• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Z-configuration A-DA'D-A Type Acceptor with Thermal Annealing Induced High Open Circuit Voltage

    2023-10-10 03:33:50ZHANGLitingQIUDingdingZHANGJianqiLYUKunWEIZhixiang
    關(guān)鍵詞:中國科學(xué)院構(gòu)型器件

    ZHANG Liting, QIU Dingding, ZHANG Jianqi, LYU Kun, WEI Zhixiang

    Z-configuration A-DA'D-A Type Acceptor with Thermal Annealing Induced High Open Circuit Voltage

    ZHANGLiting1,3,4#, QIUDingding1,3,4#, ZHANGJianqi1,2,3, LYUKun1,2,3,4*, WEIZhixiang1,2,3,4*

    (,,,,100190,;,101408,)

    The development of organic solar cells(OSCs) is approaching the industrial production gradation. In addition to high power conversion efficiency(PCE), it is critical to develop new active layer materials with high open circuit voltage(OC) and to reduce non-radiative recombination loss. Here,“Z”-configured naphtho[1,2-c∶5,6-c']bis[1,2,5]thiadiazole(NT) nuclear A-DA'D-A receptor(ZNT) with a high lowest unoccupied molecular orbital (LUMO) energy level, is developed based on the electron-withdrawing unit(A) -electron-donating unit(D) combination of A-DA'D-A type acceptor Y6, which emerges a “Z” configuration and achieves a reduction in the non-radiative recombination loss of the device with D18 as the donor by increasing the annealing temperature. In order to investigate the difference between this phenomenon and the general phenomenon ofOCreduction by thermal annealing, the D18∶Y6 system was prepared as a reference. By increasing the temperature of thermal annealing, the Urbach energy(U) of D18∶Y6 is elevated,and the non-radiative recombination loss is increased, thus, theOCis consistently reduced. Surprisingly, the increase of the thermal annealing temperature decreases theUof D18∶ZNT and effectively decreases the non-radiative recombination loss, therefore, theOCshows an unexpected increase.OCincreases from 0.950 V under the unannealed condition to 0.963 V(80 ℃), 0.993 V(100 ℃), and even 0.995 V(110 ℃). Combining the trends of increasing electron mobility with decreasing crystal coherence length(CCL) of the pure acceptor ZNT when the annealing temperature increases, it is inferred that the reduction of energetic disorder is a result of the augmented order of the acceptor ZNT. In addition, the ZNT has a higher LUMO, higher occupied molecular orbital(HOMO) energy levels and band gap than Y6, higher planarity of structure, and lower device exciton dissociation, making the PCE of the ZNT-based devices lower than that of the Y6-based devices. The present work is potentially instructive for the development of A-DA'D-A type acceptors and provides a material design direction for the future development of high-OCOSCs that avoids the phenomenon of the reduction ofOCby thermal annealing.

    Non-fullerene acceptor; Non-radiative recombination loss; Urbach energy; High open circuit voltage organic solar cell

    1 Introduction

    Organic solar cells(OSCs) have attached widespread attention for their excellent flexibility, lightweight, good solution processing, and ability to prepare translucent devices[1—6]. With the development of active layer materials, device optimization, the power conversion efficiency(PCE) of OSCs has been promoted greatly[7].At present, the PCE of single-binary OSCs has exceeded 19%[8,9], and such a high PCE has reached the threshold of industrial application. Among them, the development of acceptor materials directly propels the qualitative leap of device performance, especially the non-fullerene acceptors(NFAs) play a decisive role[10]. Zhan’s group first designed and synthesized IEIC using electron-withdrawing units(A) and electron-donating units(D), which pioneered the A-D-A type fused ring NFAs[11]. A series of A-D-A type NFAs were subsequently developed by researchers, such as ITIC and IT-4F. The value of PCE increased significantly from 6.4% to 14.4%[12—14]. In parallel with the development of A-D-A type NFAs, Zou’s group innovatively developed A-DA'D-A fusion ring NFAs, which exhibit more efficient intramolecular charge transfer due to the addition of an electron-withdrawing unit in the central core, and also present a C-configuration completely different from the Z-configuration of the A-D-A acceptor. From BZIC with a five-number fused rings, to Y1 with expanded conjugation, and Y6 with stronger electron-withdrawing capacity core benzo[c][2,1,3] thiadiazole(BT), the device PCE was substantially increased from 6.3% to 13.42%, and an unprecedented 15.7%[15—17].

    Researchers have made every effort to discover the reasons for the superior performance of Y-series molecules. Zou’s group[18]developed Y18 on the basis of Y6. The reduced electron-withdrawing ability of the central core allowed the lowest unoccupied molecular orbital(LUMO) energy level of Y18, and the energy loss was reduced. Li’s group[19]designed and synthesized SN6-2Br in the linear fused Z-configuration and BTP-2Br in the C-configuration. BTP-2Br with a strong electron-withdrawing core exhibits a slightly higher LUMO energy level, a lower highest occupied molecular orbital(HOMO) energy level and a larger band gap. Meanwhile, BTP-2Br possesses better planarity, and exhibits a lower exciton dissociation. Yi’ group[20]investigated the effect of electron-withdrawing capabilities of the core and linear fused Z-configuration as well as angular fusion mode C-configuration on Y6 molecule. The results of the study indicate:(1) from the-BP to Y6 which are all in angular fusion mode C-configuration, the electron-withdrawing ability of the central core is enhanced, the molecular planarity is reduced, leading to the decrease of LUMO and HOMO energy levels and enhanced exciton dissociation;(2) from-BP of linear fused Z-configuration to-BP of angular fusion mode C-configuration, high planarity disappears, leading to higher LUMO energy level, but lower HOMO energy level and enhanced exciton dissociation. Overall, from Y6 to-BP, the electron-withdrawing ability decreases and the configuration changes completely, both LUMO and HOMO increase. Corresponding to the changes in Y6 and Y18, the results are in good agreement with conclusion (1). It is worth mentioning that for SN6-2Br and BTP-2Br, the enhancement of the electron-withdrawing capacity shows the results of (2) instead, which proves from the side confirmation that the effect of the configurational change is greater than the change of the electron-withdrawing capacity. Simultaneously, the development history shows that the open circuit voltage(OC) has also become a key factor limiting the further improvement of PCE. Where the energy loss comes from two aspects: the driving force of exciton dissociation and the non-radiative recombination[21,22]. The low Urbach energy(U) implys a weak non-radiative recombination[23]. Wei’s group[24]synthesized Qx-1 and Qx-2 with a rigid structure quinoxaline(Qx). The non-radiative recombination loss was greatly reduced due to the reduced molecular vibration of the rigid structure. An inevitable part of device fabrication is the thermal annealing(TA) to optimize the active layer morphology, but this process generally reduces the value ofOC[25]. Therefore, the development of active layer materials whoseOCis not affected by thermal annealing is very critical and important.

