• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Alkyl Chain Engineering of Bithiophene Imide-based Polymer Donor for Organic Solar Cells

    2023-10-10 03:29:32BAIYuanqingZHANGJiabinLIUChunchenHUZhichengZHANGKaiHUANGFei
    關(guān)鍵詞:酰亞胺側(cè)鏈噻吩

    BAI Yuanqing, ZHANG Jiabin, LIU Chunchen, HU Zhicheng, ZHANG Kai, HUANG Fei

    Alkyl Chain Engineering of Bithiophene Imide-based Polymer Donor for Organic Solar Cells

    BAIYuanqing#, ZHANGJiabin#, LIUChunchen*, HUZhicheng, ZHANGKai, HUANGFei*

    (,,,510640,)

    Two polymer donor materials, namely pBDT-BTI-EH and pBDT-BTI-ME, were synthesized by copolymerizing benzodithiophene(BDT) unit with bithiophene imide(BTI) unit containing 2-ethylhexyl and methyl alkyl side chains, respectively. Compared to pBDT-BTI-EH∶Y6 based organic solar cells(OSCs), the pBDT-BTI-ME∶Y6-based device exhibited higher charge mobilities, reduced charge recombination, more efficient exciton dissociation, and favorable film morphology, which leaded to increased short current density(sc), fill factor(FF) and thus a significant improvement in power conversion efficiency(PCE) from 9.31% to 15.69%.

    Organic solar cell; Polymer donor; Bithiophene imide; Alkyl chain engineering

    1 Introduction

    As a promising strategy for harnessing clean and renewable solar energy, organic solar cells(OSCs) have garnered significant attention over the past three decades due to the characteristics of lightweight, excellent mechanical flexibility, and potential for roll-to-roll processing at room temperature[1—7]. Recently, the power conversion efficiency(PCE) of OSCs has been improved to 19%[8—13]as a result of the long-term efforts in the innovation of molecular structure[14—18], optimization of processing methods[19—21], and strengthened understanding of device physics[22,23]. One of the critical factors in enhancing the PCE of OSCs lies in the design of novel structures for the donor and acceptor materials in the active layer. Since 2019, Yuan.[24]have synthesized a novel narrow bandgap non-fullerene small molecule acceptor, named Y6, to combine with a wide bandgap(WBG) polymer donor known as PM6 for preparing OSCs with a high PCE of 15.7%. In an effort to further improve the PCE, extensive research has been conducted on Y6, and its derivatives with different end groups[25—27], side chains[28—32], and central electron-withdrawing units[33—36]. However, the choice of WBG polymer donors that exhibit complementary absorption and matching energy levels with Y6 and its derivatives remains limited. In 2020, Ding.[37]developed a novel WBG polymer donor, named D18, which significantly increased the PCE of Y6 acceptor-based OSCs to 18%. These breakthroughs suggest that the development of new WBG polymer donors holds great potential for further improving the PCE of OSCs. Consequently, it is imperative to continue exploring high-performance WBG polymer donors that are well compatible with non-fullerene acceptors.

    Efficient WBG polymer donors commonly employ a backbone consisting of alternating electron-donating(D) and electron-accepting(A) building blocks. By adjusting the D and A units, the absorption, optical bandgaps, frontier molecular orbital energies, and hole mobilities of D-A-structrual WBG polymer donors can be easily tuned through the intramolecular charge transfer(ICT) effects and intermolecular D-A interactions[38—41]. Among these polymer donors, benzodithiophene(BDT) has been the most commonly used D unit to construct highly efficient WBG polymer donors such as D18[37], PBDB-T[42], PM6[24], PTzBI[43], PBQ6[44]with various A units, respectively, including 1,3-bis(thiophen-2-yl)-5,7-bis(2-ethylhexyl)benzo-[1,2-c∶ 4,5-c′]dithiophene-4,8-dione(BDD), imide functionalized benzotriazole(TzBI), quinoxaline(Qx). The bithiophene imide(BTI) unit can serve as a promising A building block for constructing organic semiconductors in organic field-effect transistors[45—47], polymer solar cells[48—50], perovskite solar cells[51, 52]and organic thermoelectric[53]due to its planar structure and strong electron-withdrawing capabilities. In addition to modifying the backbone with different D and A units, side chain engineering can also modulate the optoelectronic properties of WBG polymer donors. Adjustable side chains in D units, A units, or-spacers enable the modulation of solubility, absorption spectra, and electronic properties of WBG polymer donors. Moreover, side chain engineering could significantly influence the blend morphology and domain size of the bulk heterojunction[54], thus optimizing the photovoltaic properties of OSCs.

    In this study, we synthesized two WBG polymer donors, namely pBDT-BTI-EH and pBDT-BTI-ME, with BDT as the D unit and BTI with varying lengths of side chains as the A unit. Both pBDT-BTI-EH and pBDT-BTI-ME exhibited similar optical and electronic properties. Notably, it was observed that a significant improvement in the PCE of OSCs, from 9.3% to 15.69%, by shorting the alkyl side chains of BTI units from 2-ethylhexyl to methyl. The investigations revealed that this PCE improvement can be mainly attributed to the resulting tighter molecular packing, which enhanced the charge mobility and charge dissociation within active layer. These findings emphasize the importance of rational design and fine-tuning of alkyl side chains in the polymer donor, as they can directly affect the morphology of active layers and eventually play a crucial role in controlling the photovoltaic performance of OSCs.

    2 Experimental

    2.1 Materials and Measurements

    The commercial BDT-based monomers, specifically{4,8-bis[5-(2-ethylhexyl) thiophen-2-yl] benzo [1,2-b∶4,5-b′]dithiophene-2,6-diyl}bis(trimethylstannane)(BDT-DSn) were purchased from Derthon Inc and used as received without further purification. Other chemicals and solvents were purchased from Energy Chemical Co., SunaTech Co., Aladdin Co., J&K Co., etc. and were used without further purification.

    The1H NMR and13C NMR spectra were analyzed using a Bruker AV-500 MHz spectrometer. The analysis was conducted using deuterated chloroform(CDCl3) as the solvent at a temperature of 298 K. Tetramethylsiloxane(TMS) was used as the internal standard reference(=0).

    The number average molecular weights(n) and polydispersity index(PDI) of copolymers were measured by an Agilent Technologies PL-GPC220 high-temperature chromatograph with polystyrene as the internal standard.

    The thermogravimetric(TGA) measurement was performed using NETZSCH TG209F3 equipment under a nitrogen(N2) atmosphere, with a heating rate of 10 ℃/min.

    The UV-Vis absorption spectra and temperature-dependent absorption spectra were carried out on a PerkinElmer-Lambda 365 UV-visible spectrophotometer in dilute CB solution, with a temperature range of 20—100 ℃.

    Cyclic voltammetry(CV) measurements were performed using a CHI660E electrochemical workstation(Shanghai Chenhua Instrument Company Limited), with a saturated calomel reference electrode, a platinum wire counter electrode, a glass carbon working electrode, and 0.1 mol/L tetrabutylammonium hexafluorophosphate(-Bu4NPF6) as electrolyte.

    The surface roughness of the blend film was tested by Bruker Innova atomic force microscope(AFM).

    The transmission electron microscopy(TEM) images were obtained by using JEOL JEM?2100F field emission electron microscope.

    2.2 Synthesis Routes of Monomers and Copolymers

    2,2′-Bithiophene-3,3′-dicarboxylic anhydride(compound 1)[55],-(2-ethylhexyl)-2,2′-bithiophene-3,3′- dicarboximide(compound 2a)[56],-(2-ethylhexyl)-5,5′-dibromo-2,2′-bithiophene-3,3′-dicarboximide(compound 3a)[56], trimethyl[4-(2-butyloctyl)thiophen-2-yl]stannane[57]and copolymer pBDT-BTI-ME[58]were synthesized according to the previously reported procedures. Detailed synthesis procedures of monomers and polymers are provided as follows(Scheme 1).

