• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Poynting vectors, spin and orbital angular momentums of uniformly polarized cosh-Pearcey-Gauss beams in the far zone

    2023-10-07 07:42:34LIAOSaiCHENGKeHUANGHongweiYANGCenghaoLIANGMengtingSUNWangxuan
    中國(guó)光學(xué) 2023年5期

    LIAO Sai,CHENG Ke,HUANG Hong-wei,YANG Ceng-hao,LIANG Meng-ting,SUN Wang-xuan

    (College of Optoelectronic Engineering, Chengdu University of Information Technology,Chengdu 610225, China)

    * Corresponding author,E-mail: ck@cuit.edu.cn

    Abstract: We propose cosh-Pearcey-Gauss beams with uniform polarization, which are mainly modulated by a hyperbolic cosine function (n, Ω) and the angles related to uniform polarization (α, δ).Based on angular spectrum representation and the stationary phase method, the Poynting vector, Spin Angular Momentums(SAM) and Orbital Angular Momentums (OAMs) in the far zone are studied.The results show that a larger n or Ω in the hyperbolic cosine function can partition the longitudinal Poynting vectors, SAMs and OAMs into more multi-lobed parabolic structures.Different polarizations described by (α, δ) can distinguish their Poynting vectors and angular momentums between the TE and TM terms, though this does not affect the patterns of the whole beam.Furthermore, the weight of the left and right sides of longitudinal Poynting vectors,SAMs and OAMs in TE and TM terms can be modulated by left-handed or right-handed elliptical polarization, respectively.The results in this paper may be useful for information storage and polarization imaging.

    Key words: cosh-Pearcey-Gauss beams; spin angular momentum; orbital angular momentum; Poynting vector

    1 Introduction

    Pearcey function with non-convergence or infinite energy is the second type of catastrophic function.It can be expressed by the integral formula of oscillating structure[1].In 2012, Ringet al.introduced the Gaussian envelope to confine its energy,wherein the Pearcey beams were theoretically proposed and experimentally demonstrated[2].It was found that the Pearcey beams also have self-healing and auto-focusing properties that are analogous to the Airy beams in real space propagation.Half-Pearcey beams[3], Bi-Pearcey beams[4], symmetric odd-Pearcey beams[5]and chirped Pearcey beams[6]have also been extensively studied.For example, Denget al.found that the tunable circular Pearcey beams with an annular spiral-zone phase possess the distinctive ability to trap particles[7].Zhaoet al.showed that the properties of autofocusing performance and the inversion effect could be perfectly inherited without being affected by spatial coherence[8].

    For optical catastrophe beams, their vectorial structures can be analyzed by using vector angular spectrum and stationary phase methods.For example, the intensity profiles of the Generalized Humbert-Gaussian beams were obtained by the above methods and it was noted that the side-lobes decrease with a decrease in the topological charge of the helical axicon[9].Jiaet al.found that topological charge, truncation parameters and ellipticity angles have a great influence on the far-field vectorial structures of a Laguerre-Gaussian beam diffracted by a circular aperture[10].Furthermore, our previous work also showed that the symmetry and direction of the far-field vectorial structures of a Pearcey-Gauss vortex beam can be modulated by topological charges and noncanonical strength[11].On the other hand, Spin Angular Momentum (SAM) is associated with polarization.In a scalar field, SAM can be described by its Third Stokes parameters and Poincaré sphere[12].However, for the vector field, the vectorial SAM and Orbital Angular Momentum(OAM) should be considered.In addition, the introduction of the cosh function will bring more degrees of freedom for the Pearcey beams.

    This paper is focused on the influence of the initial polarization state and cosh function on the Poynting vector, SAM and OAM of cosh-Pearcey-Gauss beams (cPeG) in the far zone.Our proposed beams with different polarizations can have varying weights of OAM densities in the TE and TM terms.The results obtained are different from those of Pearcey-Gauss vortex beams and provide potential applications in information storage and polarization imaging[13-15].

    2 Uniformly polarized cosh-Pearcey-Gauss (cPeG) beams

    Assume the uniformly polarized cPeG beam propagates in free space with an electric permittivity ofεand a magnetic permeability ofμ.In the Cartesian coordinate system, the electric field of the cPeG beams with uniform polarization at the source planez=0 is expressed by[2,16-22]

    whereαis the azimuthal angle in polarization,δdenotes a phase retardation angle between thex- andycomponents of the electric field, andΩandnare the modulation parameter and the order of the hyperbolic cosine function, respectively.The background functionPeG(x,y) of the cPeG beams in Eq.(1) is given by

    wherew0is the beam waist width of the Gaussian term, andPe(x/x0,y/y0) is the Pearcey function withx0andy0of scaling lengths in thex- andy- axes, respectively.The vector angular spectrums ofA(p,q)of cPeG beams are given by[18-21]

