• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Beta-alanine as a Dual Modification Additive in Organic Solar Cells

    2023-10-10 05:20:22ZAFARSauduzZHANGWeichaoYANGShuoLIShilinZHANGYingyuZHANGYuanZHANGHongZHOUHuiqiong
    關(guān)鍵詞:張弘丙氨酸中國科學(xué)院

    ZAFAR Saud uz, ZHANG Weichao, YANG Shuo, LI Shilin, ZHANG Yingyu, ZHANG Yuan, ZHANG Hong*, ZHOU Huiqiong*

    Beta-alanine as a Dual Modification Additive in Organic Solar Cells

    ZAFARSaud uz1, ZHANGWeichao2, YANGShuo3, LIShilin2, ZHANGYingyu1, ZHANGYuan2, ZHANGHong1*, ZHOUHuiqiong1*

    (,,,,100190,;,,100191,;,,101100,)

    Beta-alanine; Additive; Dual-modification; Transporting layer; Organic solar cell

    1 Introduction

    In recent years, the efficiency of organic solar cells(OSCs)[1]has surpassed 19%[2], owing to the emergence of non-fullerene acceptors(NFAs)[3]. While efforts to design new active[4,5]layer materials, optimize morphology[6], and develop advanced device structures[7], researchers are also exploring novel interfacial materials[8], including 0D—3D materials[9], self-assembled monolayers(SAMs), organic compounds, and eco-friendly compounds[10—13], to enhance the performance parameters of OSCs. These interfacial materials form new functional bond links[14]with the interface layer compounds and can significantly improve cell efficiency if optimized appropriately. To achieve better performance and properties in OSCs, it is crucial to optimize both the hole transport layer(HTL)[15,16]and electron transport layer(ETL) interface layers[17,18]. This can be accomplished by introducing ionic materials, polar compounds, zwitterions, and high-boiling materials into the interface layers[19—22]. However, classic interfacial materials such as poly(3,4-ethylenedioxythiophene)∶poly(styrenesulfonate)(PEDOT∶PSS)[23]and poly[9,9-bis(3′-(,-dimethyl)--ethylammoinium-propyl-2,7-fluorene)-alt-2,7-9,9-dioctylfluorene)] dibromide(PFN-Br)[24]exhibit limitations. PEDOT∶PSS undergoes shortcomings including acidity(pH=1.5—2.5)[25], hygroscopicity(absorbs moisture from the surrounding while preparing thin films), anisotropic charge injection[26], moderate conductivity, inhomogeneities in electronic and structural morphologies with batch-to-batch variation[27,28], and for PFN-Br detrimental contact resistance arising from their interfacial properties[29], scarcity of delocalized electrons, molecular aggregation of conjugated structure along with insulating properties[30—32]. The PFN-Br based devices also suffered from instability[33], and mismatched energy levels between the cathode and acceptors. To overcome these drawbacks, the adoption of new materials or the use of additives is essential to attain higher efficiency OSCs.

    In this study, beta-alanine(-alanine)[34]was employed as a small molecule additive with hydroxyl (—OH)/carboxyl group(—COOH) on one side and amine(—NH2)[35]on the other side, with a chemical formula of C3H7NO2. Despite its antioxidant properties[36],-alanine has received limited attention in the context of organic solar cells. In this work, we utilized-alanine as a dual modifier to modify both transporting layers on PEDOT∶PSS(HTL) and PFN-Br(ETL) in the same device through a simple solution-processed technique, resulting in the synthesis of new interface layers. The modified PEDOT∶PSS(A-PEDOT∶PSS) exhibited superior properties compared to pristine PEDOT∶PSS, as evidenced by improvements in morphology, efficiency, and characteristic properties[37]. Positive influences were also observed for modified PFN-Br (A-PFN-Br). Our findings indicate that the addition of-alanine resulted in an enhanced power conversion efficiency(PCE) of PM6∶Y6 solar cells, increasing from 14.99% to 15.78%. Furthermore, the addition of-alanine did not have a detrimental effect on light absorption, as shown by UV absorption and transmission data. FTIR analysis was conducted to confirm the modification, while surface morphology was analyzed using AFM. The current density-voltage(-) curve and dark current measurements also demonstrated an improvement. This study presents a unique modification that utilizes the same molecule in different materials to enhance device performance and stability, representing a novel approach that has not been previously explored in organic solar cells.

    2 Experimental

    2.1 Materials and Measurements

    Poly[[4,8-bis[5-2-ethylhexyl]-4-fluoro-2-thienyl]benzo[1,2-b∶4,5-b∶4,5-b′]dithiophene-2,6-diyl)- 2,5 th-iophenediyl[5,7-bis(2-ethylhexyl)-4,8-dioxo-4H,8H-benzo[1,2-c∶4,5-c′]dithiophene-1,3-diyl]- 2,5-thiophene-diyl]), PBDB-T-2F∶PM6, along with an acceptor material which was analyzed and used during the following work is Y6,(BTP-4F∶2,2′-((2Z.2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl- 12,13-dihydro-[1,2,5]thiadiazol[3,4-e]thieno[2″,3″∶4′,5′]thieno[2′,3′∶4,5]pyrrolo[3,2-g]thieno[2′,3′∶4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1-indene-2,1-diylidene))dimalononitri-le))both were acquired from Solarmer Materials Inc. Chloroform(CF) and 1-chloronaphthalene(CN) were purchased from Sigma Aldrich and TCL, respectively. PEDOT∶PSS and PFN-Br were bought for buffer layer utilization, along with-alanine additive, which was purchased from Sigma Aldrich. Then, Isopropanol and acetone were obtained from Alfa Aesar Inc.

    -characteristics of solar cells was measured on a Keithley 2400 source meter under AM 1.5G illumination(100 mW/cm2) provided by an Oriel solar simulator. The incident light intensity was adjusted with a silicon calibration photodiode(Peccell Technologies). Single carrier devices were characterized by using a Keithley 2400 source in a dark environment. The Fourier transform infrared spectroscopy(FTIR) analysis was done by Spotlight 200i FT-IR microscopy system. The samples were prepared on CaF2substrates while spin-coating the solutions. The transmittance and absorbance spectra were attained by using a UV-Vis spectrometer(PerkinElmer Lamba 650/850/950 UV-Vis spectrometer). The thin film samples were prepared on ITO substrates while spin-coating the solution of transporting layers(ETL/HTL) on it under the same conditions as for device fabrication. The contact angle analysis was done by DSA-100 static drop analyzer(KRüSS Co., Ltd.). A water drop was dropped on the sample for the measurement. Atomic force microscope(AFM) height and phase images were taken by Bruker Multimode-8 microscope systemusing tapping mode. The samples were of thin films for the required conditions. The external quantum efficiency(EQE) spectra for solar cells were measured by using an Oriel Newport EQE measurement system(Model 66902) calibrated with a standard Si reference cell and equipped with a Newport Xenon lamp. Carrier mobility was measured using the space-charge-limit current(SCLC) method. The devices were fabricated under optimized conditions. The mobility was determined by fitting the dark current to the model of a single carrier SCLC, according to the equation:

    = 90r2/83

    where(A/cm2) is the current density,(V) is the applied voltage,(m) is the film thickness of the active layer,(cm2·V?1·s?1) is the charge carrier mobility,ris the relative dielectric constant of the transport medium, and0(C2·N?1·m?2) is the permittivity of free space. The carrier mobility was calculated from the slope of the0.5-curves.

