• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Method for the simultaneous measurement of waveguide propagation loss and bending loss

    2023-10-07 07:40:44FANZuowenJIALianxiLIZhaoyiZHOUJingjieCONGQingyuZENGXianfeng
    中國光學(xué) 2023年5期

    FAN Zuo-wen,JIA Lian-xi,,3*,LI Zhao-yi,ZHOU Jing-jie,CONG Qing-yu,ZENG Xian-feng

    (1.Microelectronics Institute, Shanghai University, Shanghai 201800, China;2.Shanghai Institute of Microsystems and Information Technology, Chinese Academy of Sciences,Shanghai 201800, China;3.Shanghai Industrial μTechnology Research Institute, Shanghai 201800, China)

    * Corresponding author,E-mail: jialx@mail.sim.ac.cn

    Abstract: The propagation loss of a waveguide is a key indicator to evaluate the performance of an integrated optical platform.The commonly used cut-back method for measuring propagation loss requires the introduction of the spiral test structure.In order to remove bending loss, the bending radius is usually designed to be larger but this consequently has a larger footprint.In this paper, we suggested a method to simultaneously measure the propagation loss and bending loss of waveguides with a cut-back structure.According to simulations, the bending loss can be exponentially fitted with the bending radius, which can be further simplified as linear fitting between the natural logarithm of the bending loss and bending radius.A genetic algorithm was used to fit the insertion loss curve of the cut-back structure and the propagation losses and bending loss were calculated.With this method, we measured a cut-back structure of lithium niobate waveguide and got a propagation loss of 0.558 dB/cm and a bending loss of 0.698 dB/90° at a radius of 100 μm and wavelength of 1 550 nm.Using this method, we can simultaneously measure waveguide propagation loss and bending loss while mitigating the footprint.

    Key words: propagation loss; bending loss; lithium niobate; genetic algorithm

    1 Introduction

    Recently, lithium niobate (LN) has been widely used in integrated optics and other fields due to its wide transparent window (350 nm-5 μm) and high electro-optical coefficient[1-4].The conventional bulk LN waveguide (WG) formed by Ti diffusion has a low refractive index contrast and weak confinement to the optical field, which restricts the miniaturization of devices.The advent of LN on an insulator(LNOI) has greatly expedited the development of LN platforms[5].LNOI retains the advantages of a bulk LN but has higher refractive index contrast,which greatly reduces the optical field and promotes the miniaturization of devices[6-7].LNOI has been used on many integrated optical devices such as nonlinear devices, micro-ring resonators, multimode interference couplers (MMI), electro-optical modulators (EOM), optical frequency combs[8-13]etc.Cai Lutonget al.[14]used a proton exchange without anneal to fabricate a waveguide with a 0.16 μm exchange depth and a 2 μm width on 0.6 μm thick xcut lithium niobate films, which had a propagation loss of 0.2 dB/cm at 1 550 nm.The fabricated Yjunction based on the low-loss waveguide is shorter than the conventional Ti-diffused and proton exchanged in bulk lithium niobate, which would benefit the development of highly efficient photonic devices.Cai Lutonget al.[15]also used the annealed proton exchange to fabricate a waveguide with a 4 μm width on 0.56 μm thick x-cut single-crystal lithium niobate films, which had a propagation loss of 0.6 dB/cm at 1 550 nm.Hu Huiet al.[16]etched a 2 μm wide waveguide on lithium niobate film using Ar milling and found the waveguide has a propagation loss of 6.3 dB/cm (TE mode) and 7.5 dB/cm(TM mode).Inna Krasnokutskaet al.[17]fabricated optical waveguides using a mixture of trifluoromethane and argon gas to etch lithium niobate films with a resulting propagation loss of 0.4 dB/cm,while the slope angle of the waveguide was only 15°.In this method, the reaction between fluorine ions and lithium niobate generates a layer of lithium fluoride during the etching process[18], which makes it difficult to obtain high-quality deeply etched optical waveguides on lithium niobate films.

