• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fused-benzotriazole Based p-Type Polymers:Fine-tuning on Absorption Band-width and Bandgap via Backbone Thiophene and Selenophene Strategies

    2023-10-10 03:30:16TIANMeiZHANGZhiyangZHANChuanlang
    關(guān)鍵詞:帶隙吡咯噻吩

    TIAN Mei, ZHANG Zhiyang, ZHAN Chuanlang

    Fused-benzotriazole Based p-Type Polymers:Fine-tuning on Absorption Band-width and BandgapBackbone Thiophene and Selenophene Strategies

    TIANMei, ZHANGZhiyang, ZHANChuanlang*

    (,,,010022,)

    Four fused-benzotriazole based p-type polymers(BDT-TT, BDT-Se, BDD-TT, and BDD-Se) were designed and synthesized, and the fine-tuning on absorption band-widths and bandgapsthe backbone selenophene and thiophene strategies were reported. First, we introduced dithienothiophen[3,2-b]pyrrolobenzotriazole to co-polymerize with BDT-2F and synthesized BDT-TT. Then, we used selenophene to replace the thienothiophene units on the dithienothiophen[3,2-b]pyrrolobenzotriazole and synthesized BDT-Se. Compared to BDT-TT, BDT-Se showed a reduced bandgap from 2.0 eV to 1.89 eV. After that, we used BDD to replace BDT-2F and synthesized BDD-TT by co-polymerizing with dithienothiophen[3,2-b]pyrrolobenzotriazole. In comparison to BDT-TT, BDD-TT showed extended absorption band-width with the full-width-at-the-half-maximum(FWHM) increased from 138 nm to 229 nm and reduced bandgap from 2.0 eV to 1.71 eV. At last, we combined BDD and diselenophen[3,2-b]pyrrolobenzotriazole and synthesized BDD-Se, which achieved extended absorption and further reduced bandgap(1.61 eV). Using PC71BM as the electron acceptor material, the organic solar cells fabricated by the four polymers gave the efficiencies of 1%—2%.

    Benzotriazole; Fused-ring; Polymer; Organic solar cell; Bandgap

    1 Introduction

    As a renewable energy technology, organic solar cells(OSCs) have attracted considerable attention due to their advantages of low-cost, light-weight, flexibility, and large-area fabrication[1—7]. Recently, owing to the rapid development of photovoltaic materials and device engineering, the power conversion efficiencies(PCEs) of OSCs have exceeded 19%[8—18].

    In general, the active layer of an OSC consists of a p-type conjugated polymer donor material and an n-type organic electron acceptor material. Compared with the rapid development of non-fullerene acceptor materials, the development of donor materials has been relatively slow, and there are yet only a few donor materials that can be used for preparing high-efficiency OSCs. At present, most of the high-performance polymer donor materials are constructed using the 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b∶4,5-b']dithiophene(BDT) unit as the electron-donating(D) unit[19—25]. This is due to its symmetrical structure of rigid coplanar backbone tending to form highly ordered-stacking for efficient charge transport[26—28]. In all, synthesizing donor polymers has been a central task for developing high-performance OSCs.

    Since the invention of the A-DA'D-A type small-molecule non-fullerene acceptors,., the Y-series[29], big progress in the field of OSCs has been made. The DA'D type fused-ring has the following advantages: (1) introduction of the electron-deficient core unit into the fused-ring unit not only fine-tunes the energy levels and molecular packing but also modulates the D-A(donor-acceptor) interaction and inter- and intramolecular interactions, which are beneficial for enhancing the charge separation and electron mobility. (2) With the inclusion of the fused-pyrrolo ring, its electron-donating ability is beneficial to upshifting the high occupied molecular orbital(HOMO) energy level and then narrow the bandgap. (3) The decoration of the side chains on the fused-pyrrolo-N positions greatly reduces the aggregation because of the steric hindrance resulting from the orthogonal orientation to the backbone plane[30—32].

    In this paper, we report four fused-benzotriazole(BTA) based polymers that are designed with the DA'D type fused-BTA as the co-polymerized units(Fig.1). We first co-polymerize dithienothiophene[3,2-b]pyrrolobenzotriazole with 4,8-bis[5-(2-ethylhexyl)-4-fluorothiophen-2-yl]benzo[1,2-b∶4,5-b']dithiophene(BDT-2F) to afford BDT-TT, which shows a bandgap of 2.0 eV. We then replace the thienothiophene unit with selenophene and couple the diselenophen[3,2-b]pyrrolobenzotriazole with BDT-2F, giving BDT-Se. The inclusion of selenophene enhances the quinoidal character[33—35], leading to a reduction in bandgap, down to 1.89 eV. Interestingly, the replacement of BDT-2F with 1,3-bis(2-ethylhexyl)-5,7-di(thiophen-2-yl)-4H, 8H-benzo[1,2-c∶4,5-c']dithiophene-4, 8-dione(BDD), the film absorption band-width is extended, with the full-width-at-the-half-maximum(FWHM) increased from 138 nm to 229 nm. Again, the bandgap is reduced to 1.71 eV. The extension of band-width and reduction of bandgap can be due to the enhanced backbone quinoidal character with the involvement of the BDD unit. The combination of the above two strategies,., co-polymerization of diselenophen[3,2-b]pyrrolobenzotriazole with BDD leads to BDD-Se, which shows extended absorption and again reduced bandgap. These results demonstrate that including the selenophene(., the backbone selenophene strategy) and replacement of BDT with BDD(., the backbone thiophene strategy), especially, the synergetic effect from the two strategies is a straightforward approach to fine-tune the polymer absorption.

    Fig.1 Chemical structures of the fused?BTA?based polymers: BDT?TT, BDT?Se, BDD?TT, and BDD?Se

    2 Experimental

    2.1 Materials and Measurements

    Tri(-tolyl)phosphine[P(-tol)3, 97%], tris(dibenzylideneacetone)dipalladium(0)[Pd2(dba)3, 97%], Sigma-Aldrich(Shanghai) Trading Co., Ltd.; tributyl(thieno[3,2-b]thiophen-2-yl)stannane(98%), Derthon Optoelectronic Materials Science Technology Co., Ltd.; tributyl(selenophen-2-yl)stannane(99%), Suna Tech Inc.; 2,6-bis(trimethyltin)-4,8-bis(5-(2-ethylhexyl)-4-fluorothiophene-2-)benzodithiophene(BDT-2F-Sn, 97%), 1,3-bis(2-ethylhexyl)-5,7-bis(5-thiophene-trimethyltin-2-yl)-benzo[1,2-c∶4,5-c'] dithiophene-4,8-dione(BDD-Sn, 98%), Organtecsolar Materials Inc.; tetra--butylammonium hexafluorophosphate(99%),,-dimethylformamide(DMF, 99.9%), 1,2-dichlorobenzene(-DCB, 98%),-bromosuccinimide(NBS, 99%), potassium carbonate(K2CO3, 99%), potassium iodide(KI, 99%), chloroform-d with 0.03% TMS, Beijing InnoChem Science & Technology Co., Ltd.; anhydrous sodium sulfate, A. R., Tianjin Zhiyuan Chemical Reagent Co., Ltd.; dichloromethane, petroleum ether, ethyl acetate,-hexane, methanol, ethanol, isopropanol, A. R., Tianjin Zhiyuan Chemical Reagent Co., Ltd.

    Avanse Ⅲ 400 and Ascend 600 MHz nuclear magnetic resonance(NMR) spectrometer, Switzerland Bruker; CH1660E electrochemical workstation, CH Instruments, Inc.; UV-2600 spectrometer, Japan Shimadzu.

    2.2 Synthesis and Characterizations

    2.2.1Synthesis and Characterizations of MaterialsScheme 1 exhibits the synthetic routes for the four polymers.