    2.2 Experimental Process

    2.2.1Interface MaterialFor the interface modification, we used-alanine as an additive in both the electron and hole transporting layer(ETL and HTL) of organic solar cells, respectively. The pH of this additive is in the 6—7 dimension range.

    2.2.2Interface Solution PreparationFor the preparation of the-alanine solution, its crystal powder was mixed with different fractions to form a new modified and optimized HTL and ETL to fabricate organic solar cell devices.

    For HTL: We took an old classic HTL, PEDOT∶PSS, and dissolved 1 mg of-alanine in it.-alanine is a water-soluble compound so it swiftly gets dissolved into PEDOT∶PSS. The stirring time to form a new modified PEDOT∶PSS(in this work named A-PEDOT∶PSS) was 3 h at room temperature before use.

    For ETL: We used PFN-Br as an ETL(at a concentration of 0.5 mg/mL in methanol) and for a modified ETL, we used 0.1 mg of-alanine into 0.4 mg of PFN-Br to one milliliter of methanol to form a modified PFN-Br solution(as A-PFN-Br). The stirring time was overnight at room temperature in a nitrogen glovebox atmosphere.

    2.2.3Bulk Heterojunction PreparationIn this study, we mainly used a non-fullerene acceptor(Y6), and a polymer donor(PM6) to form a Bulk Heterojunction(BHJ) solution. The ratio of both donor and acceptor was 1∶1.2 at a total concentration of 16 mg/mL in chloroform(CF) solvent with an additive 1-chloronaphthalene(CN) of 0.5%(mass fraction). The additive was dropped into the BHJ solution half an hour before coating on the interface HTL. The BHJ solution was stirred for 2 h at 40 ℃.

    2.2.4Cleaning of SubstratesThe ITO substrates were scrubbed with detergent and then rinsed with distilled water, acetone, and IPA(isopropanol alcohol) followed by ultra-sonication for 15 min each. Then the substrates were sent for the UV-ozone treatment for 15 min.

    2.2.5Device FabricationFor the device fabrication, the ITO substrates were taken out from the UVO3machine, and then the HTL solutions, PEDOT∶PSS and A-PEDOT∶PSS were spin-coated on ITO substrates at 4000 r/min to form a homogenous film and then baked at 150 ℃. Subsequently, the HTL-coated substrates were transferred to the N2-filled glovebox for the BHJ coating. The BHJ solution was spin-coated on HTL at 3000 r/min followed by annealing of 10 min at 110 ℃. Afterward, the ETL(PFN-Br and/or A-PFN-Br) was also spin-coated on BHJ at 3000 r/min. Finally, the metal deposition of Aluminium(Al) of 100 nm was done(shadow mask with an active area of 0.04 cm2) thermally at a vacuum pressure of 1×10?4Pa.

    3 Results and Discussion

    The chemical structure of-alanine is depicted in Fig.1(A), while Fig.1(B) illustrates PEDOT∶PSS, and Fig.1(C) depicts PFN-Br. Fig.1(D) demonstrates the dissolving technique employed in the fabrication process, and the resulting device architecture structure(conventional) is shown in Fig.1(E). The compound-alanine is three carbons(C3) amino acid with amine as well as a carboxyl functional group on each side, respectively, both of these functional compounds are nucleophilic due to it has a strong polarity[38]. Although then the next question was which group will interact with which respective group of both PEDOT∶PSS and PFN-Br. To find out the answer to this, firstly we checked the solubility of-alanine in various solvents to have a simple clear thought about the miscibility of the compound. However, due to the general rule of “l(fā)ike dissolves like”[39]. We elected water(totally miscible just by shaking a small container), alcohol(methanol and ethanol: soluble after stirring), and DMF(required temperature and stirring). Given that PEDOT∶PSS and PFN-Br are both soluble in polar solvents, with PEDOT∶PSS being soluble in aqueous solvents and PFN-Br being soluble in methanol, it is hypothesized that-alanine, being soluble in both solvents, would be suitable for modifying the interfacial layer materials of both PEDOT∶PSS and PFN-Br.

    Fig.1 Chemical structures of β?alanine(A), PEDOT∶PSS(B) and PFN?Br(C), schematic illustration of mixing both transporting layers with β?alanine(D), schematic device structure representation of OSCs(E)

    3.1 Device Performance

    We explored the device performance of A-PEDOT∶PSS as HTL and A-PFN-Br as ETL in OSCs with the architecture of ITO/HTL/active layer/ETL/Al, where PM6 and Y6 are used as a donor and an acceptor in the active layer, respectively. Fig.1(E) represented the device structure. The devices which were used in this work are listed in Table 1. The-curves of the devices are summarized in Fig.2(A). The control device(with normal PEDOT∶PSS and normal PFN-Br) obtained a PCE of 14.99% with an open-circuit voltage(OC) of 0.821 V, current density(SC) of 24.52 mA/cm2and fill factor(FF) of 74.43%. After analyzing the various concentrations for-alanine in PEDOT∶PSS and in PFN-Br, the optimized concentration was 1 mg/mL for A-PEDOT∶PSS, and volume ratio of-alanine/PFN-Br is 1∶4 for A-PFN-Br. The detailed preparation method is mentioned in the experimental section. The device with the A-PEDOT∶PSS showed a PCE of 15.56%, with aOC,SCand FF of 0.829 V, 25.35 mA/cm2and 73.96%, respectively. Next, the device with A-PFN-Br, disclosed a PCE of 15.65%, with aOCof 0.827 V,SCand FF of 25.91 mA/cm2and 73.39%, respectively. Lastly when we tried to use both transporting layers A-PEDOT∶PSS and A-PFN-Br at the same time in the same device, this dual-modified device revealed a PCE of 15.78% with aOCandSCof 0.828 V and 26 mA/cm2, respectively, along with a FF of 73.67%. Here, we noticed a decrease in the FF in the modified devices parameter, as we know FF decreases due to the presence of high series resistance. Reduction in depletion region causes further enhancement in the resistance that causes a reduction in FF. The FF of a solar cell is often the most difficult parameter to optimize because it is sensitive to a range of parasitic loss mechanisms, such as resistance losses. Shunt and series resistance can further reduce the FF of a practical device. In a simple cell model, these resistances are Ohmic elements. However, in practice both shunt and series resistance are not Ohmic in nature, therefore these non-Ohmic resistance greatly complicates the process of deconvoluting the various mechanisms responsible for a low FF. In the modified devices(single or dual) the FF is lower than that of the control devices due to the presence of higher resistances in the modified devices that resulted in the lower FF. The corresponding performance parameters are tabulated in Table 1.