    where the wave numberk=2π/λis related to the wavelengthλ.Substituting Eqs.(1)-(2) into Eq.(3),one can obtain the analytical expressions of the vector angular spectra as

    with

    From Eqs.(4)-(5), one can find that the angular spectrum is composed of a Pearcey function and a Gaussian term withΩandnin the cosh part.Fig.1(color online) shows the initial intensity and angular spectrum of cPeG beams forn=1, 2 and 4.From Fig.1, it can be seen that the central zone in the initial intensity darkened and the main lobe that originates from the Pearcey factor and gradually fades with the increasingn.The amplitudes in the angular spectra exhibit a parabolic structure due to the Pearcey factor with a lower-ordern=1 in Fig.1 (d).These parabolic spectra can be partitioned into more complex structures by increasing the order of the cosh part’snas shown in Figs.1 (e)-(f).A higher-ordern(n=4) leads to the appearance of a dark zone of angular spectrum in the center as shown in Fig.1(f),and the maximal values are located on the side lobe of the parabola.One can find that the angular spectrum can be modified with a higher-order hyperbolic cosine function, i.e.Ωandn, and its far-zone vec-torial structures in SAM and OAM is worthy of further analysis.The theoretical design of the cPeG beams by encoding the amplitude and phase of their Fourier spectrums onto a spatial light modulator, as shown in Fig.2 (color online), where the uniformly linearly, circularly or elliptically polarized light can be produced by wave plates.

    Fig.1 The initial intensities and angular spectra of the cPeG beams with different initial polarization states for n=1, 2 and 4.(a), (d): α=π/4, δ=π/8; (b), (e): α=0, δ=0; (c), (f): α=π/4, δ=-3π/4.The phase distribution and polarization states are described in the top form left to right in Figs.1 (a)-(c).Blue: left-handed elliptical polarization; Red: right-handed elliptical polarization; Black: linear polarization.The parameters are x0=y0=100 μm and Ω=1.4

    Fig.2 The theoretical design scheme of the cPeG beams with uniform polarization.BS: Beam Splitter; SLM: Spatial Light Modulator

    3 Far-zone vectorial structure of cPeG beams

    An arbitrary vectorial electromagnetic field can be separated into two orthogonal terms of Transverse Electric (TE) and Transverse Magnetic (TM)fields, and it can be as the sum of TE and TM terms and defined asE=ETE+ETMandH=HTE+HTMwhereEandHdenote the whole electric and magnetic fields, respectively[10,18,20].The far-zone behavior of the electromagnetic field, i.e.EandHcan be further analyzed byETE,ETM,HTEandHTM, respectively.These electric and magnetic fields can be obtained by vector angular spectra and the stationary phase method in the far zone[18-23].Our attention is directed to the dependence of the Poynting vector,spin and orbital angular momentum densities of the cPeG beams in uniform polarization (α,δ).Furthermore, the influences of the parameters and the order of the hyperbolic cosine functionΩandnon the vectorial structures ofETE,ETM,HTEandHTMin the far zone are also investigated in detail.The calculation parameters areλ=633 nm,x0=y0=100 μm (unless otherwise stated),w0=1mm andz0=ky02.

    3.1 Poynting vector

    The magnitude and direction of energy flow during electromagnetic wave propagation can be described by the Poynting vector.The longitudinal component of the Poynting vector is proportional to the light intensity, and its transversal component shows the magnitude and direction of the complex power flow in a fixed plane.The transversal and longitudinal components of the separated TE and TM terms are given by[22]

    whereσ=TE or TM, Re represents the real part and the asterisk is complex conjugation.

    The effect of uniform polarization (α,δ) on the Poynting vectors of the cPeG beams, including TE,TM terms and whole beam, atz=50z0in free space is shown in Fig.3, where the magnitude and direction of the transverse Poynting vectors are shown by arrows.One can see that the patterns in Poynting vectors are parabolic structures due to the Pearcey factor, and the energy flow moves from the top to the side of the parabola.Although the parabolic patterns of a whole beam are unaffected by initial polarizations, the symmetry of longitudinal Poynting vectors in the TE and TM terms can be modulated by uniform polarization (i.e.,α,δ).The parabolic patterns of the TE and TM terms in cPeG beams are symmetric about horizontally linear polarization(α=δ=0) as shown in Figs.3 (b) and (e) (color online), and other polarizations regulate parabolic patterns in the TE and TM terms.For example, the left side of the TE term is more influential in the lefthanded (LH) elliptical polarization (α,δ)=(π/4, π/8)in Fig.3 (a) (color online), but the right one dominates the TE term in the right-handed (RH) elliptical polarization (α,δ)=(π/4, -3π/4) in Fig.3 (g) (color online).Furthermore, the topological charge in the TE and TM terms will change if the uniform polarizations (α,δ) are modulated, and the net topological charge is always zero under uniform polarization(α,δ) due to the topological charges of the two terms being opposite.Fig.4 (color online) shows the Poynting vectors of cPeG beams in free space for differentnandΩatz=50z0, where the LH elliptical polarization is given by (α,δ)=(π/4, π/8).One can find that the TE, TM and whole terms present multilobed parabolic structures in longitudinal Poynting vectors, and the number of partitioned lobes increases with an increase innorΩ.The intensities of the dark zones on the parabolic patterns are nonzero.