    Scheme 1Synthetic routes for the polymers of BDT?TT, BDD?TT, BDT?Se and BDD?Se

    Compound 3a: 4,7-dibromo-2-(2-ethylhexyl)-5,6-dinitro-2H-benzo[d]-[1,2,3]-triazole(200 mg, 0.417 mmol), Pd2(dba)3(7.6 mg, 0.008 mmol), and P(-tol)3(10.2 mg, 0.033 mmol) were dissolved in toluene after degassing for 10 min, and then tributyl(thiophene-[3,2-b]thiophene-2-yl)tin(394.2 mg, 0.918 mmol) was added. The mixture was refluxed under nitrogen for 4 h, cooled down to room temperature, and then concentrated under reduced pressure. Using petroleum ether/dichloromethane(4∶1, volume ratio) as eluent, the crude product was chromatographically purified to obtain an orange-red solid(166.2 mg, yield 66.7%).1H NMR(600 MHz, CDCl3),: 7.75(s, 2H), 7.54(d,=5.2 Hz, 2H), 7.32(d,=5.3 Hz, 2H), 4.76(d,=6.9 Hz, 2H), 2.28—2.24(m, 1H), 1.37—1.36(m, 2H), 1.34(dd,=7.5, 2.5 Hz, 2H), 1.33—1.29(m, 4H), 0.97—0.95(m, 3H), 0.91—0.89(m, 3H).13C NMR(151 MHz, CDCl3),: 140.17, 136.35, 134.88, 129.59, 123.37, 123.09, 121.53, 120.37, 109.23, 58.30, 48.21, 39.34, 35.81, 32.57, 31.64, 29.37, 27.65, 27.35, 24.93, 22.88, 21.95, 21.84, 13.05, 12.91, 9.69, 9.54.

    Compound 3b: ginger solid(10∶1, volume ratio) with a yield of 66.1%.1H NMR(600 MHz, CDCl3),: 8.40(d,=5.6 Hz, 2H), 7.69(d,=4.7 Hz, 2H), 7.43(dd,=5.6, 3.9 Hz, 2H), 4.74(d,=6.7 Hz, 2H), 2.24—2.20(m, 1H), 1.37—1.30(m, 8H), 0.97(t,=7.4 Hz, 3H), 0.90(d,=7.2 Hz, 3H).13C NMR(126 MHz, CDCl3),: 140.39, 138.01, 136.07, 133.26, 131.55, 131.33, 129.36, 129.15, 120.04, 59.82, 40.03, 38.97, 29.50, 27.35, 22.90, 21.88, 13.02, 9.56.

    Compound 4a: compound 3(166.2 mg, 0.278 mmol) and triphenylphosphine(365.1 mg, 1.392 mmol) were dissolved in-DCB(5 mL). The reaction was cooled to room temperature under nitrogen at 180 ℃ overnight. The solvent was evaporated, leaving the precipitate. The precipitate, potassium iodide(23.1 mg, 0.139 mmol) and potassium carbonate(575.9 mg, 4.176 mmol) were dissolved in 5 mL of DMF under the protection of nitrogen, to which gradually added 1-bromo-3-ethylhexane(161.1 mg, 0.835 mmol). The mixture was heated to 140 ℃ in the dark for 6 h. The mixture was cooled to room temperature, extracted with ethyl acetate and washed with water, and the organic phase was dried on magnesium sulfate. The crude product was purified by thin layer chromatography using petroleum ether/dichloromethane(5∶1, volume ratio) as eluent to obtain yellow oil(123.6 mg, yield 58.6%).1H NMR(600 MHz, CDCl3),: 7.42(d,=5.1 Hz, 2H), 7.37(d,=5.1 Hz, 2H), 4.74(d,=7.1 Hz, 2H), 4.68(t,=7.7 Hz, 4H), 2.38—2.33(m, 1H), 1.61—1.56(m,=13.7, 6.5 Hz, 4H), 1.43—1.39(m,=13.1, 6.8 Hz, 3H), 1.36—1.26(m, 4H), 1.19—1.14(m, 4H), 1.13—1.08(m,=14.9, 7.2 Hz, 4H), 1.04—0.98(m, 6H), 0.95—0.83(m, 10H), 0.66(t,=7.3 Hz, 6H), 0.58(t,=7.4 Hz, 6H).13C NMR(151 MHz, CDCl3),: 138.33, 136.33, 134.78, 129.65, 128.68, 127.58, 123.05, 120.94, 109.31, 58.33, 48.30, 39.31, 35.78, 32.58,31.59, 29.39, 27.65, 27.35, 24.93, 22.89, 21.94, 21.84, 13.03, 12.91, 9.70, 9.52.

    Compound 4b: ginger oil(10∶1, volume ratio) with a yield of 46.6 %.1H NMR(600 MHz, CDCl3),: 7.97(d,=5.6 Hz, 2H), 7.50(d,=5.6 Hz, 2H), 4.72(d,=7.1 Hz, 2H), 4.56(t,=9.3 Hz, 4H), 2.38—2.31(m, 1H), 1.68—1.54(m, 6H), 1.44—1.38(m, 6H), 1.36—1.23(m, 6H), 1.19—1.07(m, 12H), 0.98(t, 3H), 0.90(t, 3H), 0.74(dd,=8.3, 6.2 Hz, 6H), 0.66(t,=7.4 Hz, 6H).13C NMR(126 MHz, CDCl3),: 145.61, 134.94, 129.52, 127.37, 117.66, 114.32, 114.04, 110.65, 57.99, 47.49, 46.80, 39.44, 38.78, 35.61, 35.52, 32.00, 31.47, 27.52, 24.68, 21.71, 12.87, 12.78, 9.48.

    Compound 5a: compound 4(123.6 mg, 0.163 mmol) was dissolved with NBS(72.5 mg, 0.407 mmol) in 4 mL of DMF in the dark at room temperature for 24 h. After completion of the reaction, the solvent was evaporated and the crude product was purified on a thin-layer column using petroleum ether as the eluent to give a pale-yellow oil(109 mg, yield 73%).1H NMR(600 MHz, CDCl3),: 7.41(s,2H), 4.72(d,=6.9 Hz, 2H), 4.51(s, 4H), 2.37—2.33(m, 1H), 1.91—1.86(m, 2H), 1.61(d,=5.7 Hz, 4H), 1.41 (d,=19.1 Hz, 6H), 1.35—1.27(m, 6H), 1.25(s, 2H), 0.98(t,=7.2 Hz, 8H), 0.90—0.85(m, 8H), 0.65—0.59(m, 6H), 0.57—0.52(m, 6H).13C NMR(151 MHz, CDCl3),: 138.33, 136.33, 134.78, 129.65, 128.68, 127.58, 123.05, 120.94, 109.31, 58.33, 48.30, 39.31, 35.78, 32.58, 31.59, 29.39, 27.65, 27.35, 24.93, 22.89, 21.94, 21.84, 13.03, 12.91, 9.70, 9.52.

    Compound 5b: ginger oil(6∶1, volume ratio) with a yield of 43.7%.1H NMR(600 MHz, CDCl3),: 7.49(s, 2H), 4.66(d,=7.1 Hz, 2H), 4.47(d,=5.5 Hz, 4H), 2.29(d,=5.5 Hz, 1H), 1.63—1.52(m, 6H), 1.41—1.34(m, 6H), 1.33—1.24(m,=6.3 Hz, 6H), 1.17—1.05(m, 12H), 0.98—0.95(m, 3H), 0.91—0.87(m, 3H), 0.76—0.72(m, 6H), 0.62(t,=7.3 Hz, 6H).13C NMR(126 MHz, CDCl3),: 143.03, 134.72, 128.76, 118.73, 118.06, 117.77, 112.34, 110.74, 58.24, 47.76, 39.64, 35.71, 35.67, 32.23, 31.65, 31.35, 27.78, 24.87, 21.99, 21.92, 13.12, 9.71, 9.59.

