• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of resonant magnetic perturbation on blob motion and structure using a gas puff imaging diagnostic on the HL-2A tokamak

    2023-10-08 08:20:40JinbangYUAN袁金榜MinXU許敏YiYU余羿BodaYUAN袁博達LinNIE聶林XiaoquanJI季小全TengfeiSUN孫騰飛AoWANG王傲andJiquanLI李繼全
    Plasma Science and Technology 2023年9期
    關(guān)鍵詞:金榜騰飛

    Jinbang YUAN(袁金榜),Min XU(許敏),?,Yi YU(余羿),Boda YUAN(袁博達),Lin NIE(聶林),Xiaoquan JI(季小全),Tengfei SUN(孫騰飛),Ao WANG(王傲)and Jiquan LI(李繼全)

    1 Southwestern Institute of Physics,Chengdu 610041,People’s Republic of China

    2 Sino-French Institute of Nuclear Engineering and Technology,Sun Yat-sen University,Zhuhai 519082,People’s Republic of China

    Abstract The impact of resonant magnetic perturbation(RMP)on blob motion and structure in the SOL of the HL-2A tokamak is studied using a gas puff imaging diagnostic.Ellipse fitting is applied to study the structure and motion of blobs quantitatively.The radial locations,amplitudes and scale sizes of blobs are obtained based on the fitted ellipse.Furthermore,based on the measurement of blob location,the radial and poloidal velocities of blobs are calculated.With the application of RMP,the edge poloidal shear flow is significantly weakened and the wave number spectrum changes from quasisymmetric to significantly up-down asymmetric.The application of RMP also causes the detected blob location to be much further into the far scrape-off layer(SOL)and increases the blob amplitude.Blob poloidal velocity in the SOL is slowed.Larger-size and longer-lifetime blobs are observed with RMP.With the application of RMP,stronger-amplitude and larger-size blobs are detected in the far SOL and they may cause a more serious erosion problem to the first wall.

    Keywords: resonance magnetic perturbations,blob structure,blob motion,gas puff imaging

    1.Introduction

    Resonant magnetic perturbation(RMP) coils have been widely used to suppress edge localized modes(ELMs)worldwide since the discovery on DIII-D that the application of RMP can lead to full ELM suppression[1,2].ITER design work proposed the application of RMP to stabilize ELM and feedback stabilization of resistive wall modes and to increase vertical stability [3].In addition,RMP is used to control the vertical plasma position and to control the interaction between plasma and the first wall [4,5].

    The application of RMP is also used to modify edge turbulence and transport.The impact of RMP on edge turbulence is observed to be dependent on RMP generation modes and plasma parameters.On TEXT,experiments found that particle transport increased by typically 30% with magnetic islands created by externally applied resonant magnetic fields [6].Experiments on TEXTOR showed that with RMP the local turbulent flux reversed sign from radially outwards to inwards [7,8].On MAST,the edge turbulence density fluctuation level decreased and the density probability distribution function showed an asymmetrization towards non-Gaussian shapes with RMP [9].In DIII-D H mode plasma,long-wavelength turbulence and transport increased dramatically and global energy confinement decreased with the application of RMP [10].Later work showed an increase in density fluctuations at microturbulent scales with increasing RMP amplitude [11].KSTAR tokamak experiments alsoobserved that application of RMP increased the density fluctuation level [12].Recent experimental studies on DIII-D provided a mechanism for the effect of RMP on turbulence density fluctuations.RMP reduces the flow shear rate and thereby disrupts the turbulence shear suppression mechanism[13].In addition,research on the interaction between magnetic island induced by RMP and turbulence has been widely reported on EAST [14-16],J-TEXT [17-19] and HL-2A[20,21].Furthermore,the impact of RMP on blobs has attracted significant attention.Blobs are isolated high-density structures that are usually formed in the plasma edge or near the separatrix,and move fast and radially towards the first wall [22-25].Separate studies have shown that blobs in the boundary plasma can account for up to 50% of the total transport associated with edge turbulence [26-28],and blobs can significantly increase interactions between the plasma and the first wall by causing non-diffusive plasma transport[29-31].Simulation results predicted that larger-scale blobs can maintain a stable structure for longer [29].However,the blob birth process still remains an open issue [32].

    The impact of RMP on edge poloidal shear flow(also radial electric field)has also been studied on many tokamaks.On TEXTOR,the application of the DED(Dynamic Ergodic Divertor) increases the rotation in the scrape-off layer(SOL)and slows the rotation at the edge [33],and similar experimental phenomena are also observed on MAST [9].

    It is generally believed that poloidal shear flow plays an essential role in controlling turbulence transport for its shearing effects on turbulent eddies,as predicted by theories[34-36].Edge poloidal flow speed varies in the radial direction,perpendicular to the flow direction,and usually has the maximum shearing rate near the separatrix.It is widely accepted that the poloidal shear flow tilts the eddies,decreases their radial extent and elongates them poloidally.In some simulations,the shear flow also breaks up large eddy structures [36].

    Experimental observations on TEXTOR provided evidence of eddy breaking and tilting caused by edge shear flow.Results showed that the magnitude of the flow shearing rate plays a key role in eddy tilting or breaking [37].Further experiments showed that as the poloidal flow is slowly enhanced,thekr-kθspectrum changes from roughly symmetric to elliptic to finally wider and less stretched,where the widening of the spectrum implies the breakup of eddies [38].