    Table 1 Photovoltaic parameters of the conventional architecture of OSCs based on PM6∶Y6 system with pristine PEDOT∶PSS, PFN∶Br and modified versions with β?alanine(A?PEDOT∶PSS and A?PFN?Br)a

    .Substrate(ITO) and metal(Al) deposition were all the same for every device;. the average values/standard deviation for PCE are (14.88± 0.10) for control, (15.3±0.25) for A-PEDOT∶PSS, (15.50±0.12) for A-PFN-Br, and (15.51±0.18) for both. These calculations were based on 16 devices.

    Fig.2 Current density versus voltage(J?V) curves of PM6∶Y6 active layer using different ETL and HTL modified layers(control, A?PEDOT∶PSS, A?PFN?Br and both)(A), dark J?V characteristics of various devices(B) and EQE spectra for PEDOT∶PSS and A?PEDOT∶PSS(C) and for PFN?Br and A?PFN?Br(D)

    (A) The inset picture is a zoom-in on the curves.

    The dark-graph is in Fig.2(B). A dark current-voltage investigation is divided into three dominant regions. In region I(at low voltages) the-characteristics is primarily leakage currents determined bysh(shunt resistance). Region II(intermediate voltages) accounts for recombination currents, and region III(at high voltages) accounts for series resistance[40,41]. When there was a dual modification(Both) device, dark-characteristics also spectated that the use of-alanine passivate the defects[30]of polymers of both the transpor-ting layers(ETL and HTL), which is why the curve showed the lowest dark reverse[42,43]current among all. The dual-modified devices were better at blocking the activities[44]of electrons as well as holes in their respective interfaces and improving charge carrier selectivity. From the dark-graph, we also observed an increase in built-in voltage(bi)[45]for the condition of ‘Both’ to 1.05 V from the control device of 0.95 V. Thus, the increase inOCin the modified devices might be due to the increment of thebivalues. Then in the case of A-PEDOT∶PSS and A-PFN-Br, there are minor differences observed which might be due to the unmodified interface layer side, respectively. After that, EQE was tested for both the transporting layers(ETL and HTL) along with their modified versions. Fig.2(C) represents the PEDOT∶PSS and A-PEDOT∶PSS EQE, which showed a small increment in the 330—860 nm wavelength range for the modified layer. Fig.2(D) represents the EQE for the ETL devices of PFN-Br and A-PFN-Br. The increase in the EQE is due to the addition of-alanine that enhanced theSCof the modified devices for better charge transportation[46].

    3.2 Charge Carrier Mobility

    Furthermore, we performed the SCLC characterization to count the charge carrier mobilities in the hole and electron-only devices. Fig.3(A)—(D) depicted the SCLC measurements for the interface layers. Fig.3(A) showed the PEDOT∶PSS SCLC charge mobility graph, the charge mobility was found to beh=2.18×10?4cm2·V?1·s?1. The A-PEDOT∶PSS SCLC graph in Fig.3(C) showed that the charge mobilities increased to 2.48×10?4cm2·V?1·s?1, this counts for an increase of 13.76% from the PEDOT∶PSS mobility. Next for PFN-Br, SCLC charge mobility ise=2.66×10?4cm2·V?1·s?1[Fig.3(B)], which also later in the A-PFN-Br elevated toe=2.98×10?4cm2·V?1·s?1depicted in Fig.3(D). For the electron mobilities, 12% increase has been shown for A-PFN-Br devices. Hence, it was concluded that-alanine addition aids in improved carrier mobilities. The respective device architecture structures are also illustrated in the SCLC graph of each layer(insets in Fig.3).

    Fig.3 SCLC carrier mobility graphs for hole transporting layers PEDOT∶PSS(A), electron transporting layer PFN?Br(B), modified HTL(A?PEDOT∶PSS)(C) and modified ETL(A?PFN?Br)(D)

    Insets are device architecture structures.

    3.3 Electrochemical Properties and Stability

    Fig.4 FTIR analysis of PEDOT∶PSS with different percentages of β?alanine(A), FTIR of pristine PEDOT∶PSS(a) and PEDOT∶PSS with 2.0 mg of β?alanine(b)(B), UV?Vis absorption of PEDOT∶PSS and A?PEDOT∶PSS(C), UV?Vis absorption of PFN?Br and A?PFN?Br(D), transmittance of PEDOT∶PSS and A?PEDOT∶PSS(E) and transmittance of PFN?Br and A?PFN?Br(F), the normalized stability graph of different devices(G)

    3.4 Morphology Characterization and Contact Angle Measurements

    Fig.5 AFM images of PEDOT∶PSS height(A), phase(B) and A?PEDOT∶PSS height(C) and phase(D), PFN?Br height(E), phase(F), A?PFN?Br height(G), phase(H), the contact angle(water) of PEDOT∶PSS, A?PEDOT∶PSS(I) and PFN?Br and A?PFN?Br(J)

    4 Conclusions

    [1] Zhou Z., Xu S., Song J., Jin Y., Yue Q., Qian Y., Liu F., Zhang F., Zhu X.,.,2018,(11), 952—959

    [2] Gao W., Qi F., Peng Z., Lin F. R., Jiang K., Zhong C., Kaminsky W., Guan Z., Lee C. S., Marks T. J., Ade H., Jen A. K. Y.,..,2022,(32), 2202089

    [3] Armin A., Li W., Sandberg O. J., Xiao Z., Ding L., Nelson J., Neher D., Vandewal K., Shoaee S., Wang T., Ade H., Heumüller T., Brabec C., Meredith P.,..,2021,, 2003570

    [4] Duan C., Huang F., Cao Y.,..,2015,(47), 8081—8098

    [5] Wang J., Zheng Z., Zhang D., Zhang J., Zhou J., Liu J., Xie S., Zhao Y., Zhang Y., Wei Z., Hou J., Tang Z., Zhou H.,..,2019,(17), 1806921

    [6] Du X., Heumueller T., Gruber W., Almora O., Classen A., Qu J., He F., Unruh T., Li N., Brabec C. J.,..,2020,(16), e1908305

    [7] Che X., Li Y., Qu Y., Forrest S. R.,.,2018,(5), 422—427

    [8] Yin Z., Wei J., Zheng Q.,.., 2016,(8), 1500362

    [9] Li Y., Ding J., Liang C., Zhang X., Zhang J., Jakob D. S., Wang B., Li X., Zhang H., Li L., Yang Y., Zhang G., Zhang X., Du W., Liu X., Zhang Y., Zhang Y., Xu X., Qiu X., Zhou H.,, 2021,(12), 3154—3168

    [10] Chen M., Wang J., Yin F., Du Z., Belfiore L. A., Tang J.,...,2021,(8), 4505—4527

    [11] Kalkan S. B., Najafidehaghani E., Gan Z., Apfelbeck F. A. C., Hübner U., George A., Turchanin A., Nickel B.,..,2021,(1), 92

    [12] Kang H., Hong S., Lee J., Lee K.,..,2012,(22), 3005—3009

    [13] Liu M., Xu Y., Gao Z., Zhang C., Yu J., Wang J., Ma X., Hu H., Yin H., Zhang F., Man B., Sun Q.,,2021,(25), 11128—11137