    Polymerization of BDT?TT: compound 5a(109 mg, 0.119 mmol), BDT-2F-Sn(111.8 mg, 0.119 mmol), Pd2(dba)3(3.3 mg, 0.004 mmol), and P(-tol)3(7.2 mg, 0.024 mmol) were degassed for 10 min and then dissolved in toluene, and the reaction was conducted at 110 ℃ for 24 h. After the reaction was cooled to room temperature, it was precipitated into methanol and extracted by Soxhlet. The polymers were extracted with methanol, acetone,-hexane, and chloroform, respectively. Then, the chloroform solution was concentrated and the polymer was precipitated into methanol. Finally, a dark brown solid was obtained (58.6 mg),n=154000, PDI=1.45.

    Polymerization of BDT?Se: compound 5b(103.7 mg, 0.112 mmol), BDT-2F-Sn(105.2 mg, 0.112 mmol), Pd2(dba)3(3.1 mg, 0.003 mmol), and P(-tol)3(6.8 mg, 0.024 mmol) were degassed for 10 min and then dissolved in toluene, and the reaction was conducted at 110 ℃ for 24 h. Following a similar process to that of BDT-TT obtained a dark brown solid(113.8 mg),n=213000, PDI=5.26.

    Polymerization of BDD?TT: compound 5a(105 mg, 0.111 mmol), BDD-Sn(105.9 mg, 0.111 mmol), Pd2(dba)3(5.1 mg, 0.0033 mmol), and P(-tol)3(8.5 mg, 0.0223 mmol) were degassed for 10 min and then dissolved in toluene, and the reaction was conducted at 110 ℃ for 24 h. Following a similar process to that of BDT-TT obtained a dark solid(51 mg),n=38000, PDI=2.05.

    Polymerization of BDD?Se: compound 5b(154.2 mg, 0.166 mmol), BDD-Sn(155.4 mg, 0.166 mmol), Pd2(dba)3(4.6 mg, 0.005 mmol), and P(-tol)3(10.1 mg, 0.033 mmol) were degassed for 10 min and then dissolved in toluene, and the reaction was conducted at 110 ℃ for 24 h. Following a similar process to that of BDT-TT obtained a dark brown solid(52.7 mg),n=153000, PDI=2.22.

    2.2.2Preparations and Measurements of OSC DevicesIn order to investigate the photovoltaic performance of the polymers, indium tin oxide(ITO)/poly(3,4-ethylenedioxythiophene)∶poly-(styrenesulfonate)(PEDOT∶PSS)/active layer/3,3'-(1,3,8,10-tetraoxoanthra[2,1,9-def∶6,5,10-d'e'f']diisoquinoline-2,9(1H, 3H, 8H, 10H)-diyl)bis(,-dimethylpropan-1-amineoxide)(PDINO)/Al devices were fabricated. The fabrication process was as follows: the ITO glass was sequentially washed with detergent, deionized water, acetone, and isopropanol and then treated in ultraviolet ozone for 25 min. The PEDOT∶PSS was spin-coated onto the treated ITO glass at 4500 r/min for 30 s, then annealed at 150 ℃ for 20 min, and transferred to a glove box after completion. The weight ratio of D∶A was 1∶1.5, the concentration was 20 mg/mL after dissolution in chloroform, and the whole active layer solution was heated and stirred at 30 ℃ for 4.5 h using 0.5%(volume fraction) 1-chloronaphthalene(1-CN) used as an additive. For the use of Y6 as the non-fullerene acceptor, the D∶A weight ratio was 1∶1.2, and the concentration was 16 mg/mL in chloroform, 1-CN(0, 0.5%, and 0.75%) was used as the solvent additive. The active layer solution was spin-coated onto the PEDOT∶PSS layer at 3000 r/min for 30 s, then 1 mg/mL of the PDINO methanol solution was spin-coated atop the active layer at 3000 r/min for 30 s as the electron transporting layer ETL. Finally, Al(80 nm) was deposited on the ETL layer. The effective area of the device was 0.04 cm2. The current-voltage() characteristic of the device was measured by a Keithley 2400 test system under the simulated solar illumination at AM 1.5 G, 100 mW/cm2. The carrier mobility of the blend film was tested by the space charge-limited current(SCLC) model, characterized by the device structures of ITO/PEDOT∶PSS/active layer/Au(the hole-only device)and ITO/active layer/PDINO/Al(the electron-only device), respectively. The mobilities were then calculated according to the Mott-Gurney formula:=90r2/(83), where ε0is the dielectric constant of the vacuum (8.85419×10-12F/m), εris the relative dielectric constant of the transport medium component,is the carrier mobility andis the thickness of the active layer.

    3 Results and Discussion

    3.1 Synthesis

    The synthetic routes for the polymers of BDT-TT, BDT-Se, BDD-TT, and BDD-Se are shown in Scheme 1. The monomers of 5a and 5b were synthesized by following the published methods[36,37]. These polymers were synthesized from the monomer 5a or 5b and BDT-2F or BDD unit by following the Stille- coupling polymerization with Pd2(dba)3and P(-tol)3as the catalyst and toluene as the solvent. All compounds were characterized by1H NMR and13C NMR, the corresponding spectra are provided in the Electronic Supplementary Information of this paper. The molecular weights of the four polymers were measured by high-temperature gel permeation chromatography(GPC). The number-average molecular weights(n) of the polymers BDT-TT, BDT-Se, BDD-TT, and BDD-Se were 154000, 213000, 38000, and 153000, and corresponding polydispersity index(PDI) were 1.45, 2.56, 2.05 and 2.22, respectively.

    3.2 Optical Properties

    The absorption spectra of the four polymers in chloroform solutions and films are shown in Fig.2. The absorption bands occurring at 300—400 nm[Fig.2(A)] or 350—480 nm[Fig.2(B)] correspond to the-* transition of the polymer backbone, whereas the bands at 400—650 nm[Fig.2(A)] or 480—780 nm [Fig.2(B)] are correlated to the intramolecular charge transfer(ICT) absorption between the D and A units[38,39].

    Fig.2 UV?Vis spectra of the polymers in chloroform solutions and films

    (A) Polymers of BDT?TT and BDT?Se; (B) polymers of BDD?TT and BDD?Se.

    Table 1 Optical and electrochemical properties of the four polymers

    From Fig.2(B), the solution absorption of BDD-TT and BDD-Se are seen in the ranges of 450—700 nm and 480—780 nm, respectively. The corresponding FWHM values are 185 and 216 nm, respectively. Shifting from the solution to the film, the maximum absorption peaks are red-shifted, positioning at 590 and 680 nm, respectively. The FWHM values are 229 and 209 nm, respectively. The optical bandgaps were estimated to be 1.71 and 1.61 eV, respectively.

    In comparison to BDT-TT, BDD-TT shows extended absorption with FWHM value shifting from 138 nm to 229 nm and again shows reduced bandgap from 2.0 eV to 1.71 eV. This phenomenon can be attributed to the significant increase in backbone quinoidal character with the replacement of BDT with BDD since the BDD unit is constructed with terthiophene, while BDT contains a fused benzene ring. The increased quinoidal character on photovoltaic backbone has been widely proved by replacing benzene with thiophene.

    From BDT-TT to BDT-Se and again from BDT-TT to BDD-TT, we can see that the inclusion of the BDD unit in comparison to the BDT unit into the polymer backbone shows more significantly impact to the polymer absorption. When combining the two strategies, the resulting BDD-Se shows a more reduced bandgap(1.61 eV) and again has extended absorption.