    In this paper,the impact of RMP on blob motion and structure on the HL-2A tokamak is studied using a gas puff imaging(GPI) diagnostic.The rest of the paper is organized as follows.Section 2 gives the introduction of the experimental setup.Section 3 presents blob diagnostics and data analysis.High spatial and temporal resolution of plasma turbulence diagnostics-GPI is used to measure the 2D turbulence density fluctuations.Ellipse fitting is applied to study the structure and motion of blobs quantitatively.Section 4 analyzes the impact of RMP on blob motion and size.Finally,in section 6,discussion takes place and the paper is concluded.

    2.Experimental setup

    HL-2A is a medium-size tokamak,which is performed in deuterium plasmas and typically operated under limiter or lower single-null divertor configurations [39-41].Its major radius isR=1.65 m and its minor radius isr=0.4 m.

    The experiment is carried out in Ohmic discharge at lower single-null divertor configuration(shots#37777 and#37778).The time evolution of the main discharge parameters in this experiment is shown in figure 1.The experiment was carried out under Ohmic heating with a plasma current(IP)of 160 kA,a toroidal magnetic field(Bt) of 1.6 T,line-averaged density(ne) of 1.3×1019m-3and horizontal displacement of the magnetic axis(hd)around 0.These parameters remained almost constant without/with the application of RMP.Shot#37777 is the reference shot without RMP and shown by blue color,and shot#37778 is applied with 10 kA RMP(m/n=3/1)during the period oft=1300-1400 ms and shown by red color.The magnetic field perturbation componentm/n=3/1 by RMP is more than 7 Gs on theq95surface andm/n=3/1 magnetic islands are created on theq=3 surface.More details about the RMP coils on HL-2A can be found in [42].These parameters are the common discharge parameters of the HL-2A tokamak and are highly repeatable.The helium gas puff by GPI is initiated at 1250 ms to observe the modification of RMP on poloidal shear flow and blob properties duringt=1300-1400 ms.The results in this paper are calculated from 1300 to 1400 ms of GPI measurements.

    Measurement of the poloidal velocity profile is done by GPI in the middle plane using the time delay estimation method [43].The profiles of poloidal velocity(Vθ) and shearing rate(ωs) ofVθare shown in figure 2,wherer-rseprepresents the distance from the separatrix,andωsis calculated asωs=d(Vθ)/dr.The error bars are shown by corresponding shadow colors.The poloidal velocity is significantly modified with the application of RMP.The poloidal velocity profilebecomes shallower and the maximum shearing rate becomes much weaker from-1.88×105to-0.908×105s-1with the application of 10kA RMP.Similar experimental phenomena were also reported on TEXTOR[33]and MAST[9].Based on these papers,it is proposed that RMP leads to an increased electron loss rate,which charges the plasma edge more positively.This mechanism explains the shallower poloidal velocity profile observed.

    With the application of 10 kA RMP,the poloidal shear flow becomes much weaker.The impact of RMP on blob properties is presented in the following sections.

    3.Blob diagnostics and data analysis

    3.1.GPI diagnostics

    The motion and structure of blobs are observed using GPI diagnostic,which is the same as reported previously[44,45].The set of GPI diagnostics used in this experiment is a viewing area 15 cm×15 cm region in the radial-poloidal plane perpendicular to the localBfield and a fast camera that records at 100 000 frames/s using a 128×128 pixel array.The time interval between two consecutive frames is 10μs,and the spatial resolution of the optical system is around 0.2 cm at the GPI gas cloud.A long nozzle is used to puff the helium gas into the plasma boundary region.

    3.2.Blob data analysis

    In this paper,the blob tracking analysis based on GPI data is done as follows.The GPI data are first normalized to a 1 ms rolling time-average of neighboring images(100 frames) in order to identify the maxima in each normalized image.A blob is defined as the region where the local normalized,smoothed fluctuation intensity exceeds 1.5.A contour line is generated in the region of intensity equal to 1.5 and then an ellipse is fitted to this contour.

    In order to study the structure and motion of blobs quantitatively,ellipse fitting is applied to the 1.5 contour of blobs.An illustration of blob ellipse fitting used in this study is shown in figure 3.Figure 3(a) shows the normalized intensity of a blob in one frame in a 3D coordinate system,wherex,y-direction coordinates represent the radial and poloidal pixel,respectively,and thez-direction coordinate represents the normalized intensity of the GPI data.Figure 3(b) is the projection of(a) on the radial-poloidal plane.The separatrix is shown by the black dashed line,and then an ellipse(in red)is fitted to the contour level of 1.5,and the blob scale lengths(LrandLθ)are defined from the ellipse fitting,as shown in figure 3(c).Based on the ellipse fitting of blobs,the key parameters of each detected blob are obtained:the blob radial location(marked as the center of the ellipse with respect to the separatrix at the radial row),the blob amplitude(defined as the maximum normalized intensity of GPI signal),the radial and poloidal scale length of the blob(LrandLθ,as in figure 3(c)) and the blob area(calculated as the ellipse area).The procedure for calculatingLrandLθof the blob is as follows.First,a rectangular coordinate system is established with the center of the ellipse as the origin,as shown in figure 3(c),and thex-andy-axes are the radial and poloidal directions,respectively.Thex-axis has two intersections with the ellipse,and the distance between these two intersections is defined asLrof the blob.Similarly,the distance between two intersections of they-axis with the ellipse is defined asLθof the blob.