    As a new platform of integrated optics, the propagation loss of the waveguide is the key specification to estimate its performance and the common method to measure the propagation loss is the cut-back method[19].A cut-back structure is typically composed of several waveguides of different lengths and a spiral structure is usually used to form different lengths, which can greatly reduce the resulting footprint.Typically, the bending radius of the spiral is large enough to guarantee that the bending loss is negligible, and the insertion loss of each waveguide only includes coupling loss and propagation loss.Because the coupler of each waveguide is identical, the coupling loss is the same for each waveguide while the insertion loss of the waveguide is linear with the length of the waveguide.By fitting the insertion loss of the cut-back structure,we can get a straight line where the slope of the straight line is the propagation loss and the intercept is the coupling loss.Gutierrez A Met al.[20]measured waveguide propagation loss based on the analysis of the transmission spectra of asymmetric Mach-Zehnder Interferometers (MZIs).They used this method to avoid the variation of the coupling loss of different waveguides.Sareh Taebiet al.[21]modified the Fabry-Perot interferometer method to measure waveguide loss.They used a superluminescent diode to excite the waveguide and fitted it with various input powers.Yiming Heet al.[22]used the reflected spectrum of a waveguide structure to calculate waveguide loss.They analyzed the reflected interferometric pattern from the Fabry-Perot cavity to get the waveguide loss, which also avoided the coupling error.However, for waveguides with weak confinement, the radius may need to be several hundred micrometers or larger and occupy a large area even with a spiral structure, which will increase the cost of an LNOI platform remarkably due to the high price of the LNOI wafer.

    Genetic algorithm (GA) is a method to search for the optimal solution by simulating the natural evolutionary process, which was first proposed by John Holland[23]in the early 1970s, and has been widely used in the field of engineering through the exploration and innovation of many scholars[24-25].By drawing on the theory of biological evolution,GA transforms the problem to be solved into a process of biological evolution by treating the multiple solutions of the problem as a population.One solution situation after each optimization is represented as an individual in the population, and the coding of the variables to be solved as an operation on the genes in the chromosome.By changing the traits of the population (the value of the function to be solved) through the operation of selection, crossover and mutation of biological genes, the best individuals are continuously retained in the evolutionary process based on the principle of superiority and inferiority, and finally, the most suitable population is obtained by simulating the evolution of organisms in a continuously iterative way.The GA has been widely used for solving optimization problems with its superior stability and global search capability.Hence, we suggest a method based on GA to simultaneously measure the bending loss, propagation loss and coupling loss with a cut-back structure.

    2 Fabrication and structure analysis

    The LN waveguide is fabricated on a 6-on-8 LNOI waveguide with 0.4-μm thick top LN,3-μm thick SiO2and 500-μm thick high-resistivity silicon substrate.The fabrication process is shown in Fig.1 (color online).All fabrication processes are performed at the Shanghai Industrial μTechnology Research Institute (SITRI).The devices and components are provided by SITRI.Firstly, 0.5 μm SiO2was deposited by PECVD as a hard mask, then the hard mask and LN underwent lithography and etching to realize a depth of 0.1 μm.The photoresist and hard mask were removed separately.Finally,1 μm SiO2was deposited as the upper cladding layer by PECVD.The scanning electron microscope(SEM) image of the LN waveguide is shown in Fig.2 where the vertical and smooth sidewall is clearly formed.

    Fig.1 Process flow of LN waveguide fabrication.(a) LNOI substrate.(b) Deposition of oxide by PECVD.(c) Iline lithography.(d) Hard mask etching.(e) LN etching.(f) Photoresist removal.(g) Hard mask removal.(h) Deposition of cladding by PECVD

    Fig.2 The SEM image of the fabricated LN waveguide

    The cut-back structure we used is comprised of five spiral waveguides with different lengths as shown in Fig.3.The grating coupler was used to couple with fiber and the radius and number of bends in each waveguide were different.The related information is summarized in Table 1.

    Tab.1 The basic information of the cut-back structure

    Fig.3 The optical microscope image of the cut-back structure

    Fig.4 Layout image of the 5 sets of cutback structures for the 5 splits of the grating coupler

    Since this was the first time we fabricated an LN waveguide, to guarantee the grating coupler could work normally, we added 5 splits to the grating coupler’s design (GC1-GC5) and applied them to 5 sets of cutback structures as shown in fig.4.