    Scheme 1Synthetic routes of copolymers

    Synthesis of 2,8-bis[4-(2-butyloctyl)thiophen-2-yl]-5-(2-ethylhexyl)-4H-dithieno[3,2-c:2',3'-e]azepine-4,6(5H)-dione(4a). In a 50 mL two-necked flask, compound 3a(300 mg, 0.6 mmol) and trimethyl[4-(2-butyloctyl)thiophen-2-yl]stannane(748 mg, 1.8 mmol) were dissolved in 20 mL toluene. The solution was degassed three times, and then Pd(PPh3)4(70 mg, 0.06 mmol) was added under the protection of nitrogen. The reaction was refluxed overnight. After removing the solvent, the crude product was purified by silica gel column chromatography(dichloromethane∶petroleum ether=1∶4) to obtain compound 4a as an orange oil (420 mg, 83%).

    1H NMR(500 MHz, CDCl3),: 7.76(s, 2H), 7.05(s, 2H), 6.88(s, 2H), 4.31—4.19(m, 2H), 2.53 (d, 4H), 1.89—1.84(m, 1H), 1.63—1.59(m, 2H), 1.37—1.27(m, 40H), 0.93—0.87(m, 18H).13C NMR(125 MHz, CDCl3),: 161.84, 143.35, 136.34, 135.14, 134.68, 133.51, 128.28, 127.15, 122.06, 49.15, 38.86, 37.86, 34.92, 33.31, 33.00, 31.92, 30.83, 29.69, 28.88, 28.74, 26.61, 24.11, 23.15, 23.04, 22.71, 14.17, 14.15, 14.13, 10.74.

    Compound 4b was prepared according to the similar procedures of compound 4a.

    1H NMR(500 MHz, CDCl3),: 7.77(s, 2H), 7.05(s, 2H), 6.89(s, 2H), 3.60(s, 3H), 2.53(d, 4H), 1.64—1.59(m, 2H), 1.23—1.27(m, 32H), 0.91—0.87(m, 12H).13C NMR(125 MHz, CDCl3),: 161.62, 143.38, 136.43, 135.42, 134.60, 133.05, 128.08, 127.23, 122.13, 38.85, 34.92, 33.30, 33.06, 32.99, 31.92, 29.69, 28.87, 26.60, 23.05, 22.71, 14.17, 14.15.

    Synthesis of 2,8-bis[5-bromo-4-(2-butyloctyl)thiophen-2-yl]-5-(2-ethylhexyl)-4H-dithieno[3,2-c∶2′,3′-e]azepine-4,6(5H)-dione(5a).

    In a 50 mL two-necked flask, compound 4a(420 mg, 0.5 mmol) was dissolved in 30 mL chloroform, then-bromosuccinimide(178 mg, 1 mmol) was added and the reaction was stirred overnight at room temperature. After removing the solvent, the crude product was purified by silica gel column chromatography(dichloromethane∶petroleum ether=1∶2) to obtain compound 5a as an orange oil(410 mg, 82%).

    1H NMR(500 MHz, CDCl3),: 7.71(s, 2H), 6.90(s, 2H), 4.31—4.18(m, 2H), 2.49(d, 4H), 1.90—1.79(m, 1H), 1.66(s, 2H), 1.36—1.22(m, 40H), 0.94—0.86(m,18H).13C NMR(125 MHz, CDCl3),: 160.25, 141.64, 134.14, 133.83, 133.32, 132.54, 127.46, 125.42, 109.86, 48.06, 37.50, 36.77, 33.15, 32.28, 32.00, 30.90, 29.80, 28.68, 27.74, 27.67, 25.48, 23.07, 22.14, 22.03, 21.70, 13.13, 13.11, 9.68.

    Compound 5b was prepared according to the similar procedures of compound4a.

    1H NMR(500 MHz, CDCl3, ppm),: 7.70(s, 2H), 6.89(s, 2H), 3.59(s, 3H), 2.48(d, 4H), 1.70—1.62(m, 2H), 1.32—1.25(m, 32H), 0.91—0.87(m, 12H).13C NMR(125 MHz, CDCl3),: 161.38, 142.77, 135.39, 135.34, 134.28, 133.21, 128.40, 126.67, 110.98, 38.54, 34.20, 33.30, 33.07, 33.02, 31.90, 29.67, 28.76, 26.50, 23.04, 22.70, 14.14.

    Synthesis of polymer pBDT-BTI-EH. Compound 5a(100.6 mg, 0.10 mmol), BDT-DSn(90.5 mg, 0.10 mmol) and 2 mL chlorobenzene were added into a 15 mL Schlenk tube. Then Pd2(dba)3(2.7 mg, 0.003 mmol) and P(-Tol)3(9.1 mg, 0.03 mmol) were added into the tube under the protection of nitrogen. The reaction was refluxed for 36 h. After cooling to room temperature, the reaction solution was added dropwise to 150 mL of methanol. The precipitate was further extracted by Soxhlet extraction using acetone,-hexane, dichloromethane, and chloroform in sequence. The chloroform solution was concentrated and precipitated into methanol to give pBDT-BTI-EH as a purple-dark solid(78 mg, 55%). Thenfor pBDT-BTI-EH is 27100, with a PDI of 1.67.

    Polymer pBDT-BTI-ME was prepared according to the similar procedures of pBDT-BTI-EH, in which the compound 5a was replaced by 5b. Thenfor pBDT-BTI-ME is 37900, with a PDI of 1.88.

    2.3 Device Preparation of OSCs

    The optimal OSCs with conventional device architecture of ITO/PEDOT∶PSS/active layer/PNDIT-F3N-Br/Ag were fabricated(Fig.1). First, PEDOT∶PSS was spin-coated(3500 r/min for 30 s) on the top of a cleaned ITO and annealed in air at 150 ℃ for 15 min to form a thin film of about 40 nm. Subsequently, optimized OSCs were prepared by using a mass ratio of polymer donor∶Y6=1∶1.2(polymer donor:6 mg/mL) with chloroform as processing solvent and 0.5%(volume fraction) 1-chloronaphthalene(CN) as solvent additive. Then the devices were thermally annealed at 100 ℃ for 10 min in a nitrogen protected glove-box. After that, a 10 nm PNDIT-F3N-Br layer was formed by spin-coating. Finally, a 100 nm Ag layer was deposited by thermal vacuum evaporation.

    Fig.1 Device structure of OSCs

    3 Results and Discussions

    The molecular structures of polymer donors pBDT-BTI-EH and pBDT-BTI-ME with different lengths of side chains are shown in Fig.2(A) and (B). The polymer donor pBDT-BTI-EH demonstrates good solubility in chloroform(CF), chlorobenzene(CB), and-dichlorobenzene(-DCB) at room temperature. On the other hand, the polymer donor pBDT-BTI-ME with the shorter alkyl chain can be soluble in CB and-DCB. Thenand PDI of pBDT-BTI-EH were determined to be 27100 and 1.67, respectively, while pBDT-BTI-ME exhibited annof 37900 and a PDI of 1.88(Fig.S1, see the Supporting Information of this paper), as measured by high-temperature gel permeation chromatography(GPC). Furthermore, the 5% thermal weight decomposition temperatures(d) of pBDT-BTI-EH and pBDT-BTI-ME were found to be 406 ℃ and 432 ℃, respectively(Fig.S2, see the Supporting Information of this paper), indicating excellent thermal stability for both copolymers.