    Figure 3.Illustration of a blob ellipse fitting:(a) normalized intensity of a blob in the 3D coordinate system,(b) the 2D projection on the radial-poloidal plane of(a).Separatrix is shown by the black dashed line,(c)an ellipse(in red)is fitted to the contour level of 1.5(shown by the black dotted line) and blob scale lengths(Lr and Lθ) are defined from the ellipse fitting in(c).

    Figure 4.(a) Typical normalized GPI image without RMP and(b)corresponding 2D wave number spectrum of(a).(c) Typical normalized GPI image with RMP and(d) corresponding 2D wave number spectrum of(c).

    Figure 5.Contour plots of average 2D wave number(kr- kθ)spectra in instances(a) without RMP and(b) with 10 kA RMP situations.

    Figure 6.Detected location of blobs in the SOL in instances(a)without RMP and(b) with RMP.

    Figure 7.PDF of the detected location of blobs in the SOL without(in blue) and with(in red) RMP.

    Figure 8.Radial distributions of individual detected blob amplitude in instances(a) without RMP and(b) with RMP.

    Figure 9.Profiles of average amplitude of blobs in instances(a)without RMP(in blue) and(b) with RMP(in red).

    Figure 10.Velocity of individual blobs in instances of(a)radial velocity without RMP,(b)poloidal velocity without RMP,(c)radial velocity with RMP,(d) poloidal velocity with RMP.

    Figure 11.PDF of blob(a) radial velocity and(b) poloidal velocity without(in blue) and with(in red) RMP.

    Figure 13.Profiles of the average blob lifetime without(in blue)and with(in red) RMP.

    Furthermore,based on the measurement of blob location,the radial and poloidal velocities of blobs are calculated as the radial and poloidal displacements divided by the interval time.

    Typical normalized GPI images without and with RMP are shown in figures 4(a)and(c),respectively.The blob shape in figure 4(a)is close to circular,while in figure 4(c)the blob shape is stretched with a tilted angle.To characterize the turbulence eddy shapes,a 2D space fast Fourier transform(2D-FFT)is performed.Thekrandkθare calculated from the space 2D-FFT of GPI images,and the 2D wave number spectra of figures 4(a) and(c) are shown in figures 4(b) and(d),respectively.The wave number spectrum changes from quasisymmetric to significantly up-down asymmetric with the application of 10 kA RMP,reflecting the modification of blob shape in the corresponding GPI images.

    Contour plots of 2D wave number(kr-kθ) spectra of GPI images are plotted in figure 5.Each spectrum is averaged over 1000 images.With the application of RMP,the wave number spectrum changes from quasisymmetric in figure 5(a)to significantly up-down asymmetric in figure 5(b).The asymmetric wave number spectrum indicates that turbulence structures are stretched with a tilted angle.Similar phenomena were reported on TEXTOR,which used electrode biasing to modify poloidal shear flow [38].More experimental results with respect to the shearing effect on blob size are presented in section 4.3.

    4.Impact of RMP on blob motion and size

    4.1.Impact of RMP on location and amplitude of blobs

    Due to the large measurement area covered by GPI diagnostics,the radial locations of blobs are marked as the center of the fitted ellipse with respect to the separatrix in the radial direction regardless of poloidal position.The number of blobs detected per radial zone is clearly different between without and with RMP cases,as shown in figure 6.

    Without RMP,the largest number of blobs per zone is found around 2-4 cm outside the separatrix and there are few blobs beyond 4 cm.However,with RMP there are very fewblobs near the separatrix,and most of the blobs are detected around 4-7 cm.The number of detected blobs without RMP at 2 cm<r-rsep<4 cm is around 50 per zone,while the number of detected blobs with RMP at 5-7 cm is around 100 per zone.The number of detected blobs increases significantly with the application of RMP.

    Further analysis of the most probable location of the detected blobs is done using statistical methods.The probability density functions(PDFs)of the detected location of the blobs in the SOL without and with RMP are shown in figure 7.The results show that the most probable location of blobs detected moves from 3.2 ± 0.3 to 6.0 ± 0.3 cm in the SOL.In other words,when RMP is applied,there are many more blobs detected in the far SOL.

    The radial distributions of individual detected blob amplitude without RMP and with RMP are shown in figure 8.The detected locations of strong amplitude blobs(amplitude>2)are limited to the range of 2 cm<r-rsep<3 cm without the application of RMP.In other words,no strong amplitude of blobs can propagate into the far SOL.However,whenIRMP=10 kA RMP is applied,the detected locations of strong amplitude blobs(amplitude>2) are distributed in a larger range of 3.2 cm<r-rsep<6.8 cm.The possible physical process can be that as the RMP is applied,the weaker shear flow leads to strong amplitude blobs propagating much further into the far SOL.These blobs may deposit on the first wall and cause a serious erosion problem.

    The profiles of average amplitude of blobs without RMP and with RMP are shown in figure 9.The average amplitude of blobs is enhanced from 1.55 to 1.65 when RMP is applied.

    The impact of RMP on blob location and amplitude is quite clear.The application of RMP causes the detected blob location to be much further into the far SOL and increases the blob amplitude.To summarize,there are more and higher amplitude blobs in the far SOL with RMP.