    In this work, the strong electron-withdrawing group, naphtho[1,2-c∶5,6-c]bis[1,2,5]-thiadiazole(NT), which has a stronger electron-withdrawing ability than BT and has an expanded conjugated structure[26,27], was used to replace BT in the Y-series molecule to explore the effect of the strong electron- withdrawing core onOCof the devices. The A-DA'D-A acceptor material 2,2'-[(2Z,2'Z)-{[8,16-bis(2- butyloctyl)-5,13-diundecyl-8,16-dihydro-[1,2,5]thiadiazolo[3',4'∶4,5]thieno[2'',3''∶4',5']thieno[3', 2'∶2,3]indolo[7,6-g][1,2,5]thiadiazolo[3,4-e]thieno[2',3'∶4,5]thieno[3,2-b]indole-6,14-diyl]bis (methaneylylidene)}bis(5,6-difluoro-3-oxo-2,3-dihydro-1-indene-2,1-diylidene)]dimalononitrile(ZNT), which has a high planarity by the linear fused Z-configuration, was designed and synthesized, and the device with D18 exhibited a trend of elevatedOCwith increasing annealing temperature[28]. TheOCof the device was 0.950 V under unannealed conditions, and gradually increased to 0.963 V(80 ℃), 0.993 V(100 ℃), and 0.995 V(110 ℃). As a comparison, D18∶Y6 -based devices were also prepared. TheOCof the D18∶ Y6-based devices decreased continuously to 0.843 V(as-cast), 0.836 V(80 ℃), 0.832 V(100 ℃), and 0.824 V(110 ℃). TheUof the D18∶Y6 showed an increasing trend, and the energy loss test also exhibited a corresponding enlargement in the non-radiative recombination loss. TheUof the D18∶ZNT showed a conversely decreasing trend, indicating that the device energetic disorder decreases, which implies the reduction of non-radiative recombination loss, as evidenced by the energy loss test. The simultaneous rising trend in electron mobility indirectly implies that the acceptor ZNT is gradually ordered at the elevated annealing temperature. This is supported by the change in crystal coherence length(CCL) of the pure acceptor ZNT film. In addition, the higher LUMO, HOMO energy level and band gap of ZNT compared to Y6 and the lower exciton dissociation than the D18∶Y6-based device also indicate that the influence of configuration is greater than that of the electron-withdrawing capacity of the central core[17,29]. This work demonstrates that the reduction ofOCby thermal annealing can be avoided, and even theOCvalue can be elevated, which is a reference for the future development of high-OCdevices.

    2 Experimental

    2.1 Materials and Instruments

    Naphtho[1,2-c∶5,6-c']bis([1,2,5]thiadiazole)(Monomer 1) and tributyl(6-undecylthieno[3,2-b] thiophen-2-yl)stannane(monomer 4) were purchased from Shanghai Acmec Biochemical Co., Ltd. Trifluoroacetic acid(TFA), dibromohydantoin(DBDMH), trifluoromethanesulfonic acid(CF3SO3H), tetrakis(triphenylphosphine)palladium[Pd(PPh3)4] and triethyl phosphite[P(OEt)3] were purchased from Beijing Innokai Technology Co., Ltd. and J&K Scientific. Toluene was distilled from drying agents before they were used. All other reagents were purchased from commercial channels and without further purification.

    Autoflex MAX, Bruker Corporation, Switzerland; Bruker microflex MALDI-TOF mass spectrometer, Bruker Corporation, Switzerland; Buker Avance 400 Nuclear Magnetic Resonance spectrometer(NMR), Bruker Corporation, Switzerland; Dimension ICON multimode M8 atomic force microscope(AFM), Bruker Corporation, Switzerland; Tecnai G2 F20 U-TWIN Transmission Electron Microscope(TEM), FEI Company, America; Shimadzu UV-3600 Ultraviolet-Visible near infrared spectrophotometer(UV), Shimadzu Corporation, Japan; EG&G Princeton Applied Research VMP3 workstation, Ametek Group, America; Solar simulator(SS-F5-3A), FETOS-QE-3011 and integrated system PECT-600(Energy loss), Sheng Yan Electronic Technology(shanghai) Co., Ltd.; Keithley 2400, Tektronix Co., Ltd., America.

    2.2 Material Synthesis

    The synthesis route is shown in Scheme 1.

    Scheme 1Synthetic routes of ZNT

    Monomer 1 of 105 mg(0.43 mmol) was dissolved in 15 mL of TFA and the solution was stirred at 50 ℃. 270.5 mg(2.2 mmol) of DBDMH was gradually added three times at dark. The solution was stirred for 2 h and then cooled down to obtain the solid 5,10-dibromonaphtho[1,2-c∶5,6-c']bis([1,2,5]thiadiazole)(monomer 2) crude product by filtration.1H NMR(400 MHz, CDCl3),: 9.14(s, 2H). The crude product of the previous step was dissolved in 3 mL of trifluoromethanesulfonic acid at 0 ℃ and then fuming nitric acid was dropwise added, the solution was warmed to 50 ℃ and stirred overnight. After cooling down, the solution was poured into ice water, and NaOH was added until the solution was neutral. The solid was collected by filtration. The preliminary product was recrystallized in ethanol to obtain the crude product 5,10-dibromo-4,9-dinitronaphtho[1,2-c∶5,6-c']bis([1,2,5]thiadiazole)(monomer 3). 4,9-dinitro-5,10-bis (6-undecylthieno[3,2-b]thiophen-2-yl)naphtho[1,2-c∶5,6-c']bis([1,2,5]thiadiazole)(monomer 5) was synthesized by Stille coupling of 381 mg(0.78 mmol) of monomer 3 and 1.81 g(3.1 mmol) of monomer 4 under the catalysis of 80 mg(0.07 mmol) Pd(PPh3)4. The solution was stirred at 110 ℃ overnight under nitrogen protection with 25 mL of toluene as solvent. The crude product was extracted by dichloromethane twice. Pure product 5(70%, 573 mg) was obtained by column chromatography using a mixture consisting of PE and dichloromethane in a volume ratio of 1∶5 as eluent. MALDI-TOF,/: 919.1H NMR(400 MHz, CDCl3),: 7.85(s, 2H), 7.19(s, 2H), 2.82—2.78(t, 4H), 1.84—1.77(m, 4H), 1.27(s, 32H), 0.90—0.88(m, 6H).

    Compound 5 of 573 g(0.62 mmol) and 2 mL of triethyl phosphite were dissolved in 10 mL-dichlorobenzene(-DCB). The solution reacted in a microwave reactor at 220 W, 180 ℃ for 2 h. After cooling down, the solution was added dropwise into 200 mL of methanol and kept cold overnight. After removing the solvent, the red residue was added into a three-necked round bottom flask. 414 mg(1.27 mmol) of Cs2CO3, 253 mg(1.52 mmol) of KI and 10 mL of DMF were added, and the mixture was deoxygenated with argon for 15 min. 5-(Bromomethyl) undecane of 316 mg(1.27 mmol) was added. The mixture was refluxed at 90 ℃ overnight under nitrogen protection. The solution was extracted by dichloromethane twice. Next, purification was conducted by silica gel column using a mixture consisting of PE and dichloromethane in a volume ratio of 1∶1 as eluent to give monomer 8,16-bis(2-butyloctyl)-5,13-diundecyl-8,16-dihydro-[1,2,5]thiadiazolo[3',4'∶4,5]thieno[2'',3''∶4',5']thieno[3',2'∶2,3]indolo[7,6-g][1,2,5]thiadiazolo[3,4-e]thieno[2',3'∶4,5]thieno[3,2-b]indole(monomer 6)(11%, 80 mg). MALDI-TOF,: 190.1H NMR(400 MHz, CDCl3),: 8.10(s, 2H), 4.11—4.09(d, 4H), 1.53(s, 2H), 1.34—1.29(m, 72H), 0.92—0.88(m, 18H).

    Monomer 6 of 80 mg(0.068 mmol) was dissolved into 10 mL of 1,2-dichloroethane in a three-neck flask. The solution was flushed with nitrogen at 0 ℃ for 30 min. Then, 0.25 mL of POCl3was added dropwise to the solution, and the solution temperature was restored to room temperature by adding 0.25 mL of DMF. Next, the solution was reacted at 80 ℃ overnight under nitrogen protection. Washed with saturated salt water and dichloromethane. The solvent was removed under reduced pressure. The crude product was subsequently purified by column chromatography on silica gel using a mixture of PE and dichloromethane in a volume ratio of 1∶2 as eluent to afford 8,16-bis(2-ethylhexyl)-5,13-diundecyl-8,16-dihydro-[1,2,5]thiadiazolo [3',4'∶4,5]thieno[2'',3''∶4',5']thieno[3',2'∶2,3]indolo[7,6-g][1,2,5]thiadiazolo[3,4-e]thieno [2',3'∶4,5]thieno[3,2-b]indole-6,14-dicarbaldehyde(compound 7)(88%, 75 mg). MALDI-TOF,:1246.1H NMR(400 MHz, CDCl3),: 10.18(s, 2H), 4.32—4.29(m, 2H), 3.25—3.22(m, 4H), 1.28—1.24(m, 72H), 0.89—0.86(m, 18H).

