在线av| 亚洲七黄色美女视频| 可以在线观看的亚洲视频| 亚洲第一电影网av| 麻豆成人av在线观看| 午夜福利欧美成人| 欧美zozozo另类| 国产精品伦人一区二区| 免费看光身美女| 欧美又色又爽又黄视频| 淫秽高清视频在线观看| 在线免费观看不下载黄p国产 | 成年女人看的毛片在线观看| 在线免费观看的www视频| 啪啪无遮挡十八禁网站| 欧美国产日韩亚洲一区| 成人国产综合亚洲| 久久婷婷人人爽人人干人人爱| 搡老妇女老女人老熟妇| 又爽又黄无遮挡网站| 日韩大尺度精品在线看网址| 韩国av一区二区三区四区| 国产精品亚洲美女久久久| 国产免费男女视频| h日本视频在线播放| 黄色一级大片看看| 网址你懂的国产日韩在线| 三级男女做爰猛烈吃奶摸视频| 九九在线视频观看精品| 人妻夜夜爽99麻豆av| 国产精品综合久久久久久久免费| 久久国产乱子伦精品免费另类| 97人妻精品一区二区三区麻豆| 五月伊人婷婷丁香| 国产黄a三级三级三级人| 97超视频在线观看视频| 国产精品1区2区在线观看.| 亚洲综合色惰| 人妻制服诱惑在线中文字幕| netflix在线观看网站| 日日摸夜夜添夜夜添av毛片 | 婷婷亚洲欧美| 欧美日韩黄片免| 搡女人真爽免费视频火全软件 | 亚洲午夜理论影院| 久久国产精品影院| 日本免费一区二区三区高清不卡| 黄色女人牲交| 国产精品自产拍在线观看55亚洲| 国产精华一区二区三区| 97超级碰碰碰精品色视频在线观看| av在线老鸭窝| 黄色一级大片看看| 午夜免费成人在线视频| 国产欧美日韩一区二区三| 我要看日韩黄色一级片| 精品久久久久久久末码| 中文字幕精品亚洲无线码一区| 老司机午夜福利在线观看视频| 日本一本二区三区精品| 欧美绝顶高潮抽搐喷水| 免费av不卡在线播放| 一区二区三区高清视频在线| 成人三级黄色视频| 亚洲精品成人久久久久久| 国产国拍精品亚洲av在线观看| 国产欧美日韩精品亚洲av| 欧美日本亚洲视频在线播放| 午夜影院日韩av| 在线观看一区二区三区| 他把我摸到了高潮在线观看| 免费av毛片视频| a级毛片免费高清观看在线播放| 欧美一区二区国产精品久久精品| 岛国在线免费视频观看| 欧美zozozo另类| 国产精华一区二区三区| 狂野欧美白嫩少妇大欣赏| 赤兔流量卡办理| 成人国产一区最新在线观看| 男女之事视频高清在线观看| 特大巨黑吊av在线直播| 成人特级黄色片久久久久久久| 欧美午夜高清在线| 狂野欧美白嫩少妇大欣赏| 99久久99久久久精品蜜桃| 亚洲真实伦在线观看| 在线观看美女被高潮喷水网站 | 一区二区三区激情视频| 五月玫瑰六月丁香| xxxwww97欧美| 欧美日韩瑟瑟在线播放| 国产91精品成人一区二区三区| 国产亚洲精品久久久com| 国内精品久久久久精免费| 日本黄色视频三级网站网址| 国产亚洲欧美在线一区二区| 最新在线观看一区二区三区| 女同久久另类99精品国产91| 亚洲无线在线观看| 亚洲人成网站在线播| 精品不卡国产一区二区三区| 在线免费观看的www视频| 亚洲av免费高清在线观看| 99热精品在线国产| 永久网站在线| 国产欧美日韩一区二区三| АⅤ资源中文在线天堂| 国产精品爽爽va在线观看网站| 色精品久久人妻99蜜桃| 99热6这里只有精品| 精品久久久久久久久久免费视频| 在线播放无遮挡| 国产黄片美女视频| 欧美日韩综合久久久久久 | 亚洲成av人片在线播放无| 91九色精品人成在线观看| 在线十欧美十亚洲十日本专区| 