    4.2.Impact of RMP on blob velocity

    Based on the measured locations of blobs,the radial and poloidal velocities can be calculated as the blob radial and poloidal displacements divided by the interval time between continuous frames.Note that the blob velocity is calculated only when the following two conditions are met: the blob lasts at least two successive frames(20μs) and the furthest displacement of blobs in one dimension in two successive frames is 5 cm,otherwise they are considered to be two independent blobs.In other words,the maximum blob velocity allowed in one dimension is 5 km s-1in this study.

    The radial and poloidal velocities of individual blobs without and with RMP are shown in figure 10.The blob radialvelocities without and with RMP are mostly positive,as shown in figures 10(a) and(c),which means that most blobs are moving radially outwards(to the wall).Most of the blob poloidal velocities are negative,as shown in figures 10(b)and(d),which means that most blobs are moving downwards,which is along the ion-diamagnetic drift velocity direction.The poloidal velocities of most blobs in the SOL are along the direction of poloidal shear flow in the SOL.This may indicate that the poloidal shear flow has significant influence on the poloidal motion of blobs.

    The distributions of radial velocities of blobs with and without RMP are similar and most blob radial velocities are distributed in theVr>0 region.However,the PDF of blob poloidal velocity is clearly different between the without RMP and with RMP cases,as shown in figure 11(b).The distribution of blob poloidal velocity with RMP is shifted to the more positive direction compared with the distribution without RMP,which means that the poloidal velocity of blobs decreases with RMP,which is consistent with the modification of edge shear flow by RMP.It is natural that the most probable poloidal velocity also decreases with RMP.The most probable poloidal velocity of blobs without RMP is-0.46 km s-1and the most probable poloidal velocity of blobs with RMP is-0.22 km s-1.

    In general,RMP has little effect on the blob radial velocity but a noticeable effect on the poloidal velocity.An application of RMP slows blob poloidal velocity in the SOL.

    4.3.Impact of RMP on blob size

    It is generally believed that poloidal flow plays a key role in the turbulent eddy shape and formation.Previous experimental observations on the TEXTOR tokamak prove that whether shear flow tilts or splits the turbulent eddies depends on the magnitude of the flow shearing rate.Increasing the shearing rate changes the mode of effect from tilting to splitting and,consequently,reduces the turbulent transport [38].

    Experiments in this study prove that the RMP weakens the poloidal shear flow discussed in section 2.Furthermore,the impact of weakened shear flow on turbulence blob sizes is studied in this section.

    The profiles of the average blob size:(a)radial length,(b)poloidal length,(c) blob area without(in blue) and with(in red) RMP are shown in figure 12.Blob radial and poloidal sizes increase significantly with the application of RMP,especially near the separatrix.The blob area is also much larger than that without RMP.This observation verifies the assumption that the impact of shear flow on blobs changes from tearing and splitting to tilting only as the poloidal shear flow becomes weakened with RMP,resulting in larger-size blobs being detected.Furthermore,the impact of RMP on blob lifetime is also calculated.

    The profiles of the average blob trail lifetime without(in blue)and with(in red)RMP are plotted in figure 13.It is clear that under the impact of RMP,the average lifetime of blobs ismuch longer.Combined with larger blob size,it can be inferred that the larger the blob size is,the longer the lifetime is,which is consistent with the simulation results [29].This also indicates that as the shearing rate of edge poloidal shear flow becomes weaker with the application of RMP,largersize and longer-lifetime blobs exist in the far SOL.

    5.Conclusion

    In this study,the impact of RMP on blob motion and structure on the HL-2A tokamak is determined using a GPI diagnostic.The edge turbulence fluctuation data by GPI with high spatial(2 mm×2 mm) and temporal(10μs) resolutions guarantee the quantitative measurements of the blob structure and motion in the radial-poloidal plane.A blob is identified when the condition that the normalized amplitude exceeds 1.5 is met and then an ellipse is fitted to the contour of the blob.The radial locations,amplitudes and the scale sizes of blobs are obtained based on the fitted ellipse.Furthermore,with the measurement of blob location,the radial and poloidal velocities of blobs are calculated.

    With the application of RMP,the edge poloidal shear flow is significantly weakened and thekr-kθspectrum shifts from wider and less stretched to clearly tilted.This may imply that as the shear flow becomes weaker,the shearing effect changes from tearing and splitting to tilting only.This can be verified by the increase in blob size with RMP.

    The application of RMP also causes the detected blob location to be much further into the far SOL and increases the blob amplitude and lifetime.The blob poloidal velocity in the SOL is slowed and larger-size and longer-lifetime blobs are observed with RMP.With RMP,stronger amplitude and larger blob size is detected further into the SOL,and these blobs may cause a more serious erosion problem to the firstwall.Thus,enhanced blob transport with the application of RMP needs to be considered for the ITER design work and future operations.

    Acknowledgments

    The authors thank the HL-2A team at SWIP for their assistance with the experiments.This work is supported by the National Key Research and Development Program of China(Nos.2022YFE03100002,2022YFE03010004 and 2019YFE03060002),National Natural Science Foundation of China(Nos.U1867222,U1967206 and 51821005) and the Sichuan Natural Science Foundation(Nos.2022NSFSC1791 and 2020JDTD0030).