    Fig.3 Normalized longitudinal Poynting vector (backgrounds) and transversal Poynting vector (arrows) of cPeG beams for different uniform polarizations (α, δ) at z=50z0.(a), (d), (g): TE term; (b), (e), (h): TM term; (c), (f), (i): whole beam.The parameters are n=2 and Ω=1.4.The red point symbolizes topological charge l=+1, and the white point denotes l=-1

    Fig.4 Normalized longitudinal Poynting vector (backgrounds) and transverse Poynting vector (arrows) of cPeG beams for different n and Ω at z=50z0, where the uniform polarization is (α, δ)=(π/4,π/8)

    3.2 Spin angular momentum

    Angular momentum carried by the electromagnetic field, in tandem with its mechanical properties,is comprised of spin and orbital components.The intrinsic spin angular momentum is associated with left- and right-handed circular polarizations, while the orbital component originates from the spatially helical phase of the wavefield.The total angular momentum of the electromagnetic field can be written as the sum of the spin and orbital components[13,24-25]

    whereσ=TE or TM,εis the permittivity of the vacuum,ωis the angular frequency, and the first and second terms on the right side of Eq.(9) denote SAM and OAM, respectively.

    Figs.5 and 6 (color online) give the dependencies of the SAM of the TE term, TM term and whole beam with uniform polarization (α,δ), cosh parametersΩand the order numbernin free space, respectively.For linear polarization, the transversal and longitudinal SAMs do not exist.For LH or RH elliptical polarization, the longitudinal SAMs are less or larger than zero, respectively.The longitudinal SAM in the left side of TE terms has an advantage over that on the right side, but for TM terms, the opposite is true.The superposition of the left side in the TE term and the right side in the TM term results in the multilobed parabolic structures of the whole beam in SAM densities, and the peak values of their SAM densities are located on two sides rather than the vertex of their parabolas.From Fig.6,it is clear that the SAM densities can be partitioned by larger cosh parametersΩand order numbersn.In addition, the transverse SAM of a whole beam is determined by the TM term owing to thez-component of the TE term not existing, and these vectorial arrows present different directions.The arrows in the right side point to the left in Figs.5 (c), but those in the left side point to the right as shown in Fig.5 (f).More details on the evolution of transversal SAM in whole beams are provided in Supplementary Videos 1 and 2 (see the article online), wherein one can find that an alternative variation of transverse SAMs is presented.Its direction in the left side varies from right to left for LH polarization where 0<α<π/2 andδ=π/8 as shown in Video 1, whereas its change direction is opposite for the RH polarization with π/2<α<π andδ=π/8 in Video 2, which indicates that the direction of transversal SAMs is closely related to LH or RH polarization.

    Fig.5 Normalized longitudinal SAM (3D and 2D) and transverse SAM (arrows) of cPeG beams at z=50z0.(a)-(c): α=π/4,δ=π/8; (d)-(f): α=π/4, δ=-3π/4.The other parameters are the same as those in Fig.3

    Fig.6 Normalized longitudinal (3D and 2D) SAM and transverse SAM (arrows) of cPeG beams (n=1, 4) at z=50z0.(a)-(c):n=1, Ω=3; (d)-(f): n=4, Ω=1.The other parameters are the same as those in Figs.5 (α=π/4, δ=π/8)

    3.3 Orbital angular momentum

    The dependencies of longitudinal and transverse OAMs of TE, TM and whole beams on different polarization in free space are shown in Fig.7(color online).Although the initial polarization cannot affect longitudinal and transversal OAM densities in whole beams, it can vary the distribution of longitudinal OAM in TE and TM terms.For example, their longitudinal OAMs with parabolic structures both appear in the left and right sides for linear polarization (α=0,δ=0) in Figs.7 (d)-(f),whereas for other polarizations, the left side of the TE term or the right side of the TM term can only be presented.The results indicate that the initial polarization can be used to distinguish the distribution of OAM densities in the TE and TM terms.For whole beams, their longitudinal OAM densities with multibranched structures are equivalent in the positive and negative directions, which results in a zero value of the net OAM.However, the sum of OAM densities in the TE or TM terms is non-zero because of their asymmetry aboutx=0.