    Again, it can be seen that the degree of the redshift of the absorption when shifting from the solutions to the films is quite different for the four polymers: by 2 nm for BDT-Se, 23 nm for BDT-TT, 29 nm for BDD-TT and 65 nm for BDD-Se, respectively. This phenomenon indicates that the packing of the polymers can be significantly modulatedthe backbone thiophene and selenophene strategies, again demonstrating the impact of this approach.

    3.3 Electrochemical Properties

    The HOMO levels and the lowest unoccupied orbital(LUMO) levels of the polymers were measured by cyclic voltammetry(CV). The results are shown in Fig.3. The HOMO/LUMO energy levels of BDT-TT were estimated to be -5.25 eV/-3.58 eV. Compared with the BDT-TT, the LUMO level of BDD-Se remains nearly unchanged(-3.60 eV. -3.58 eV), while the HOMO level is upshifted from -5.25 eV to -5.02 eV. Compared to BDT-TT, the HOMO energy level of BDD-TT is upshifted to -5.06 eV, and the LUMO level is downshifted to -3.71 eV. The HOMO and LUMO energy levels of BDD-Se are -4.99 eV and -3.72 eV, respectively(Table 1).

    Fig.3 Cyclic voltammograms of the polymers(A) and diagrams of energy levels for the polymers and acceptors used in this work(B)

    3.4 Photovoltaic Performance

    The photovoltaic properties of polymers were evaluated by using PC71BM as the electron acceptor material and with the device structure of ITO/PEDOT∶PSS/active layer/PDINO/Al. Thecurves of the OSC devices are displayed in Fig.4(A), and the relevant performance parameters are summarized in Table 2. BDT-TT∶PC71BM, BDT-Se∶PC71BM, BDD-TT∶PC71BM, and BDD-Se∶PC71BM devices show efficiencies of 1.65%, 1.19%, 1.86%, and 1.58%, respectively. Compared to BDT-TT and BDT-Se, BDD-TT, and BDD-Se had improvedSC, which was consistent with the red-shifted and extended absorption. Fig.4(B) shows the external quantum efficiency(EQE) spectra. TheSCvalues(Table 2) calculated by integrating the EQE spectra were consistent well with theSCvalues measured from the corresponding-curves.

    Table 2 OSC device parameters and charge mobilities of the polymer: PC71BM blends

    *Obtained from the integration of the EQE spectra.

    Fig.4 J?V curves(A) and EQE spectra(B) of the OSC devices, the dark J?V curves for estimating the hole(C) and electron(D) mobilities of the OSC active layers

    The hole mobility(h) and electron mobility(e) were estimated using the SCLC method[Fig.4(C) and (D)]. The hole mobilities of BDT-TT∶PC71BM, BDT-Se∶PC71BM, BDD-TT∶PC71BM, and BDD-Se∶PC71BM were of 4.69×10-5, 4.74×10-5, 2.71×10-5, and 5.45×10-5cm2·V-1·s-1, respectively, and their electron mobilities were of 1.68×10-8, 1.29×10-8, 1.28×10-7, and 2.4×10-7cm2·V-1·s-1, respectively(Table 2). The electron mobilities of the BDD-TT and BDD-Se blends were about one order of magnitude higher than those of BDT-TT and BDT-Se polymers, which was again in relation with the increasedSC.

    We again tested the photovoltaic properties of four polymers with Y6 as the blended acceptor. Fig.5(A) shows thecurves of the devices and the corresponding photovoltaic parameters are summarized in Table 3. The BDT-TT∶Y6 based device yielded a PCE of 1.19%. When using 0%, 0.5%, and 0.75% of 1-CN as the solvent additive, respectively, the resulting devices all supplied PCEs of around 1.1%—1.2%. For the BDT-Se, BDD-TT, and BDD-Se based devices, 0.55%—0.07% of PCEs were obtained. Fig.5(B) gives the EQE spectra of the four polymers-based devices, which covered the wavelength range of 300—1000 nm. TheSCvalues calculated from the EQE curves were in line well with theSCvalues measured by(Table 3). We also blended BDT-TT with BTP-eC9 to fabricate the OSC devices. PCEs of about 0.9% were obtained when using 0%, 0.25%, and 0.5% of 1,8-diiodooctane(DIO) as the solvent additive, respectively. The best device supplied aOCof 0.62 V, aSCof 4.32 mA/cm2, and an FF of 38.39%.

    Fig.5 J?V curves(A) and EQE spectra(B) of the polymer: Y6 based devices

    Table 3 Performance parameters of OSCs based on the polymers and Y6

    *Obtained from the integration of the EQE spectra.

    4 Conclusions

    In summary, we used benzotriazole(BTA)-based DA'D fused-ring units to construct fused-BTA-based p-type polymers. By replacement of the fused thienothiophene with selenophene(so called backbone selenophene strategy, herein) and again replacement of BDT with BDD(so called backbone thiophene strategy, herein),., the polymer absorption in both band-width and bandgap can be effectively modulated. The combination of backbone selenophene and thiophene strategies shows a synergetic effect on tuning the polymer absorption. Based on the results, this paper not only presents four new p-type polymers containing DA'D type fused-ring but also demonstrates a molecular approach to fine-tune the absorption of p-type polymers.

    The supporting information of this paper see http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20230190.

    [1] Tang A. L., Zhan C. L., Yao J. N.,,2015,13), 4719—4730

    [2] Li X. F., Pan M. A., Lau T. K., Liu W. R., Li K., Yao N. N., Shen F. G., Huo S. Y., Zhang F. L., Wu Y. S., Li X. M., Lu X. H., Yan H., Zhan C. L.,,2020,(12), 5182—5191

    [3] Xu X. P., Lee Y. W., Woo H. Y., Li Y., Peng Q.,,2020,(49), 11241—11249

    [4] Zhu C., Yuan J., Cai F. F., Meng L., Zhang H. T., Chen H. G., Li J. L., Qiu B. B., Peng H. J., Chen S. S., Hu Y. B., Yang C., Gao F., Zou Y. P., Li Y. F.,,2020,(8), 2459—2466

    [5] Wu J. N., Fan Q. P., Xiong M. H., Wang Q. T., Chen K., Liu H. Q., Gao M. Y., Ye L., Guo X., Fang J., Guo Q., Su W. Y., Ma Z. F., Tang Z., Wang E. G., Ade H., Zhang M. J.,,2021,, 105679

    [6] Yang T., Zhan C. L.,,2023,, doi: 10.1007/s11426?11023?11659?11428

    [7] Sun H., Zhang P. Y., Zhang Y. N., Zhan C. L.,,2023,(7), 20230076(孫恒,張鵬宇,張英楠,詹傳郎. 高等學(xué)?;瘜W(xué)學(xué)報(bào),2023,(7), 20230076)

    [8] Liu S., Yuan J., Deng W. Y., Luo M., Xie Y., Liang Q. B., Zou Y. P., He Z. C., Wu H. B., Cao Y.,,2020,(5), 300

    [9] Luo Z. H., Liu T., Ma R. J., Xiao Y. Q., Zhan L. L., Zhang G. Y., Sun H. L., Ni F., Chai G. D., Wang J. W., Zhong C., Zou Y., Guo X. G., Lu X. H., Chen H. Z., Yan H., Yang C. L.,,2020,(48), 2005942

    [10] Cui Y., Xu Y., Yao H. F., Bi P. Q., Hong L., Zhang J. Q., Zu Y. F., Zhang T., Qin J. Z. , Ren J. Z., Chen Z. H., He C., Hao X. T., Wei Z. X., Hou J. H.,,2021,(41), 2102420

    [11] Chong K. E., Xu X. P., Meng H. F., Xue J. W., Yu L. Y., Ma W., Peng Q.,,2022,(13), 2109516

    [12] He C. L., Pan Y. W., Ouyang Y. N., Shen Q., Gao Y., Yan K. R., Fang J., Chen Y. Y., Ma C. Q., Min J., Zhang C. F., Zuo L. J., Chen H. Z.,,2022,(6), 2537—2544