    Monomer 7 of 110 mg(0.088mmol) and 202 mg(0.88 mmol) of 2-(5, 6-difluoro-3-oxo-2,3-dihydro-1-inden-1-ylidene)malononitrile were dissolved into 20 mL dry chloroform in a three-neck flask. The solution was flushed with nitrogen for 20 min. After 0.5 mL of pyridine was added, the mixture was stirred at 65 ℃ for 12 h. After cooling to room temperature, the reaction mixture was poured into water and extracted several times with chloroform. Then the solvent was removed under reduced pressure, and the crude product was purified by column chromatography on silica gel using a mixture of PE and dichloromethane in a volume ratio of 1∶2 as eluent to yield ZNT(8, 34%, 50 mg). MALDI-TOF,: 1671.1H NMR(400 MHz, CDCl3),: 8.77(s, 2H), 8.44—7.40(m, 2H), 7.55—7.51(m, 2H), 3.08(t, 4H), 2.25—2.01(m, 2H), 1.82Ⅰ1.26(m, 72H), 0.87—0.84(m, 18H).

    2.3 Device Fabrication

    The devices were fabricated with a conventional structure of indium tin oxide(ITO)/poly(3,4-ethylenedioxythiophene)∶poly(styrenesulphonate)(PEDOT∶PSS)/D18∶acceptor/2,9-Bis(3-{[3-(dimethylamino) propyl]amino}propyl)anthra[2,1,9-def∶6,5,10-d'e'f']diisoquinoline-1,3,8,10(2,9)-tetraone(PDINN)/Ag. The glass substrate coated with ITO was cleaned by water with detergent, water, acetone, and isopropanol in an ultrasonic bath for 30 min; then treated with UV-ozone for 15 min. The PEDOT∶PSS was deposited by spin-coating under 3500 r/min for 30 s on top of the ITO substrate with thermal annealing for 25 min at 150 ℃. The substrate was transferred to the glove box next. Donor and acceptor materials were dissolved in chloroform(CF) with a total concentration of 10 mg/mL[(D18)∶(Y6)=1∶1.6,(D18)∶(ZNT)=1∶1.0] and then stirred at 50 ℃ for 60 min. The blend solution was spin-coated at 3000 r/min for 30 s to form a thin film on the substrate. Thermal annealing at different temperatures for 10 min was utilized to optimize the morphology of the active layer. Then, PDINN was spin-coated onto the top of the active layer as an electron transport layer at 2000 r/min for 30 s. Finally, 160 nm of Ag was deposited onto the active layer to form a back electrode. The electrodes were deposited under a high vacuum(1×10-4Pa), and the effective area was defined by masks of 4 mm2.

    2.4 Methods and Devices Characterization

    UV-Vis spectra and solution UV-Vis absorption spectra at elevated temperatures were obtained using chloroforms as solvent. All the film samples were spin-cast on quartz substrates.

    The electrochemical cyclic voltammetry analysis was carried out with a standard three-electrode electrochemical cell, using Ag/AgCl as the reference electrode, a Pt plate as the counter electrode, a Pt plate on which acceptor was drop-cast from CHCl3solution to form thin film as the working electrode, 0.1 mol/L tetrabutylammonium phosphorus hexafluoride(Bu4NPF6) acetonitrile solution as an electrolyte at a scanning rate of 50 mV/s.

    Themeasurements were performedthe solar simulator along with AM 1.5 G spectra, whose intensity was calibrated by the certified standard silicon solar cell at 100 mW/cm2.

    Space charge limited current(SCLC) method was used to measure the charge mobility of the blend active layer. The structure of ITO/PEDOT∶PSS/active layer/MoO/Ag was adopted for hole-only devices. The structure of ITO/ZnO/active layer/PNDIT-F3N/Ag was used for the electron-only device. The charge mobility was calculated according to the MOTT-Gurney equation:

    3 Results and Discussion

    3.1 Density Functional Theory Calculation

    The configuration of ZNT is inevitably presented as “Z-shape”(Fig.1), and the three- dimensional(3D) structure is obtained from the density functional theory(DFT) calculation at the B3LYP/6-31+G(,) level carried out with Gaussian 09 revision D.01[30]. The side view shows that ZNT has a fairly high planarity, with an N—C—C—C dihedral angle of only 7.8°, which is much smaller than the N—C—C—N dihedral angle of Y6(-17.5°)[17], while the NT unit is twisted due to the presence of branched alkyl chains, with an N—C—C—C dihedral angle of 11°(Fig.2).

    Fig.1 Chemical structures of Y6 and ZNT

    Fig.2 Top view(A) and side views(B, C) of different perspectives of the optimized geometry of ZNT computed with B3LYP/6?31+G(d, p) level

    3.2 Optical and Electrochemical Properties

    Fig.3 Normalized UV?Vis absorption spectra of ZNT in solution(a) and at neat film state(b) and Y6 at neat film state(c)

    Fig.4 Temperature?dependent UV?Vis absorption spectra of ZNT in chloroform

    Fig.5 CV curves of ZNT(A) and energy levels of D18, Y6 and ZNT(B)

    3.3 Device Performance

    The conventional structure of ITO/PEDOT∶PSS/D18∶Acceptor/PDINN/Ag was used to explore device photovoltaic performance(Table 1). During the optimization process, the parameter of the two systems showed completely different phenomena: as the annealing temperature increased, theOCof D18∶Y6 continued decreasing, as is common with reported devices, whileSCgradually increased and Fill factor(FF) decreased. The complex changes led to a slight floating of the PCE values; while theOCof D18∶ZNT continued to boost with an increment of 0.045 V,SC, FF and PCE all showed a trend of increasing and then decreasing. The external quantum efficiency(EQE)-integratedSCfor D18∶Y6 and D18∶ZNT devices at different annealing temperatures were 24.96 and 12.71 mA/cm2(As-cast), 25.25 and 13.80 mA/cm2(80 ℃), 25.40 and 11.31 mA/cm2(100 ℃) and 25.60 and 10.65 mA/cm2(110 ℃)(Fig.6). In addition, the trend of EQE is consistent with that ofSCchange. The errors betweenSCvalues calculated from EQE curve integration and actual measurements are all within 5%.

    Table 1 Photovoltaic performance of the devices under different annealing temperatures(tA)

    Average values are based on 5 devices;the calculatedscvalues from the EQE curves.

    Fig.6 J?V curves(A, D), EQE curves(B, E) and dependence of Jph on Veff(C, F) of the D18∶Y6(A—C) and D18∶ZNT(D—F) devices under different annealing temperatures

    To further demonstrate the unique phenomenon ofoc increment in D18∶ZNT system as annealing temperature increased, the exciton dissociation, charge collection processes, and charge recombination under different temperature conditions are evaluated using the dependence of photocurrent density(ph) on the effective voltage(eff)(Fig.6) and light intensity depending on the deviceSCandOC. Usually,phis defined as the current density difference under illumination and dark,effis defined as the difference between the voltage0whenph=0 and the applied voltageappl. Assuming that all excitons separate into free charges at an adequately higheffand the photo-generated current can reach the maximum saturationsat. The exciton dissociation(diss) is the ratio ofph(under short-circuit conditions) tosat, and the charge collection efficiency(coll) is the ratio ofphunder maximum power output conditions tosat[33,34]. It is easy to see that both parameters of D18∶ZNT show a trend of boosting and then decreasing according to the change of annealing temperature from low to high, withdissof 91.95%, 93.61%, 91.87%, and 90.23%, andcollof 71.17%, 72.66%, 72.06% and 68.15%, respectively. In contrast, the two parametersdiss(98.69%, 98.65%, 98.59%, 98.72%) andcoll(90.58%, 90.27%, 89.62%, 89.82%) of D18∶Y6 were largely unaffected by the annealing temperature and were much higher than those for D18∶ZNT. This finding is consistent with the results of thedisschange by the configurational change studied by Yi[20]. Combining molecular planarity, UV-Vis absorption spectra and energy level variations, it can be effectively demonstrated that the configurational influence is greater than the effect of the electron-withdrawing ability of the central core on the molecular optical and electrochemical properties and device performance.