    Fig.2 Chemical structures of pBDT?BTI?EH(A) and pBDT?BTI?ME(B)

    Fig.3 Normalized UV?Vis absorption spectra of pBDT?BTI?EH and pBDT?BTI?ME in chloroform solutions(A) and as thin films(B), temperature?dependent absorption spectra of pBDT?BTI?ME(C) and pBDT?BTI?EH(D) in chlorobenzene solution, cyclic voltammetry curves of polymer pBDT?BTI?EH and pBDT?BTI?ME(E) and energy level diagram of pBDT?BTI?EH, pBDT?BTI?ME and Y6(F)

    Table 1 Optical properties and energy levels of pBDT-BTI-EH and pBDT-BTI-ME

    To further investigate the aggregation behaviors of two polymers, temperature-dependent UV-Vis absorption spectra of pBDT-BTI-ME and pBDT-BTI-EH in CB solutions were tested within a temperature range of 20—100 ℃. As depicted in Fig.3(C) and (D), the 0-0 peak observed in both pBDT-BTI-EH and pBDT-BTI-ME gradually diminished as the temperature increased, accompanied by a blue shift of the ICT peak. It indicates that the increase of temperature can disrupt the aggregation of the polymer chains. Notably, even when heated to 100 ℃, the 0-0 peak of pBDT-BTI-ME was not completely disappeared, while no 0-0 peak could be observed for pBDT-BTI-EH at about 80 ℃. These findings suggested that the polymer pBDT-BTI-ME with shorter side chains exhibits stronger aggregation behavior than pBDT-BTI-EH with longer side chains.

    The highest occupied molecular orbital(HOMO) energy levels and the lowest unoccupied molecular orbital(LUMO) energy levels were estimated by cyclic voltammetry(CV) test. The CV curves are shown in Fig.3(E) and the corresponding HOMO/LUMO energy levels are summarized in Table 1. The HOMO/LUMO energy levels of ?5.52/?3.56 eV and ?5.51/?3.58 eV are determined for pBDT-BTI-EH and pBDT-BTI-ME, respectively. These energy levels are well matched with that of the non-fullerene acceptor Y6[Fig.4 and Fig.3(F)], affording the sufficient driving force for exciton dissociation.

    Fig.4 Chemical structure of Y6

    OSCs were constructed based on a conventional device structure of ITO/PEDOT∶PSS/polymer donor∶Y6/PNDIT-F3N-Br/Ag(Fig.1) to investigate the photovoltaic performance of polymer donors with different alkyl side chains. Several factors, including solvent additives, spin-casting rates, donor: acceptor mass ratios, and annealing temperatures, were considered to optimize the photovoltaic performance of OSCs. Photovoltaic parameters of OSCs by optimization processes were shown in Table S1—Table S3(see the Supporting Information of this paper), while the optimized photovoltaic parameters of pBDT-BTI-EH/pBDT-BTI-ME based devices are listed in Table 2. Optimized OSCs were prepared by using a mass ratio of polymer donor∶Y6=1∶1.2(polymer donor: 6 mL) with CF as processing solvent and 0.5%(volume fraction) CN as a solvent additive. The devices were then thermally annealed at 100 ℃ for 10 min. The current density-voltage(-) characteristics of the optimized devices are shown in Fig.5(A). The optimized devices based on pBDT-BTI- EH∶Y6 exhibited a PCE of 9.31% with aOCof 0.87 V, aSCof 18.66 mA/cm2, and an FF of 56.43%. In contrast, due to the better charge transport and exciton dissociation properties, a much-enhancedSCof 25.48 mA/cm2and an FF of 73.20% were achieved for pBDT-BTI-ME based OSCs, leading to a remarkably higher PCE of 15.69%. Fig.5(B) illustrates the external quantum efficiency(EQE) spectra of pBDT-BTI-ME and pBDT-BTI-EH-based devices, both of which exhibited a broad photo-response from 300 nm to 900 nm. Furthermore, the EQE responses of pBDT-BTI-ME-based devices were much higher than that of pBDT-BTI-EH-based devices from 400 nm to 800 nm. The integratedSCvalues of pBDT-BTI-ME and pBDT-BTI-EH-based devices from the EQE spectra were 24.43 and 18.33 mA/cm2, respectively, which were consistent with those obtained from-characteristics within 5% deviation.

    Table 2 Photovoltaic parameters of the optimized devices

    Fig.5 J?V curves(A), EQE spectra(B), the curves of JSCvs. light intensity(C) and Jphvs. Veff curves of pBDT?BTI?EH and pBDT?BTI?ME based devices(D)

    To gain more insights into the enhanced PCE, exciton dissociation probabilities, charge recombination behaviors, and charge transport abilities were explored. TheSCandOCvaluesthe incident light intensity(light) were investigated to analyze the charge recombination mechanisms in devices. The relationship betweenSCandlightcan be correlated toSC∝light, where the exponential factor() indicates the degree of bimolecular recombination[59]. A value ofcloser to 1 indicates reduced bimolecular recombination. As shown in Fig.5(C), the α values of pBDT-BTI-EH and pBDT-BTI-ME-based devices were 0.94 and 0.98, respectively. This suggests that the pBDT-BTI-Me-based devices exhibited less bimolecular recombination, which was consistent with their higherSCand FF. To further understand the charge recombination mechanism in devices, the relationship betweenOCandlightwas studied, which could be described asOC∝klnlight[60]. A value ofcloser to 1 indicates reduced trap-assisted recombination. As shown in Fig.S3(see the Supporting Information of this paper), thevalues of pBDT-BTI-ME and pBDT-BTI-EH-based devices were 1.53 and 1.86, respectively. This indicates that the pBDT-BTI-ME-based devices exhibited less trap-assisted recombination.

    The relationship between photocurrent density(ph) and effective voltage(eff) was investigated to further explore the exciton dissociation probabilities in devices. As shown in Fig.5(D), thephis defined asph=L?D, whereLandDrepresent the current densities of devices under AM 1.5G illumination and dark conditions, respectively. Theeffis defined aseff=0?bias, where0is the voltage whenph=0 mA/cm2andbiasis the applied bias voltage. The exciton dissociation probability(E,T) can be calculated from the equation(E,T)=ph,SC/sat, wheresatis the saturation photocurrent density at a high value ofeff>2 V andph,SCis the photocurrent density under short-circuit condition[61]. The calculated(E,T) of pBDT-BTI-EH and pBDT-BTI-ME-based devices were 71.4% and 96.3%, respectively. This indicates that the pBDT-BTI-ME based devices exhibited more efficient exciton dissociation, which is also consistent of the changing trend ofSCvalues. It is worth noting that thephof pBDT-BTI-EH-based devices does not saturate toat largeeffbut rather increases with largeeff, whereis the elementary charge,is the charge generation rates andis the thickness of the active layer. This fact was attributed to the electric field-dependent, which may be caused by the separation of geminate electron-hole pairs under a strong electric ?eld[61—63].

    To further understand the effect of different lengths of alkyl side chains on the charge transport capabilities, space-charge-limited current(SCLC) method was employed to obtain hole mobilities(h) and electron mobilities(e) of the blend films by fabricating electron-only and hole-only devices. The results were shown in Fig.S4(see the Supporting Information of this paper) and Table 2. The hole mobilities and electron mobilities of pBDT-BTI-ME-based device were 8.98×10?3cm2·V?1·s?1and 2.35×10?3cm2·V?1·s?1, respectively, which were much higher than those of pBDT-BTI-EH-based devices(h=1.33×10?3cm2·V?1·s?1ande=2.11×10?4cm2·V?1·s?1). The shorter alkyl chain in polymer donor pBDT-BTI-ME might induce stronger intermolecular interactions, resulting in a substantial increase in the charge mobilities. Furthermore, the pBDT-BTI-ME-based devices showed more balanced charge mobility(h/e=3.82) than that of pBDT-BTI-EH-based ones (h/e=6.30), which correlated with higher FF andSC.