国产高潮美女av| 他把我摸到了高潮在线观看| 88av欧美| 精品国产三级普通话版| 美女黄网站色视频| 欧美一区二区国产精品久久精品| 最近最新免费中文字幕在线| 亚洲精品久久国产高清桃花| 男人的好看免费观看在线视频| 亚洲精品456在线播放app | 日本黄色视频三级网站网址| 国产色爽女视频免费观看| 91狼人影院| 我的老师免费观看完整版| 亚洲精品日韩av片在线观看| 琪琪午夜伦伦电影理论片6080| 日韩高清综合在线| 免费看日本二区| 少妇的逼水好多| 午夜两性在线视频| 午夜福利18| 免费电影在线观看免费观看| 亚洲av第一区精品v没综合| 亚洲成人久久爱视频| 久久国产精品人妻蜜桃| 久久国产精品影院| 婷婷六月久久综合丁香| 性色av乱码一区二区三区2| 精品一区二区免费观看| 国产成人aa在线观看| 免费av观看视频| www日本黄色视频网| 在线观看午夜福利视频| 高清在线国产一区| 99热精品在线国产| 中文字幕高清在线视频| 国语自产精品视频在线第100页| av中文乱码字幕在线| 丰满的人妻完整版| 我要看日韩黄色一级片| 久久性视频一级片| 首页视频小说图片口味搜索| 欧美一级a爱片免费观看看| 少妇高潮的动态图| 村上凉子中文字幕在线| 国产精品一区二区三区四区久久| 99国产精品一区二区蜜桃av| 很黄的视频免费| 国产在视频线在精品| 99久久精品一区二区三区| 麻豆成人av在线观看| 男女下面进入的视频免费午夜| 免费看美女性在线毛片视频| 亚洲人与动物交配视频| 成人美女网站在线观看视频| h日本视频在线播放| 久久精品国产自在天天线| 美女xxoo啪啪120秒动态图 | 亚洲色图av天堂| 午夜福利欧美成人| 亚洲七黄色美女视频| 亚洲一区高清亚洲精品| 午夜视频国产福利| 久久热精品热| 国产黄a三级三级三级人| 成年人黄色毛片网站| 亚洲一区二区三区不卡视频| 男女床上黄色一级片免费看| 极品教师在线视频| 男人舔奶头视频| 国内毛片毛片毛片毛片毛片| 国产欧美日韩精品一区二区| 久久中文看片网| 中文字幕精品亚洲无线码一区| 国产乱人伦免费视频| 国产三级黄色录像| 国产在视频线在精品| 亚洲精品在线观看二区| 麻豆国产av国片精品| 欧美绝顶高潮抽搐喷水| 90打野战视频偷拍视频| 国产色爽女视频免费观看| 亚洲自拍偷在线| a在线观看视频网站| 在线国产一区二区在线| 国产精品一区二区三区四区久久| 99热这里只有精品一区| 日韩精品青青久久久久久| 啪啪无遮挡十八禁网站| 久久久久久久久久成人| 亚洲无线在线观看| av黄色大香蕉| 色在线成人网| 精品熟女少妇八av免费久了| 看十八女毛片水多多多| 一级毛片久久久久久久久女| 精品久久久久久久久久久久久| 午夜福利在线在线| 精品熟女少妇八av免费久了| 一级黄色大片毛片| 日韩av在线大香蕉| 特级一级黄色大片| 90打野战视频偷拍视频| 啦啦啦韩国在线观看视频| 亚洲精品成人久久久久久| 国产人妻一区二区三区在| 成人国产综合亚洲| 舔av片在线| av在线老鸭窝| 日本 av在线| 热99re8久久精品国产| 久久国产精品影院| 91久久精品国产一区二区成人| 国产在线男女| 宅男免费午夜| 内地一区二区视频在线| 精品久久久久久,| av女优亚洲男人天堂| 精品福利观看| 国产黄色小视频在线观看| av专区在线播放| 国产高清激情床上av| 久久久久性生活片| 国产精品综合久久久久久久免费| 午夜福利视频1000在线观看| 亚洲精品一卡2卡三卡4卡5卡| 美女xxoo啪啪120秒动态图 | 日本 欧美在线| 亚洲国产日韩欧美精品在线观看| 亚洲精品粉嫩美女一区| 国产在线精品亚洲第一网站| 久久久久久久久大av| 欧美黄色淫秽网站| 亚洲真实伦在线观看| 久久久色成人| .