    [14] Wu J., Gao M., Chai Y., Liu P., Zhang B., Liu J., Ye L.,.,2021,(4), 100062

    [15] Kim H. I., Bui T. T. T., Kim G. W., Kang G., Shin W. S., Park T.,..,2014,(18), 15875—15880

    [16] Zhang X., Zhang H., Li Y., Zafar S. U., Yang S., Chen J., Zhou H., Zhang Y.,...,2022,(44), 2205398

    [17] Pei S., Xiong X., Zhong W., Xue X., Zhang M., Hao T., Zhang Y., Liu F., Zhu L.,..,2022,(30), 34814—34821

    [18] Zheng Z., Hu Q., Zhang S., Zhang D., Wang J., Xie S., Wang R., Qin Y., Li W., Hong L., Liang N., Liu F., Zhang Y., Wei Z., Tang Z., Russell T. P., Hou J., Zhou H.,..,2018,(34), 1801801

    [19] Mengistie D. A., Chen C. H., Boopathi K. M., Pranoto F. W., Li L. J., Chu C. W.,..,2015,, 94—100

    [20] Zhang L., Yang K., Chen R., Zhou Y., Chen S., Zheng Y., Li M., Xu C., Tang X., Zang Z., Sun K.,..., 2020,(1), 1900648

    [21] Tang H., Liu Z., Hu Z., Liang Y., Huang F., Cao Y.,..,2020,(6), 802—809

    [22] Cassinelli M., Park W. T., Kim Y., Kim J. H., Noh Y. Y., Caironi M.,.., 2021,3), 033301

    [23] Hu L., Song J., Yin X., Su Z., Li Z.,,2020,(1), 145

    [24] Li B., Xiang Y., Jayawardena K. D. G. I., Luo D., Wang Z., Yang X., Watts J. F., Hinder S., Sajjad M. T., Webb T., Luo H., Marko I., Li H., Thomson S. A. J., Zhu R., Shao G., Sweeney S. J., Silva S. R. P., Zhang W.,,2020,, 105249

    [25] Chen S., Song L., Tao Z., Shao X., Huang Y., Cui Q., Guo X.,..,2014,(12), 3654—3659

    [26] Liu D., Xu H., Liu X., Xie Z., Yang B., Ma Y.,..,2011,(1), 174—180

    [27] Cameron J., Skabara P. J.,.,2020,(7), 1759—1772

    [28] Ionescu?Zanetti C., Mechler A., Carter S. A., Lal R.,..,2004,(7), 579

    [29] Liao Q., Kang Q., Yang Y., An C., Xu B., Hou J.,..,2020,(7), 1906557

    [30] Liu Y., Cole M. D., Jiang Y., Kim P. Y., Nordlund D., Emrick T., Russell T. P.,..,2018,(15), 1705976

    [31] Li Y.,..,2016,(11), 1430—1431

    [32] Jia J., Fan B., Xiao M., Jia T., Jin Y., Li Y., Huang F., Cao Y.,,2018,(6), 2195—2202

    [33] Hu Z., Chen Z., Zhang K., Zheng N.,Xie R., Liu X., Yang X., Huang F., Cao Y.,,2017,(6), 1700055

    [34] Guan L., Yu L., Wu L., Zhang S., Lin Y., Jiao Y., Zhang S., Zhao F., Ren Y., Zhou X., Liu Z.,,2021,, 138770

    [35] Ming Y., Zhu Y., Chen Y., Jin B., Duan C., Liang Z., Zhao L., Wang S., Dong B., Li H., Wu C.,..,2021,(48), 57163—57170

    [36] Yuan H., Zhang Z., Guo T., Yu L., Deng Z., Zhao R., Zhang J., Zhu Y.,..,2021,, 160140

    [37] Zheng Z., Zhang S., Zhang J., Qin Y., Li W., Yu R., Wei Z., Hou J.,..,2016,(25), 5133—5138

    [38] Sun P., Liu Y., Du S., Yu B., Wang Y., Sun M., Shi P., Liu Y., Gong J.,..,2017,, 522—531

    [39] Zou F., Zhuang W., Wu J., Zhou J., Liu Q., Chen Y., Xie J., Zhu C., Guo T., Ying H.,...,2014,, 14—22

    [40] Servaites J. D., Ratner M. A., Marks T. J.,...,2011,(11), 4410—4422

    [41] Servaites J. D., Yeganeh S., Marks T. J., Ratner M. A.,...,2010,(1), 97—104

    [42] Wu N., Luo Q., Bao Z., Lin J., Li Y. Q., Ma C. Q.,...,2015,, 248—259

    [43] Wolf U., Arkhipov V. I., B?ssler H.,.,1999,(11), 7507—7513

    [44] Waldauf C., Scharber M. C., Schilinsky P., Hauch J. D., Brabec C. J.,...,2006,, 104503

    [45] Zhou H., Zhang Y., Seifter J., Collins S. D., Luo C., Bazan G. C., Nguyen T. Q., Heeger A. J.,..,2013,(11), 1646—1652

    [46] Lee B. R., Lee S., Park J. H., Jung E. D., Yu J. C., Nam Y. S., Heo J., Kim J. Y., Kim B. S., Song M. H.,..,2015,(23), 3553—3559

    [47] Konwar L. J., M?ki?Arvela P., Mikkola J. P.,.,2019,(22), 11576—11630

    [48] Hara M., Yoshida T., Takagaki A., Takata T., Kondo J. N., Hayashi S., Domen K.,...,2004,(22), 2955—2958

    [49] Li H., Zhang C., Ma Y., Mai Y., Xu Y.,..,2018,, 468—473

    [50] Aleshin A. N., Williams S. R., Heeger A. J.,..,1998,(2), 173—177

    [51] Greczynski G., Kugler T., Salaneck W. R.,,1999,(1), 129—135

    [52] Kemerink M., Timpanaro S., de Kok M. M., Meulenkamp E. A., Touwslager F. J.,...,2004,(49), 18820—18825

    [53] Galatopoulos F., Papadas I. T., Ioakeimidis A., Eleftheriou P., Choulis S. A.,,2020,(10), 1961

    [54] Müller C., Hamedi M., Karlsson R., Jansson R., Marcilla R., Hedhammar M., Ingan?s O.,..,2011,(7), 898—901

    [55] Liao C., Zhang M., Yao M. Y., Hua T., Li L., Yan F.,..,2015,(46), 7493—7527

    [56] Crispin X., Jakobsson F. L. E., Crispin A., Grim P. C. M., Andersson P., Volodin A., van Haesendonck C., Van der Auweraer M., Salaneck W. R., Berggren M.,..,2006,(18), 4354—4360

    [57] Xu H., Yuan F., Zhou D., Liao X., Chen L., Chen Y.,...,2020,(23), 11478—11492

    [58] Li W., Zhang W., Van Reenen S., Sutton R. J., Fan J., Haghighirad A. A., Johnston M. B., Wang L., Snaith H. J.,...,2016,(2), 490—498