    3.4 Charge Characterization

    Fig.7(A) and (B) show the charge recombination and transport properties of D18∶ZNT. The correlation betweenSCand light intensity(light) can be expressed by the formula ofSC∝(light)α. For the devices under different temperature annealing,are 1.11, 1.10, 1.12 and 1.11, respectively, with a small difference close to 1, indicating that the annealing temperature has a very weak effect on the charge recombination. Thelightdependence ofOCis given byoc∝(BT/) lnlight(kis the Boltzmann constant,is the absolute temperature, andis the elementary charge). The slope values for different annealing temperatures are 1.37, 1.48, 1.45, and 1.41BT/q, respectively(Fig.7). The trend of the slope change is expectedly the same as the inclinations ofSCand FF variations, indicating that the trap-assisted recombination decreases under low-temperature(80 ℃) annealing and intensifies under high-temperature(100, 110 ℃) annealing. Consequently, a low-temperature annealing treatment is beneficial to the enhancement ofSCand FF for D18∶ZNT-based devices, but a high-temperature annealing treatment has the opposite influence.

    Fig.7 Jsc(A) and Voc(B) dependence on light intensity, hole mobilities(C) and electron mobilities(D) curves of D18∶ZNT?based devices under different annealing temperatures

    SCLC method was applied to characterize the charge transport properties of D18∶ZNT[Fig.7(C) and (D)]. The hole(h) and electron(e) mobilities of as-cast device are 1.63×10-5and 3.28×10-5cm2?V-1?s-1, the value ofh/eis 0.5. The device under 80 ℃ annealing exhibited lowerhof 1.59×10-5cm2?V-1?s-1and highereof 3.31×10-5cm2·V-1·s-1, the value ofh/eis 0.48, lower than that of the as-cast device. The device under 100 ℃ annealing exhibited decreasedhof 1.53×10-5cm2?V-1?s-1and increasedeof 3.37×10-5cm2?V-1?s-1, the value ofh/ekeeps decreasing to 0.45. The device under 110 ℃ annealing exhibited the lowesthof 1.50×10-5cm2?V-1?s-1and the highesteof 3.68×10-5cm2?V-1?s-1, the value ofh/edirectly decreased to 0.41. It is worth mentioning thathhas been in a decreasing trend, whilee, like theOCvariations, has been enlarging and is much higher thanh. The equalization of the two parameters with opposite trends leads toSCshowing a result of first rising and then falling. This also tentatively implies that the increase in annealing temperature leads to a more orderly acceptor ZNT, thus a more efficient electron transport.

    3.5 Energy Loss

    Fig.8 Energy loss(A, B) and FTPS?EQE spectra(C, D) for the D18∶Y6(A, D) and D18∶ZNT(B, D) devices under different annealing temperatures

    Table 2 Energy loss of the devices under different annealing temperatures

    3.6 Morphology and Molecular Orientation

    Atomic force microscopy(AFM) and grazing incidence wide-angle X-ray scattering(GIWAXS) were used to characterize the morphology, the molecular crystallinity and orientation of the active layer under increasing annealing temperature(Fig.9). The values of the root-means-square(RMS) roughness(q) of the D18∶ZNT at different annealing temperatures are 1.81, 1.73, 1.87 and 2.15 nm. The variation trend is consistent with that ofSC, FF and PCE. It means that low-temperature annealing can improve the aggregation of the active layer, which facilitates charge collection, while high-temperature annealing has the contrary influence. From 2D GIWAXS patterns, it can be seen that when the annealing temperature varies, the diffraction patterns of the D18∶ZNT keep the same, exhibiting a strong diffraction ring in thezdirection(located at 16.6 nm-1) and a weaker diffraction halo in thexydirection (located at12.6 nm-1), which means that thermal annealing does not affect the stacking patterns of the active layers with face-on and edge-on mixed orientation. The (010) diffraction peaks of the active layers at different annealing temperatures in the out-of-plane (OOP) direction are all located at 16.6 nm-1, and the corresponding-stacking distances(d) are calculated to be 0.38 nm, indicating that the annealing temperature variations did not involve the compactness of the-stacking. Meanwhile, the CCL at different annealing temperatures are 1.63, 1.26, 1.39 and 1.39 nm, respectively. The CCL of the blend films shows a first decrease and then an increase due to the particularly poor crystallinity of D18 at 80 ℃ disrupting the crystallization of ZNT. Accordingly, low-temperature annealing reduces the aggregation and crystallinity of the D18∶ZNT, thus reducing the trap-assisted recombination while also improving exciton separation and charge collection, and therefore has a positive effect on the improvement ofSCand FF. However, the inferior performance of high-temperature annealing has a negative effect on the improvement ofSCand FF. The active layer of the device based on D18∶Y6 also shows face-on and edge-on mixed orientations. Annealing temperature change also did not affect the stacking patterns. The (010) diffraction peaks of the D18∶Y6 in the OOP direction locate at 16.9 nm-1(As-cast), 17.4 nm-1(80 ℃),17.4 nm-1(100 ℃), and 16.9 nm-1(110 ℃), with the correspondingdof 0.37, 0.36, 0.36, and 0.37 nm, indicating the variation of annealing temperature has a slight effect on thed. The CCL shows an increasing trend of 2.43, 2.78, 2.83 and 2.85 nm, which is the same as that of FF. It indicates that the increase of annealing temperature increases the crystallinity of the D18∶Y6 active layer. In addition, 2D GIWAXS patterns with pure ZNT were also tested. The stacking pattern of ZNT also did not changed, but its face-on orientation was enhanced and the CCL increased significantly(2.26, 2.67, 2.98, 2.99 nm). It is worth mentioning that the change in crystallinity of ZNT provides another corroboration that the decrease in the energetic disorder of D18∶ZNT comes from the enhancement in acceptor orderliness.

    Fig.9 AFM height images of the D18∶ZNT under different annealing temperatures(A—D), 2D GIWAXS patterns of D18∶ZNT, D18∶Y6 and pure film of ZNT under different annealing temperatures(E—P) and the corresponding 1D line?cut profiles of the D18∶Y6 and D18∶ZNT devices under different annealing temperatures(Q)

    (A, E, I, M) As?cast; (B, F, J, N) 80 ℃; (C, G, K, O) 100 ℃; (D, H, L, P) 110 ℃.

    4 Conclusions

    In summary, we successfully designed and synthesized an A-DA'D-A molecular, ZNT, with both high planarity of Z-configuration molecules and strong electron withdrawing core, which has strong-stacking and exhibits strong pre-aggregation but still maintain a high level of LUMO energy level. The performance of the device prepared by blending with D18 is not satisfactory, and the strong aggregation effect leads to insufficientSCand FF, but theOClevel resides above 0.95 V. Moreover, the acceptor molecule ZNT is gradually ordered under the increasing temperature of thermal annealing, the system energetic disorder is reduced, which is manifested in a significant decrease of Urbach energy, so the non-radiative recombination loss is reduced, and the finalOCcan be enhanced by 0.045 V up to 0.995 V under 110 ℃ annealing. This is in contrast to the continued decline inOCof Y6-devices. The performance of ZNT proves that the fundamental reason affecting the molecular optical, electrochemical properties and device performance in the A-DA'D-A molecule is the change in molecular configuration. This also effectively demonstrates that the negative effect of thermal annealing onOCcan be avoided or even have a positive effect during the preparation of OSCs devices. The design of this Z-configuration A-DA'D-A molecule has pioneering implications for the development of high-OCdevices and also has far-reaching potential significance for reducing energy losses.