国产精品久久| 欧美性猛交╳xxx乱大交人| 国产色爽女视频免费观看| 一a级毛片在线观看| 国内精品久久久久久久电影| 一区二区三区高清视频在线| 男人和女人高潮做爰伦理| 国产精品一区二区三区四区免费观看 | 欧美激情国产日韩精品一区| 90打野战视频偷拍视频| 午夜视频国产福利| 色哟哟·www| 真实男女啪啪啪动态图| 99久久精品热视频| 亚洲精品乱码久久久v下载方式| av中文乱码字幕在线| 国产真实乱freesex| 中文亚洲av片在线观看爽| av视频在线观看入口| 国产在线男女| 色哟哟·www| 国产高清三级在线| 久久中文看片网| 欧美中文日本在线观看视频| 国产精品98久久久久久宅男小说| 欧美一区二区亚洲| 赤兔流量卡办理| 波多野结衣高清作品| 99热这里只有精品一区| 神马国产精品三级电影在线观看| 毛片一级片免费看久久久久 | 亚洲欧美日韩高清在线视频| 少妇人妻一区二区三区视频| 女人被狂操c到高潮| 欧美一区二区精品小视频在线| 一区二区三区免费毛片| 亚洲av五月六月丁香网| 亚洲国产精品成人综合色| 国产伦一二天堂av在线观看| 国内毛片毛片毛片毛片毛片| 色5月婷婷丁香| 国产一区二区激情短视频| 中文在线观看免费www的网站| 国产不卡一卡二| 日本黄大片高清| 国产精品自产拍在线观看55亚洲| 欧美极品一区二区三区四区| 午夜两性在线视频| a级毛片免费高清观看在线播放| 精品午夜福利视频在线观看一区| 国产精品亚洲一级av第二区| 色综合亚洲欧美另类图片| 97热精品久久久久久| 午夜精品一区二区三区免费看| 午夜免费成人在线视频| 成人无遮挡网站| 午夜精品一区二区三区免费看| 亚洲av成人不卡在线观看播放网| 免费大片18禁| 精品99又大又爽又粗少妇毛片 | 欧美高清成人免费视频www| 亚洲乱码一区二区免费版| 免费大片18禁| 男女那种视频在线观看| ponron亚洲| 51午夜福利影视在线观看| 久久精品国产亚洲av天美| 国产老妇女一区| or卡值多少钱| 又爽又黄a免费视频| 午夜福利在线观看免费完整高清在 | 欧美在线黄色| 男插女下体视频免费在线播放| 怎么达到女性高潮| 村上凉子中文字幕在线| 性色avwww在线观看| 少妇的逼水好多| 久久亚洲精品不卡| 午夜精品久久久久久毛片777| 国产精品人妻久久久久久| 日本 av在线| bbb黄色大片| 免费无遮挡裸体视频| 欧美精品国产亚洲| 久久久国产成人精品二区| 精品人妻1区二区| 别揉我奶头~嗯~啊~动态视频| av在线蜜桃| 一本一本综合久久| 国内精品美女久久久久久| 国产成人影院久久av| 精品不卡国产一区二区三区| 成人午夜高清在线视频| 亚洲在线观看片| 人妻久久中文字幕网| 天堂av国产一区二区熟女人妻| 色在线成人网| 亚洲精华国产精华精| 韩国av一区二区三区四区| 亚洲av.av天堂| 麻豆av噜噜一区二区三区| 国语自产精品视频在线第100页| 久久人人爽人人爽人人片va | 99久久成人亚洲精品观看| 国产高潮美女av| 国产精品久久久久久人妻精品电影| 亚洲在线观看片| 婷婷色综合大香蕉| 久9热在线精品视频| 黄色配什么色好看| 一二三四社区在线视频社区8| 