    Fig.7 Normalized longitudinal OAM (3D and 2D) and transverse OAM (arrows) of cPeG beams (Ω=1.4) at z=50z0.(a)-(c):α=π/4, δ=π/8; (d)-(f): α= 0, δ= 0; (g)-(i): α=π/4, δ=-3π/4; The other parameters are the same as those in Fig.3.(n=2)

    Fig.8 (color online) further describes the influence of the cosh parameter and order number on longitudinal and transversal OAMs.In Fig.8, one can see that theLzwith a largerΩorntends to partition more branches along parabolic structures,which is analogous with the multi-lobed structures in Fig.4.In Fig.8 (a), one can see that the left side ofLzin the TE term is asymmetric with its right side.The sum of the negative values is larger than that of the positive values, which leads to a negativeLzin the TE term.The behavior is also verified by the topological charge TC=-1 in Fig.4 (a).A similar case is also found in TM terms with a positiveLz.However, for whole beams, the superimposed OAM of the left side in the TE term and the right side in the TM term constitute their parabolic patterns with a zero-valueLzdue to the fact that the sum of negative values in the TE term equal the sum of positive ones in the TM term, which can be easily explained by the non-vortex at the input plane.

    Fig.8 Normalized longitudinal and transverse (arrows) OAM of cPeG beams (n=1, 4).(a)-(c): n=1, Ω=3; (d)-(f): n=4, Ω=1 at z=50z0.The other parameters are the same as those in Fig.4

    4 Conclusion

    By introducing the hyperbolic cosine function to Pearcey beams and the Poynting vector, the SAM and OAM of cPeG beams with uniform polarization are studied by using angular spectrum representation and the stationary phase method.Although the vortex is not embedded at the original plane, the farzone TE and TM terms can still carry topological charge with a spiral phase owing to polarization.The topological charges in the TE and TM terms are opposite, which results in the net topological charge of the whole beams always being zero.A largernorΩin the embedded hyperbolic cosine function can partition the far-zone Pearcey pattern into more multi-lobed parabolic structures.The longitudinal SAMs in the left side of TE terms have distinct advantages over those in the right side, but the opposite holds true for TM terms.The sums of SAMs in TE terms, TM terms and whole beams are all less or larger than zero due to the LH or RH elliptical polarization at the original plane, respectively.In addition, the evolution of direction in a transversal SAM is significantly altered by LH or RH polarization as shown in Videos 1 and 2.The OAMs in the whole terms are not affected by initial polarization, but their longitudinal OAMs in the TE and TM terms can be changed.The results indicate that the initial polarization can be used to distinguish the distribution of OAM densities in its TE and TM terms.The left and right sides ofLzis asymmetric owing to the TE or TM wavefields with topological charges.The results obtained in this paper should be useful for understanding the vectorial structure of cPeG beams in the far zone, and have potential applications in information storage and polarization imaging.

    Supplementary Material

    Supplementary Video 1:The evolution of transverse SAM of cPeG (n=2) beams atα=0~π/2 in far zone.

    Supplementary Video 2:The evolution of transverse SAM of cPeG (n=2) beams atα=π/2~π in far zone.