    3 Theory and waveguide loss analysis

    The bending loss is mainly caused by the mode mismatch between a straight waveguide and a curved waveguide[26-28].A larger radius will lead to a lower bending loss.Firstly, we simulated the bending loss of the LN waveguide with different bending radii by the Finite Difference Time Domain(FDTD) of Ansys-Lumerical.To maintain consistency with the fabricated waveguide, we chose a 90-degree LN waveguide bend with an LN thickness of 0.3 μm surrounded by 3 μm of SiO2.The etching depth of the LN waveguide was 0.1 μm with a 72osidewall angle, and the waveguide width was set to 1.5 μm with a simulation wavelength of 1.55 μm.The results are shown in Fig.5(a).We found that the bending loss can be exponentially fitted with the bending radius, which can be further simplified as linear fitting between the natural logarithm of the bending loss and the bending radius, as shown in fig.5(b).We came to the same conclusion by simulating the LN waveguide with bends of different thicknesses, widths and sidewall angles.Therefore,the bending loss at any radius can be simply expressed assuming that the slope of the curve and the bending loss at a fixed radius are known.Then, to calculate the insertion loss of the waveguide, we only need to know four parameters: propagation loss, initial bending loss at a fixed bending radius,slope of the bending loss fitting curve and coupling loss.With the measurement results of the cut-back structure, these four parameters can be fitted iteratively.In the following sections, we will express the details of the method and successfully apply it to the characterization of the newly fabricated LNOI waveguide.

    Fig.5 (a) Simulation of the bending loss of the LN waveguide.The bending loss of the waveguide is exponentially related to the bending radius.(b) The linear fitting of the natural logarithm of the bending loss with the bending radius

    As mentioned above, the natural logarithm of the waveguide bending loss is linearly related to the bending radius, so, if we assume the bending loss at radiusR0isαb0and the slope of the linear curve isk,then the bending loss at random radiusRcan be expressed as:

    WhereαbRis the bending loss at radiusR, it can be further expressed as:

    Then, the total insertion lossαtiof the waveguide can be expressed as:

    whereαpiis the propagation loss of the waveguide,αbiis the bending loss, andαgcis the coupling loss (ifrom 1 to 5, representing five waveguides, respectively).Because the grating coupler of each waveguide is identical, we can use the same coupling loss from WG1 to WG5 under the same fabrication conditions.The propagation loss is

    whereαis the propagation loss coefficient of the waveguide (in dB/cm), andLiis the length of the ith waveguide (see Table 1 for specific values).

    The bending lossαbiis the sum of the losses of all the bends.Since our bending radii all start from 100 μm,R0is set to 100 μm.The bending losses of other bends can be derived from Eq (2).Thus, the total insertion loss of different waveguides can be derived:

    Since different waveguides have the same waveguide cross section and grating coupler, their propagation loss coefficientαand coupling lossαgare the same.Therefore, there are four unknown parameters,α,αb0,kandαgcin the five Eqs.(5)-(9).Theoretically, we can get the solution of the four parameters if we can calculate the insertion loss of the five waveguides.

    4 Fitting methods and results

    To solve the four parameters, GA is used to fit the test results.The core elements of GA include parameter coding, setting of the initial population,design of the fitness function, design of the genetic operation, and setting the control parameters.The specific genetic process is shown in Fig.6.

    Fig.6 The basic process of the genetic algorithm

    For our situation, a set of pre-set solutions of the four unknown parameters comprised the population of the algorithm.The square rootrof the calculated insertion lossαtand the measured insertion lossαTis

    which is used as the criterion of parameter optimization.A smallerr-valuemeans better matching between the fitting results and measured results so we hope to get the smallestr-value.In this way, we can get more accurate propagation loss and bending loss.The measured insertion loss and fitting results are compared in Fig.7.A total of 5 sets of cut-back structures with different GCs were measured and the fifth group was tested twice due to the high loss of that GC.All the fitting results are summarized in Table 2.The fitting curves closely matched the measurement results showing that our method is effective for simultaneously measuring the propagation loss, bending loss and coupling loss.It can be seen from Table 2 that the best fitting is for the GC3 structure with anrvalue of 0.044, corresponding to a waveguide propagation loss of

    Fig.7 The measurement results of the cut-back structure and the fitting results.(a) GC1, (b) GC2, (c) GC3, (d) GC4, (e) GC5-1, (f) GC5-2

    0.558 dB/cm, bending loss of 0.698 dB/90° at a radius of 100 μm and a coupling loss of 10.74 dB.Each of these numbers is reasonable compared with results in other literatures[10,29-32].In this way, we simultaneously get waveguide propagation loss,bending loss, and coupling loss.The comparison of different measurement methods is shown in Table 3.