美女 人体艺术 gogo| 黄色日韩在线| 欧美日韩中文字幕国产精品一区二区三区| 欧美中文日本在线观看视频| 国产一区二区三区视频了| 免费人成视频x8x8入口观看| 白带黄色成豆腐渣| 最后的刺客免费高清国语| 在线a可以看的网站| 中亚洲国语对白在线视频| 在线a可以看的网站| 国产成人影院久久av| 国产精品久久久久久久电影| 精品欧美国产一区二区三| 亚洲精品在线美女| 久99久视频精品免费| 嫩草影视91久久| 亚洲欧美激情综合另类| 亚洲成人中文字幕在线播放| 欧美国产日韩亚洲一区| 亚洲自偷自拍三级| 午夜视频国产福利| 在线观看美女被高潮喷水网站 | 国产黄a三级三级三级人| 午夜久久久久精精品| 亚洲成人精品中文字幕电影| 国产一区二区亚洲精品在线观看| 丁香欧美五月| 在线免费观看不下载黄p国产 | 亚洲avbb在线观看| 国产极品精品免费视频能看的| 免费观看人在逋| 在线观看舔阴道视频| 国产精品一区二区三区四区久久| 亚洲美女搞黄在线观看 | 国产 一区 欧美 日韩| 我的老师免费观看完整版| 嫩草影院入口| 国产免费男女视频| 亚洲内射少妇av| 夜夜夜夜夜久久久久| 亚洲第一区二区三区不卡| 欧美激情在线99| 麻豆一二三区av精品| 99热只有精品国产| 国产69精品久久久久777片| 亚洲一区二区三区色噜噜| 狠狠狠狠99中文字幕| 夜夜躁狠狠躁天天躁| 一a级毛片在线观看| aaaaa片日本免费| 国产免费一级a男人的天堂| 亚洲精品影视一区二区三区av| 国产精品人妻久久久久久| 亚洲18禁久久av| 成熟少妇高潮喷水视频| 亚洲 国产 在线| 好男人在线观看高清免费视频| 波野结衣二区三区在线| 国产黄色小视频在线观看| 国产黄片美女视频| 真人一进一出gif抽搐免费| 成人国产一区最新在线观看| 极品教师在线视频| 3wmmmm亚洲av在线观看| 很黄的视频免费| 赤兔流量卡办理| 欧美不卡视频在线免费观看| 国产91精品成人一区二区三区| 国产精品亚洲av一区麻豆| 1000部很黄的大片| 色精品久久人妻99蜜桃| 欧美激情国产日韩精品一区| 有码 亚洲区| 国产久久久一区二区三区| 婷婷色综合大香蕉| 国内精品久久久久久久电影| 欧美日韩黄片免| 丝袜美腿在线中文| 国产亚洲精品av在线| 亚洲av成人av| 国产高清三级在线| 搡老岳熟女国产| 可以在线观看的亚洲视频| 伦理电影大哥的女人| 国产大屁股一区二区在线视频| 久久久精品大字幕| 久久亚洲精品不卡| 国产精品久久电影中文字幕| 日韩欧美精品v在线| 亚洲人成伊人成综合网2020| 精品一区二区三区人妻视频| 夜夜爽天天搞| 欧美激情国产日韩精品一区| 亚洲狠狠婷婷综合久久图片| 国产精品野战在线观看| 长腿黑丝高跟| 别揉我奶头 嗯啊视频| 亚洲欧美日韩无卡精品| 亚洲欧美激情综合另类| 97碰自拍视频| 欧美日韩福利视频一区二区| 国产精品亚洲一级av第二区| 精品久久久久久久末码| 黄色一级大片看看| 男女之事视频高清在线观看| 看黄色毛片网站| 久久精品综合一区二区三区| 啦啦啦韩国在线观看视频| 深夜精品福利| 亚洲天堂国产精品一区在线| 亚洲成人中文字幕在线播放| 国产麻豆成人av免费视频| 久久精品人妻少妇| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品久久久久久毛片| 亚洲精品影视一区二区三区av| 久久久久国产精品人妻aⅴ院| 黄色视频,在线免费观看| 