    ORCID iDs

    猜你喜歡
    金榜騰飛
    我們的十年,我們的金榜
    悅游金榜
    盧騰飛
    素數(shù)和差之半數(shù)的解析
    小小三雙鞋,見證騰飛路
    快樂語文(2018年25期)2018-10-24 05:39:10
    讓電視的聲音更細致迷人 Canton金榜DM55 Soundbar音箱
    雜詩二首
    黃金時代(2017年3期)2017-06-30 18:49:47
    騰飛在希望的田野上
    三角函數(shù)求值題巧妙變換就容易
    2015高級會計資格考試“金榜”131名考生上榜
    干丝袜人妻中文字幕| avwww免费| 久久午夜福利片| 中文字幕av在线有码专区| 久久午夜福利片| 一级毛片电影观看 | 一进一出抽搐动态| 午夜久久久久精精品| 日本爱情动作片www.在线观看 | 听说在线观看完整版免费高清| 一个人看视频在线观看www免费| 国产亚洲精品久久久com| 一级毛片电影观看 | 国产 一区 欧美 日韩| 亚洲精品影视一区二区三区av| 精品一区二区三区视频在线观看免费| 亚洲在线观看片| 欧美激情在线99| 日韩人妻高清精品专区| 中国美白少妇内射xxxbb| 国产亚洲精品久久久com| 国产一区二区亚洲精品在线观看| 国产69精品久久久久777片| 丰满乱子伦码专区| 国产成人a区在线观看| 欧美在线一区亚洲| 高清午夜精品一区二区三区 | 一级毛片久久久久久久久女| 18禁黄网站禁片免费观看直播| 久久精品国产亚洲av涩爱 | 国产成人a∨麻豆精品| 蜜臀久久99精品久久宅男| 又粗又爽又猛毛片免费看| 波多野结衣高清无吗| 看非洲黑人一级黄片| 精品一区二区免费观看| 看十八女毛片水多多多| 国产 一区 欧美 日韩| 男插女下体视频免费在线播放| 女人十人毛片免费观看3o分钟| 色综合站精品国产| 久久精品夜夜夜夜夜久久蜜豆| 伦理电影大哥的女人| 看片在线看免费视频| 国产精品嫩草影院av在线观看| 91久久精品国产一区二区三区| 久久国产乱子免费精品| 亚洲色图av天堂| 国产精品人妻久久久久久| 久久精品夜色国产| 18禁在线无遮挡免费观看视频 | 91久久精品国产一区二区三区| 我的老师免费观看完整版| 可以在线观看毛片的网站| 午夜久久久久精精品| 午夜激情福利司机影院| 欧美性感艳星| 国产av在哪里看| 国产伦在线观看视频一区| 国产单亲对白刺激| 激情 狠狠 欧美| 国产真实伦视频高清在线观看| 亚洲经典国产精华液单| 久久欧美精品欧美久久欧美| 欧美+亚洲+日韩+国产| 搞女人的毛片| 久久人妻av系列| 狂野欧美白嫩少妇大欣赏| 亚洲高清免费不卡视频| 成人特级av手机在线观看| 99久久久亚洲精品蜜臀av| 亚洲中文日韩欧美视频| 最新在线观看一区二区三区| 久久久久久久久中文| 一级毛片我不卡| 男人的好看免费观看在线视频| 久久久精品94久久精品| 欧美日韩在线观看h| 国产免费男女视频| 国产精品不卡视频一区二区| 免费人成在线观看视频色| 十八禁国产超污无遮挡网站| 男插女下体视频免费在线播放| 一夜夜www| 亚洲av一区综合| 日日撸夜夜添| 久久久午夜欧美精品| 国产精品野战在线观看| 精品日产1卡2卡| 国产中年淑女户外野战色| 一区二区三区免费毛片| 久久综合国产亚洲精品| 美女黄网站色视频| 精品国产三级普通话版| 欧美又色又爽又黄视频| 欧美日韩国产亚洲二区| 国产探花在线观看一区二区| 国产大屁股一区二区在线视频| 亚洲精品国产av成人精品 | 亚洲av免费在线观看| avwww免费| 又黄又爽又免费观看的视频| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕精品亚洲无线码一区| 偷拍熟女少妇极品色| 中文字幕熟女人妻在线| 国产成人精品久久久久久| 三级男女做爰猛烈吃奶摸视频| 日日摸夜夜添夜夜添av毛片| 色尼玛亚洲综合影院| 热99re8久久精品国产| 少妇猛男粗大的猛烈进出视频 | 美女xxoo啪啪120秒动态图| 日韩欧美三级三区| 国内精品美女久久久久久| 少妇的逼水好多| 久久精品国产亚洲av天美| 色av中文字幕| 国产黄色视频一区二区在线观看 | 一级av片app| 亚洲va在线va天堂va国产| 性插视频无遮挡在线免费观看| 一级毛片久久久久久久久女| 国产亚洲91精品色在线| 婷婷色综合大香蕉| 久久久久国产精品人妻aⅴ院| 黄色配什么色好看| 黄色日韩在线| 日本免费一区二区三区高清不卡| 麻豆久久精品国产亚洲av| 22中文网久久字幕| 色哟哟哟哟哟哟| 欧美日韩精品成人综合77777| 