    [1] Guo J., Min J.,,2019,(3), 1802521

    [2] Sun C. K., Pan F., Chen S. S., Wang R., Sun R., Shang Z. Y., Qiu B. B., Min J., Lv M. L., Meng L., Zhang C. F., Xiao M., Yang C., Li Y. F.,,2019,(52), 1905480

    [3] Song W., Yu K. B., Zhou E. J.,Xie L., Hong L., Ge J. F., Zhang J. S., Zhang X. L., Peng R. X., Ge Z. Y.,,2021,(30), 2102694

    [4] Song W., Liu Y. X., Fanady B., Han Y. F., Xie L., Chen Z. Y., Yu K. B., Peng X., Zhang X. L., Ge Z. Y.,,2021,, 106044

    [5] Xie L., Zhang J. S., Song W., Ge J. F., Li D. D., Zhou R., Zhang J. Q., Zhang X. L., Yang D. B., Tang B. C., Wu T., Ge Z. Y.,,2022,, 107414

    [6] Xie L., Song W., Ge J. F., Tang B. C., Zhang X. L., Wu T., Ge Z. Y.,,2021,, 105770

    [7] Zhang Z. H., Guang S., Yu J. S., Wang H. T., Cao J. R., Du F. Q., Wang X. L., Tang W. H.,,2020,(18), 1533—1536

    [8] Deng M., Xu X. P., Duan Y. W., Yu L. Y., Li R. P., Peng Q.,,2023,(10), 2210760

    [9] Fu J. H., Fong P. W. K., Liu H., Huang C. S., Lu X. H., Lu S. R., Abdelsamie M., Kodalle T., Sutter?Fella C. M., Yang Y., Li G.,,2023,(1), 1760

    [10] Wadsworth A., Moser M., Marks A., Little M. S., Gasparini N., Brabec C. J., Baran D., McCulloch I.,,2019,(6), 1596—1625

    [11] Lin Y. Z., Zhang Z. G., Bai H. T., Wang J. Y., Yao Y. H., Li Y. F., Zhu D. B., Zhan X. W.,,2015,(2), 610—616

    [12] Lin Y. Z., Wang J. Y., Zhang Z. G., Bai H. T., Li Y. F., Zhu D. B., Zhan X. W.,,2015,(7), 1170—1174

    [13] Zhao W. C., Li S. S., Yao H. F., Zhang S. Q., Zhang Y., Yang B., Hou J. H.,,2017,(21), 7148—7151

    [14] Zhang S. Q., Qin Y. P., Zhu J., Hou J. H.,,2018,(20), 1800868

    [15] Feng L. L., Yuan J., Zhang Z. Z., Peng H. J., Zhang Z. G., Xu S. T., Liu Y., Li Y. F., Zou Y. P.,,2017,(37), 31985—31992

    [16] Yuan J., Huang T. Y., Cheng P., Zou Y. P., Zhang H. T., Yang J. L., Chang S. Y., Zhang Z. Z., Huang W. C., Wang R., Meng D., Gao F., Yang Y.,,2019,(1), 570

    [17] Yuan J., Zhang Y. Q., Zhou L. Y., Zhang G. C., Yip H. L., Lau T. K., Lu X. H., Zhu C., Peng H. J., Johnson P. A., Leclerc M., Cao Y., Ulanski J., Li Y. F., Zou Y. P.,,2019,(4), 1140—1151

    [18] Zhu C., Yuan J., Cai F. F., Meng L., Zhang H. T., Chen H. G., Li J., Qiu B. B., Peng H. J., Chen S. S., Hu Y. B., Yang C., Gao F., Zou Y. P., Li Y. F.,,2020,(8), 2459—2466

    [19] Yu Z. P., Li X., He C. L., Wang D., Qin R., Zhou G. Q., Liu Z. X., Andersen T. R., Zhu H. M., Chen H. Z., Li C. Z.,,2020,(7), 1991—1996

    [20] Guo Y., Han G. C., Yi Y. P.,,2022,(30), e202205975

    [21] Yao J. Z., Kirchartz T., Vezie M. S., Faist M. A., Gong W., He Z. C., Wu H. B., Troughton J., Watson T., Bryant D., Nelson J.,,2015,(1), 014020

    [22] Zhang Z. Q., Wu Q., Deng D., Wu S. H., Sun R., Min J., Zhang J. Q., Wei Z. X.,,2020,(43), 15385—15392

    [23] Menke S. M., Sadhanala A., Nikolka M., Ran N. A., Ravva M. K., Abdel?Azeim S., Stern H. L., Wang M., Sirringhaus H., Nguyen T. Q., Brédas J. L., Bazan G. C., Friend R. H.,,2016,(12), 10736—10744

    [24] Shi Y. N., Chang Y. L., Lu K., Chen Z. H., Zhang J. Q., Yan Y. J., Qiu D. D., Liu Y. N., Adil M. A., Ma W., Hao X. T., Zhu L. Y., Wei Z. X.,,2022,(1), 3256

    [25] Elumalai N. K., Uddin A.,,2016,(2), 391—410

    [26] Wang M., Hu X. W., Liu P., Li W., Gong X., Huang F., Cao Y.,,2011,(25), 9638—9641

    [27] Li W., Li Q. D., Liu S. J., Duan C. H., Ying L., Huang F., Cao Y.,,2015,(2), 257—266

    [28] Liu Q. S., Jiang Y. F., Jin K., Qin J. Q., Xu J. G., Li W. T., Xiong J., Liu J. F., Xiao Z., Sun K., Yang S. F., Zhang X. T., Ding L. M.,,2020,(4), 272—275

    [29] Bai H. R., An Q. S., Zhi H. F., Jiang M. Y., Mahmood A., Yan L., Liu M. Q., Liu Y. Q., Wang Y., Wang J. L.,,2022,(9), 3045—3057

    [30] Tirado?Rives J., Jorgensen W. L.,,2008,(2), 297—306

    [31] Wang J. W., Ma L. J., Lee Y. W., Yao H. F., Xu Y., Zhang S. Q., Woo H. Y., Hou J. H.,,2021,(72), 9132—9135

    [32] Sun Q. J., Wang H. Q., Yang C. H., Li Y. F.,,2003,(4), 800—806

    [33] Wang T., Sun R., Wu Y., Wang W., Zhang M. M., Min J.,,2022,(22), 9970—9981

    [34] Li Z. C., Kong X. L., Chen Z., Angunawela I., Zhu H. M., Li X. J., Meng L., Ade H., Li Y.,,2022,(46), 52058—52066

    [35] Zhang L. L., Zhang Z. Q., Deng D., Zhou H. Q., Zhang J. Q., Wei Z. X.,,2022,(23), 2202513

    [36] Li S. X., Zhan L. T., Jin Y. Z., Zhou G. Q., Lau T. K., Qin R., Shi M. M., Li C. Z., Zhu H. M., Lu X., Zhang F. L., Chen H. Z.,,2020,(24), 2001160

    [37] Chang Y. L., Zhu X. W., Shi Y. N., Liu Y. N., Meng K., Li Y. X., Xue J. W., Zhu L. Y., Zhang J. Q., Zhou H. Q., Ma W., Wei Z. X., Lu K.,,2022,(7), 2937—2947

    [38] Liu W. Y., Sun S. M., Xu S. J., Zhang H., Zheng Y. Q., Wei Z. X., Zhu X. Z.,,2022,(18), 2200337

    具有熱退火提升器件OC特性的Z構(gòu)型A?DA'D?A結(jié)構(gòu)受體

    張麗婷1,3,4#,仇丁丁1,3,4#,張建齊1,2,3,呂琨1,2,3,4,魏志祥1,2,3,4

    (1. 中國科學(xué)院納米系統(tǒng)與多級(jí)次制造重點(diǎn)實(shí)驗(yàn)室, 2. 中國科學(xué)院納米科學(xué)卓越中心, 3. 國家納米科學(xué)中心, 北京 100190; 4. 中國科學(xué)院大學(xué), 北京 101408)