    Tab.2 The summary of the fitting results

    Tab.3 The performance comparison of different measurement methods

    5 Conclusions

    In this paper, we suggested a method to measure propagation loss, bending loss and coupling loss with a cut-back structure, in which the bending loss is expressed exponentially with the bending radius.Through the fitting method based on GA, we got the loss specifications of the fabricated LN waveguides.Finally, a propagation loss of 0.558 dB/cm, a bending loss of 0.698 dB/90° at 100 μm and a coupling loss of 10.74 dB were realized with square rootrof only 0.044, which showed a close match with the test results.With this method, we can use a single cut-back structure to measure propagation loss and bending loss without using a large bending radius in the traditional cut-back structure.It will save significantly on the footprint without limiting the bending radius.We can simultaneously measure waveguide propagation loss and bending loss with this method.

    看免费av毛片| 天天添夜夜摸| 成人国产一区最新在线观看| 在线观看66精品国产| 一二三四在线观看免费中文在| 9191精品国产免费久久| 无限看片的www在线观看| 下体分泌物呈黄色| 久久久久国产精品人妻aⅴ院 | 国产av精品麻豆| 中文字幕人妻丝袜一区二区| 亚洲成人国产一区在线观看| 视频区欧美日本亚洲| 一级,二级,三级黄色视频| 三级毛片av免费| 国产男女内射视频| 在线观看免费高清a一片| 在线十欧美十亚洲十日本专区| 国产一区二区三区在线臀色熟女 | 亚洲成人免费电影在线观看| avwww免费| 老汉色av国产亚洲站长工具| 男人的好看免费观看在线视频 | 国产1区2区3区精品| 亚洲熟女毛片儿| 在线观看免费视频网站a站| 黄频高清免费视频| 欧美黄色淫秽网站| 欧美国产精品va在线观看不卡| 人人妻,人人澡人人爽秒播| 岛国毛片在线播放| 免费观看a级毛片全部| 正在播放国产对白刺激| 麻豆乱淫一区二区| 国产高清激情床上av| а√天堂www在线а√下载 | 欧美日本中文国产一区发布| 精品熟女少妇八av免费久了| 午夜免费鲁丝| 999久久久精品免费观看国产| 国产91精品成人一区二区三区| 电影成人av| 欧美成人免费av一区二区三区 | 99国产精品免费福利视频| 视频在线观看一区二区三区| www.精华液| 精品国内亚洲2022精品成人 | 久久久国产欧美日韩av| 精品人妻在线不人妻| 亚洲,欧美精品.