    久久精品综合一区二区三区| 中文字幕高清在线视频| 夜夜看夜夜爽夜夜摸| 一级a爱片免费观看的视频| 亚洲av电影在线进入| 日本一二三区视频观看| 丰满人妻熟妇乱又伦精品不卡| 久久精品亚洲精品国产色婷小说| 在线视频色国产色| 天美传媒精品一区二区| 成年免费大片在线观看| 国产伦在线观看视频一区| 一区二区三区高清视频在线| 亚洲av成人av| 在线观看日韩欧美| 国产激情偷乱视频一区二区| 精品人妻偷拍中文字幕| 亚洲精品粉嫩美女一区| 男人和女人高潮做爰伦理| 尤物成人国产欧美一区二区三区| 国产乱人伦免费视频| 亚洲成人中文字幕在线播放| 亚洲国产精品成人综合色| 首页视频小说图片口味搜索| 色综合婷婷激情| 一区二区三区高清视频在线| 久久久久久大精品| 亚洲人成电影免费在线| 看黄色毛片网站| 国产高潮美女av| 国产精品一及| 真人一进一出gif抽搐免费| 精品人妻一区二区三区麻豆 | 一级a爱片免费观看的视频| 偷拍熟女少妇极品色| 51国产日韩欧美| 可以在线观看毛片的网站| 日本黄大片高清| 99热只有精品国产| 别揉我奶头~嗯~啊~动态视频| 国产高清三级在线| 国产免费一级a男人的天堂| 亚洲精品色激情综合| 久久久久国内视频| 黑人欧美特级aaaaaa片| 免费在线观看影片大全网站| 天美传媒精品一区二区| 精品无人区乱码1区二区| 亚洲在线观看片| 成人特级黄色片久久久久久久| 色综合亚洲欧美另类图片| 国产精品 国内视频| 性欧美人与动物交配| 免费人成在线观看视频色| 欧美激情久久久久久爽电影| 熟妇人妻久久中文字幕3abv| 欧美精品啪啪一区二区三区| 少妇高潮的动态图| 国产视频一区二区在线看| 1000部很黄的大片| 2021天堂中文幕一二区在线观| 亚洲精品日韩av片在线观看 | 日本 欧美在线| 久久久色成人| av片东京热男人的天堂| 欧美大码av| 久久精品国产亚洲av涩爱 | 久久久久免费精品人妻一区二区| 在线十欧美十亚洲十日本专区| 亚洲电影在线观看av| 国产成人系列免费观看| 亚洲aⅴ乱码一区二区在线播放| 欧美一级毛片孕妇| 在线a可以看的网站| 久久久成人免费电影| 色精品久久人妻99蜜桃| 天堂网av新在线| 人妻夜夜爽99麻豆av| 有码 亚洲区| 国产精品美女特级片免费视频播放器| 小蜜桃在线观看免费完整版高清| 18禁黄网站禁片免费观看直播| 亚洲欧美一区二区三区黑人| 99久久综合精品五月天人人| 精品福利观看| 88av欧美| 国产视频内射| 伊人久久精品亚洲午夜| 国产免费av片在线观看野外av| 久久精品91无色码中文字幕| 九色国产91popny在线| 亚洲 欧美 日韩 在线 免费| 天堂动漫精品| 久99久视频精品免费| 午夜免费男女啪啪视频观看 | 亚洲av不卡在线观看| 欧美激情久久久久久爽电影| 88av欧美| 国产日本99.免费观看| 国产午夜精品论理片| 丁香欧美五月| 99riav亚洲国产免费| 亚洲av成人精品一区久久| 每晚都被弄得嗷嗷叫到高潮| 国内毛片毛片毛片毛片毛片| 久久伊人香网站| 小说图片视频综合网站| 麻豆国产97在线/欧美| 美女 人体艺术 gogo| 国产亚洲精品av在线| 村上凉子中文字幕在线| 一区二区三区免费毛片| 亚洲av成人精品一区久久| 久久久久久人人人人人| 岛国在线免费视频观看| 蜜桃久久精品国产亚洲av| 亚洲人成网站在线播放欧美日韩| 综合色av麻豆| 日韩欧美在线二视频| 在线观看免费视频日本深夜| 久久精品综合一区二区三区| 欧美另类亚洲清纯唯美| 国产精品久久久久久久电影 | 在线十欧美十亚洲十日本专区| 热99在线观看视频| 亚洲人成电影免费在线| 成人国产综合亚洲| 天堂√8在线中文| 国产成人av教育| 欧美+日韩+精品| 在线观看一区二区三区| 国产精华一区二区三区| 欧美乱码精品一区二区三区| 国产精品久久久人人做人人爽| 午夜福利视频1000在线观看| 麻豆一二三区av精品| 欧美日本亚洲视频在线播放| 男插女下体视频免费在线播放| 精品国内亚洲2022精品成人| 2021天堂中文幕一二区在线观| 69av精品久久久久久| 欧美中文日本在线观看视频| 久久天躁狠狠躁夜夜2o2o| 国产成人福利小说| 狠狠狠狠99中文字幕| 久久久久性生活片| 淫妇啪啪啪对白视频| 在线观看66精品国产| 搡女人真爽免费视频火全软件 | 无限看片的www在线观看| 黄色成人免费大全| 日本五十路高清| 亚洲,欧美精品.