    [13] Sun R., Wu Y., Yang X. R., Gao Y., Chen Z., Li K., Qiao J. W., Wang T., Guo J., Liu C., Hao X. T., Zhu H. M., Min J.,,2022,(26), 2110147

    [14] Wei Y., Chen Z. H., Lu G. Y., Yu N., Li C. Q., Gao J. H., Gu X. B., Hao X. T., Lu G. H., Tang Z., Zhang J. Q., Wei Z. X., Zhang X., Huang H.,,2022,(33), 2204718

    [15] Zhu L., Zhang M., Xu J. Q., Li C., Yan J., Zhou G. Q., Zhong W. K., Hao T. Y., Song J. L., Xue X. N., Zhou Z. C., Zeng R., Zhu H. M., Chen C. C., MacKenzie R. C. I., Zou Y. C., Nelson J., Zhang Y. M., Sun Y. M., Liu F.,,2022,(6), 656—663

    [16] Fan Q. P., Ma R. J., Bi Z. Z., Liao X. F., Wu B. H., Zhang S., Su W. Y., Fang J., Zhao C., Yan C. Q., Chen K., Li Y. X., Gao C., Li G., Ma W.,,2023,(8), 2211385

    [17] Han C. Y., Wang J. X., Zhang S., Chen L. L., Bi F. Z., Wang J. J., Yang C. M., Wang P. C., Li Y. H., Bao X. C.,,2023,(10), 2208986

    [18] Pang B., Liao C. T.,Xu X. P., Yu L. Y., Li R. P., Peng Q.,,2023, 2300631

    [19] Qian D. P., Ye L., Zhang M. J., Liang Y. R., Li L. J., Huang Y., Guo X., Zhang S. Q., Tan Z., Hou J. H.,,2012,(24), 9611—9617

    [20] Zhang M. J., Guo X., Ma W.,Ade H., Hou J. H.,,2015,31), 4655-4660

    [21] Liu Q. S., Jiang Y. F., Jin K., Qin J. Q., Xu J. G., Li W. T., Xiong J., Liu J. F., Xiao Z., Sun K., Yang S. F., Zhang X. T., Ding L. M.,,2020,(4), 272—275

    [22] Meng X. Y., Jin K., Xiao Z., Ding L. M.,,2021,(10), 100501

    [23] Zeng A. P., Ma X. L., Pan M. G., Chen Y. Z., Ma R. J., Zhao H., Zhang J. Q., Kim H., Shang A., Luo S. W., Angunawela I. C., Chang Y., Qi Z. Y., Sun H. L., Lai J. Y. L., Ade H., Ma W., Zhang F. J., Yan H.,,2021,(33), 2102413

    [24] Zhu C., Meng L., Zhang J. Y., Qin S. C., Lai W. B., Qiu B. B., Yuan J., Wan Y., Huang W. C., Li Y. F.,,2021,(23), 2100474

    [25] Hu K., Zhu C., Qin S. C., Lai W. B., Du J. Q., Meng L., Zhang Z. J., Li Y. F.,,2022,(20), 2096—2102

    [26] Holliday S., Li Y. L., Luscombe C.,,2017,, 34—51

    [27] An C. B., Zheng Z., Hou J. H.,,2020,(35), 4750—4760

    [28] An C. B., Hou J. H.,,2022,(5), 540-551

    [29] Yuan J., Zhang Y. Q., Zhou L. Y., Zhang G. C., Yip H. L., Lau T. K., Lu X. H., Zhu C., Peng H. J., Johnson P. A., Leclerc M., Cao Y., Ulanski J., Li Y. F., Zou Y. P.,,2019,(4), 1140—1151

    [30] Li S. X., Li C. Z., Shi M. M., Chen H. Z.,,2020,(5), 1554—1567

    [31] Wei Q. Y., Liu W., Leclerc M., Yuan J., Chen H. G., Zou Y. P.,,2020,(10), 1352—1366

    [32] Zhao J. J., Yao C., Ali M. U., Miao J. S., Meng H.,,2020,(12), 3487—3504

    [33] Yu H., Qi Z. Y., Zhang J. Q., Wang Z., Sun R., Chang Y., Sun H. L., Zhou W. T., Min J., Ade H., Yan H.,,2020,(45), 23756—23765

    [34] Zhang Z. Z., Li Y. W., Cai G. L., Zhang Y. H., Lu X. H., Lin Y. Z.,,2020,(44), 18741—18745

    [35] Yang C., An Q. S., Bai H. R., Zhi H. F., Ryu H. S., Mahmood A., Zhao X., Zhang S., Woo H. Y., Wang J. L.,,2021,(35), 19241—19252

    [36] Yuan J., Huang T. Y., Cheng P., Zou Y. P., Zhang H. T., Yang J. L., Chang S. Y., Zhang Z. Z., Huang W. C., Wang R., Meng D., Gao F., Yang Y.,,2019,(1), 570

    [37] Zhang C. J., Yuan J., Chiu K. L., Yin H., Liu W. F., Zheng G. H. J., Ho J. K. W., Huang S. Z., Yu G. X., Gao F., Zou Y. P., So S. K.,,2020,(17), 8566—8574

    [38] Raji I. O., Wen S. G., Li Y. H., Huang D., Shi X. Y., Saparbaev A., Gu C. T., Yang C. M., Bao X. C.,,2021,(30), 36071—36079

    [39] He K. Q., Kumar P., Yuan Y., Zhang Z. F.,Li X., Liu H. T., Wang J. L., Li Y. N.,,2021,(22), 26441—26450

    苯并三氮唑稠環(huán)基p-型聚合物:通過(guò)骨架噻吩和硒吩策略精細(xì)調(diào)控吸收與帶隙

    田梅,張志洋,詹傳郎

    (內(nèi)蒙古師范大學(xué)化學(xué)與環(huán)境科學(xué)學(xué)院, 先進(jìn)材料化學(xué)與器件內(nèi)蒙古自治區(qū)高等學(xué)校重點(diǎn)實(shí)驗(yàn)室, 呼和浩特 010022)

    基于苯并三氮唑DA'D稠環(huán)單元,設(shè)計(jì)合成了4個(gè)結(jié)構(gòu)新穎的p-型聚合物(BDT-TT, BDT-Se, BDD-TT和BDD-Se), 通過(guò)骨架噻吩和硒吩策略實(shí)現(xiàn)了對(duì)聚合物吸收及帶隙的精細(xì)調(diào)控. 首先, 將二噻吩并噻吩并吡咯稠合苯并三氮唑應(yīng)用于設(shè)計(jì)聚合物, 與BDT-2F單元共聚合成了BDT-TT. 然后, 用硒吩取代二噻吩并噻吩并吡咯稠合苯并三氮唑中的兩個(gè)噻吩并噻吩單元, 合成了二硒吩并吡咯稠合苯并三氮唑, 并與BDT-2F單元共聚合成了BDT-Se. 骨架硒吩取代策略的應(yīng)用使聚合物的帶隙從BDT-TT的2.0 eV降低到1.89 eV. 而后, 用BDD單元取代BDT-2F, 并與二噻吩并噻吩并吡咯稠合苯并三氮唑共聚, 合成了BDD-TT. 骨架噻吩取代策略的應(yīng)用使聚合物的吸收半峰寬由BDT-TT的138 nm擴(kuò)展到BDD-TT的229 nm, 帶隙降低為1.71 eV. 最后, 將BDD與二硒吩并吡咯稠合苯并三氮唑共聚合成了BDD-Se, 通過(guò)硒吩和噻吩策略協(xié)同作用, 實(shí)現(xiàn)了吸收峰的展寬和帶隙紅移. 以PC71BM為電子受體材料, 由該系列聚合物構(gòu)建的有機(jī)太陽(yáng)電池器件獲得了1%~2%的光電轉(zhuǎn)換效率.