| 国产精品av久久久久免费| 在线观看午夜福利视频| 久久这里只有精品19| 免费久久久久久久精品成人欧美视频| av国产精品久久久久影院| 老熟妇乱子伦视频在线观看| 麻豆成人av在线观看| 变态另类成人亚洲欧美熟女 | 18禁美女被吸乳视频| 狠狠狠狠99中文字幕| 欧美精品一区二区免费开放| 国产高清国产精品国产三级| 美女视频免费永久观看网站| 嫁个100分男人电影在线观看| 久久久久国产一级毛片高清牌| 又黄又粗又硬又大视频| 亚洲成人免费av在线播放| 90打野战视频偷拍视频| 大码成人一级视频| 久久国产精品影院| 老汉色av国产亚洲站长工具| 国产区一区二久久| 女性被躁到高潮视频| 久久久国产欧美日韩av| 18禁美女被吸乳视频| 精品午夜福利视频在线观看一区| 色老头精品视频在线观看| 国产xxxxx性猛交| 最近最新中文字幕大全免费视频| 最新美女视频免费是黄的| 国产精品98久久久久久宅男小说| 日韩欧美三级三区| 国产国语露脸激情在线看| 免费一级毛片在线播放高清视频 | 曰老女人黄片| 精品国产一区二区三区四区第35| 人成视频在线观看免费观看| 国产精品一区二区在线不卡| 国产高清视频在线播放一区| 天堂√8在线中文| 69精品国产乱码久久久| 美女福利国产在线| 国产精品久久久av美女十八| 1024视频免费在线观看| 色尼玛亚洲综合影院| 亚洲欧美精品综合一区二区三区| 天堂动漫精品| 精品熟女少妇八av免费久了| 国产在视频线精品| 两个人免费观看高清视频| 亚洲精品自拍成人| 精品少妇久久久久久888优播| 悠悠久久av| 19禁男女啪啪无遮挡网站| bbb黄色大片| 王馨瑶露胸无遮挡在线观看| av在线播放免费不卡| 中亚洲国语对白在线视频| 成人影院久久| 国产精品久久久久久精品古装| 久久香蕉国产精品| 成人三级做爰电影| 动漫黄色视频在线观看| 国产亚洲欧美在线一区二区| 成年女人毛片免费观看观看9 | 国产精品.久久久| 老司机午夜十八禁免费视频| 曰老女人黄片| 午夜福利,免费看| 亚洲人成电影免费在线| 不卡av一区二区三区| 色在线成人网| 51午夜福利影视在线观看| 多毛熟女@视频| 中文亚洲av片在线观看爽 | 午夜福利影视在线免费观看| 国产欧美日韩一区二区三| 亚洲五月婷婷丁香| 在线国产一区二区在线| 日韩欧美一区视频在线观看| 国产欧美日韩综合在线一区二区| 国产亚洲精品一区二区www | 精品卡一卡二卡四卡免费| 国产一区有黄有色的免费视频| 日本a在线网址| 伦理电影免费视频| 日韩欧美国产一区二区入口| 国产伦人伦偷精品视频| 久久久精品国产亚洲av高清涩受| 人妻久久中文字幕网| 亚洲成av片中文字幕在线观看| 久久人妻福利社区极品人妻图片| 一边摸一边抽搐一进一小说 | 国产91精品成人一区二区三区| 俄罗斯特黄特色一大片| 嫁个100分男人电影在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲国产中文字幕在线视频| 亚洲国产精品合色在线| 亚洲国产毛片av蜜桃av| 老司机影院毛片| 三级毛片av免费| 午夜日韩欧美国产| 午夜视频精品福利| 国产欧美日韩精品亚洲av| 91av网站免费观看| 日韩欧美免费精品| 18在线观看网站| 在线av久久热| 高清在线国产一区| 757午夜福利合集在线观看| 丝瓜视频免费看黄片| 美女午夜性视频免费| 日韩三级视频一区二区三区| 久久精品成人免费网站| 国产亚洲欧美98| 亚洲一区二区三区不卡视频| 午夜免费成人在线视频| 美女高潮喷水抽搐中文字幕| 亚洲av欧美aⅴ国产| 99久久精品国产亚洲精品| 欧洲精品卡2卡3卡4卡5卡区| 国产在线精品亚洲第一网站| 亚洲精品一卡2卡三卡4卡5卡| 女人高潮潮喷娇喘18禁视频| 黄色女人牲交| 成人免费观看视频高清| 久久久久久久精品吃奶| 19禁男女啪啪无遮挡网站| 叶爱在线成人免费视频播放| 亚洲五月婷婷丁香| 久久草成人影院| 两性午夜刺激爽爽歪歪视频在线观看 | 成人av一区二区三区在线看| 婷婷精品国产亚洲av在线 | 曰老女人黄片| 黄色 视频免费看| 人妻 亚洲 视频| 俄罗斯特黄特色一大片| 久久久久久久精品吃奶| 国产成人一区二区三区免费视频网站| 黑人猛操日本美女一级片| 欧美日韩瑟瑟在线播放| ponron亚洲| 国产精品二区激情视频| 亚洲精华国产精华精| 中出人妻视频一区二区| 精品第一国产精品| 