    The morphology of the active layer was investigated by AFM and transmission electron microscopy(TEM) to further explore the effects of the alkyl side chain on the microstructure within blend films. The AFM images of the pBDT-BTI-ME and pBDT-BTI-EH-based device are shown in Fig.6(A) and (B), and the root-mean-square roughness(q) of pBDT-BTI-ME∶Y6 and pBDT-BTI-EH∶Y6 blend films were determined to be 5.29 and 11.7 nm, respectively. In comparison, the pBDT-BTI-ME∶Y6 blend film exhibited a smoother surface. Fig.6(C) and(D) represent the TEM images of pBDT-BTI-ME∶Y6 and pBDT-BTI-EH∶Y6 blend films, respectively. In comparison, the pBDT-BTI-ME∶Y6 film exhibited a continuous and interpenetrated fibrous network with appropriate phase separation, which might be beneficial for charge transport and dissociation.

    Fig.6 AFM images(A, B) and TEM images(C, D) of pBDT?BTI?ME∶Y6(A, C) and pBDT?BTI?EH∶Y6(B, D)

    4 Conclusions

    In this work, polymer donors pBDT-BTI-EH and pBDT-BTI-ME were constructed to investigate the effect of varying lengths of alkyl side chains on the photovoltaic properties. By altering the length of the alkyl side chains from 2-ethylhexyl to methyl, the intermolecular aggregation and packing could be strengthened. As fabricated into OSCs, the devices based on pBDT-BTI-ME∶Y6 exhibited higher and more balanced electron mobility, more effective exciton dissociation,lower charge recombination and more favorable film morphology, which collectively contributed to as significant increase in the PCE from 9.31% to 15.69%. This study underscores the importance of thoughtful design and precise tuning of alkyl side chains in polymer donors for high performance OSCs.

    The supporting information of this paper see http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20230271.

    [1] Lu L., Zheng T., Wu Q., Schneider A. M., Zhao D., Yu L.,,2015,(23), 12666—12731

    [2] Zhang G., Zhao J., Chow P. C. Y., Jiang K., Zhang J., Zhu Z., Zhang J., Huang F., Yan H.,,2018,(7), 3447—3507

    [3] Li Y.,,2012,(5), 723—733

    [4] Zhang G., Lin F. R., Qi F., Heumüller T., Distler A., Egelhaaf H. J., Li N., Chow P. C. Y., Brabec C. J., Jen A. K. Y., Yip H. L.,,2022,(18), 14180—14274

    [5] Yao H., Hou J.,,2022,(37), e202209021

    [6] Huang F., Bo Z. S., Geng Y. H., Wang X. H., Wang L. X., Ma Y. G., Hu W. P., Pei J., Dong H. L., Wang S. Li Z., Shuai Z. G., Li Y. F, Cao Y.,,2019,(10), 988—1046(黃飛,薄志山,耿延候,王獻(xiàn)紅,王利祥,馬於光,侯劍輝,胡文平,裴堅(jiān),董煥麗,王樹(shù),李振,帥志剛,李永舫,曹鏞. 高分子學(xué)報(bào),2019,(10), 988—1046)

    [7] Liu C., Bai Y., Hu Z., Huang F.,,2022,(11), 1948—2000

    [8] Cui Y., Xu Y., Yao H., Bi P., Hong L., Zhang J., Zu Y., Zhang T., Qin J., Ren J., Chen Z., He C., Hao X., Wei Z., Hou J.,,2021,(41), 2102420

    [9] Chong K., Xu X., Meng H., Xue J., Yu L., Ma W., Peng Q.,,2022,(13), 2109516

    [10] Zhu L., Zhang M., Xu J., Li C., Yan J., Zhou G., Zhong W., Hao T., Song J., Xue X., Zhou Z., Zeng R., Zhu H., Chen C. C., MacKenzie R. C. I., Zou Y., Nelson J., Zhang Y., Sun Y., Liu F.,,2022,(6), 656—663

    [11] Pang B., Liao C., Xu X., Yu L., Li R., Peng Q.,,2023,(21), 2300631

    [12] Fu J., Fong P. W. K., Liu H., Huang C. S., Lu X., Lu S., Abdelsamie M., Kodalle T., Sutter?Fella C. M., Yang Y., Li G.,,2023,(1), 1760

    [13] Wang J., Wang Y., Bi P., Chen Z., Qiao J., Li J., Wang W., Zheng Z., Zhang S., Hao X., Hou J.,,2023,(25), 2301583

    [14] Li S., Li C. Z., Shi M., Chen H.,,2020,(5), 1554—1567

    [15] Yao H., Wang J., Xu Y., Zhang S., Hou J.,,2020,(4), 822—832

    [16] Mishra A.,,2020,(12), 4738—4793

    [17] Liu Y., Liu B., Ma C. Q., Huang F., Feng G., Chen H., Hou J., Yan L., Wei Q., Luo Q., Bao Q., Ma W., Liu W., Li W., Wan X., Hu X., Han Y., Li Y., Zhou Y., Zou Y., Chen Y., Li Y., Chen Y., Tang Z., Hu Z., Zhang Z. G., Bo Z.,,2022,(2), 224—268

    [18] Song A., Huang Q., Zhang C., Tang H., Zhang K., Liu C., Huang F., Cao Y.,,2023,(8), 082202

    [19] Park S.,Kim T., Yoon S., Koh C. W., Woo H. Y., Son H. J.,,2020,(51), 2002217

    [20] Li Z., Ying L., Zhu P., Zhong W., Li N., Liu F., Huang F., Cao Y.,,2019,(1), 157—163

    [21] Liu Y., Liu B., Ma C. Q., Huang F., Feng G., Chen H., Hou J., Yan L., Wei Q., Luo Q., Bao Q., Ma W., Liu W., Li W., Wan X., Hu X., Han Y., Li Y., Zhou Y., Zou Y., Chen Y., Liu Y., Meng L., Li Y., Chen Y., Tang Z., Hu Z., Zhang Z. G., Bo Z.,,2022,(8), 1457—1497

    [22] Dong Y., Cha H.,Bristow H. L., Lee J., Kumar A., Tuladhar P. S., McCulloch I., Bakulin A. A., Durrant J. R.,,2021,(20), 7599—7603

    [23] Karuthedath S., Gorenflot J., Firdaus Y., Chaturvedi N., De Castro C. S. P., Harrison G. T., Khan J. I., Markina A., Balawi A. H., Pe?a T. A. D., Liu W., Liang R. Z., Sharma A., Paleti S. H. K., Zhang W., Lin Y., Alarousu E., Anjum D. H., Beaujuge P. M., De Wolf S., McCulloch I., Anthopoulos T. D., Baran D., Andrienko D., Laquai F.,,2021,(3), 378—384

    [24] Yuan J., Zhang Y., Zhou L., Zhang G., Yip H. L., Lau T. K., Lu X., Zhu C., Peng H., Johnson P. A., Leclerc M., Cao Y., Ulanski J., Li Y., Zou Y.,,2019,(4), 1140—1151

    [25] Li S., Zhan L., Jin Y., Zhou G., Lau T. K., Qin R., Shi M., Li C. Z., Zhu H., Lu X., Zhang F., Chen H.,,2020,(24), 2001160

    [26] Luo Z., Ma R., Chen Z., Xiao Y., Zhang G., Liu T., Sun R., Zhan Q., Zou Y., Zhong C., Chen Y., Sun H., Chai G., Chen K., Guo X., Min J., Lu X., Yang C., Yan H.,,2020,(44), 2002649

    [27] Lai H., Zhao Q., Chen Z., Chen H., Chao P., Zhu Y., Lang Y., Zhen N., Mo D., Zhang Y., He F.,,2020,(3), 688—700

    [28] Chen Y., Ma R., Liu T., Xiao Y., Kim H. K., Zhang J., Ma C., Sun H., Bai F., Guo X., Wong K. S., Lu X., Yan H.,,2021,(20), 2003777