| 51午夜福利影视在线观看| 国产欧美日韩一区二区精品| 久久精品国产99精品国产亚洲性色| 怎么达到女性高潮| 成年版毛片免费区| 亚洲真实伦在线观看| 美女高潮喷水抽搐中文字幕| 99国产精品一区二区蜜桃av| 久久草成人影院| 欧美日韩综合久久久久久 | 99久久久亚洲精品蜜臀av| 国产精品精品国产色婷婷| 精品日产1卡2卡| 国产精品98久久久久久宅男小说| 淫秽高清视频在线观看| 午夜久久久久精精品| 国产乱人视频| 久久天躁狠狠躁夜夜2o2o| 日日夜夜操网爽| 欧美av亚洲av综合av国产av| 天堂av国产一区二区熟女人妻| 亚洲美女黄片视频| 欧美乱妇无乱码| 国产亚洲精品一区二区www| 国产主播在线观看一区二区| 99热6这里只有精品| 又黄又爽又免费观看的视频| 九九热线精品视视频播放| av片东京热男人的天堂| 欧美日韩综合久久久久久 | 波多野结衣高清无吗| 欧美zozozo另类| 亚洲在线观看片| 午夜福利18| 欧美成人一区二区免费高清观看| 国产亚洲精品av在线| 国产免费av片在线观看野外av| 真人一进一出gif抽搐免费| 国产伦在线观看视频一区| 欧美午夜高清在线| 首页视频小说图片口味搜索| 久久香蕉精品热| 嫩草影院精品99| 高清在线国产一区| 国产野战对白在线观看| 久9热在线精品视频| 国产探花极品一区二区| 国产黄a三级三级三级人| 精品日产1卡2卡| 悠悠久久av| 成人午夜高清在线视频| 在线国产一区二区在线| 国产91精品成人一区二区三区| 最近在线观看免费完整版| 99国产精品一区二区三区| 欧美黄色片欧美黄色片| 校园春色视频在线观看| 日韩免费av在线播放| 国产精品久久久久久人妻精品电影| 99精品在免费线老司机午夜| 国产私拍福利视频在线观看| 91麻豆av在线| 婷婷精品国产亚洲av在线| 午夜福利在线观看吧| 久久久久久久久中文| 精品国产美女av久久久久小说| 无人区码免费观看不卡| 麻豆成人av在线观看| 丰满乱子伦码专区| 久久久久久久亚洲中文字幕 | 岛国在线免费视频观看| 91在线观看av| 免费高清视频大片| 高清在线国产一区| 欧美日本亚洲视频在线播放| 操出白浆在线播放| av天堂中文字幕网| 女人十人毛片免费观看3o分钟| 脱女人内裤的视频| 久久精品夜夜夜夜夜久久蜜豆| 精品熟女少妇八av免费久了| 亚洲人成网站在线播放欧美日韩| 免费观看人在逋| 怎么达到女性高潮| 18禁国产床啪视频网站| 亚洲av不卡在线观看| 日韩免费av在线播放| 久久精品91无色码中文字幕| 久久久久国产精品人妻aⅴ院| 久久香蕉国产精品| 男女那种视频在线观看| 黄色女人牲交| 在线看三级毛片| 夜夜看夜夜爽夜夜摸| 亚洲欧美一区二区三区黑人| 在线播放无遮挡| 国产私拍福利视频在线观看| 久久久国产成人精品二区| 麻豆久久精品国产亚洲av| 亚洲黑人精品在线| 无限看片的www在线观看| 99在线人妻在线中文字幕| 内地一区二区视频在线| 欧美av亚洲av综合av国产av| 欧美色欧美亚洲另类二区| 欧美日韩黄片免| 亚洲欧美日韩卡通动漫| 成人永久免费在线观看视频| 亚洲狠狠婷婷综合久久图片| a级一级毛片免费在线观看| 国产精品av视频在线免费观看| 老司机午夜十八禁免费视频| ponron亚洲| 精品久久久久久久末码| 两性午夜刺激爽爽歪歪视频在线观看| 淫秽高清视频在线观看| 日日摸夜夜添夜夜添小说| 丰满的人妻完整版| 国产久久久一区二区三区| 亚洲 国产 在线| 18禁裸乳无遮挡免费网站照片| 一个人看视频在线观看www免费 | 国产精品亚洲美女久久久| 九九久久精品国产亚洲av麻豆| 午夜亚洲福利在线播放| 18禁黄网站禁片免费观看直播| 精品免费久久久久久久清纯| 婷婷丁香在线五月| 免费无遮挡裸体视频| 亚洲av成人av| 欧美一级毛片孕妇| 国产99白浆流出| 嫩草影院精品99| 国产视频内射| 亚洲色图av天堂| 欧美黄色片欧美黄色片| 51国产日韩欧美| 亚洲最大成人中文| 国产私拍福利视频在线观看| 久99久视频精品免费| 国产免费男女视频| 99久久精品热视频| 国产精品嫩草影院av在线观看 | 国产成人系列免费观看| 免费看十八禁软件| 国产激情偷乱视频一区二区| 日韩欧美精品v在线| 日韩av在线大香蕉| 啦啦啦韩国在线观看视频| 亚洲自拍偷在线| 母亲3免费完整高清在线观看| xxx96com| 日韩欧美国产一区二区入口| 岛国在线免费视频观看| 九色国产91popny在线| 国产精品久久久久久亚洲av鲁大| 