    苯并三氮唑; 稠環(huán)單元; 聚合物; 有機(jī)太陽(yáng)電池; 帶隙

    O631

    A

    10.7503/cjcu20230190

    網(wǎng)絡(luò)首發(fā)日期: 2023-06-14.

    聯(lián)系人簡(jiǎn)介: 詹傳郎, 男, 博士, 教授, 主要從事激子材料化學(xué)與器件領(lǐng)域的研究. E-mail: clzhan@imnu.edu.cn

    2023-04-17

    內(nèi)蒙古科技攻關(guān)項(xiàng)目(批準(zhǔn)號(hào): 2020GG0192)、內(nèi)蒙古自然科學(xué)基金(批準(zhǔn)號(hào): 2022ZD04)和內(nèi)蒙古師范大學(xué)項(xiàng)目(批準(zhǔn)號(hào): 112/1004031962)資助.

    Supported by the Program of the Department of Science and Technology of Inner Mongolia, China(No.2020GG0192), the Natural Science Foundation of Inner Mongolia, China(No.2022ZD04), and the Program of the Inner Mongolia Normal University, China(No.112/1004031962).

    (Ed.: N, K)

    猜你喜歡
    帶隙吡咯噻吩
    密度泛函理論計(jì)算半導(dǎo)體材料的帶隙誤差研究
    Au/聚吡咯復(fù)合材料吸附與催化性能的研究
    一種基于BJT工藝的無(wú)運(yùn)放低溫度系數(shù)的帶隙基準(zhǔn)源
    間距比對(duì)雙振子局域共振軸縱振帶隙的影響
    一款高PSRR低溫度系數(shù)的帶隙基準(zhǔn)電壓源的設(shè)計(jì)
    電子制作(2018年1期)2018-04-04 01:48:38
    探討醫(yī)藥中間體合成中噻吩的應(yīng)用
    4,7-二噻吩-[2,1,3]苯并硒二唑的合成及其光電性能
    超聲波促進(jìn)合成新型吡咯α,β-不飽和酮
    直接合成法制備載銀稻殼活性炭及其對(duì)苯并噻吩的吸附
    聚吡咯結(jié)構(gòu)與導(dǎo)電性能的研究
    在线av久久热| 不卡av一区二区三区| 欧美成人午夜精品| 久久国产精品男人的天堂亚洲| 国产午夜精品久久久久久| 国产精品久久久久久人妻精品电影 | 国产伦人伦偷精品视频| 极品人妻少妇av视频| 一级a爱视频在线免费观看| 精品亚洲乱码少妇综合久久| 午夜福利,免费看| 男女免费视频国产| 桃花免费在线播放| 大片免费播放器 马上看| 欧美亚洲日本最大视频资源| 日韩三级视频一区二区三区| 无人区码免费观看不卡 | 亚洲性夜色夜夜综合| 久9热在线精品视频| 国产精品欧美亚洲77777| 在线 av 中文字幕| 巨乳人妻的诱惑在线观看| videosex国产| 人人妻人人澡人人看| 黄色a级毛片大全视频| 在线观看66精品国产| 国产精品香港三级国产av潘金莲| 啪啪无遮挡十八禁网站| 欧美国产精品一级二级三级| 又紧又爽又黄一区二区| 国产一卡二卡三卡精品| 国产精品偷伦视频观看了| 夜夜夜夜夜久久久久| 国产成人av教育| 热99国产精品久久久久久7| 老司机亚洲免费影院| 久久久久久久国产电影| 久久毛片免费看一区二区三区| 国产在线免费精品| 又大又爽又粗| 老司机午夜福利在线观看视频 | 精品卡一卡二卡四卡免费| 亚洲 欧美一区二区三区| 欧美国产精品va在线观看不卡| 久久久精品区二区三区| 久久久久久人人人人人| 亚洲成人免费av在线播放| 精品亚洲成国产av| avwww免费| 亚洲男人天堂网一区| 亚洲av电影在线进入| 精品国产一区二区三区久久久樱花| 最近最新中文字幕大全免费视频| 大香蕉久久成人网| 老司机午夜十八禁免费视频| 可以免费在线观看a视频的电影网站| svipshipincom国产片| 成人18禁高潮啪啪吃奶动态图| 黑人操中国人逼视频| 国产精品98久久久久久宅男小说| 久久狼人影院| 高清毛片免费观看视频网站 | 国产伦人伦偷精品视频| 精品一区二区三区四区五区乱码| 免费av中文字幕在线| 超碰成人久久| 老熟妇仑乱视频hdxx| 久久久精品免费免费高清| 男女下面插进去视频免费观看| 国产亚洲欧美精品永久| 精品少妇一区二区三区视频日本电影| 一本一本久久a久久精品综合妖精| 国产精品偷伦视频观看了| 人人澡人人妻人| 999精品在线视频| 捣出白浆h1v1| 菩萨蛮人人尽说江南好唐韦庄| 精品国产国语对白av| 97在线人人人人妻| 母亲3免费完整高清在线观看| www.精华液| 精品福利观看| 99re6热这里在线精品视频| 一区在线观看完整版| 黄色怎么调成土黄色| 悠悠久久av| 国产精品九九99| 免费在线观看黄色视频的| 中文字幕高清在线视频| 亚洲国产毛片av蜜桃av| 51午夜福利影视在线观看| 亚洲avbb在线观看| 欧美日韩av久久| 精品人妻在线不人妻| 午夜福利在线观看吧| 亚洲欧洲精品一区二区精品久久久| 一级黄色大片毛片| 一二三四社区在线视频社区8| av福利片在线| 热re99久久国产66热| 97在线人人人人妻| 亚洲精品自拍成人| 青青草视频在线视频观看| 12—13女人毛片做爰片一| 女性生殖器流出的白浆| 可以免费在线观看a视频的电影网站| a级毛片黄视频| 久久精品aⅴ一区二区三区四区| 国产黄色免费在线视频| 精品第一国产精品| 老汉色∧v一级毛片| 视频区欧美日本亚洲| 国产一区二区在线观看av| 一区二区三区乱码不卡18| 搡老岳熟女国产| 大型av网站在线播放| 多毛熟女@视频| 日本黄色视频三级网站网址 | 一区二区av电影网| 一边摸一边抽搐一进一出视频| 80岁老熟妇乱子伦牲交| 精品熟女少妇八av免费久了| 岛国在线观看网站| 91精品三级在线观看| 国产国语露脸激情在线看| 热re99久久国产66热| tube8黄色片| av超薄肉色丝袜交足视频| 9色porny在线观看| 精品人妻1区二区| 狠狠狠狠99中文字幕| 成人18禁在线播放| h视频一区二区三区| 亚洲精品粉嫩美女一区| 国产精品久久久久久人妻精品电影 | 亚洲欧美一区二区三区久久| 久久精品国产a三级三级三级| 在线天堂中文资源库| 欧美精品人与动牲交sv欧美| 成人三级做爰电影| 777久久人妻少妇嫩草av网站| 久久人人97超碰香蕉20202| av有码第一页| 亚洲人成伊人成综合网2020| 午夜福利视频精品| 飞空精品影院首页| 亚洲男人天堂网一区| 99riav亚洲国产免费| 亚洲欧洲日产国产| 女性被躁到高潮视频| 免费看a级黄色片| 他把我摸到了高潮在线观看 | 天堂8中文在线网| 色老头精品视频在线观看| 男人舔女人的私密视频| 国产不卡av网站在线观看| 丝袜美腿诱惑在线| 男人操女人黄网站| 熟女少妇亚洲综合色aaa.