• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Double-slot ultra-compact polarization beam splitter based on asymmetric hybrid plasmonic structure

    2023-10-07 07:42:44WANGFangLIUHuaMATaoMAShoudaoLIUYufang
    中國光學(xué) 2023年5期

    WANG Fang,LIU Hua,MA Tao,MA Shou-dao,LIU Yu-fang

    (1.College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, China;2.Henan Key Laboratory of Optoelectronic Sensing Integrated Application, Xinxiang 453007, China;3.Academician Workstation of Electromagnetic Wave Engineering of Henan Province,Xinxiang 453007, China;4.Henan Engineering Laboratory of Additive Intelligent Manufacturing, Xinxiang 453007, China)

    * Corresponding author,E-mail: lh18237269109@163.com

    Abstract: To improve the extinction ratio of a polarization beam splitter, we propose a dual-slot ultra-compact polarization splitter (PBS) consisting of a hybrid plasma Horizontal Slot Waveguide (HSW) and a silicon nitride hybrid Vertical Slot Waveguide (VSW).The coating material is silicon dioxide, which can prevent the oxidation of the mixed plasma and also facilitate integration with other devices.The mode characteristics of the HSW and VSW are simulated by using the Finite Element Method (FEM).At suitable HSW and VSW widths, the TE polarization modes in HSW and VSW are phase-matched, while the TM polarization modes are phase mismatched.Therefore, the TE mode in an HSW waveguide is strongly coupled with a VSW waveguide by adopting a dual-slot, while the TM mode directly passes through the HSW waveguide.The results show that PBS achieves an Extinction Ratio (ER) of 35.1 dB and an Insertion Loss (IL) of 0.34 dB for the TE mode at 1.55 μm.For the TM mode, PBS reached 40.9 dB for ER and 2.65 dB for IL.The proposed PBS is designed with 100 nm bandwidth, high ER, and low IL, which can be suitable for photonic integrated circuits (PICs).

    Key words: photonic integrated circuits; polarization beam splitter; slot waveguides.

    1 Introduction

    In recent years, sub-micron waveguide devices have been realized using the large difference in refractive index between a Silicon On Insulator (SOI)coating layer and a dielectric waveguide layer in the middle, which is compatible with the CMOS process[1].Because of the high refractive index difference between silicon and silicon dioxide in the SOI waveguide, there is often strong polarization dependence, and the TE and TM modes have different propagation characteristics in the SOI waveguide,which makes the birefringence effect of SOI-based optical waveguide devices significant and gives serious polarization sensitivity[2].The control and manipulation of polarization states in silicon-based photonic integrated circuits are very important.Polarization Beam Splitters (PBS) play a key role in the separation and combination of the TE and TM fundamental modes.Ultra-dense on-chip networks generally need a PBS with a high Extinction Ratio(ER), low loss, and wide bandwidth.

    In recent years, various waveguide structures that achieve polarization beam splitting have been reported, such as MultiMode Interference (MMI) structures[3-4], Mach-Zehnder Interferometers (MZI)[5],Directional Couplers (DC)[6-15], and SubWavelength Grating (SWG) structures[16-17].Among these structures, a directional coupler is widely used because of its superior performance and simple design; especially PBS, which is designed based on Asymmetric Directional Couplers (ADC) and is widely used because of its simple structure and low Insertion Loss (IL).Slot waveguides confine light to the nanoscale region of the low refractive index and guide light propagation[18-20], which is proposed for the use of polarization control devices.Depending on the direction of the electric field mode in slot waveguides, they can be divided into horizontal slot waveguides and vertical slot waveguides.The optical confinement mechanism of slot waveguides is total internal reflection, and the wavelength sensitivity of slot waveguides is lower than that of strip waveguides.

    To solve the polarization problem and realize low loss miniaturization passivity of devices, various waveguide structures based on PBS were studied.The PBSs based on the radiation loss in the bending Hybrid Plasmonic Waveguide (HPW)structure are proposed in Ref.[21], which has low loss characteristics.In Ref.[22], a PBS based on a bent directional coupler is proposed, which has broadband and excellent tolerance to fabrication errors.PBS based on two-dimensional cylindrical PhC was studied.The results show that two beams with different polarization states can be separated in a wide wavelength range with ER greater than 10 dB,however, PBS based on PhC has a complex structure and large scattering loss[23].DAI D Xet al.proposed that PBS based on a bent DC achieves an ultra-small size and high manufacturing tolerance, but the ER of TE polarization is still not high due to some unwanted residual cross-coupling in the DC[24].

    Unlike traditional dielectric waveguide schemes that restrict light to high refractive index media,restricting light to low refractive index regions has been demonstrated in many applications, such as optical communication biosensor modulation and signal processing.In this paper, we propose a hybrid Polarization Beam Splitter (PBS) composed of a plasma Horizontal Slot Waveguide (HSW) and a silicon nitride hybrid Vertical Slot Waveguide (VSW).The design includes not only a horizontal slot waveguide, but also a vertical slot waveguide transmission TE mode so that the TE0and TM0modes are located in different low exponent regions of the PBS.The rest of the paper is organized as follows:the second part is the design of the PBS; the third part is the mode properties of the PBS with various structural parameters.In the fourth part, the polarization beam splitter simulation results are presented and discussed.