    開發(fā)具有高開路電壓(OC)和有利于減少非輻射重組損失的有機(jī)太陽能電池新活性層材料至關(guān)重要. 本文基于經(jīng)典吸電子單元(A)-給電子單元 (D) 結(jié)合的A-DA'D-A型受體Y6, 開發(fā)了一種具有高最低未占分子軌道(LUMO)能級(jí)的“Z”構(gòu)型萘并[1,2-c∶5,6-c']雙[1,2,5]噻二唑(NT)核A-DA'D-A受體(ZNT), 此分子構(gòu)型呈現(xiàn)“Z”構(gòu)型, 并通過提高退火溫度實(shí)現(xiàn)了D18作為給體的器件非輻射復(fù)合損失的降低和OC的提升. 為了研究此現(xiàn)象與熱退火降低OC的普遍現(xiàn)象的不同, 制備了D18∶Y6體系作為參考. 通過提高熱退火的溫度, D18∶Y6體系的烏爾巴赫能量(U)升高, 非輻射復(fù)合損失增大, 因此OC持續(xù)降低; 與此相反, D18∶ZNT體系的U隨熱退火溫度升高而降低, 非輻射復(fù)合損失也有效降低, 因此實(shí)現(xiàn)了OC的提高.OC從未退火條件下的0.950 V提高到80 ℃退火時(shí)的0.963 V, 100 ℃退火時(shí)的0.993 V, 直至110 ℃退火時(shí)的0.995 V. 退火溫度上升時(shí)電子遷移率增加, 純ZNT的晶體相干長度增大, 證實(shí)了能量無序的減少來源于受體ZNT有序性的增加. 此外, ZNT受體的 (LUMO)、最高占有分子軌道(HOMO)能級(jí)和帶隙都比Y6的高, 結(jié)構(gòu)的平面性更高, 器件的激子分離效率較低, 使得基于ZNT受體的器件效率低于以Y6為受體的器件. 本文報(bào)道的“Z”構(gòu)型A-DA'D-A受體的中熱退火使OC升高的獨(dú)特現(xiàn)象可為未來高OC有機(jī)太陽能電池的發(fā)展提供一個(gè)材料設(shè)計(jì)方向.

    非富勒烯受體;非輻射復(fù)合損失;烏爾巴赫能;高開路電壓有機(jī)太陽能電池

    O626; O644.1

    A

    10.7503/cjcu20230164

    網(wǎng)絡(luò)首發(fā)日期: 2023-05-08.

    聯(lián)系人簡介:呂琨, 男, 博士, 研究員, 主要從事有機(jī)太陽能電池方面的研究. E?mail: lvk@nanoctr.cn

    魏志祥, 男, 博士, 研究員, 主要從事有機(jī)太陽能電池方面的研究. E-mail: weizx@nanoctr.cn

    2023-04-01

    國家自然科學(xué)基金(批準(zhǔn)號(hào): 51973043)和中國科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)(批準(zhǔn)號(hào): XDB36000000)資助.

    Supported by the National Natural Science Foundation of China(No.51973043) and the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB36000000).

    # 共同第一作者.

    (Ed.: W, K, M)