    [59] Dag I., Lifshitz E.,...,1996,(21), 8962—8972

    [60] Chang S. H., Chiang C. H., Kao F. S., Tien C. L., Wu C. G.,..,2014,(4), 1—7

    [61] Hwang J., Schwendeman I., Ihas B. C., Clark R. J., Cornick M., Nikolou M., Argun A., Reynolds J. R., Tanner D. B.,.,2011,(19), 195121

    [62] Akkerman H. B., Naber R. C. G., Jongbloed B., van Hal P. A., Blom P. W. M., de Leeuw D. M., de Boer B.,....,2007,(27), 11161—11166

    [63] Yun D. J., Jung J., Sung Y. M., Ra H., Kim J. M., Chung J., Kim S. Y., Kim Y. S., Heo S., Kim K. H., Jeong Y. J., Jang J.,...,2020,(11), 2000620

    [64] Wang Q., Chueh C. C., Eslamian M., Jen A. K. Y.,..,2016,(46), 32068—32076

    [65] Hosseini E., Ozhukil Kollath V., Karan K.,...,2020,(12), 3982—3990

    [66] Vorobyev A. Y., Guo C.,.,2011,(Suppl 5), A1031

    [67] Chao Y. C., Chen C. Y., Lin C. A., Dai Y. A., He J. H.,...,2010,(37), 8134—8138

    [68] Li J., Wang N., Wang Y., Liang Z., Peng Y., Yang C., Bao X., Xia Y.,.,2020,, 168—176

    [69] Shi Z., Liu H., Li J., Wang F., Bai Y., Bian X., Zhang B., Alsaedi A., Hayat T., Tan Z. A.,...,2018,, 1—9

    [70] Bi S., Leng X., Li Y., Zheng Z., Zhang X., Zhang Y., Zhou H.,.., 2019,(45), 1805708

    [71] Li Y., Zhang Z., Han X., Li T., Lin Y.,.,2022,(3), 1087—1097

    [72] Cha H., Wu J., Wadsworth A., Nagitta J., Limbu S., Pont S., Li Z., Searle J., Wyatt M. F., Baran D., Kim J. S., McCulloch I., Durrant J. R.,..,2017,(33), 1701156

    [73] Lee S. J., Pil Kim H., Mohd Yusoff A. R. B., Jang J.,...,2014,, 238—243

    [74] Hermenau M., Riede M., Leo K., Gevorgyan S. A., Krebs F. C., Norrman K.,...,2011,(5), 1268—1277

    [75] Wang J., Yu H., Hou C., Zhang J.,..,2020,(23), 26543—26554

    [76] Mateker W. R., McGehee M. D.,..,2017,(10), 1603940

    [77] Lin X., Wang Y., Wu J., Tang Z., Lin W., Nian L.,Yi G.,..,2021,(6), 5905—5912

    [78] Cho A., Kim S., Kim S., Cho W., Park C., Kim F. S., Kim J. H.,....,2016,(15), 1530—1536

    [79] Lee T. W., Chung Y.,...,2008,(15), 2246—2252

    [80] Zhou Y., Fuentes?Hernandez C., Shim J., Meyer J., Giordano A. J., Li H., Winget P., Papadopoulos T., Cheun H., Kim J., Fenoll M., Dindar A., Haske W., Najafabadi E., Khan T. M., Sojoudi H., Barlow S., Graham S., Brédas J. L., Marder S. R., Kahn A., Kippelen B.,,2012,(6079), 327—332

    [81] Mihailetchi V. D., Blom P. W. M., Hummelen J. C., Rispens M. T.,...,2003,(10), 6849—6854

    [82] López Valdivieso A., Sánchez López A. A., Song S.,...,2005,(3), 154—164

    [83] Paredes á., Acu?a S. M., Toledo P. G.,,2019,(11), 1177

    [84] Ouellette R. J., Rawn J. D.,:,, Elsevier, Boston,2015, 169—182

    [85] Penczek S., Kubisa P., Allen G., Bevington J. C.,?, Pergamon, Amsterdam,1989, 751—786

    [86] Savin K. A.,, Academic Press, Boston,2014, 1—53

    [87] Li J., Huang X., Yuan J., Lu K., Yue W., Ma W.,..,2013,(9), 2164—2171

    [88] Hau S. K., Yip H. L., Acton O., Baek N. S., Ma H., Jen A. K. Y.,...,2008,(42), 5113—5119

    [89] Chao L., Niu T., Gu H., Yang Y., Wei Q., Xia Y., Hui W., Zuo S., Zhu Z., Pei C., Zhang J., Fang J., Xing G., Li H., Huang X., Gao X., Ran C., Song L., Fu L., Chen Y., Huang W.,,2020,, 2616345

    [90] Yip H. L., Hau S. K., Baek N. S., Ma H., Jen A. K. Y.,..,2008,(12), 2376—2382

    -丙氨酸作為有機(jī)太陽能電池雙重修飾添加劑的研究

    Zafar Saud uz1,張偉超2,楊朔3,李世麟2,張瑩玉1,張淵2,張弘1,周惠瓊1

    (1. 中國科學(xué)院大學(xué), 中國科學(xué)院納米系統(tǒng)與多級次制造重點(diǎn)實(shí)驗(yàn)室, 中國科學(xué)院納米科學(xué)卓越中心, 國家納米科學(xué)與技術(shù)中心, 北京 100190;2. 北京航空航天大學(xué)化學(xué)學(xué)院, 北京 100191; 3. 北京廷潤膜技術(shù)開發(fā)股份有限公司, 北京 101100)

    -丙氨酸;添加劑;界面改性;傳輸層;有機(jī)太陽能電池

    O647.2

    A

    10.7503/cjcu20230185

    2023-04-12

    網(wǎng)絡(luò)首發(fā)日期: 2023-05-31.

    聯(lián)系人簡介:張弘, 男, 博士, 副研究員, 主要從事半透明柔性太陽能電池方面的研究. E-mail: zhanghong@nanoctr.cn

    周惠瓊, 女, 博士, 研究員, 主要從事有機(jī)太陽能電池和鈣鈦礦太陽能電池方面的研究. E-mail: zhouhq@nanoctr.cn

    國家自然科學(xué)基金(批準(zhǔn)號: 52273245)、中國科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)(批準(zhǔn)號: XDB36000000)和中國科學(xué)院-世界科學(xué)院校長博士獎(jiǎng)學(xué)金計(jì)劃項(xiàng)目資助.

    Supported by the National Natural Science Foundation of China(No. 52273245), the Strategic Priority Research Program of Chinese Academy of Sciences(No. XDB36000000) and the Chinese Academy of Sciences-the World Academy of Sciences(CAS-TWAS) President’s Ph.D. Fellowship Program.