午夜精品久久久久久毛片777| 国产人伦9x9x在线观看| 亚洲午夜精品一区,二区,三区| 亚洲第一av免费看| 久久人妻福利社区极品人妻图片| 18在线观看网站| 91麻豆av在线| 丁香六月欧美| 在线观看www视频免费| 免费少妇av软件| 色94色欧美一区二区| 免费在线观看黄色视频的| 国产高清国产精品国产三级| 国产精品1区2区在线观看. | a级片在线免费高清观看视频| 国内毛片毛片毛片毛片毛片| 午夜精品久久久久久毛片777| 久久ye,这里只有精品| 美女福利国产在线| 999久久久国产精品视频| 午夜福利欧美成人| 欧美精品人与动牲交sv欧美| 国产高清视频在线播放一区| 国产精品香港三级国产av潘金莲| 久久亚洲真实| 亚洲精品国产色婷婷电影| 一边摸一边抽搐一进一出视频| 成年动漫av网址| 久久国产精品大桥未久av| 嫁个100分男人电影在线观看| 欧美另类亚洲清纯唯美| 欧美人与性动交α欧美软件| 男女午夜视频在线观看| 19禁男女啪啪无遮挡网站| 国产极品粉嫩免费观看在线| 91老司机精品| 国产精品98久久久久久宅男小说| avwww免费| 天天操日日干夜夜撸| 久久精品国产99精品国产亚洲性色 | 亚洲成人手机| 中文字幕制服av| 捣出白浆h1v1| 一级作爱视频免费观看| 中文字幕最新亚洲高清| 精品卡一卡二卡四卡免费| 久久国产乱子伦精品免费另类| 国产伦人伦偷精品视频| 人人妻人人澡人人看| 国产精品一区二区免费欧美| 一级黄色大片毛片| 亚洲第一青青草原| 1024视频免费在线观看| 国产男女内射视频| 曰老女人黄片| 搡老岳熟女国产| 成年人黄色毛片网站| 99国产精品一区二区三区| 91精品三级在线观看| 国产男女内射视频| 一级a爱片免费观看的视频| 一区在线观看完整版| 免费在线观看视频国产中文字幕亚洲| 午夜福利免费观看在线| 99精品在免费线老司机午夜| 午夜福利,免费看| 亚洲综合色网址| 国产精品综合久久久久久久免费 | 色在线成人网| 日韩有码中文字幕| 一级黄色大片毛片| 老鸭窝网址在线观看| 亚洲av片天天在线观看| 天堂动漫精品| 国产片内射在线| 一级a爱片免费观看的视频| 黄色片一级片一级黄色片| 一级黄色大片毛片| av超薄肉色丝袜交足视频| 黑人操中国人逼视频| 午夜福利,免费看| 美女扒开内裤让男人捅视频| 99国产极品粉嫩在线观看| 中文欧美无线码| 老司机在亚洲福利影院| 狠狠婷婷综合久久久久久88av| 一级毛片精品| 国产一卡二卡三卡精品| 中出人妻视频一区二区| 天天躁狠狠躁夜夜躁狠狠躁| bbb黄色大片| 在线观看www视频免费| 夜夜爽天天搞| 少妇猛男粗大的猛烈进出视频| 精品一区二区三卡| 男人的好看免费观看在线视频 | 黄色视频不卡| bbb黄色大片| 9191精品国产免费久久| 国产一区有黄有色的免费视频| av网站免费在线观看视频| 亚洲国产中文字幕在线视频| 成人特级黄色片久久久久久久| 91麻豆精品激情在线观看国产 | 黄色丝袜av网址大全| 欧美精品高潮呻吟av久久| 国产精品美女特级片免费视频播放器 | 法律面前人人平等表现在哪些方面| 变态另类成人亚洲欧美熟女 | 欧洲精品卡2卡3卡4卡5卡区| 岛国在线观看网站| 人妻一区二区av| 亚洲成a人片在线一区二区| 亚洲熟女毛片儿| 国产精品自产拍在线观看55亚洲 | 村上凉子中文字幕在线| 大香蕉久久成人网| 久久精品亚洲精品国产色婷小说| 久久久精品免费免费高清| 免费在线观看黄色视频的| 97人妻天天添夜夜摸| 欧美激情极品国产一区二区三区| 精品午夜福利视频在线观看一区| 精品少妇一区二区三区视频日本电影| 日本黄色日本黄色录像| 国产麻豆69| 中文字幕最新亚洲高清| 精品一区二区三区视频在线观看免费 | 国产成人一区二区三区免费视频网站| 成人av一区二区三区在线看| 下体分泌物呈黄色| 一区二区三区国产精品乱码| 人妻丰满熟妇av一区二区三区 | 亚洲国产欧美网| 精品久久蜜臀av无| 不卡av一区二区三区| 人妻 亚洲 视频| 久久久精品国产亚洲av高清涩受| 久久久久久人人人人人| 男人操女人黄网站| 亚洲欧美日韩另类电影网站| 