国产欧美日韩精品亚洲av| 国产欧美日韩精品亚洲av| 九九久久精品国产亚洲av麻豆| 最好的美女福利视频网| 国内精品美女久久久久久| 日本成人三级电影网站| 插逼视频在线观看| 三级国产精品欧美在线观看| 成人毛片a级毛片在线播放| 久久人人精品亚洲av| 97碰自拍视频| 一级黄色大片毛片| 十八禁国产超污无遮挡网站| 精品久久久久久久久久久久久| 精品99又大又爽又粗少妇毛片| 日韩 亚洲 欧美在线| 给我免费播放毛片高清在线观看| 久久久久国内视频| 国产黄a三级三级三级人| 婷婷六月久久综合丁香| 亚洲美女视频黄频| 欧美日本亚洲视频在线播放| 女生性感内裤真人,穿戴方法视频| avwww免费| 美女黄网站色视频| 搡女人真爽免费视频火全软件 | 国产三级在线视频| av国产免费在线观看| 久久这里只有精品中国| 国产成人91sexporn| 欧美日本亚洲视频在线播放| 亚洲激情五月婷婷啪啪| 中文字幕av成人在线电影| 成人高潮视频无遮挡免费网站| 日韩国内少妇激情av| 国产毛片a区久久久久| 国产精品不卡视频一区二区| 亚洲av中文字字幕乱码综合| 国产精品电影一区二区三区| 亚洲性久久影院| 欧美激情国产日韩精品一区| 国产精品电影一区二区三区| 国产成人a区在线观看| 又黄又爽又刺激的免费视频.| 可以在线观看毛片的网站| 国产欧美日韩精品一区二区| 久久精品国产亚洲av涩爱 | 亚洲性夜色夜夜综合| 国产精品,欧美在线| 在线免费观看的www视频| 少妇被粗大猛烈的视频| 欧美bdsm另类| 少妇被粗大猛烈的视频| 欧美日韩在线观看h| 日本与韩国留学比较| 亚洲欧美成人综合另类久久久 | 亚洲av.av天堂| 成人毛片a级毛片在线播放| 成人亚洲欧美一区二区av| 波野结衣二区三区在线| 不卡一级毛片| 亚洲精品亚洲一区二区| 国产高潮美女av| 老熟妇仑乱视频hdxx| 人人妻人人澡欧美一区二区| 国产高清激情床上av| 午夜a级毛片| 一级a爱片免费观看的视频| 亚洲精品在线观看二区| 亚洲av中文av极速乱| 午夜影院日韩av| 2021天堂中文幕一二区在线观| 久久精品夜夜夜夜夜久久蜜豆| 一级a爱片免费观看的视频| 午夜a级毛片| av免费在线看不卡| 欧美性感艳星| 中文字幕熟女人妻在线| av卡一久久| 最近2019中文字幕mv第一页| 在线免费观看不下载黄p国产| 日本撒尿小便嘘嘘汇集6| 欧美成人免费av一区二区三区| 久久久久精品国产欧美久久久| 亚洲天堂国产精品一区在线| 日本一本二区三区精品| 国产在线精品亚洲第一网站| 少妇的逼水好多| 搞女人的毛片| 亚洲欧美日韩东京热| 国产精品久久久久久久电影| 亚洲一区二区三区色噜噜| 在线a可以看的网站| 国产免费男女视频| 不卡视频在线观看欧美| 全区人妻精品视频| 欧美+亚洲+日韩+国产| 亚洲美女黄片视频| 欧美bdsm另类| 国产男人的电影天堂91| 亚洲婷婷狠狠爱综合网| 成人无遮挡网站| 校园春色视频在线观看| 欧美日韩综合久久久久久| 国产蜜桃级精品一区二区三区| 午夜亚洲福利在线播放| 一进一出抽搐动态| 啦啦啦韩国在线观看视频| 婷婷精品国产亚洲av在线| 国产伦精品一区二区三区视频9| 99国产精品一区二区蜜桃av| 国产亚洲欧美98| 一级毛片aaaaaa免费看小| 亚洲成人久久性| 欧美精品国产亚洲| 在现免费观看毛片| 精品久久久久久久久久久久久| 亚洲成人av在线免费| 国产伦精品一区二区三区视频9| 色播亚洲综合网| 欧美成人免费av一区二区三区| 色5月婷婷丁香| 亚洲人成网站高清观看| 婷婷亚洲欧美| 91av网一区二区| 国产精品三级大全| 欧美成人一区二区免费高清观看| 精品午夜福利视频在线观看一区| 日韩精品中文字幕看吧| 久久欧美精品欧美久久欧美| 久久精品国产亚洲av香蕉五月| 中国国产av一级| 狂野欧美白嫩少妇大欣赏| 欧美日韩国产亚洲二区| 午夜影院日韩av| а√天堂www在线а√下载| 精品人妻熟女av久视频| 亚洲,欧美,日韩| 神马国产精品三级电影在线观看| 国产精品国产三级国产av玫瑰| 精品久久久久久久久av| 夜夜爽天天搞| 亚洲成人久久爱视频| 亚洲人成网站高清观看| 91久久精品电影网| 日韩欧美免费精品| 成人二区视频| 亚洲性久久影院| 村上凉子中文字幕在线| 18禁在线播放成人免费| 99久久精品国产国产毛片| 国产高清三级在线| 变态另类成人亚洲欧美熟女| 亚洲乱码一区二区免费版| 色哟哟·www| 日日摸夜夜添夜夜爱| 美女 人体艺术 gogo| 国产成人a区在线观看| 欧美不卡视频在线免费观看| av天堂在线播放| 久久久久久久午夜电影| 一进一出抽搐动态| 