| 欧美乱码精品一区二区三区| 欧美日韩亚洲高清精品| av视频免费观看在线观看| 欧美日韩亚洲综合一区二区三区_| 如日韩欧美国产精品一区二区三区| 午夜成年电影在线免费观看| 久久精品亚洲熟妇少妇任你| 亚洲伊人色综图| 精品人妻熟女毛片av久久网站| 黄色片一级片一级黄色片| 欧美人与性动交α欧美软件| 久久久久精品人妻al黑| 国产亚洲午夜精品一区二区久久| 日韩欧美国产一区二区入口| 男女免费视频国产| 黄片播放在线免费| 极品少妇高潮喷水抽搐| 一区二区三区精品91| 久久人人爽av亚洲精品天堂| 大片免费播放器 马上看| 国产精品偷伦视频观看了| 色婷婷av一区二区三区视频| 一区二区三区乱码不卡18| av天堂在线播放| 国产精品av久久久久免费| 中文字幕人妻熟女乱码| 制服人妻中文乱码| 久久久久久免费高清国产稀缺| 久久中文看片网| 久久久久久久精品吃奶| 视频区图区小说| 怎么达到女性高潮| 国产日韩欧美视频二区| 国产男靠女视频免费网站| 人人妻人人澡人人爽人人夜夜| 国产免费现黄频在线看| 在线看a的网站| 99国产精品一区二区蜜桃av | 国产伦人伦偷精品视频| 成人国产av品久久久| 国产男靠女视频免费网站| 最近最新免费中文字幕在线| 女人爽到高潮嗷嗷叫在线视频| 少妇被粗大的猛进出69影院| 狂野欧美激情性xxxx| 久久久久久免费高清国产稀缺| 日韩欧美免费精品| 丁香六月欧美| 国产精品香港三级国产av潘金莲| 亚洲成a人片在线一区二区| 黑人巨大精品欧美一区二区mp4| 性高湖久久久久久久久免费观看| 欧美大码av| 午夜免费成人在线视频| 欧美日韩成人在线一区二区| 一区二区三区乱码不卡18| 免费在线观看完整版高清| 首页视频小说图片口味搜索| 欧美日韩亚洲高清精品| 嫁个100分男人电影在线观看| 亚洲av成人一区二区三| 两个人免费观看高清视频| 精品国产一区二区久久| 动漫黄色视频在线观看| 亚洲av欧美aⅴ国产| 日日夜夜操网爽| 成年动漫av网址| 久久久国产成人免费| 激情在线观看视频在线高清 | 热99re8久久精品国产| 国产精品一区二区精品视频观看| 黄色视频,在线免费观看| 欧美精品av麻豆av| 国产淫语在线视频| 国产单亲对白刺激| 亚洲伊人色综图| 免费人妻精品一区二区三区视频| 久久久久网色| 狠狠婷婷综合久久久久久88av| 黑人欧美特级aaaaaa片| 成年动漫av网址| 一区二区av电影网| 欧美 日韩 精品 国产| 天天操日日干夜夜撸| 日日爽夜夜爽网站| 国产不卡av网站在线观看| 18禁裸乳无遮挡动漫免费视频| 老司机靠b影院| 男女下面插进去视频免费观看| 中文字幕高清在线视频| 亚洲精品美女久久av网站| 多毛熟女@视频| 丁香六月天网| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲中文字幕日韩| 亚洲精品自拍成人| 亚洲色图av天堂| 成在线人永久免费视频| 9色porny在线观看| 蜜桃在线观看..| 大码成人一级视频| 一个人免费看片子| 99久久国产精品久久久| 欧美日韩亚洲高清精品| 后天国语完整版免费观看| 又黄又粗又硬又大视频| 精品国产一区二区三区久久久樱花| 亚洲欧美日韩高清在线视频 | 精品一区二区三区av网在线观看 | 最新在线观看一区二区三区| 黄色 视频免费看| 国产有黄有色有爽视频| 色播在线永久视频| 亚洲av日韩精品久久久久久密| 国产精品一区二区在线不卡| 国产不卡一卡二| 国产一区二区在线观看av| 热re99久久精品国产66热6| 国产免费福利视频在线观看| 国产在视频线精品| 成在线人永久免费视频| 精品卡一卡二卡四卡免费| 日本精品一区二区三区蜜桃| 久久国产精品人妻蜜桃| 久久国产精品男人的天堂亚洲| 国产成人一区二区三区免费视频网站| 成人av一区二区三区在线看| 久久九九热精品免费| 五月天丁香电影| 天天添夜夜摸| 亚洲午夜理论影院| 美女高潮喷水抽搐中文字幕| 欧美大码av| 精品视频人人做人人爽| 精品久久久久久电影网| 免费在线观看视频国产中文字幕亚洲| 久热爱精品视频在线9| 久久 成人 亚洲| 999精品在线视频| 成人免费观看视频高清| 久久久久国产一级毛片高清牌| 欧美日韩国产mv在线观看视频| 久久久国产欧美日韩av| 天天添夜夜摸| 亚洲欧洲精品一区二区精品久久久| 老熟女久久久| 国产成人精品久久二区二区91| 久久人人爽av亚洲精品天堂| 美女视频免费永久观看网站| 免费高清在线观看日韩| 国产精品免费大片| 中文字幕精品免费在线观看视频| 男女无遮挡免费网站观看| 色精品久久人妻99蜜桃| 久久久久精品国产欧美久久久| 麻豆成人av在线观看| 十八禁网站网址无遮挡| 午夜老司机福利片| 午夜91福利影院| 精品国产一区二区三区四区第35| 免费观看av网站的网址| av一本久久久久| 亚洲精品国产区一区二| 五月开心婷婷网| 18禁裸乳无遮挡动漫免费视频| 下体分泌物呈黄色| 欧美老熟妇乱子伦牲交| 欧美成狂野欧美在线观看| 成人永久免费在线观看视频 | 在线观看免费午夜福利视频| 亚洲专区字幕在线| 国产精品久久久人人做人人爽| 老司机福利观看| 亚洲欧美色中文字幕在线| e午夜精品久久久久久久| 日韩免费av在线播放| 欧美乱妇无乱码| 欧美日韩av久久| 亚洲一码二码三码区别大吗| 激情在线观看视频在线高清 | 欧美另类亚洲清纯唯美| 国产真人三级小视频在线观看| 成人国产av品久久久| 国产精品美女特级片免费视频播放器 | 香蕉丝袜av| 9191精品国产免费久久| 99精国产麻豆久久婷婷| 亚洲欧美一区二区三区久久| 欧美激情高清一区二区三区| 欧美国产精品va在线观看不卡| 国产亚洲精品久久久久5区| 亚洲av成人一区二区三| 国产有黄有色有爽视频| 国产精品熟女久久久久浪| 久久人妻熟女aⅴ| 国产成+人综合+亚洲专区| 精品久久久久久久毛片微露脸| 精品高清国产在线一区| 99精国产麻豆久久婷婷| 咕卡用的链子| 中文字幕人妻丝袜制服| 我要看黄色一级片免费的| 肉色欧美久久久久久久蜜桃| 高清欧美精品videossex| 久久人妻福利社区极品人妻图片| 国产精品久久久久成人av| 黄频高清免费视频| 欧美人与性动交α欧美软件| cao死你这个sao货| 一级黄色大片毛片| 国产色视频综合| 黑人巨大精品欧美一区二区mp4| 久久精品91无色码中文字幕| 建设人人有责人人尽责人人享有的| 汤姆久久久久久久影院中文字幕| 亚洲精品国产区一区二| 操出白浆在线播放| av天堂在线播放| 女人精品久久久久毛片| 欧美在线黄色| 久久久精品94久久精品| 国产伦理片在线播放av一区| 