91在线精品国自产拍蜜月 | 国内揄拍国产精品人妻在线| 午夜福利视频1000在线观看| 欧美最黄视频在线播放免费| 日韩人妻高清精品专区| 舔av片在线| www国产在线视频色| 亚洲国产高清在线一区二区三| 国产一区二区在线av高清观看| 亚洲成a人片在线一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 午夜福利欧美成人| 男人的好看免费观看在线视频| 高潮久久久久久久久久久不卡| 国产乱人视频| 一夜夜www| 五月玫瑰六月丁香| 蜜桃久久精品国产亚洲av| 亚洲国产精品999在线| 午夜激情欧美在线| 神马国产精品三级电影在线观看| 国产成人aa在线观看| h日本视频在线播放| 亚洲内射少妇av| 免费在线观看成人毛片| 91在线观看av| 草草在线视频免费看| 真人一进一出gif抽搐免费| 欧美精品啪啪一区二区三区| 男女做爰动态图高潮gif福利片| 久久午夜亚洲精品久久| netflix在线观看网站| 一a级毛片在线观看| 免费看十八禁软件| 国产精品电影一区二区三区| 成人三级黄色视频| 在线观看午夜福利视频| 国产av麻豆久久久久久久| 日韩欧美精品v在线| 男人的好看免费观看在线视频| 精品久久久久久久人妻蜜臀av| eeuss影院久久| 禁无遮挡网站| 欧美乱码精品一区二区三区| 日韩欧美一区二区三区在线观看| 亚洲人成电影免费在线| 日本熟妇午夜| 国产欧美日韩精品亚洲av| 少妇的丰满在线观看| 精品一区二区三区视频在线观看免费| 久久久精品欧美日韩精品| 高潮久久久久久久久久久不卡| 97超视频在线观看视频| 亚洲在线观看片| 五月玫瑰六月丁香| 国产欧美日韩精品一区二区| 欧美日韩中文字幕国产精品一区二区三区| 一级毛片高清免费大全| 日韩 欧美 亚洲 中文字幕| 亚洲黑人精品在线| 亚洲av一区综合| 国产麻豆成人av免费视频| 小说图片视频综合网站| 亚洲欧美日韩卡通动漫| a级一级毛片免费在线观看| 精品人妻偷拍中文字幕| 一区二区三区免费毛片| 级片在线观看| 亚洲精品一区av在线观看| 午夜老司机福利剧场| 亚洲一区二区三区不卡视频| 淫秽高清视频在线观看| 一本精品99久久精品77| 成人国产一区最新在线观看| 69av精品久久久久久| 国产精品一区二区免费欧美| 久久欧美精品欧美久久欧美| 亚洲av日韩精品久久久久久密| 老司机福利观看| 精品电影一区二区在线| 成人午夜高清在线视频| 99热精品在线国产| 国产不卡一卡二| 久久午夜亚洲精品久久| av福利片在线观看| 国产精品久久久久久人妻精品电影| 一个人看视频在线观看www免费 | www国产在线视频色| 欧美一区二区精品小视频在线| 午夜福利免费观看在线| 哪里可以看免费的av片| bbb黄色大片| 久久香蕉精品热| 黄色视频,在线免费观看| 久久人妻av系列| 搡老岳熟女国产| 欧美日韩福利视频一区二区| 欧美最新免费一区二区三区 | 两个人的视频大全免费| 夜夜爽天天搞| 人人妻人人看人人澡| 国产精品一及| www国产在线视频色| 午夜福利高清视频| 18美女黄网站色大片免费观看| 亚洲国产日韩欧美精品在线观看 | 国产综合懂色| 色噜噜av男人的天堂激情| 国产成人啪精品午夜网站| 国产欧美日韩一区二区三| 午夜久久久久精精品| 欧美黑人欧美精品刺激| 真人做人爱边吃奶动态| 性色av乱码一区二区三区2| 亚洲欧美日韩东京热| 欧美黑人巨大hd| 全区人妻精品视频| bbb黄色大片| 欧美日本亚洲视频在线播放| 国产精品久久电影中文字幕| 久久久久久久久久黄片| 成人精品一区二区免费| 我要搜黄色片| 波野结衣二区三区在线 | 成年版毛片免费区| 毛片女人毛片| 欧美又色又爽又黄视频| 成年女人毛片免费观看观看9| 男人舔女人下体高潮全视频| 国产高清三级在线| 午夜福利免费观看在线| 欧美日韩瑟瑟在线播放| 日韩高清综合在线| 在线观看av片永久免费下载| 国产69精品久久久久777片| 美女免费视频网站| 日韩欧美在线二视频| 美女黄网站色视频| 免费一级毛片在线播放高清视频| 免费大片18禁| 亚洲专区国产一区二区| 99精品久久久久人妻精品| 国产精品影院久久| 亚洲国产中文字幕在线视频| 天堂动漫精品| 香蕉久久夜色| 欧美成人一区二区免费高清观看| 一进一出抽搐gif免费好疼| 老司机午夜福利在线观看视频| 日韩国内少妇激情av| 国产精品自产拍在线观看55亚洲| 高潮久久久久久久久久久不卡| 