    [29] Chai G., Chang Y., Zhang J., Xu X., Yu L., Zou X., Li X., Chen Y., Luo S., Liu B., Bai F., Luo Z., Yu H., Liang J., Liu T., Wong K. S., Zhou H., Peng Q., Yan H.,,2021,(6), 3469—3479

    [30] Chen Y., Bai F., Peng Z., Zhu L., Zhang J., Zou X., Qin Y., Kim H. K., Yuan J., Ma L. K., Zhang J., Yu H., Chow P. C. Y., Huang F., Zou Y., Ade H., Liu F., Yan H.,,2021,(3), 2003141

    [31] Li C., Zhou J., Song J., Xu J., Zhang H., Zhang X., Guo J., Zhu L., Wei D., Han G., Min J., Zhang Y., Xie Z., Yi Y., Yan H., Gao F., Liu F., Sun Y.,,2021,(6), 605—613

    [32] Chen S., Hong L., Dong M., Deng W., Shao L., Bai Y., Zhang K., Liu C., Wu H., Huang F.,,2023,(1), 202213869

    [33] Zhu C., Yuan J., Cai F., Meng L., Zhang H., Chen H., Li J., Qiu B., Peng H., Chen S., Hu Y., Yang C., Gao F., Zou Y., Li Y.,,2020,(8), 2459—2466

    [34] Zhou Z., Liu W., Zhou G., Zhang M., Qian D., Zhang J., Chen S., Xu S., Yang C., Gao F., Zhu H., Liu F., Zhu X.,,2020,(4), 1906324

    [35] Liu S., Yuan J., Deng W. Y., Luo M., Xie Y., Liang Q. B., Zou Y. P., He Z. C., Wu H. B., Cao Y.,,2020,(5), 300—305

    [36] Liang H., Chen H., Wang P., Zhu Y., Zhang Y., Feng W., Ma K., Lin Y., Ma Z., Long G., Li C., Kan B., Yao Z., Zhang H., Wan X., Chen Y.,,2023, doi: 10.1002/adfm.202301573

    [37] Liu Q., Jiang Y., Jin K., Qin J., Xu J., Li W., Xiong J., Liu J., Xiao Z., Sun K., Yang S., Zhang X., Ding L.,,2020,(4), 272—275

    [38] Cui C., Li Y.,,2019,(11), 3225—3246

    [39] He K., Kumar P., Yuan Y., Li Y.,,2021,(1), 115—145

    [40] Lee C., Lee S., Kim G. U., Lee W., Kim B. J.,,2019,(13), 8028—8086

    [41] Hu Y., Li L., Wang X., Ma D., Huang F.,,2021,(3), 1017—1019

    [42] Zhao W., Qian D., Zhang S., Li S., Ingan?s, O., Gao, F., Hou, J.,,2016,(23), 4734—4739

    [43] Fan B., Zhang K., Jiang X. F., Ying L., Huang F., Cao Y.,,2017,(21), 1606396

    [44] Zhu C., Meng L., Zhang J., Qin S., Lai W., Qiu B., Yuan J., Wan Y., Huang W., Li Y.,,2021,(23), 2100474

    [45] Wang Y., Yan Z., Guo H., Uddin M. A., Ling S., Zhou X., Su H., Dai J., Woo H. Y., Guo X.,,2017,(48), 15304—15308

    [46] Shi Y., Guo H., Qin M., Zhao J., Wang Y., Wang H., Wang Y., Facchetti A., Lu X., Guo X.,,2018,(10), 1705745

    [47] Feng K., Zhang X., Wu Z., Shi Y., Su M., Yang K., Wang Y., Sun H., Min J., Zhang Y., Cheng X., Woo H. Y., Guo X.,,2019,(39), 35924—35934

    [48] Zhou N., Guo X., Ortiz R. P., Li S., Zhang S., Chang R. P. H., Facchetti A., Marks T. J.,,2012,(17), 2242—2248

    [49] Zhou N., Guo X., Ortiz R. P., Harschneck T., Manley E. F., Lou S. J., Hartnett P. E., Yu X., Horwitz N. E., Burrezo P. M., Aldrich T. J., López Navarrete J. T., Wasielewski M. R., Chen L. X., Chang R. P. H., Facchetti A., Marks T. J.,,2015,(39), 12565—12579

    [50] Sun H., Yu H., Shi Y., Yu J., Peng Z., Zhang X., Liu B., Wang J., Singh R., Lee J., Li Y., Wei Z., Liao Q., Kan Z., Ye L., Yan H., Gao F., Guo X.,,2020,(43), 2004183

    [51] Li B., Yang K., Liao Q., Wang Y., Su M., Li Y., Shi Y., Feng X., Huang J., Sun H., Guo X.,,2021,(21), 2100332

    [52] Chen W., Shi Y., Wang Y., Feng X., Djuri?i? A. B., Woo H. Y., Guo X., He Z.,,2020,, 104363

    [53] Feng K., Guo H., Wang J., Shi Y., Wu Z., Su M., Zhang X., Son J. H., Woo H. Y., Guo X.,,2021,(3), 1539—1552

    [54] Xu J., Feng H., Liang Y., Tang H., Tang Y., Du Z., Hu Z., Huang F., Cao Y.,,2022,, 382—389

    [55] Letizia J. A., Salata M. R., Tribout C. M., Facchetti A., Ratner M. A., Marks T. J.,,2008,(30), 9679—9694

    [56] Guo X., Zhou N., Lou S. J., Hennek J. W., Ponce Ortiz R., Butler M. R., Boudreault P. L. T.,Strzalka J., Morin P. O., Leclerc M., López Navarrete J. T., Ratner M. A., Chen L. X., Chang R. P. H., Facchetti A., Marks T. J.,,2012,(44), 18427—18439

    [57] Wang G., Swick S. M., Matta M., Mukherjee S., Strzalka J. W., Logsdon J. L., Fabiano S., Huang W., Aldrich T. J., Yang T., Timalsina A., Powers?Riggs N., Alzola J. M., Young R. M., DeLongchamp D. M., Wasielewski M. R., Kohlstedt K. L., Schatz G. C., Melkonyan F. S., Facchetti A., Marks T. J.,,2019,(34), 13410—13420

    [58] Bai Y., Zhou Z., Xue Q., Liu C., Li N., Tang H., Zhang J., Xia X., Zhang J., Lu X., Brabec C. J., Huang F.,,2022,(49), 2110587

    [59] Schilinsky P., Waldauf C., Brabec C. J.,,2002,(20),3885—3887

    [60] Koster L. J. A., Mihailetchi V. D., Ramaker R., Blom P. W. M.,,2005,(12), 123509

    [61] Mihailetchi V. D., Koster L. J. A., Hummelen J. C., Blom P. W. M.,,2004,(21), 216601

    [62] Proctor C. M., Kim C., Neher D., Nguyen T. Q.,,2013,(28), 3584—3594

    [63] Jia T., Zhang J., Zhang K., Tang H., Dong S., Tan C. H., Wang X., Huang F.,,2021,(14), 8975—8983

    基于雙噻吩酰亞胺聚合物給體的側(cè)鏈調(diào)控與光伏性能研究

    白原青#,張佳濱#,劉春晨,胡志誠(chéng),張凱,黃飛

    (華南理工大學(xué)發(fā)光材料與器件國(guó)家重點(diǎn)實(shí)驗(yàn)室, 高分子光電材料與器件研究所, 廣州 510640)

    采用苯并二噻吩(BDT)作為給電子單元, 分別與具有2-乙基己基和甲基側(cè)鏈的雙噻吩酰亞胺(BTI)缺電子單元共聚構(gòu)筑了兩個(gè)聚合物給體材料(pBDT-BTI-EH和pBDT-BTI-ME). 與pBDT-BTI-EH∶Y6相比, 基于 pBDT-BTI-ME∶Y6的器件具有更高的電荷遷移率、更低的載流子復(fù)合、更高的激子解離以及更優(yōu)的薄膜形貌, 從而獲得了更高的短路電流密度(SC)和填充因子(FF), 電池的能量轉(zhuǎn)換效率由9.31%提高到15.69%.