看免费av毛片| 午夜福利免费观看在线| 我要看黄色一级片免费的| 一夜夜www| 女性被躁到高潮视频| 久久久久久久精品吃奶| 亚洲欧美日韩另类电影网站| tocl精华| 狠狠精品人妻久久久久久综合| 最黄视频免费看| 欧美+亚洲+日韩+国产| 亚洲国产av影院在线观看| 大型黄色视频在线免费观看| 国产区一区二久久| av在线播放免费不卡| 国产精品欧美亚洲77777| 热99久久久久精品小说推荐| 黄色a级毛片大全视频| 啦啦啦 在线观看视频| 一区二区三区国产精品乱码| 肉色欧美久久久久久久蜜桃| 777久久人妻少妇嫩草av网站| 麻豆av在线久日| 日韩中文字幕欧美一区二区| 亚洲人成电影免费在线| 亚洲少妇的诱惑av| 久久久国产一区二区| 久久久精品免费免费高清| 国产高清国产精品国产三级| 精品人妻熟女毛片av久久网站| 中文字幕av电影在线播放| 90打野战视频偷拍视频| 老司机亚洲免费影院| 老鸭窝网址在线观看| 欧美成人午夜精品| 麻豆国产av国片精品| 自线自在国产av| 亚洲人成伊人成综合网2020| 天天影视国产精品| 色尼玛亚洲综合影院| 18禁国产床啪视频网站| 国产精品电影一区二区三区 | e午夜精品久久久久久久| 国产精品麻豆人妻色哟哟久久| 大码成人一级视频| 蜜桃在线观看..| 日本av手机在线免费观看| 国产午夜精品久久久久久| 99久久99久久久精品蜜桃| 男女之事视频高清在线观看| 变态另类成人亚洲欧美熟女 | 免费黄频网站在线观看国产| 国产亚洲午夜精品一区二区久久| 国产野战对白在线观看| 国产成人一区二区三区免费视频网站| 国产精品久久久av美女十八| 亚洲欧洲精品一区二区精品久久久| 亚洲成av片中文字幕在线观看| 91精品国产国语对白视频| 叶爱在线成人免费视频播放| 水蜜桃什么品种好| 男人操女人黄网站| 涩涩av久久男人的天堂| 夫妻午夜视频| 亚洲精品美女久久久久99蜜臀| 日日爽夜夜爽网站| 国产伦人伦偷精品视频| 女同久久另类99精品国产91| 亚洲人成电影免费在线| 嫩草影视91久久| 国产单亲对白刺激| 久久天堂一区二区三区四区| 国产1区2区3区精品| 中文字幕另类日韩欧美亚洲嫩草| 变态另类成人亚洲欧美熟女 | 波多野结衣av一区二区av| 亚洲综合色网址| 18禁国产床啪视频网站| 精品少妇内射三级| 国产亚洲精品久久久久5区| 亚洲一区中文字幕在线| 如日韩欧美国产精品一区二区三区| 韩国精品一区二区三区| 一级片'在线观看视频| 精品乱码久久久久久99久播| 亚洲中文日韩欧美视频| 久久精品国产亚洲av高清一级| 女同久久另类99精品国产91| 视频区图区小说| 搡老岳熟女国产| 搡老乐熟女国产| 19禁男女啪啪无遮挡网站| 一本久久精品| 一边摸一边抽搐一进一小说 | 乱人伦中国视频| 亚洲天堂av无毛| 日韩一区二区三区影片| 高清黄色对白视频在线免费看| 午夜福利视频精品| 欧美日本中文国产一区发布| 中文字幕最新亚洲高清| 久久精品aⅴ一区二区三区四区| 欧美一级毛片孕妇| 色在线成人网| 十分钟在线观看高清视频www| 日本五十路高清| 亚洲人成伊人成综合网2020| 嫩草影视91久久| 视频区图区小说| 男人舔女人的私密视频| 日韩有码中文字幕| 在线亚洲精品国产二区图片欧美| 亚洲熟女精品中文字幕| 久久久精品区二区三区| 青草久久国产| 亚洲五月色婷婷综合| 亚洲精品自拍成人| 国产精品免费视频内射| 1024视频免费在线观看| 侵犯人妻中文字幕一二三四区| 亚洲av欧美aⅴ国产| 曰老女人黄片| 国产熟女午夜一区二区三区| 天天影视国产精品| 怎么达到女性高潮| 国产免费福利视频在线观看| 亚洲精品中文字幕在线视频| 中文字幕色久视频| 人人妻人人爽人人添夜夜欢视频| 一本综合久久免费| 亚洲五月婷婷丁香| 亚洲成人免费av在线播放| 国产高清国产精品国产三级| 黑丝袜美女国产一区| 在线观看66精品国产| 人人妻人人澡人人看| 亚洲精品久久成人aⅴ小说| 日日夜夜操网爽| 亚洲一码二码三码区别大吗| 女人被躁到高潮嗷嗷叫费观| 精品久久蜜臀av无| 老汉色av国产亚洲站长工具| www日本在线高清视频| 久久午夜亚洲精品久久| 亚洲少妇的诱惑av| 丰满迷人的少妇在线观看| 精品国产一区二区三区久久久樱花| 亚洲欧美日韩另类电影网站| 性少妇av在线| 亚洲,欧美精品.| 91九色精品人成在线观看| 99riav亚洲国产免费| 十八禁高潮呻吟视频| 久久久久精品国产欧美久久久| 一个人免费在线观看的高清视频| 侵犯人妻中文字幕一二三四区| 国产麻豆69| 一进一出好大好爽视频| 搡老熟女国产l中国老女人| 99riav亚洲国产免费| 国产野战对白在线观看| 两个人看的免费小视频| 性色av乱码一区二区三区2| 精品一区二区三区视频在线观看免费 | 搡老岳熟女国产| 怎么达到女性高潮| 大型av网站在线播放| 午夜精品国产一区二区电影| 国产精品欧美亚洲77777| 91成年电影在线观看| 久热爱精品视频在线9| aaaaa片日本免费| 他把我摸到了高潮在线观看 | 1024视频免费在线观看| 日本五十路高清| 两个人看的免费小视频| 日本a在线网址| 免费在线观看影片大全网站| 免费久久久久久久精品成人欧美视频| 五月开心婷婷网| 久热爱精品视频在线9| 日本撒尿小便嘘嘘汇集6| 免费在线观看完整版高清| av不卡在线播放| 99香蕉大伊视频| 男女无遮挡免费网站观看| 午夜福利视频精品| 99riav亚洲国产免费| 波多野结衣av一区二区av| 一级毛片女人18水好多| 电影成人av| 97在线人人人人妻| 91老司机精品| 欧美在线一区亚洲| 99久久人妻综合| 两个人看的免费小视频| 男女免费视频国产| 久久人人97超碰香蕉20202| 中文字幕最新亚洲高清| 男女之事视频高清在线观看| 国产成人欧美| 色综合欧美亚洲国产小说| 女性生殖器流出的白浆| 午夜两性在线视频| 亚洲国产欧美在线一区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产毛片av蜜桃av| 窝窝影院91人妻| 麻豆av在线久日| 日韩成人在线观看一区二区三区| 99精品在免费线老司机午夜| 男女边摸边吃奶| 午夜免费成人在线视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲黑人精品在线| 亚洲少妇的诱惑av| 久久99热这里只频精品6学生| 精品福利永久在线观看| av天堂在线播放| 黄色怎么调成土黄色| a级毛片在线看网站| videos熟女内射| 国产av国产精品国产| 夜夜爽天天搞| 在线观看人妻少妇| 50天的宝宝边吃奶边哭怎么回事| 啪啪无遮挡十八禁网站| 女人高潮潮喷娇喘18禁视频| 久久99热这里只频精品6学生| 男女边摸边吃奶| 国产精品久久久av美女十八| 在线观看免费高清a一片| 青草久久国产| 两个人免费观看高清视频|