亚洲激情在线av| 内地一区二区视频在线| 日本与韩国留学比较| 亚洲人与动物交配视频| av在线蜜桃| 亚洲五月婷婷丁香| 亚洲专区国产一区二区| 丝袜美腿在线中文| 国产探花极品一区二区| 我要搜黄色片| 国产欧美日韩精品一区二区| 国产欧美日韩一区二区三| 亚洲精品456在线播放app | 九色国产91popny在线| 久久婷婷人人爽人人干人人爱| 亚洲av不卡在线观看| 日韩免费av在线播放| 亚洲欧美日韩高清专用| 国产精品久久久久久久电影 | 亚洲专区国产一区二区| 欧美zozozo另类| 国产成+人综合+亚洲专区| 成人特级av手机在线观看| 中文字幕久久专区| 国产精品,欧美在线| 国产久久久一区二区三区| 久久精品国产自在天天线| 99久久综合精品五月天人人| 亚洲美女黄片视频| 国产亚洲欧美98| 最好的美女福利视频网| 午夜激情福利司机影院| 伊人久久大香线蕉亚洲五| 欧美日韩一级在线毛片| 亚洲成人久久性| 欧美乱妇无乱码| 999久久久精品免费观看国产| 男插女下体视频免费在线播放| 小说图片视频综合网站| 中亚洲国语对白在线视频| 国产毛片a区久久久久| 日本a在线网址| 日韩国内少妇激情av| 精品免费久久久久久久清纯| 日韩国内少妇激情av| 搡老妇女老女人老熟妇| 熟妇人妻久久中文字幕3abv| 在线观看美女被高潮喷水网站 | 国产综合懂色| 美女黄网站色视频| 真实男女啪啪啪动态图| 97超视频在线观看视频| 日本一本二区三区精品| 丰满人妻一区二区三区视频av | 悠悠久久av| 在线观看日韩欧美| 精品电影一区二区在线| 狂野欧美白嫩少妇大欣赏| 人人妻,人人澡人人爽秒播| 在线看三级毛片| 精品人妻1区二区| 97超级碰碰碰精品色视频在线观看| 国内少妇人妻偷人精品xxx网站| 成人性生交大片免费视频hd| 1000部很黄的大片| av女优亚洲男人天堂| 国产高潮美女av| 久99久视频精品免费| 久久精品人妻少妇| 免费在线观看成人毛片| 最好的美女福利视频网| 又爽又黄无遮挡网站| 亚洲精品成人久久久久久| 99久国产av精品| 成人三级黄色视频| 午夜福利成人在线免费观看| 久久亚洲精品不卡| 午夜视频国产福利| 一个人观看的视频www高清免费观看| 国产免费一级a男人的天堂| 欧美一级毛片孕妇| 亚洲精品粉嫩美女一区| 精品福利观看| 国产中年淑女户外野战色| 色综合亚洲欧美另类图片| 国产亚洲精品综合一区在线观看| 中国美女看黄片| 亚洲真实伦在线观看| 最近最新中文字幕大全电影3| 叶爱在线成人免费视频播放| 精品国产亚洲在线| 久久久国产成人精品二区| 中文字幕人妻丝袜一区二区| 日韩国内少妇激情av| 99在线视频只有这里精品首页| 国产一区二区在线观看日韩 | 欧美午夜高清在线| 国产成+人综合+亚洲专区| 亚洲最大成人手机在线| www日本黄色视频网| 国产色婷婷99| 亚洲欧美日韩卡通动漫| 大型黄色视频在线免费观看| 国产久久久一区二区三区| 噜噜噜噜噜久久久久久91| 99视频精品全部免费 在线| 欧美3d第一页| 日本精品一区二区三区蜜桃| 亚洲最大成人中文| 一进一出抽搐动态| 午夜免费观看网址| 欧美+日韩+精品| 久久久国产成人免费| 午夜a级毛片| 免费av观看视频| 免费观看的影片在线观看| 国产三级在线视频| 国内精品久久久久精免费| 成人特级av手机在线观看| 久久精品国产亚洲av涩爱 | 欧美黑人欧美精品刺激| 天堂av国产一区二区熟女人妻| 在线观看美女被高潮喷水网站 | 成人18禁在线播放| 精品乱码久久久久久99久播| 精品国内亚洲2022精品成人| 一个人免费在线观看的高清视频| 熟妇人妻久久中文字幕3abv| 国产精品 国内视频| 亚洲中文字幕一区二区三区有码在线看| 狂野欧美白嫩少妇大欣赏| 亚洲欧美日韩无卡精品| svipshipincom国产片| 欧美黄色片欧美黄色片| 中文字幕高清在线视频| 精品免费久久久久久久清纯| 久久国产精品影院| 午夜精品久久久久久毛片777| 神马国产精品三级电影在线观看| 免费看日本二区| 国产欧美日韩一区二区三| 国产激情偷乱视频一区二区| 亚洲性夜色夜夜综合| 757午夜福利合集在线观看| www.www免费av| 午夜福利高清视频| 久久精品国产99精品国产亚洲性色| 男女做爰动态图高潮gif福利片| 国产色婷婷99| 国内毛片毛片毛片毛片毛片| 婷婷精品国产亚洲av| 精品欧美国产一区二区三| 亚洲真实伦在线观看| xxxwww97欧美|