    有機(jī)太陽(yáng)電池;聚合物給體;雙噻吩酰亞胺;側(cè)鏈調(diào)控

    O631

    A

    10.7503/cjcu20230271

    2023-06-06

    網(wǎng)絡(luò)首發(fā)日期: 2023-07-79.

    聯(lián)系人簡(jiǎn)介:黃飛, 男, 博士, 教授, 主要從事有機(jī)光電材料及器件研究. E-mail: msfhuang@scut.edu.cn

    劉春晨, 男, 博士, 副研究員, 主要從事有機(jī)光電材料及器件研究. E-mail: mscliu@scut.edu.cn

    國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(批準(zhǔn)號(hào): 2019YFA0705900)、廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究重點(diǎn)項(xiàng)目(批準(zhǔn)號(hào): 2019B030302007)、國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào): U21A6002)和粵港澳光電磁功能材料聯(lián)合實(shí)驗(yàn)室(批準(zhǔn)號(hào): 2019B121205002)資助.

    Supported by the National Key Research and Development Program of China(No.2019YFA0705900), the Basic and Applied Basic Research Major Program of Guangdong Province, China(No.2019B030302007), the National Natural Science Foundation of China(No.U21A6002) and the Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, China(No.2019B121205002).

    # 共同第一作者.

    (Ed.: V, K, S)