    猜你喜歡
    中國科學(xué)院構(gòu)型器件
    《中國科學(xué)院院刊》新媒體
    中國科學(xué)院院士
    ——李振聲
    分子和離子立體構(gòu)型的判定
    祝賀戴永久編委當(dāng)選中國科學(xué)院院
    航天器受迫繞飛構(gòu)型設(shè)計(jì)與控制
    《中國科學(xué)院院刊》創(chuàng)刊30周年
    旋涂-蒸鍍工藝制備紅光量子點(diǎn)器件
    面向高速應(yīng)用的GaN基HEMT器件
    一種加載集總器件的可調(diào)三維周期結(jié)構(gòu)
    遙感衛(wèi)星平臺(tái)與載荷一體化構(gòu)型
    国产精品嫩草影院av在线观看| 中文字幕久久专区| 国内精品一区二区在线观看| 黄片无遮挡物在线观看| 长腿黑丝高跟| 好男人视频免费观看在线| 美女高潮的动态| 免费观看精品视频网站| 亚洲中文字幕一区二区三区有码在线看| 免费播放大片免费观看视频在线观看 | 爱豆传媒免费全集在线观看| 日韩成人av中文字幕在线观看| 在现免费观看毛片| 亚洲三级黄色毛片| 91久久精品电影网| 国产精品日韩av在线免费观看| 日本一二三区视频观看| 国产精品永久免费网站| 老司机影院毛片| 国产一区二区在线观看日韩| 丝袜美腿在线中文| 内地一区二区视频在线| 欧美日韩综合久久久久久| 五月伊人婷婷丁香| 亚洲aⅴ乱码一区二区在线播放| 久久99热6这里只有精品| 国产伦精品一区二区三区四那| 三级国产精品欧美在线观看| 麻豆国产97在线/欧美| 免费观看性生交大片5| 免费观看人在逋| 一区二区三区四区激情视频| 男女视频在线观看网站免费| 麻豆成人午夜福利视频| 嘟嘟电影网在线观看| 日本一本二区三区精品| 亚洲人成网站在线观看播放| av天堂中文字幕网| 久久久久久九九精品二区国产| 一区二区三区高清视频在线| 日韩一本色道免费dvd| 男人舔女人下体高潮全视频| 久久精品影院6| 18禁在线播放成人免费| 视频中文字幕在线观看| 性插视频无遮挡在线免费观看| 日韩高清综合在线| 色播亚洲综合网| 好男人视频免费观看在线| 久久久色成人| 99久国产av精品| 三级国产精品片| 韩国av在线不卡| 国产亚洲一区二区精品| 真实男女啪啪啪动态图| 精品一区二区免费观看| 人人妻人人澡欧美一区二区| 精品人妻偷拍中文字幕| 欧美日韩精品成人综合77777| 男女下面进入的视频免费午夜| 精品久久久久久久久av| 听说在线观看完整版免费高清| 青青草视频在线视频观看| 国产精品久久视频播放| 日韩av在线大香蕉| 午夜老司机福利剧场| 午夜精品在线福利| 亚洲va在线va天堂va国产| 亚洲av免费高清在线观看| 少妇熟女欧美另类| 久久精品夜色国产| 午夜精品国产一区二区电影 | 亚洲国产日韩欧美精品在线观看| 一个人看视频在线观看www免费| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人freesex在线| 中文亚洲av片在线观看爽| 日韩人妻高清精品专区| 日韩精品青青久久久久久| 国产一区二区三区av在线| 成人三级黄色视频| 99久久精品热视频| 日日撸夜夜添| 亚洲自偷自拍三级| 天堂√8在线中文| 日本av手机在线免费观看| 男人的好看免费观看在线视频| 欧美色视频一区免费| 欧美成人精品欧美一级黄| 色尼玛亚洲综合影院| 国产色爽女视频免费观看| 国产精品麻豆人妻色哟哟久久 | 天堂中文最新版在线下载 | 国产黄色小视频在线观看| 嫩草影院新地址| 麻豆成人午夜福利视频| 亚洲人与动物交配视频| 国产精品美女特级片免费视频播放器| av线在线观看网站| 波多野结衣巨乳人妻| 两性午夜刺激爽爽歪歪视频在线观看| 三级男女做爰猛烈吃奶摸视频| 熟女电影av网| 亚洲精品久久久久久婷婷小说 | 欧美xxxx性猛交bbbb| 欧美丝袜亚洲另类| 中文字幕制服av| 成人午夜高清在线视频| 亚洲av一区综合| 欧美成人a在线观看| 国产人妻一区二区三区在| 欧美3d第一页| 夜夜爽夜夜爽视频| 国产免费男女视频| 免费av不卡在线播放| 午夜日本视频在线| 久久99热这里只有精品18| 久久久久久久午夜电影| 欧美zozozo另类| 国产乱来视频区| 女的被弄到高潮叫床怎么办| 日本三级黄在线观看| 日韩在线高清观看一区二区三区| 成人毛片60女人毛片免费| 国产真实伦视频高清在线观看| 久久久久精品久久久久真实原创| 国产成人91sexporn| 深爱激情五月婷婷| 久久久久网色| 亚洲一区高清亚洲精品| 国产淫语在线视频| 夫妻性生交免费视频一级片| 神马国产精品三级电影在线观看| 国产精品久久久久久精品电影| 亚洲av熟女| 99在线视频只有这里精品首页| 亚洲av电影不卡..在线观看| 国产欧美日韩精品一区二区| 免费看光身美女| 啦啦啦韩国在线观看视频| 亚洲av成人精品一区久久| 少妇人妻精品综合一区二区| 久久久久久久国产电影| 99久久精品一区二区三区| 久久久久久九九精品二区国产| 精华霜和精华液先用哪个| 精品午夜福利在线看| 春色校园在线视频观看| 免费看av在线观看网站| 午夜免费男女啪啪视频观看| 欧美一区二区精品小视频在线| 久久久久久伊人网av| 97在线视频观看| 69人妻影院| 精品一区二区三区视频在线| 午夜久久久久精精品| 少妇熟女aⅴ在线视频| 午夜日本视频在线| 一夜夜www| 极品教师在线视频| 亚洲国产精品合色在线| 人人妻人人澡欧美一区二区| 五月玫瑰六月丁香| 欧美zozozo另类| 99热这里只有精品一区| 久久久欧美国产精品| 欧美日韩一区二区视频在线观看视频在线 | 少妇熟女aⅴ在线视频| 人体艺术视频欧美日本| 男人舔奶头视频| 亚洲国产欧美在线一区| 一级二级三级毛片免费看| 国产真实乱freesex| 亚洲精品一区蜜桃| 国产又色又爽无遮挡免| 日本免费在线观看一区| 欧美日本亚洲视频在线播放| 天堂√8在线中文| 国产黄色小视频在线观看| 能在线免费观看的黄片| 午夜久久久久精精品| 大香蕉久久网| 日本与韩国留学比较| 美女xxoo啪啪120秒动态图| 亚洲成人久久爱视频| 亚洲在线自拍视频| 最近中文字幕2019免费版| 少妇人妻一区二区三区视频| 亚洲最大成人av| 最近的中文字幕免费完整| 成人美女网站在线观看视频| 三级经典国产精品| 深夜a级毛片| 18禁在线播放成人免费| 国内精品宾馆在线| 99久国产av精品| 大香蕉久久网| 亚洲av中文av极速乱| 国产精品日韩av在线免费观看| 2021少妇久久久久久久久久久| 内地一区二区视频在线| 国产亚洲精品av在线| 三级国产精品欧美在线观看| 免费不卡的大黄色大毛片视频在线观看 | 久久久亚洲精品成人影院| 久久久久久伊人网av| 国产成人a∨麻豆精品| 干丝袜人妻中文字幕| 中国美白少妇内射xxxbb| 日日啪夜夜撸| 成人特级av手机在线观看| 国产真实乱freesex| 精品国内亚洲2022精品成人| av在线蜜桃| 国产精品一区二区三区四区久久| 日韩亚洲欧美综合| 成年av动漫网址| 久久精品91蜜桃| 噜噜噜噜噜久久久久久91| 成年av动漫网址| 一区二区三区高清视频在线| 天天躁日日操中文字幕| 欧美激情国产日韩精品一区| 久久久精品94久久精品| 一级爰片在线观看| 精品一区二区免费观看| 建设人人有责人人尽责人人享有的 | 日本午夜av视频| 国产亚洲精品久久久com| 麻豆成人av视频| 最近最新中文字幕免费大全7| 非洲黑人性xxxx精品又粗又长| h日本视频在线播放| 国产亚洲午夜精品一区二区久久 | 久久人人爽人人片av| 在线a可以看的网站| 男女国产视频网站| 国产探花在线观看一区二区| 高清日韩中文字幕在线| 久久99热6这里只有精品| 夜夜看夜夜爽夜夜摸| 综合色丁香网| 国产免费又黄又爽又色| 九九久久精品国产亚洲av麻豆| 老司机影院成人| 麻豆成人av视频| 欧美精品国产亚洲| 老师上课跳d突然被开到最大视频| 日日啪夜夜撸| 大香蕉97超碰在线| 国产老妇女一区| 亚洲av免费在线观看| 99久国产av精品| 精品人妻偷拍中文字幕| 美女cb高潮喷水在线观看| 伊人久久精品亚洲午夜| 最近视频中文字幕2019在线8| 午夜久久久久精精品| 精品人妻视频免费看| 国产真实乱freesex| 欧美最新免费一区二区三区| 女人十人毛片免费观看3o分钟| 一级毛片aaaaaa免费看小| 日韩精品有码人妻一区| 久久精品国产99精品国产亚洲性色| 两个人的视频大全免费| 免费观看的影片在线观看| 看免费成人av毛片| 欧美性感艳星| 精品久久久噜噜| 少妇被粗大猛烈的视频| 秋霞在线观看毛片| 日韩一本色道免费dvd| 亚洲va在线va天堂va国产| 天天一区二区日本电影三级| 久久精品综合一区二区三区| 国产又黄又爽又无遮挡在线| 久久精品夜夜夜夜夜久久蜜豆| 国产精品国产三级国产专区5o | 女人被狂操c到高潮| 一区二区三区高清视频在线| 男人和女人高潮做爰伦理| 岛国毛片在线播放| 久久精品久久精品一区二区三区| 日韩在线高清观看一区二区三区| 久久久精品94久久精品| 亚洲在线自拍视频| 美女黄网站色视频| 久久久久久久久久久丰满| 亚洲自拍偷在线| 亚洲人与动物交配视频| 国产免费福利视频在线观看| 国产精华一区二区三区| 高清午夜精品一区二区三区| 91久久精品国产一区二区成人| 国产精品人妻久久久久久| a级一级毛片免费在线观看| 我的女老师完整版在线观看| 亚洲久久久久久中文字幕| 村上凉子中文字幕在线| 建设人人有责人人尽责人人享有的 | 国产成年人精品一区二区| 国产精品久久电影中文字幕| 日本午夜av视频| 国产乱来视频区| 欧美精品一区二区大全| 国产精品嫩草影院av在线观看| 一级黄色大片毛片| 男女视频在线观看网站免费| 看十八女毛片水多多多| 国产成人a∨麻豆精品| 伦精品一区二区三区| a级毛片免费高清观看在线播放| 久久人妻av系列| 99久久精品热视频| 日本三级黄在线观看| 免费观看a级毛片全部| 国产精品国产三级国产专区5o | 欧美成人免费av一区二区三区| 蜜臀久久99精品久久宅男| 精品一区二区三区视频在线| .