国产精品 国内视频| 久久国产精品人妻蜜桃| 久久精品国产亚洲av香蕉五月 | 日韩欧美一区二区三区在线观看 | 国产99白浆流出| 满18在线观看网站| 99久久99久久久精品蜜桃| 亚洲精品美女久久久久99蜜臀| 在线播放国产精品三级| 久久狼人影院| 亚洲第一欧美日韩一区二区三区| 亚洲成人免费av在线播放| 18禁黄网站禁片午夜丰满| 久久久久久免费高清国产稀缺| a级毛片在线看网站| 欧美国产精品va在线观看不卡| 免费高清在线观看日韩| 亚洲国产欧美网| 女人久久www免费人成看片| 黄片播放在线免费| 国产一卡二卡三卡精品| 成人影院久久| 国产精品国产av在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 涩涩av久久男人的天堂| 国产亚洲欧美98| 欧美+亚洲+日韩+国产| 久9热在线精品视频| 成人特级黄色片久久久久久久| 大香蕉久久网| 国产麻豆69| 免费女性裸体啪啪无遮挡网站| 久久久久国内视频| svipshipincom国产片| 国产亚洲精品久久久久久毛片 | 久久香蕉激情| 免费观看精品视频网站| 一级a爱片免费观看的视频| 免费观看人在逋| 亚洲情色 制服丝袜| 无遮挡黄片免费观看| 一级片免费观看大全| 久久国产亚洲av麻豆专区| 亚洲欧美精品综合一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久久久久人妻精品电影| 色尼玛亚洲综合影院| 成人av一区二区三区在线看| 99国产精品一区二区蜜桃av | avwww免费| 国产成人影院久久av| svipshipincom国产片| 黄色成人免费大全| 国产亚洲精品第一综合不卡| 少妇裸体淫交视频免费看高清 | 成人国产一区最新在线观看| 五月开心婷婷网| 91老司机精品| 国产欧美日韩精品亚洲av| 91老司机精品| 国产三级黄色录像| 亚洲av片天天在线观看| 久久中文字幕一级| a级毛片黄视频| 久久久久久久久久久久大奶| 久热爱精品视频在线9| 又大又爽又粗| 天堂俺去俺来也www色官网| a在线观看视频网站| 国产成+人综合+亚洲专区| a级片在线免费高清观看视频| 丰满人妻熟妇乱又伦精品不卡| 精品亚洲成国产av| 99精品久久久久人妻精品| 亚洲成人免费电影在线观看| 制服诱惑二区| 嫩草影视91久久| 久久这里只有精品19| 91字幕亚洲| 黄色女人牲交| 国产aⅴ精品一区二区三区波| 国产不卡av网站在线观看| 制服人妻中文乱码| 国产精品二区激情视频| 窝窝影院91人妻| 欧美激情极品国产一区二区三区| 看黄色毛片网站| 日韩熟女老妇一区二区性免费视频| 99久久99久久久精品蜜桃| 91av网站免费观看| 亚洲午夜精品一区,二区,三区| 人成视频在线观看免费观看| 亚洲欧美日韩另类电影网站| 欧美精品一区二区免费开放| 国产欧美日韩一区二区三区在线| 99久久国产精品久久久| 涩涩av久久男人的天堂| 美女扒开内裤让男人捅视频| 日韩欧美一区二区三区在线观看 | 极品少妇高潮喷水抽搐| 成年女人毛片免费观看观看9 | 国产成人一区二区三区免费视频网站| 久久久国产欧美日韩av| 久久久国产一区二区| 久久精品亚洲熟妇少妇任你| 精品一区二区三区视频在线观看免费 | 另类亚洲欧美激情| 成人18禁在线播放| 欧美黑人欧美精品刺激| 日日爽夜夜爽网站| 俄罗斯特黄特色一大片| 成年人午夜在线观看视频| 精品福利永久在线观看| 亚洲成人免费电影在线观看| 一级作爱视频免费观看| 午夜免费成人在线视频| 91麻豆av在线| 精品国产美女av久久久久小说| 久久热在线av| 国产成人精品在线电影| 超碰成人久久| 国产精品久久视频播放| 欧美日韩黄片免| 久久香蕉激情| 精品久久久久久,| 国产成人欧美在线观看 | 中文字幕最新亚洲高清| 国产一卡二卡三卡精品| 在线观看免费高清a一片| 久久精品人人爽人人爽视色| 欧美 亚洲 国产 日韩一| 亚洲av欧美aⅴ国产| 日韩中文字幕欧美一区二区| 香蕉国产在线看| 亚洲av成人不卡在线观看播放网| 国产97色在线日韩免费| 亚洲片人在线观看| 