    猜你喜歡
    酰亞胺側(cè)鏈噻吩
    基于側(cè)鏈技術(shù)及優(yōu)化DPoS機(jī)制的電能交易模型
    酞菁鋅的側(cè)鏈修飾及光動(dòng)力活性研究
    改性雙馬來(lái)酰亞胺樹(shù)脂預(yù)浸料性能研究
    含聚醚側(cè)鏈?zhǔn)嵝途埕人猁}分散劑的合成及其應(yīng)用
    雙馬來(lái)酰亞胺對(duì)丙烯酸酯結(jié)構(gòu)膠的改性研究
    探討醫(yī)藥中間體合成中噻吩的應(yīng)用
    4,7-二噻吩-[2,1,3]苯并硒二唑的合成及其光電性能
    紫杉醇C13側(cè)鏈的硒代合成及其結(jié)構(gòu)性質(zhì)
    EG/DMMP阻燃聚氨酯-酰亞胺泡沫塑料的研究
    直接合成法制備載銀稻殼活性炭及其對(duì)苯并噻吩的吸附
    欧美丝袜亚洲另类 | 99热这里只有精品一区 | 哪里可以看免费的av片| 久久亚洲精品不卡| 欧美av亚洲av综合av国产av| 欧美黑人精品巨大| 国产伦人伦偷精品视频| 三级毛片av免费| 中文字幕久久专区| 中文亚洲av片在线观看爽| 啦啦啦免费观看视频1| 视频区欧美日本亚洲| 夜夜爽天天搞| 成熟少妇高潮喷水视频| 欧美精品啪啪一区二区三区| 无遮挡黄片免费观看| 欧美日韩中文字幕国产精品一区二区三区| 真人一进一出gif抽搐免费| 国产精品永久免费网站| 老熟妇乱子伦视频在线观看| 亚洲成人中文字幕在线播放| 淫秽高清视频在线观看| 嫁个100分男人电影在线观看| 亚洲免费av在线视频| 成人精品一区二区免费| 天天躁夜夜躁狠狠躁躁| 黄色视频不卡| 麻豆成人午夜福利视频| 精品国内亚洲2022精品成人| 老汉色∧v一级毛片| 午夜免费观看网址| 又大又爽又粗| 天堂影院成人在线观看| 在线a可以看的网站| 最好的美女福利视频网| 中文字幕熟女人妻在线| 欧美人与性动交α欧美精品济南到| 亚洲一区高清亚洲精品| 欧美中文综合在线视频| xxx96com| 精品国产超薄肉色丝袜足j| 日韩精品免费视频一区二区三区| 亚洲av熟女| 国内精品久久久久久久电影| 国产激情偷乱视频一区二区| 国内少妇人妻偷人精品xxx网站 | av在线天堂中文字幕| 1024手机看黄色片| 麻豆国产97在线/欧美 | 中文资源天堂在线| 日本黄大片高清| 国产真人三级小视频在线观看| 变态另类丝袜制服| 黄片大片在线免费观看| √禁漫天堂资源中文www| 亚洲午夜理论影院| 99久久久亚洲精品蜜臀av| avwww免费| 国产一区二区三区在线臀色熟女| 99精品在免费线老司机午夜| 欧美性长视频在线观看| 成人av一区二区三区在线看| 日本 av在线| 日韩精品免费视频一区二区三区| 亚洲av电影在线进入| 18禁裸乳无遮挡免费网站照片| 夜夜夜夜夜久久久久| 免费观看精品视频网站| 超碰成人久久| 国产三级在线视频| 国产一区二区激情短视频| 又大又爽又粗| 伦理电影免费视频| 日韩精品中文字幕看吧| 国产高清视频在线播放一区| 在线免费观看的www视频| 国产成人精品久久二区二区91| 国产亚洲av嫩草精品影院| 午夜福利成人在线免费观看| 国产伦一二天堂av在线观看| 国产99白浆流出| 亚洲片人在线观看| 岛国在线免费视频观看| 国产区一区二久久| 一本精品99久久精品77| 高潮久久久久久久久久久不卡| 脱女人内裤的视频| 国产午夜精品论理片| 日本熟妇午夜| 国产亚洲av高清不卡| 悠悠久久av| 国产高清视频在线播放一区| 999久久久精品免费观看国产| 曰老女人黄片| 老熟妇乱子伦视频在线观看| 国产伦一二天堂av在线观看| 99热这里只有是精品50| 一本精品99久久精品77| 91大片在线观看| 国内久久婷婷六月综合欲色啪| 中文字幕精品亚洲无线码一区| www.www免费av| 18禁黄网站禁片免费观看直播| 亚洲va日本ⅴa欧美va伊人久久| 特级一级黄色大片| 午夜福利在线在线| 欧美日韩中文字幕国产精品一区二区三区| 国产精品美女特级片免费视频播放器 | netflix在线观看网站| 亚洲最大成人中文| 亚洲专区字幕在线| 欧美性长视频在线观看| 国产精品乱码一区二三区的特点| 久久久久国产精品人妻aⅴ院| 亚洲欧美日韩高清在线视频| 久久久久久久久免费视频了| 国产片内射在线| 日本在线视频免费播放| 在线播放国产精品三级| 成年女人毛片免费观看观看9| 亚洲成a人片在线一区二区| 色av中文字幕| 香蕉久久夜色| 久久人人精品亚洲av| 国产精品,欧美在线| 亚洲国产精品成人综合色| 99热这里只有精品一区 | 50天的宝宝边吃奶边哭怎么回事| 老司机靠b影院| 丰满人妻一区二区三区视频av | 不卡一级毛片| 国产精品,欧美在线| 99riav亚洲国产免费| 午夜成年电影在线免费观看| 白带黄色成豆腐渣| 在线观看一区二区三区| 一个人观看的视频www高清免费观看 | 国产精品久久视频播放| www.精华液| 99国产精品99久久久久| 国产精品影院久久| 香蕉丝袜av| 成人av在线播放网站| 中文字幕久久专区| 国产亚洲精品av在线| 国产探花在线观看一区二区| 老司机午夜十八禁免费视频| 国产成人av教育| 欧美高清成人免费视频www| 97碰自拍视频| or卡值多少钱| 国产v大片淫在线免费观看| 女人爽到高潮嗷嗷叫在线视频| 日韩精品青青久久久久久| 淫秽高清视频在线观看| x7x7x7水蜜桃| 9191精品国产免费久久| 国产野战对白在线观看| 狠狠狠狠99中文字幕| 久久久久国产一级毛片高清牌| 日韩欧美国产在线观看| 久久婷婷成人综合色麻豆| 国产精品,欧美在线| 日本一二三区视频观看| 黄色a级毛片大全视频| 亚洲成人久久性| 亚洲国产欧洲综合997久久,| 村上凉子中文字幕在线| 久久中文字幕一级| 欧美大码av| 亚洲中文字幕日韩| 在线免费观看的www视频| 欧美色视频一区免费| 91大片在线观看| 亚洲一区二区三区色噜噜| 国产91精品成人一区二区三区| 国产成人影院久久av| 制服人妻中文乱码| 麻豆成人av在线观看| 日韩欧美一区二区三区在线观看| 成人手机av| 精品久久久久久久久久免费视频| 国产精品1区2区在线观看.| 亚洲av中文字字幕乱码综合| 亚洲国产高清在线一区二区三| 天堂动漫精品| 俺也久久电影网| 国产视频内射| 国产精品 欧美亚洲| 看免费av毛片| 91九色精品人成在线观看| 欧美激情久久久久久爽电影| 在线a可以看的网站| 嫩草影视91久久| 欧美av亚洲av综合av国产av| 欧美日本亚洲视频在线播放| 免费在线观看完整版高清| 午夜亚洲福利在线播放| 午夜福利视频1000在线观看| 精品无人区乱码1区二区| 欧洲精品卡2卡3卡4卡5卡区| 9191精品国产免费久久| 国产精品亚洲一级av第二区| 男女午夜视频在线观看| 亚洲无线在线观看| 99在线视频只有这里精品首页| 欧美成人免费av一区二区三区| √禁漫天堂资源中文www| 国产一级毛片七仙女欲春2| 国产精品香港三级国产av潘金莲| 国产精品自产拍在线观看55亚洲| xxxwww97欧美| 观看免费一级毛片| 精品国产亚洲在线| av天堂在线播放| 五月伊人婷婷丁香| 深夜精品福利| 欧美日韩亚洲综合一区二区三区_| 国产成人精品无人区| 好男人在线观看高清免费视频| 成年女人毛片免费观看观看9| 搡老熟女国产l中国老女人| 久久精品91蜜桃| 少妇人妻一区二区三区视频| 岛国视频午夜一区免费看| 亚洲av第一区精品v没综合| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品永久免费网站| 特级一级黄色大片| 欧美+亚洲+日韩+国产| 久久99热这里只有精品18| 亚洲九九香蕉| 国产精品 欧美亚洲| 一区二区三区激情视频| 色播亚洲综合网| 精品久久久久久久久久免费视频| 无遮挡黄片免费观看| 香蕉国产在线看| 亚洲国产欧美网| 亚洲欧美日韩无卡精品| 最近最新免费中文字幕在线| 欧美久久黑人一区二区| 亚洲全国av大片| 久久中文字幕一级| 伦理电影免费视频| 999久久久国产精品视频| 国产黄色小视频在线观看| 欧美国产日韩亚洲一区| 国产精品综合久久久久久久免费| 亚洲精品中文字幕一二三四区| 午夜成年电影在线免费观看| 老汉色∧v一级毛片| 国产一区二区三区在线臀色熟女| 国产精品永久免费网站| 午夜福利在线在线| 国产亚洲欧美在线一区二区| 成人国语在线视频| 日韩免费av在线播放| 香蕉丝袜av| 校园春色视频在线观看| 国产精品综合久久久久久久免费| 精品国产乱码久久久久久男人| 亚洲精品国产一区二区精华液| 久久精品91蜜桃| 黄色视频,在线免费观看| 国产av一区在线观看免费| 精品少妇一区二区三区视频日本电影| 亚洲无线在线观看| √禁漫天堂资源中文www| 悠悠久久av| 性色av乱码一区二区三区2| 久久午夜综合久久蜜桃| 日韩成人在线观看一区二区三区| 男人的好看免费观看在线视频 | 久久婷婷人人爽人人干人人爱| 日韩有码中文字幕| 精品福利观看| 性色av乱码一区二区三区2| 一本精品99久久精品77| 欧美av亚洲av综合av国产av| 无人区码免费观看不卡| 成年版毛片免费区| 国产精品免费一区二区三区在线| 国产日本99.