    (Ed.: Y, K, S)

    猜你喜歡
    張弘丙氨酸中國科學(xué)院
    溪流
    臨江仙·踏春
    虞美人·蝶為媒
    《中國科學(xué)院院刊》新媒體
    中國科學(xué)院院士
    ——李振聲
    無償獻(xiàn)血采血點(diǎn)初篩丙氨酸轉(zhuǎn)氨酶升高的預(yù)防及糾正措施研究
    祝賀戴永久編委當(dāng)選中國科學(xué)院院
    《中國科學(xué)院院刊》創(chuàng)刊30周年
    論張弘的新編昆劇
    丙氨酸氨基轉(zhuǎn)移酶快速檢測在血站血液采集前應(yīng)用的意義研究
    丁香六月欧美| 丰满迷人的少妇在线观看| 王馨瑶露胸无遮挡在线观看| 国产亚洲av高清不卡| 国产亚洲精品第一综合不卡| 亚洲成色77777| 精品福利永久在线观看| 少妇人妻久久综合中文| 黄色怎么调成土黄色| 久久久久网色| 国产xxxxx性猛交| 国产在线免费精品| 91aial.com中文字幕在线观看| 久久久国产一区二区| 嫩草影院入口| 丝袜在线中文字幕| 亚洲精华国产精华液的使用体验| 亚洲激情五月婷婷啪啪| 国产激情久久老熟女| 久久 成人 亚洲| 久久久久国产精品人妻一区二区| 久久精品aⅴ一区二区三区四区| 色网站视频免费| 欧美日韩亚洲国产一区二区在线观看 | 欧美精品亚洲一区二区| 精品一区二区三卡| 99精国产麻豆久久婷婷| 99热网站在线观看| 国精品久久久久久国模美| 在线观看免费高清a一片| 咕卡用的链子| 日本欧美国产在线视频| 丝袜在线中文字幕| 大香蕉久久网| bbb黄色大片| 久久综合国产亚洲精品| 在线观看www视频免费| h视频一区二区三区| 精品国产乱码久久久久久男人| 观看av在线不卡| 男女高潮啪啪啪动态图| 国产片特级美女逼逼视频| 国产黄色视频一区二区在线观看| 国产精品久久久久久久久免| 女人高潮潮喷娇喘18禁视频| 欧美97在线视频| 精品一区二区三卡| 久久精品国产亚洲av涩爱| 91精品三级在线观看| 亚洲在久久综合| 国产一区二区三区综合在线观看| 精品国产一区二区三区久久久樱花| 国产精品av久久久久免费| 中文字幕另类日韩欧美亚洲嫩草| 欧美在线一区亚洲| 日本av免费视频播放| 欧美日韩视频精品一区| 日本wwww免费看| 色婷婷av一区二区三区视频| 国产亚洲午夜精品一区二区久久| 黄色怎么调成土黄色| 亚洲色图综合在线观看| 无限看片的www在线观看| 无限看片的www在线观看| 欧美国产精品va在线观看不卡| 丰满少妇做爰视频| 国产精品一区二区精品视频观看| 一二三四在线观看免费中文在| 久久久久国产精品人妻一区二区| 18禁动态无遮挡网站| av在线老鸭窝| 在线看a的网站| 亚洲一级一片aⅴ在线观看| 精品少妇内射三级| 国产乱人偷精品视频| 五月开心婷婷网| 婷婷色综合大香蕉| 嫩草影院入口| 天天影视国产精品| 久久久久久久久久久久大奶| 伦理电影免费视频| 国产精品一二三区在线看| 国产精品国产av在线观看| 精品免费久久久久久久清纯 | 丁香六月欧美| 97在线人人人人妻| 人体艺术视频欧美日本| 亚洲av福利一区| av不卡在线播放| 在线观看人妻少妇| 纵有疾风起免费观看全集完整版| 制服人妻中文乱码| 老司机靠b影院| 亚洲精品美女久久久久99蜜臀 | 久久午夜综合久久蜜桃| 丝袜在线中文字幕| 国产精品av久久久久免费| e午夜精品久久久久久久| 王馨瑶露胸无遮挡在线观看| 亚洲国产看品久久| 18在线观看网站| 欧美少妇被猛烈插入视频| 777久久人妻少妇嫩草av网站| 青春草视频在线免费观看| 亚洲七黄色美女视频| 各种免费的搞黄视频| 亚洲精品国产av成人精品| videos熟女内射| 香蕉丝袜av| 国产97色在线日韩免费| 久久久久精品性色| 精品人妻在线不人妻| 国产精品 国内视频| 伦理电影免费视频| 热re99久久精品国产66热6| 亚洲,欧美,日韩| 欧美日韩视频精品一区| 最近手机中文字幕大全| 日韩欧美一区视频在线观看| 久久久久久久久久久久大奶| 最近最新中文字幕免费大全7| 一级毛片电影观看| 免费观看性生交大片5| 国语对白做爰xxxⅹ性视频网站| 男人爽女人下面视频在线观看| 性色av一级| 亚洲av在线观看美女高潮| 日韩 欧美 亚洲 中文字幕| 免费在线观看完整版高清| 久久久国产精品麻豆| 午夜福利网站1000一区二区三区| 七月丁香在线播放| 亚洲色图综合在线观看| 一边摸一边做爽爽视频免费| 乱人伦中国视频| 久久狼人影院| 久久女婷五月综合色啪小说| 91aial.com中文字幕在线观看| 人人澡人人妻人| 啦啦啦在线免费观看视频4| 一二三四中文在线观看免费高清| 97人妻天天添夜夜摸| 久久久久久免费高清国产稀缺| 亚洲精品一区蜜桃| 蜜桃在线观看..| 美女脱内裤让男人舔精品视频| 最近最新中文字幕免费大全7| 热99国产精品久久久久久7| 国产免费又黄又爽又色| 欧美日韩成人在线一区二区| 国产免费一区二区三区四区乱码| 在线观看免费视频网站a站| 1024视频免费在线观看| 一区二区三区四区激情视频| videos熟女内射| 国产福利在线免费观看视频| 久久久久久久精品精品| 丁香六月天网| 汤姆久久久久久久影院中文字幕| 丁香六月欧美| 97在线人人人人妻| 久久99一区二区三区| 黑人猛操日本美女一级片| 国产亚洲av高清不卡| 99re6热这里在线精品视频| 99香蕉大伊视频| av国产久精品久网站免费入址| 国产亚洲av片在线观看秒播厂| 肉色欧美久久久久久久蜜桃| 成人影院久久| 国产日韩欧美亚洲二区| 这个男人来自地球电影免费观看 | 久久久久久久久久久免费av| 欧美日韩亚洲国产一区二区在线观看 | 亚洲久久久国产精品| 精品人妻在线不人妻| 纵有疾风起免费观看全集完整版| 最新在线观看一区二区三区 | 日韩制服骚丝袜av| 日日摸夜夜添夜夜爱| 少妇 在线观看| 国产乱人偷精品视频| a级片在线免费高清观看视频| 交换朋友夫妻互换小说| 99香蕉大伊视频| xxx大片免费视频| 国产亚洲最大av| 精品卡一卡二卡四卡免费| 亚洲欧美中文字幕日韩二区| 亚洲精品在线美女| 精品亚洲成a人片在线观看| 国产又色又爽无遮挡免| 日韩熟女老妇一区二区性免费视频| 男女之事视频高清在线观看 | 十八禁网站网址无遮挡| 亚洲第一区二区三区不卡| 在线观看免费午夜福利视频| av一本久久久久| 热99国产精品久久久久久7| 91成人精品电影| 日韩熟女老妇一区二区性免费视频| 久久99精品国语久久久| 欧美国产精品一级二级三级| svipshipincom国产片| 熟女少妇亚洲综合色aaa.