黄片播放在线免费| 精品国产一区二区三区久久久樱花| 亚洲自偷自拍图片 自拍| 麻豆av在线久日| 成人av一区二区三区在线看| 国产成人欧美在线观看 | 亚洲精品久久午夜乱码| 老司机影院毛片| 欧美 亚洲 国产 日韩一| 一级,二级,三级黄色视频| 亚洲三区欧美一区| 午夜精品久久久久久毛片777| 午夜精品国产一区二区电影| 欧美精品一区二区免费开放| 国产日韩欧美亚洲二区| 国产成人啪精品午夜网站| 亚洲成人国产一区在线观看| 免费一级毛片在线播放高清视频 | 亚洲熟妇中文字幕五十中出 | 99国产精品99久久久久| 成年动漫av网址| 久久久久国产一级毛片高清牌| 好男人电影高清在线观看| 国产欧美日韩一区二区精品| 欧美日韩av久久| 中文字幕人妻丝袜制服| 男男h啪啪无遮挡| 久久中文看片网| 国产成人精品久久二区二区免费| 露出奶头的视频| www日本在线高清视频| 亚洲av第一区精品v没综合| 日韩中文字幕欧美一区二区| aaaaa片日本免费| 国产av一区二区精品久久| 黄色怎么调成土黄色| 精品国产乱码久久久久久男人| 变态另类成人亚洲欧美熟女 | 亚洲黑人精品在线| 国产无遮挡羞羞视频在线观看| x7x7x7水蜜桃| 一a级毛片在线观看| 人妻丰满熟妇av一区二区三区 | 一级毛片精品| 日本a在线网址| 久久香蕉精品热| 女警被强在线播放| 久久狼人影院| 啦啦啦在线免费观看视频4| 91av网站免费观看| 亚洲精品在线美女| 亚洲精品乱久久久久久| 亚洲美女黄片视频| 国产精品一区二区免费欧美| 黄色视频,在线免费观看| 国产精品一区二区精品视频观看| 午夜精品久久久久久毛片777| 亚洲第一av免费看| 人人澡人人妻人| 黄色视频,在线免费观看| 亚洲五月色婷婷综合| 欧美色视频一区免费| 人人妻,人人澡人人爽秒播| 熟女少妇亚洲综合色aaa.| 久久精品国产亚洲av香蕉五月 | 男女下面插进去视频免费观看| 国产亚洲一区二区精品| 国产成人免费观看mmmm| 免费在线观看完整版高清| 国产成人av激情在线播放| 国产伦人伦偷精品视频| 激情视频va一区二区三区| 99热网站在线观看| 欧美午夜高清在线| 亚洲av片天天在线观看| 在线观看午夜福利视频| 亚洲av成人不卡在线观看播放网| 国产片内射在线| 成人亚洲精品一区在线观看| 欧美精品亚洲一区二区| 女警被强在线播放| 另类亚洲欧美激情| 好看av亚洲va欧美ⅴa在| 精品免费久久久久久久清纯 | 国产精品亚洲av一区麻豆| 18禁国产床啪视频网站| 咕卡用的链子| a在线观看视频网站| 国产野战对白在线观看| 精品第一国产精品| 黑丝袜美女国产一区| 亚洲专区字幕在线| 精品久久久久久久毛片微露脸| 国产精品电影一区二区三区 | 99国产极品粉嫩在线观看| 少妇裸体淫交视频免费看高清 | 欧洲精品卡2卡3卡4卡5卡区| 精品一区二区三卡| 最新在线观看一区二区三区| 亚洲全国av大片| 在线观看免费日韩欧美大片| 热99国产精品久久久久久7| 国产一区二区三区在线臀色熟女 | 国产精品久久久久久精品古装| 亚洲成国产人片在线观看| 精品人妻熟女毛片av久久网站| 高潮久久久久久久久久久不卡| 国产亚洲精品久久久久5区| 婷婷成人精品国产| 欧美黄色淫秽网站| 亚洲精品美女久久av网站| 97人妻天天添夜夜摸| 亚洲精华国产精华精| 亚洲全国av大片| av天堂久久9| 丝袜美腿诱惑在线| 欧美日韩精品网址| 国产成人一区二区三区免费视频网站| 亚洲成人国产一区在线观看| 欧美性长视频在线观看| 一级,二级,三级黄色视频| 色在线成人网| 国产精品电影一区二区三区 | 日韩免费av在线播放| √禁漫天堂资源中文www| 亚洲av日韩精品久久久久久密| 中文亚洲av片在线观看爽 | 国产不卡av网站在线观看| 欧美人与性动交α欧美软件| 欧美日韩福利视频一区二区| 久久精品国产亚洲av香蕉五月 | 一边摸一边抽搐一进一小说 | 国产人伦9x9x在线观看| 久久香蕉国产精品| 亚洲欧美激情在线| 18禁黄网站禁片午夜丰满| 亚洲,欧美精品.| 激情在线观看视频在线高清 | 少妇被粗大的猛进出69影院|