国产精品久久| 最近视频中文字幕2019在线8| 亚洲三级黄色毛片| 国产高清视频在线观看网站| 亚洲av成人精品一区久久| 亚洲综合色惰| 亚洲精品乱码久久久v下载方式| 国产精品福利在线免费观看| 国产亚洲一区二区精品| 亚洲欧美精品专区久久| 欧美3d第一页| 国产三级在线视频| 精品无人区乱码1区二区| 久久久久久九九精品二区国产| 免费观看的影片在线观看| 国产老妇女一区| 美女内射精品一级片tv| 色网站视频免费| 天天躁日日操中文字幕| 亚洲成人av在线免费| 亚洲aⅴ乱码一区二区在线播放| 搞女人的毛片| 观看美女的网站| kizo精华| 日韩强制内射视频| 欧美高清成人免费视频www| 亚洲欧洲日产国产| 波多野结衣巨乳人妻| 麻豆国产97在线/欧美| 夜夜爽夜夜爽视频| 有码 亚洲区| 国产成人精品一,二区| 国产精品,欧美在线| 九九爱精品视频在线观看| 五月伊人婷婷丁香| 欧美成人免费av一区二区三区| 成人三级黄色视频| 久久久久久久国产电影| 国产伦精品一区二区三区视频9| 99热这里只有精品一区| 日韩制服骚丝袜av| 国产综合懂色| 亚洲av.av天堂| 天堂影院成人在线观看| 国产欧美另类精品又又久久亚洲欧美| 啦啦啦观看免费观看视频高清| 在线免费观看的www视频| 亚洲精品一区蜜桃| 日韩欧美三级三区| 啦啦啦韩国在线观看视频| 国产国拍精品亚洲av在线观看| 国产日韩欧美在线精品| 日本猛色少妇xxxxx猛交久久| 大又大粗又爽又黄少妇毛片口| 黑人高潮一二区| 一级爰片在线观看| 精品久久国产蜜桃| 午夜免费男女啪啪视频观看| 18禁在线播放成人免费| 成人高潮视频无遮挡免费网站| 两个人视频免费观看高清| 日韩,欧美,国产一区二区三区 | 亚洲欧美精品自产自拍| 国产精品久久久久久精品电影小说 | 亚洲国产精品成人综合色| 人妻制服诱惑在线中文字幕| 六月丁香七月| 熟女电影av网| 男人和女人高潮做爰伦理| 我的老师免费观看完整版| 亚洲国产精品成人久久小说| 精品人妻偷拍中文字幕| 在线免费观看不下载黄p国产| 欧美又色又爽又黄视频| 一级av片app| av国产免费在线观看| 午夜精品国产一区二区电影 | 亚洲成色77777| 国产精品久久久久久av不卡| 日本免费在线观看一区| 人妻少妇偷人精品九色| 免费看a级黄色片| 少妇熟女欧美另类| av在线蜜桃| 午夜福利在线观看吧| 97热精品久久久久久| 亚洲综合精品二区| 国产毛片a区久久久久| 国产成人福利小说| 又爽又黄无遮挡网站| 插逼视频在线观看| 欧美性猛交╳xxx乱大交人| 国产激情偷乱视频一区二区| 美女黄网站色视频| 人妻系列 视频| 人妻夜夜爽99麻豆av| 国产一区二区在线av高清观看| 在线免费十八禁| 熟女电影av网| 男女视频在线观看网站免费| 一个人看视频在线观看www免费| 亚洲av.av天堂| 国产精品久久久久久精品电影小说 | 成年av动漫网址| 内射极品少妇av片p| 亚洲av男天堂| 亚洲人与动物交配视频| 欧美激情久久久久久爽电影| 日本wwww免费看| 少妇熟女欧美另类| 91午夜精品亚洲一区二区三区| 国产亚洲av嫩草精品影院| 国产精品.久久久| 亚洲国产欧洲综合997久久,| 国产在视频线在精品| 九九久久精品国产亚洲av麻豆| 特大巨黑吊av在线直播| 亚洲精品乱码久久久久久按摩| 春色校园在线视频观看| 九草在线视频观看| 超碰av人人做人人爽久久| 亚洲人成网站在线观看播放| 精品一区二区免费观看| 免费黄网站久久成人精品| 神马国产精品三级电影在线观看| 欧美成人一区二区免费高清观看| 91狼人影院| 精品久久久久久久久av| 色尼玛亚洲综合影院| 亚洲国产精品sss在线观看| 水蜜桃什么品种好| 日本黄色视频三级网站网址| 最近中文字幕高清免费大全6| 波多野结衣巨乳人妻| 国产成年人精品一区二区| 大又大粗又爽又黄少妇毛片口| 国产精品av视频在线免费观看| 精品久久久久久成人av| 亚洲一级一片aⅴ在线观看| 别揉我奶头 嗯啊视频| 99久久中文字幕三级久久日本| 久久精品熟女亚洲av麻豆精品 | 女人十人毛片免费观看3o分钟| 精品国产一区二区三区久久久樱花 | 丝袜喷水一区| 久久久久久大精品| 少妇高潮的动态图| 国产亚洲av嫩草精品影院| 91午夜精品亚洲一区二区三区| 男人狂女人下面高潮的视频| 日韩大片免费观看网站 | 亚州av有码| 看黄色毛片网站| 岛国在线免费视频观看| 精品国产一区二区三区久久久樱花 | 国产av一区在线观看免费| 欧美精品国产亚洲| 欧美人与善性xxx| 一个人观看的视频www高清免费观看| 日本免费在线观看一区| 国产精品国产三级国产专区5o | 国产亚洲av片在线观看秒播厂 | 亚洲国产精品成人综合色| 成年女人看的毛片在线观看| 国产视频内射| 日本wwww免费看| 成人一区二区视频在线观看| 精品免费久久久久久久清纯| 欧美三级亚洲精品| 少妇熟女欧美另类| 久久99热这里只有精品18| 成人一区二区视频在线观看| 日日干狠狠操夜夜爽| 日本免费在线观看一区| 99热6这里只有精品| 日韩精品有码人妻一区| 欧美潮喷喷水| 一区二区三区四区激情视频| 国产免费福利视频在线观看| 国产精品久久久久久精品电影小说 | 成人高潮视频无遮挡免费网站| 99在线人妻在线中文字幕| 亚洲天堂国产精品一区在线| 免费av毛片视频| 午夜久久久久精精品| 爱豆传媒免费全集在线观看| 日本三级黄在线观看| 亚洲美女视频黄频| 18禁动态无遮挡网站| 亚洲精品成人久久久久久| 久久久国产成人精品二区| 国产一区二区三区av在线| 桃色一区二区三区在线观看| 男人舔奶头视频| 免费在线观看成人毛片| 亚洲真实伦在线观看| 男人狂女人下面高潮的视频| 中文欧美无线码| 免费看av在线观看网站| av免费观看日本| 男人狂女人下面高潮的视频| 日韩欧美精品v在线| 亚洲精品456在线播放app| 亚洲自拍偷在线| 免费看日本二区| 3wmmmm亚洲av在线观看| 国产91av在线免费观看| 少妇丰满av| 精品久久久久久成人av| 草草在线视频免费看| 午夜福利成人在线免费观看| 欧美一区二区精品小视频在线| 欧美日韩精品成人综合77777| 国产精品美女特级片免费视频播放器| 男的添女的下面高潮视频| 一级毛片我不卡| 亚洲成色77777| 2021少妇久久久久久久久久久| 日韩av不卡免费在线播放| 成年免费大片在线观看| 少妇人妻一区二区三区视频| 国产v大片淫在线免费观看| 久久精品久久久久久噜噜老黄 | 日本免费在线观看一区| 国产精华一区二区三区| 国产免费一级a男人的天堂| 久99久视频精品免费| 亚洲精品自拍成人| 国产视频内射| 日韩中字成人| 亚洲精品一区蜜桃| 国产成人精品婷婷| 国产激情偷乱视频一区二区| 久久综合国产亚洲精品| www.av在线官网国产| 欧美xxxx黑人xx丫x性爽| 在线观看66精品国产| 国产精品嫩草影院av在线观看| 精品一区二区三区人妻视频| 男插女下体视频免费在线播放| 精品国产露脸久久av麻豆 | 色噜噜av男人的天堂激情| 欧美丝袜亚洲另类| 日日啪夜夜撸| 男人狂女人下面高潮的视频| 久久久久精品久久久久真实原创| 亚洲国产精品国产精品| 国产成年人精品一区二区| 成人欧美大片| 中国国产av一级| 成人高潮视频无遮挡免费网站| videossex国产| 亚洲第一区二区三区不卡| 国产老妇伦熟女老妇高清| 又粗又爽又猛毛片免费看| 国产单亲对白刺激| 国产精品av视频在线免费观看| 国产色爽女视频免费观看| 国产成人福利小说| 国产午夜精品论理片| 日韩av在线大香蕉| 成年女人看的毛片在线观看| 国产精品一区www在线观看| 美女大奶头视频| 国产探花在线观看一区二区| 亚洲五月天丁香| 蜜臀久久99精品久久宅男| 国产成人精品一,二区| 女人十人毛片免费观看3o分钟| 亚洲精品乱码久久久久久按摩| 直男gayav资源| 免费大片18禁| 男的添女的下面高潮视频| 亚洲国产精品国产精品| 视频中文字幕在线观看| 边亲边吃奶的免费视频| 高清毛片免费看| 美女xxoo啪啪120秒动态图| 1000部很黄的大片| 色尼玛亚洲综合影院| 观看美女的网站| 中文天堂在线官网| 99久久人妻综合| 少妇裸体淫交视频免费看高清| 久久久久久九九精品二区国产| 午夜久久久久精精品| 两个人视频免费观看高清| 欧美又色又爽又黄视频| 亚洲在线观看片| 日韩av在线大香蕉| 欧美日本亚洲视频在线播放| 免费人成在线观看视频色| 午夜老司机福利剧场| 精品久久久久久久久亚洲|