| 久久精品人人爽人人爽视色| 久久久久国产一级毛片高清牌| 男女免费视频国产| 日韩,欧美,国产一区二区三区| 九草在线视频观看| 美女脱内裤让男人舔精品视频| 人体艺术视频欧美日本| 欧美日韩综合久久久久久| 熟女av电影| 人妻 亚洲 视频| 秋霞伦理黄片| 亚洲,欧美,日韩| 丝袜美腿诱惑在线| 在线精品无人区一区二区三| 精品亚洲成国产av| 天天躁狠狠躁夜夜躁狠狠躁| 1024香蕉在线观看| 午夜免费男女啪啪视频观看| 最近中文字幕2019免费版| 久久99精品国语久久久| 夫妻午夜视频| 综合色丁香网| 国产女主播在线喷水免费视频网站| 高清黄色对白视频在线免费看| 日韩一卡2卡3卡4卡2021年| 国产成人a∨麻豆精品| 如何舔出高潮| 亚洲中文av在线| 国产精品无大码| 免费av中文字幕在线| 久久久久精品性色| 女人高潮潮喷娇喘18禁视频| 18禁国产床啪视频网站| 亚洲国产日韩一区二区| 十八禁人妻一区二区| 别揉我奶头~嗯~啊~动态视频 | 人妻 亚洲 视频| 捣出白浆h1v1| 日本色播在线视频| 久久99热这里只频精品6学生| 男女床上黄色一级片免费看| 亚洲av日韩精品久久久久久密 | 精品国产一区二区三区四区第35| 国产在线免费精品| 亚洲七黄色美女视频| 国产97色在线日韩免费| 久久精品国产综合久久久| 丝瓜视频免费看黄片| 欧美日韩综合久久久久久| 日本wwww免费看| 精品国产国语对白av| av线在线观看网站| 亚洲第一青青草原| 久久久亚洲精品成人影院| 亚洲精品乱久久久久久| 亚洲精品av麻豆狂野| 亚洲三区欧美一区| 另类亚洲欧美激情| 成人毛片60女人毛片免费| 成人国产av品久久久| 天堂8中文在线网| 亚洲一区中文字幕在线| 男女无遮挡免费网站观看| 久久精品人人爽人人爽视色| 哪个播放器可以免费观看大片| 国产视频首页在线观看| 久久精品久久久久久久性| 精品少妇黑人巨大在线播放| 国产精品三级大全| 丝袜喷水一区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美一区二区三区国产| 满18在线观看网站| 99九九在线精品视频| 国产一卡二卡三卡精品 | 免费看av在线观看网站| 亚洲一码二码三码区别大吗| 午夜福利影视在线免费观看| 精品酒店卫生间| 男女边吃奶边做爰视频| 美女午夜性视频免费| 人人妻人人澡人人看| 亚洲欧美激情在线| 久久人妻熟女aⅴ| 啦啦啦视频在线资源免费观看| 久久精品aⅴ一区二区三区四区| 亚洲国产av影院在线观看| 韩国av在线不卡| 亚洲欧美精品自产自拍| 午夜福利影视在线免费观看| 国产精品一区二区在线观看99| 久久热在线av| 国产av一区二区精品久久| 亚洲伊人久久精品综合| 黄网站色视频无遮挡免费观看| 肉色欧美久久久久久久蜜桃| 欧美日韩国产mv在线观看视频| 亚洲第一青青草原| 国产视频首页在线观看| 成人午夜精彩视频在线观看| 精品久久蜜臀av无| 日本91视频免费播放| 成人黄色视频免费在线看| 久久久久精品性色| 国产成人精品无人区| av国产久精品久网站免费入址| 99国产精品免费福利视频| 国产精品 欧美亚洲| 亚洲少妇的诱惑av| 国产一区二区在线观看av| 丝袜在线中文字幕| 亚洲色图 男人天堂 中文字幕| 亚洲国产精品成人久久小说| 在线看a的网站| 亚洲欧美一区二区三区久久| 国产精品一区二区在线观看99| 综合色丁香网| 另类亚洲欧美激情| 欧美少妇被猛烈插入视频| 国产一区有黄有色的免费视频| 午夜老司机福利片| 熟妇人妻不卡中文字幕| 国产极品粉嫩免费观看在线| 黄色 视频免费看| 一级,二级,三级黄色视频| 欧美国产精品va在线观看不卡| 欧美最新免费一区二区三区| 热re99久久国产66热| 国产探花极品一区二区| 国产一区二区 视频在线| 日韩欧美一区视频在线观看| 国产激情久久老熟女| tube8黄色片| 亚洲国产av影院在线观看| 飞空精品影院首页| 婷婷色综合大香蕉| 欧美日韩亚洲高清精品| 最黄视频免费看| 亚洲三区欧美一区| 免费人妻精品一区二区三区视频| 侵犯人妻中文字幕一二三四区| 国产成人精品无人区| 最近手机中文字幕大全| 肉色欧美久久久久久久蜜桃| 欧美 亚洲 国产 日韩一| 国产高清不卡午夜福利| 少妇猛男粗大的猛烈进出视频| a级片在线免费高清观看视频| 国产精品欧美亚洲77777| 欧美97在线视频| 亚洲av男天堂| 日日啪夜夜爽| 国产一区二区在线观看av| 999久久久国产精品视频| 国产精品一国产av| 悠悠久久av| av在线观看视频网站免费| 国产黄色视频一区二区在线观看| 日韩一本色道免费dvd| 在线 av 中文字幕| 精品福利永久在线观看| 欧美日韩av久久| 肉色欧美久久久久久久蜜桃| 不卡av一区二区三区| 亚洲成人av在线免费| 亚洲国产欧美网| 老汉色av国产亚洲站长工具| 久久影院123| 国产精品国产av在线观看| √禁漫天堂资源中文www| 巨乳人妻的诱惑在线观看| 七月丁香在线播放| 国产精品久久久av美女十八| 成人三级做爰电影| 亚洲国产看品久久| 亚洲av福利一区| 国产又爽黄色视频| av网站在线播放免费| 国产日韩欧美在线精品| xxx大片免费视频| 午夜影院在线不卡| 美女扒开内裤让男人捅视频| 搡老岳熟女国产| 亚洲国产欧美在线一区| 在线观看免费视频网站a站| 亚洲精品国产一区二区精华液| tube8黄色片| 国产成人欧美在线观看 | av有码第一页| 99九九在线精品视频| 国产高清不卡午夜福利| 亚洲自偷自拍图片 自拍| 国产伦人伦偷精品视频| 亚洲国产精品成人久久小说| 亚洲一区二区三区欧美精品| 激情视频va一区二区三区| 亚洲精品日韩在线中文字幕| 国产精品国产三级国产专区5o| 