精品久久久噜噜| 99久久久亚洲精品蜜臀av| 国产精品三级大全| 日韩亚洲欧美综合| 午夜精品一区二区三区免费看| 免费在线观看影片大全网站| 久久婷婷人人爽人人干人人爱| 两个人视频免费观看高清| 亚洲欧美中文字幕日韩二区| 久久久a久久爽久久v久久| 国产视频一区二区在线看| 村上凉子中文字幕在线| 床上黄色一级片| 免费观看人在逋| 成人av在线播放网站| videossex国产| 亚洲国产精品久久男人天堂| 成年版毛片免费区| 黄片wwwwww| or卡值多少钱| 中文字幕精品亚洲无线码一区| 级片在线观看| 欧美+日韩+精品| 亚洲精品日韩在线中文字幕 | 99热6这里只有精品| 欧美一级a爱片免费观看看| 久久久欧美国产精品| 亚洲,欧美,日韩| 国产爱豆传媒在线观看| 亚洲av.av天堂| 亚洲内射少妇av| 高清毛片免费观看视频网站| 欧美3d第一页| 国内精品一区二区在线观看| 国产精品久久久久久精品电影| 丰满的人妻完整版| 成人漫画全彩无遮挡| 春色校园在线视频观看| 成年av动漫网址| 欧美激情国产日韩精品一区| 12—13女人毛片做爰片一| 日本 av在线| 成人漫画全彩无遮挡| 国产淫片久久久久久久久| 乱码一卡2卡4卡精品| 你懂的网址亚洲精品在线观看 | 亚洲av免费在线观看| 国产一区亚洲一区在线观看| 亚洲国产精品成人综合色| 可以在线观看的亚洲视频| 午夜福利成人在线免费观看| 亚洲人成网站高清观看| 免费观看在线日韩| 男女做爰动态图高潮gif福利片| 成人漫画全彩无遮挡| 熟女人妻精品中文字幕| 日韩欧美在线乱码| 全区人妻精品视频| 精品国产三级普通话版| 国产成人a∨麻豆精品| 亚洲一区高清亚洲精品| 国产v大片淫在线免费观看| 国产乱人偷精品视频| 天天一区二区日本电影三级| 亚洲精品成人久久久久久| 男女视频在线观看网站免费| 午夜激情欧美在线| 日韩大尺度精品在线看网址| 亚洲成人av在线免费| 精品一区二区免费观看| 丝袜美腿在线中文| 国产久久久一区二区三区| 日本成人三级电影网站| 色综合亚洲欧美另类图片| 色播亚洲综合网| 欧美高清性xxxxhd video| 免费看日本二区| 日韩,欧美,国产一区二区三区 | 97在线视频观看| 亚洲aⅴ乱码一区二区在线播放| 能在线免费观看的黄片| 亚洲性久久影院| 自拍偷自拍亚洲精品老妇| 日韩强制内射视频| 亚洲成a人片在线一区二区| 99热精品在线国产| 丰满人妻一区二区三区视频av| 欧美bdsm另类| 欧美激情在线99| 日韩 亚洲 欧美在线| 亚洲无线观看免费| 日韩中字成人| 在线免费观看不下载黄p国产| 国产熟女欧美一区二区| 色哟哟·www| 干丝袜人妻中文字幕| 免费av不卡在线播放| 综合色丁香网| 亚洲av成人精品一区久久| 婷婷精品国产亚洲av在线| 俺也久久电影网| 国产色婷婷99| 2021天堂中文幕一二区在线观| 久久久色成人| 国产白丝娇喘喷水9色精品| a级毛片免费高清观看在线播放| 亚洲久久久久久中文字幕| 日产精品乱码卡一卡2卡三| 最近在线观看免费完整版| 亚洲av二区三区四区| 成年女人永久免费观看视频| 亚洲av电影不卡..在线观看| 国产一级毛片七仙女欲春2| 色综合站精品国产| 最近2019中文字幕mv第一页| 人人妻人人澡人人爽人人夜夜 | 亚洲av成人精品一区久久| 熟女电影av网| 国产欧美日韩精品亚洲av| 亚洲成人久久爱视频| 色综合色国产| 露出奶头的视频| 精品久久久久久成人av| 国产精品久久久久久亚洲av鲁大| 性色avwww在线观看| 日韩在线高清观看一区二区三区| 高清日韩中文字幕在线| 成人亚洲精品av一区二区| 国产爱豆传媒在线观看| 91在线精品国自产拍蜜月| 日本三级黄在线观看| 国产熟女欧美一区二区| 国产成人福利小说| 成人二区视频| 又黄又爽又免费观看的视频| 男女下面进入的视频免费午夜| 性插视频无遮挡在线免费观看| 国产单亲对白刺激| 老熟妇乱子伦视频在线观看| 亚洲av.av天堂| 亚洲四区av| 国产av麻豆久久久久久久| 欧美三级亚洲精品| 欧美精品国产亚洲| 99在线视频只有这里精品首页| 一级毛片aaaaaa免费看小| 神马国产精品三级电影在线观看| or卡值多少钱| 精品人妻熟女av久视频| 少妇的逼水好多| 欧美+亚洲+日韩+国产| 亚洲无线在线观看| 国产视频内射| 国产精品国产高清国产av| 五月玫瑰六月丁香| 精品人妻熟女av久视频| 日日摸夜夜添夜夜添av毛片| 欧美日本亚洲视频在线播放| 欧美成人一区二区免费高清观看| 天堂影院成人在线观看| 不卡一级毛片| 听说在线观看完整版免费高清| 国产精品一区www在线观看| 99精品在免费线老司机午夜| 网址你懂的国产日韩在线| 欧美日韩综合久久久久久| 伦理电影大哥的女人| 老熟妇乱子伦视频在线观看| 国产精品,欧美在线| 给我免费播放毛片高清在线观看| 中文字幕av在线有码专区| 18禁黄网站禁片免费观看直播| 美女cb高潮喷水在线观看| 国产午夜精品论理片| 3wmmmm亚洲av在线观看| 麻豆国产av国片精品| 老熟妇乱子伦视频在线观看| 久久精品国产亚洲av香蕉五月| 久99久视频精品免费| 亚洲中文日韩欧美视频| 日韩中字成人| 在线观看午夜福利视频| 又黄又爽又刺激的免费视频.