免费观看| 亚洲色图av天堂| 国产不卡一卡二| 精品熟女少妇八av免费久了| 老熟妇乱子伦视频在线观看| 久久中文字幕一级| 脱女人内裤的视频| 国产成年人精品一区二区| 亚洲欧美激情综合另类| 亚洲成人久久性| 成人午夜高清在线视频| 国产1区2区3区精品| 久久这里只有精品中国| 中文字幕精品亚洲无线码一区| 999久久久精品免费观看国产| 欧美日韩乱码在线| 欧美最黄视频在线播放免费| 亚洲精品美女久久久久99蜜臀| 中文字幕精品亚洲无线码一区| 又黄又爽又免费观看的视频| 淫秽高清视频在线观看| www.熟女人妻精品国产| 九色国产91popny在线| 色综合站精品国产| 国产蜜桃级精品一区二区三区| 亚洲av电影在线进入| 一本一本综合久久| 久久久久精品国产欧美久久久| 免费在线观看日本一区| 在线观看免费视频日本深夜| 免费av毛片视频| 啪啪无遮挡十八禁网站| 国产精品久久电影中文字幕| 国产精品亚洲美女久久久| 亚洲全国av大片| 久久精品综合一区二区三区| 女生性感内裤真人,穿戴方法视频| 丝袜人妻中文字幕| www.精华液| 亚洲精品一卡2卡三卡4卡5卡| 美女免费视频网站| 一级片免费观看大全| 久久热在线av| 999久久久精品免费观看国产| 国产精品一及| 久久天躁狠狠躁夜夜2o2o| 很黄的视频免费| 淫妇啪啪啪对白视频| 国产视频一区二区在线看| 久久亚洲精品不卡| 久久精品成人免费网站| 校园春色视频在线观看| 成年版毛片免费区| 1024香蕉在线观看| 久久香蕉激情| 亚洲中文日韩欧美视频| 少妇粗大呻吟视频| 变态另类丝袜制服| 日本一区二区免费在线视频| 日日爽夜夜爽网站| 精品一区二区三区视频在线观看免费| 亚洲片人在线观看| 精品熟女少妇八av免费久了| 看黄色毛片网站| 久久精品夜夜夜夜夜久久蜜豆 | 日韩欧美在线乱码| 天堂√8在线中文| e午夜精品久久久久久久| 亚洲成av人片在线播放无| 嫩草影视91久久| 少妇裸体淫交视频免费看高清 | 亚洲一区二区三区色噜噜| 日韩欧美一区二区三区在线观看| 久久久久国内视频| 天堂影院成人在线观看| 亚洲av五月六月丁香网| 久久亚洲精品不卡| 麻豆av在线久日| 日本一本二区三区精品| 亚洲国产精品合色在线| 草草在线视频免费看| 亚洲七黄色美女视频| 成人亚洲精品av一区二区| 久久香蕉精品热| 99精品欧美一区二区三区四区| 久久久国产成人免费| 精品少妇一区二区三区视频日本电影| 日韩av在线大香蕉| 老熟妇乱子伦视频在线观看| 少妇裸体淫交视频免费看高清 | 在线观看免费视频日本深夜| 母亲3免费完整高清在线观看| 亚洲国产欧美网| 久久精品影院6| 法律面前人人平等表现在哪些方面| 日韩欧美精品v在线| 亚洲成人久久爱视频| 亚洲精品在线美女| 1024视频免费在线观看| 国产精品亚洲一级av第二区| 在线观看午夜福利视频| 中文字幕高清在线视频| 久久人人精品亚洲av| 一级片免费观看大全| 亚洲欧洲精品一区二区精品久久久| 757午夜福利合集在线观看| 草草在线视频免费看| 久久中文字幕一级| 精品日产1卡2卡| 在线a可以看的网站| 丰满人妻一区二区三区视频av | 99国产精品一区二区蜜桃av| 欧美日韩亚洲国产一区二区在线观看| 麻豆成人av在线观看| 国产午夜精品久久久久久| 久99久视频精品免费| 啦啦啦观看免费观看视频高清| www.自偷自拍.com| 日本a在线网址| 国产精品亚洲av一区麻豆| 国产成+人综合+亚洲专区| 亚洲精品一区av在线观看| 51午夜福利影视在线观看| 国产欧美日韩一区二区精品| 日日摸夜夜添夜夜添小说| 免费看a级黄色片| 99在线视频只有这里精品首页| 在线观看免费视频日本深夜| 中亚洲国语对白在线视频| 国产免费男女视频| or卡值多少钱| 精品久久久久久久人妻蜜臀av| 88av欧美| 亚洲天堂国产精品一区在线| 国产欧美日韩一区二区三| 欧美一级毛片孕妇| 女人高潮潮喷娇喘18禁视频| 一级作爱视频免费观看| 国产一区二区三区视频了| 99riav亚洲国产免费| 国产精品98久久久久久宅男小说| 亚洲国产精品成人综合色| 不卡av一区二区三区| 国产一区二区三区在线臀色熟女| 久久久久久久久中文| 午夜福利免费观看在线| 国产99久久九九免费精品| 国产精品久久久人人做人人爽| 国产成人欧美在线观看| 亚洲国产精品999在线| x7x7x7水蜜桃| 精品人妻1区二区| x7x7x7水蜜桃| 日本三级黄在线观看| 日本黄色视频三级网站网址| 亚洲国产欧洲综合997久久,| 成人手机av| 亚洲专区字幕在线| 亚洲专区字幕在线| 一进一出抽搐gif免费好疼| 俺也久久电影网| 成年版毛片免费区| 在线观看免费日韩欧美大片| 999精品在线视频| 亚洲色图 男人天堂 中文字幕| 亚洲 国产 在线| 欧美人与性动交α欧美精品济南到| 日本黄大片高清| 99热6这里只有精品| 日韩欧美国产一区二区入口| 可以在线观看的亚洲视频| 国产三级在线视频| 狂野欧美激情性xxxx| 午夜福利18| 久久伊人香网站| 亚洲精品久久成人aⅴ小说| 午夜成年电影在线免费观看| АⅤ资源中文在线天堂| 日日爽夜夜爽网站| 91成年电影在线观看| 国产成+人综合+亚洲专区| 亚洲人成77777在线视频| 波多野结衣巨乳人妻| 亚洲中文av在线| 国产伦一二天堂av在线观看| 亚洲精品中文字幕一二三四区| 特级一级黄色大片| 久久精品成人免费网站| 妹子高潮喷水视频| 青草久久国产| 黑人巨大精品欧美一区二区mp4| 18美女黄网站色大片免费观看| 精品少妇一区二区三区视频日本电影| 亚洲国产精品成人综合色| 亚洲精品在线美女| 亚洲欧美日韩高清专用| 一进一出抽搐gif免费好疼| 久久这里只有精品19| 久久久久亚洲av毛片大全| av片东京热男人的天堂| 男女午夜视频在线观看| 在线看三级毛片| 亚洲成人精品中文字幕电影| 可以免费在线观看a视频的电影网站| 亚洲专区中文字幕在线| 俺也久久电影网| 婷婷精品国产亚洲av| 久久精品成人免费网站| 女同久久另类99精品国产91| 午夜精品在线福利| 一区二区三区高清视频在线| 香蕉国产在线看| 亚洲专区国产一区二区| 麻豆国产av国片精品| 好男人电影高清在线观看| 三级毛片av免费| 神马国产精品三级电影在线观看 | 精品电影一区二区在线| 日本一区二区免费在线视频| 午夜影院日韩av| 成人三级做爰电影| 国产主播在线观看一区二区| 中文字幕最新亚洲高清| 岛国视频午夜一区免费看| 久久国产精品人妻蜜桃| 99在线人妻在线中文字幕| 久久久久久久久中文| 久久亚洲真实| 国内少妇人妻偷人精品xxx网站 | 757午夜福利合集在线观看| 两性夫妻黄色片| 人人妻,人人澡人人爽秒播| 日本在线视频免费播放| 久久久久久大精品| 手机成人av网站| av福利片在线| 国内揄拍国产精品人妻在线| 丁香六月欧美| 男女视频在线观看网站免费 | 少妇的丰满在线观看| 国产私拍福利视频在线观看| 在线观看舔阴道视频| 这个男人来自地球电影免费观看| 午夜免费成人在线视频| 亚洲天堂国产精品一区在线| 88av欧美| 午夜日韩欧美国产| 女生性感内裤真人,穿戴方法视频| 亚洲 欧美一区二区三区| 国产精品久久久久久亚洲av鲁大| 后天国语完整版免费观看| 亚洲精品一卡2卡三卡4卡5卡| 日本精品一区二区三区蜜桃| 中出人妻视频一区二区| 动漫黄色视频在线观看| 一个人观看的视频www高清免费观看 | 亚洲中文日韩欧美视频| 88av欧美| 国内久久婷婷六月综合欲色啪| 成人国产一区最新在线观看| 亚洲五月婷婷丁香| 欧美日韩瑟瑟在线播放| 久久99热这里只有精品18| 欧美3d第一页| 神马国产精品三级电影在线观看 | 黑人欧美特级aaaaaa片| 一级a爱片免费观看的视频| x7x7x7水蜜桃| 亚洲成人免费电影在线观看| av有码第一页| 香蕉久久夜色| 母亲3免费完整高清在线观看| 老熟妇乱子伦视频在线观看| 亚洲国产精品成人综合色| 国产精品国产高清国产av| 午夜免费激情av| 99久久久亚洲精品蜜臀av| 免费在线观看成人毛片| 搡老岳熟女国产| 日韩欧美国产在线观看| 女生性感内裤真人,穿戴方法视频| 99热这里只有是精品50| 中文字幕人妻丝袜一区二区| 又黄又爽又免费观看的视频| 91国产中文字幕| 男人舔奶头视频| 免费看日本二区| 国产欧美日韩一区二区三| 国产av麻豆久久久久久久| 精品国产乱码久久久久久男人| 搞女人的毛片| 亚洲aⅴ乱码一区二区在线播放 | 非洲黑人性xxxx精品又粗又长| 巨乳人妻的诱惑在线观看| 国产av麻豆久久久久久久| a级毛片在线看网站| 神马国产精品三级电影在线观看 | 九九热线精品视视频播放| 国产亚洲av高清不卡| 久久精品国产99精品国产亚洲性色| 亚洲国产精品sss在线观看| 国产精品 欧美亚洲| АⅤ资源中文在线天堂| 久久久久免费精品人妻一区二区| 国产成人精品无人区| 身体一侧抽搐| 欧美3d第一页| 国产一区二区在线av高清观看| 超碰成人久久| 午夜福利视频1000在线观看| 免费看a级黄色片| 精品久久久久久久久久久久久| 亚洲,欧美精品.| 亚洲一区中文字幕在线| 制服诱惑二区| 村上凉子中文字幕在线| 欧美大码av| a级毛片a级免费在线| 全区人妻精品视频| 国产日本99.免费观看| 男女做爰动态图高潮gif福利片| 亚洲成人久久爱视频| 国产视频一区二区在线看| 久久香蕉激情| av天堂在线播放| 在线播放国产精品三级| 久久久久久大精品| 精品福利观看| 好男人在线观看高清免费视频| 悠悠久久av| 午夜久久久久精精品| 久久久精品欧美日韩精品|