啦啦啦韩国在线观看视频| 黄片小视频在线播放| 国产大屁股一区二区在线视频| 搡女人真爽免费视频火全软件 | 91狼人影院| 欧美一区二区亚洲| 国产熟女xx| 露出奶头的视频| 欧美高清成人免费视频www| 亚洲无线在线观看| 波多野结衣巨乳人妻| 欧美一区二区国产精品久久精品| 日日夜夜操网爽| 国产黄a三级三级三级人| 99精品在免费线老司机午夜| 亚州av有码| 国产成人a区在线观看| 免费电影在线观看免费观看| 国产在视频线在精品| 日本精品一区二区三区蜜桃| 中文资源天堂在线| 亚洲精品久久国产高清桃花| 久久久久亚洲av毛片大全| 精品99又大又爽又粗少妇毛片 | 欧美色视频一区免费| 国产男靠女视频免费网站| 亚洲不卡免费看| 亚洲国产欧美人成| 婷婷精品国产亚洲av| 99精品久久久久人妻精品| 91av网一区二区| 欧美一级a爱片免费观看看| 国产黄色小视频在线观看| 精品一区二区三区视频在线观看免费| 首页视频小说图片口味搜索| 欧美黑人欧美精品刺激| 亚洲一区二区三区不卡视频| 免费观看的影片在线观看| 久久久久亚洲av毛片大全| 国产av一区在线观看免费| 综合色av麻豆| 波野结衣二区三区在线| 很黄的视频免费| 国产欧美日韩一区二区三| 亚洲成av人片在线播放无| 在线观看午夜福利视频| 国产精品久久久久久亚洲av鲁大| 级片在线观看| 嫩草影院精品99| 免费av不卡在线播放| 亚洲人成伊人成综合网2020| 男女做爰动态图高潮gif福利片| 日日夜夜操网爽| 亚洲aⅴ乱码一区二区在线播放| 一区二区三区高清视频在线| 免费黄网站久久成人精品 | 欧美激情国产日韩精品一区| 国产成人影院久久av| 村上凉子中文字幕在线| 淫妇啪啪啪对白视频| 狠狠狠狠99中文字幕| 一区二区三区高清视频在线| 内地一区二区视频在线| 露出奶头的视频| 午夜两性在线视频| 久久精品国产99精品国产亚洲性色| 精品午夜福利在线看| 久久久久国产精品人妻aⅴ院| 久99久视频精品免费| 男女做爰动态图高潮gif福利片| 午夜日韩欧美国产| 男人的好看免费观看在线视频| 国产真实伦视频高清在线观看 | 老熟妇仑乱视频hdxx| 色av中文字幕| 亚洲无线在线观看| 亚洲成人免费电影在线观看| 日本黄色片子视频| 免费高清视频大片| 免费无遮挡裸体视频| 亚洲人成伊人成综合网2020| 在线免费观看的www视频| 国产精品亚洲美女久久久| 1024手机看黄色片| 亚洲片人在线观看| 国产亚洲精品av在线| 欧美乱妇无乱码| 在线观看一区二区三区| 在线国产一区二区在线| 免费观看的影片在线观看| 五月伊人婷婷丁香| 国产在线男女| 美女cb高潮喷水在线观看| 自拍偷自拍亚洲精品老妇| 久久国产精品人妻蜜桃| 欧美成人性av电影在线观看| 色哟哟哟哟哟哟| 欧美日韩亚洲国产一区二区在线观看| 午夜福利免费观看在线| 欧美三级亚洲精品| 精品99又大又爽又粗少妇毛片 | 午夜精品久久久久久毛片777| 婷婷六月久久综合丁香| 欧美日韩国产亚洲二区| 99精品久久久久人妻精品| www.色视频.com| 色5月婷婷丁香| 麻豆国产av国片精品| 国产免费av片在线观看野外av| 国产成+人综合+亚洲专区| 国产人妻一区二区三区在| 亚洲激情在线av| 国产精品乱码一区二三区的特点| 51国产日韩欧美| 亚洲av美国av| 精品福利观看| 亚洲一区高清亚洲精品| 国产一区二区激情短视频| 午夜两性在线视频| 一卡2卡三卡四卡精品乱码亚洲|