| 亚洲av中文av极速乱| 男女之事视频高清在线观看| 中文在线观看免费www的网站| 国产免费一级a男人的天堂| 精品久久国产蜜桃| 如何舔出高潮| 亚洲一区二区三区色噜噜| 综合色av麻豆| 精品久久久久久久久久久久久| 国产高潮美女av| 欧美zozozo另类| 亚洲人成网站在线观看播放| 亚洲精品成人久久久久久| 最近手机中文字幕大全| 亚洲丝袜综合中文字幕| 国内揄拍国产精品人妻在线| 丝袜美腿在线中文| 天堂网av新在线| 搡老岳熟女国产| 免费观看的影片在线观看| 欧美高清成人免费视频www| 亚洲成人中文字幕在线播放| 国内精品宾馆在线| 尾随美女入室| 精品乱码久久久久久99久播| 国产精品伦人一区二区| 两个人的视频大全免费| 天美传媒精品一区二区| 天堂影院成人在线观看| 人人妻人人澡欧美一区二区| 日本欧美国产在线视频| a级一级毛片免费在线观看| av国产免费在线观看| 男插女下体视频免费在线播放| 亚洲av中文字字幕乱码综合| 亚洲真实伦在线观看| 亚洲高清免费不卡视频| 亚洲av中文字字幕乱码综合| www日本黄色视频网| 亚洲国产色片| 国产探花极品一区二区| 天堂√8在线中文| 成人二区视频| 永久网站在线| 一个人观看的视频www高清免费观看| 国产又黄又爽又无遮挡在线| 神马国产精品三级电影在线观看| 丝袜美腿在线中文| 国产精品电影一区二区三区| www.色视频.com| 女人被狂操c到高潮| 在线天堂最新版资源| 久久久精品94久久精品| 国内久久婷婷六月综合欲色啪| 午夜影院日韩av| 亚洲精品国产av成人精品 | 你懂的网址亚洲精品在线观看 | 亚洲久久久久久中文字幕| 日韩一本色道免费dvd| 成人无遮挡网站| 天天一区二区日本电影三级| 丰满乱子伦码专区| 亚洲久久久久久中文字幕| 久久久久久九九精品二区国产| 亚洲aⅴ乱码一区二区在线播放| 成人欧美大片| 国产伦精品一区二区三区视频9| 日韩 亚洲 欧美在线| 在线a可以看的网站| 精品国产三级普通话版| 亚洲成a人片在线一区二区| 中文字幕av成人在线电影| 男女视频在线观看网站免费| 欧美激情国产日韩精品一区| 国产亚洲91精品色在线| 高清毛片免费看| 91av网一区二区| 久久99热6这里只有精品| 亚洲国产高清在线一区二区三| 亚洲七黄色美女视频| 可以在线观看毛片的网站| 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线播| 大型黄色视频在线免费观看| 插阴视频在线观看视频| 又黄又爽又免费观看的视频| 丰满乱子伦码专区| 欧美一级a爱片免费观看看| 国产成人91sexporn| 成年免费大片在线观看| 日韩一本色道免费dvd| 成人av在线播放网站| 日本黄色视频三级网站网址| av在线播放精品| 亚洲精华国产精华液的使用体验 | 91久久精品电影网| 久久国内精品自在自线图片| 少妇熟女aⅴ在线视频| 日本a在线网址| 久久久久免费精品人妻一区二区| 欧美精品国产亚洲| 99热这里只有是精品50| 国产伦精品一区二区三区视频9| 干丝袜人妻中文字幕| 国内少妇人妻偷人精品xxx网站| 国产成人影院久久av| 亚洲经典国产精华液单| 69av精品久久久久久| 亚洲无线观看免费| 亚洲性夜色夜夜综合| 在线国产一区二区在线| 美女黄网站色视频| 人妻久久中文字幕网| 大型黄色视频在线免费观看| 老司机影院成人| 一个人看的www免费观看视频| a级毛片免费高清观看在线播放| 国产精品野战在线观看| 十八禁网站免费在线| 日本三级黄在线观看| 国产不卡一卡二| 精品午夜福利视频在线观看一区| 2021天堂中文幕一二区在线观| 亚洲欧美清纯卡通| 黄色一级大片看看| 亚洲最大成人av| 免费观看在线日韩| 免费看美女性在线毛片视频| 免费av观看视频| 成人特级av手机在线观看| 免费一级毛片在线播放高清视频| 国产一区二区在线av高清观看| 精品久久久久久久人妻蜜臀av| 国国产精品蜜臀av免费| 国产av麻豆久久久久久久| 国产精品日韩av在线免费观看| 午夜精品一区二区三区免费看|