美女大奶头黄色视频| 美女国产高潮福利片在线看| 人成视频在线观看免费观看| 丝袜脚勾引网站| 亚洲av电影在线进入| 91精品伊人久久大香线蕉| 成人亚洲精品一区在线观看| netflix在线观看网站| 亚洲成色77777| 国产免费一区二区三区四区乱码| 香蕉丝袜av| 日本欧美国产在线视频| 国产精品 国内视频| 久热爱精品视频在线9| 丝袜人妻中文字幕| 国产精品一二三区在线看| 91aial.com中文字幕在线观看| 老司机靠b影院| 精品国产乱码久久久久久小说| 久久久久久久大尺度免费视频| 亚洲天堂av无毛| 丝袜在线中文字幕| 精品国产一区二区久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品免费大片| 黄片小视频在线播放| 久久热在线av| av有码第一页| 日韩免费高清中文字幕av| 国产免费福利视频在线观看| 国产黄色视频一区二区在线观看| 久久性视频一级片| 成年av动漫网址| 日本vs欧美在线观看视频| av在线老鸭窝| 欧美另类一区| 精品亚洲成a人片在线观看| 观看av在线不卡| 欧美日韩成人在线一区二区| 男女高潮啪啪啪动态图| 国产亚洲av片在线观看秒播厂| 别揉我奶头~嗯~啊~动态视频 | 街头女战士在线观看网站| 水蜜桃什么品种好| 国产有黄有色有爽视频| 精品一区在线观看国产| 女人高潮潮喷娇喘18禁视频| 国产精品国产三级专区第一集| av卡一久久| 日韩欧美一区视频在线观看| 操出白浆在线播放| 97人妻天天添夜夜摸| 成年美女黄网站色视频大全免费| 久久99热这里只频精品6学生| 欧美变态另类bdsm刘玥| 精品久久蜜臀av无| 女人高潮潮喷娇喘18禁视频| 青春草亚洲视频在线观看| 国产亚洲最大av| 国产av一区二区精品久久| 七月丁香在线播放| 999精品在线视频| 国产福利在线免费观看视频| 午夜老司机福利片| 熟女少妇亚洲综合色aaa.| 精品人妻一区二区三区麻豆| 久久久亚洲精品成人影院| 中文字幕av电影在线播放| 宅男免费午夜| 高清av免费在线| 亚洲精品中文字幕在线视频| av在线观看视频网站免费| 国产精品免费视频内射| 久久精品人人爽人人爽视色| 观看美女的网站| 国产av一区二区精品久久| 操美女的视频在线观看| 午夜激情av网站| 国产熟女欧美一区二区| 久久影院123| 日韩电影二区| 桃花免费在线播放| 99热全是精品| 色精品久久人妻99蜜桃| 成人毛片60女人毛片免费| 色视频在线一区二区三区| 久久久久久久大尺度免费视频| 国产精品久久久久久人妻精品电影 | 精品国产一区二区三区久久久樱花| 男女国产视频网站| 国产在线一区二区三区精| 亚洲激情五月婷婷啪啪| www日本在线高清视频| 在线天堂中文资源库| 久久热在线av| 精品人妻在线不人妻| 一本色道久久久久久精品综合| 麻豆乱淫一区二区| 国产男女超爽视频在线观看| 中国国产av一级| 国产精品国产av在线观看| 日本wwww免费看| 国产精品免费视频内射| 欧美激情高清一区二区三区 | 91精品三级在线观看| 观看美女的网站| 人人妻人人爽人人添夜夜欢视频| 国产一区二区 视频在线| 久久毛片免费看一区二区三区| 国产男人的电影天堂91| 青春草视频在线免费观看| 在线观看三级黄色| 婷婷色av中文字幕| 在线观看免费日韩欧美大片| 亚洲精品成人av观看孕妇| 国产女主播在线喷水免费视频网站| 亚洲自偷自拍图片 自拍| 成人亚洲欧美一区二区av| 久久99热这里只频精品6学生| 久久狼人影院| 成人黄色视频免费在线看| 久热爱精品视频在线9| 国产免费福利视频在线观看| 99九九在线精品视频| 国产毛片在线视频| 日韩制服骚丝袜av| 狂野欧美激情性bbbbbb| 在线天堂中文资源库| 成年女人毛片免费观看观看9 | 久久天堂一区二区三区四区| 在线观看免费日韩欧美大片| 久久人人爽av亚洲精品天堂| 97精品久久久久久久久久精品| 午夜福利,免费看| 操美女的视频在线观看| 欧美日韩av久久| 五月开心婷婷网| 国产精品三级大全| 国产欧美日韩一区二区三区在线| 亚洲欧美精品自产自拍| 精品一区二区三区av网在线观看 | 日韩熟女老妇一区二区性免费视频| 午夜激情久久久久久久| 婷婷成人精品国产| 中文字幕人妻丝袜制服| 国产亚洲最大av| 久久久久久久大尺度免费视频| 制服丝袜香蕉在线| 亚洲av电影在线观看一区二区三区| 国产日韩欧美在线精品| av网站在线播放免费| 热99久久久久精品小说推荐| 丝袜美足系列| 日韩av在线免费看完整版不卡| 女的被弄到高潮叫床怎么办| 午夜激情久久久久久久| 国产在线视频一区二区| 中文字幕精品免费在线观看视频| 国产精品偷伦视频观看了| 精品亚洲成国产av| 亚洲情色 制服丝袜| 国产有黄有色有爽视频| 国产精品一二三区在线看| 一级毛片 在线播放| 国产精品久久久人人做人人爽| 高清不卡的av网站| 高清黄色对白视频在线免费看| 黄色 视频免费看| 亚洲综合色网址| 亚洲精品美女久久av网站| 国产精品嫩草影院av在线观看| 国产 一区精品| 日本欧美视频一区| av国产精品久久久久影院| 永久免费av网站大全| 三上悠亚av全集在线观看| 国产精品免费大片| videosex国产| 777久久人妻少妇嫩草av网站| 成人国产麻豆网| 国产精品久久久人人做人人爽| 亚洲婷婷狠狠爱综合网| 国产精品国产三级专区第一集| 男女午夜视频在线观看| 国产高清国产精品国产三级| 丝袜美腿诱惑在线| 国产精品国产三级国产专区5o| 女人精品久久久久毛片| 人人妻人人爽人人添夜夜欢视频| av不卡在线播放| 美女主播在线视频| 亚洲精品久久成人aⅴ小说| 毛片一级片免费看久久久久| 午夜日本视频在线| 精品亚洲成国产av| 午夜免费鲁丝| 久久精品国产亚洲av高清一级| 婷婷成人精品国产| 国产亚洲欧美精品永久| 久久久久久久久久久免费av| 久久人人爽人人片av| 成人国语在线视频| 男女床上黄色一级片免费看| 女性被躁到高潮视频| 99香蕉大伊视频| 人妻 亚洲 视频| 亚洲国产最新在线播放| 国产极品天堂在线| 亚洲国产毛片av蜜桃av| 一区二区三区四区激情视频| 天天躁夜夜躁狠狠久久av| av在线app专区|