    2 Waveguide structure

    The three-dimensional schematic and crosssectional views of the PBS are shown in Fig.1 (a)and (b) (color online).As shown in Fig.1 (a), the PBS adopts an asymmetric directional coupler and consists of a mixed plasma HSW and a mixed VSW from a silicon nitride structure.As can be seen from the top view of Fig.1 (c) (color online), the HSW waveguide can act as an input port and bar port.The VSW waveguide, on the other hand, acts as a cross port.HSW is a sandwich structure composed of the silicon layer and silver (Ag) cladding on a silicon oxide substrate.The VSW waveguide consists of two core layers: two thin Si waveguides at the bottom, whose width is denoted asW4, and a thicker Si3N4core layer at the top, whose thickness is denoted asH3and represents a tradeoff between low limiting loss and simplified fabrication.The total VSW waveguide’s width is denoted asW3.When the working wavelength is 1.55 μm, the refractive index of Si, SiO2, Si3N4, and Ag is 3.455, 1.445, 2,and 0.145 3 + 11.3587i, respectively.The thicker silicon nitride waveguide above the VSW structure is eliminated by etching to further suppress IL between the straight and cross ports[25].

    Fig.1 (a) 3D schematic diagram, (b) cross-section and(c) top-view of the proposed PBS device

    To evaluate the polarization beam splitting performance of the PBS, typical indicators include bending radius (r1), coupling length (LC), operating wavelength (λ), waveguide spacing (G), the total length of the device (L1), insertion loss (IL) and extinction ratio (ER).

    The extinction ratio (ER) of the PBS can be defined as[26]:

    This work proposes a dual-slot ultra-compact PBS consisting of a hybrid plasma HSW and a silicon nitride hybrid VSW.The structural parameters of the HSW and VSW are optimized by using a mode analysis of FEM based COMSOL multi-physics.The HSW and VSW waveguides are arranged into non-uniform triangular grids according to their optical field characteristics.The PBS uses a physically-controlled triangular mesh throughout the domain with a minimum mesh size of 2 nm for input and output ports.The minimum mesh value of other computational domains is 5 nm, respectively.The scattering boundary condition is used, which reduces the reflected energy.

    3 Mode characteristics

    According to the phase matching conditions,the widths of the VSW and HSW (W2,W3) are optimally selected so that the effective refractive index real parts of the TE mode are equal.Then, the TE polarized light incident from the input port is effectively coupled to the adjacent VSW through the coupling region, while the TM polarized light is outputted from the bar port with almost no coupling.

    As mentioned above, the widths of the VSW and HSW should only meet the phase-matching conditions of TE polarization and maximize the phase mismatch of TM polarization.It can be seen from Fig.2 (a) (color online) that the effective refractive index of the mode varies with the waveguide width.The widths of the VSW and HSW are optimized for phase matching between TE modes,while Re (neff) of the TE and TM modes increases gradually as the widths of the HSW and VSW (W2orW3) increase and while the increased rate of the TE mode is larger than that of the TM mode.The results show that when the HSW width and VSW width are 302 nm and 550 nm, the real part of the effective refractive index for the TE mode in the HSW and VSW satisfying the phase matching condition are 2.382 and 2.377, respectively.The effective refractive index of the TM mode is 2.46 and 2.72, indicating that there is a large phase mismatch of TM modes in the two waveguides.

    Fig.2 Influence of waveguide width on the effective refractive index.(a) The real part of the refractive index of TE mode and TM mode varying with width in the HSW and VSW; the field distribution of the TE mode in the (b) HSW and (c) VSW, and the field distribution of the TM mode in the (d) HSW and (e) VSW

    The electric field profiles of dominant supermodes are held in the coupling region at a 1 550 nm working wavelength using the optimized structural parameter, as shown in Fig.2(b)-(e) (color online).For the TE and TM modes in the HSW and VSW,the distribution of the TE mode in the two waveguides is also very similar.

    The supermodes are excited at corresponding arms when the polarized light enters the coupling region by satisfying the phase-matching condition.Henceforth, the required minimum length called the coupling length (Lc) is used to represent the coupling of the injected polarized beams from the input port to the cross port.It is an essential parameter to evaluate the compactness of the device.The selection of structural parameters plays a vital role in obtaining the minimumLcthat depends on effective index difference.In the proposed PBS, the phase matching criteria is planned only for TE mode.Hence,Lc[27-28]is expressed as

    whereλrepresents the working wavelength, andnTE0andnTE1are the effective indices of TE polarized supermodes.The shorter coupling length (LC) is achieved for device compactness when the TE modes’ index difference is larger.For designing the proposed PBS,Gplays a significant role between the two arms, whereas the coupling length is also one ofG’s parametric functions, as shown in Fig.3.

    Fig.3 Effect of waveguide spacing G.The effect of G on (a) the effective refractive index and (b) the coupling length p.Electric field profile of supermodes at 90 nm of G, (c) TE0, and (d) TE1

    When the distance between two waveguides in the coupling region is large, the mode optical signals are transmitted independently in their corresponding waveguides.At this time, there is no mode coupling between the parallel waveguides in the coupling region.The two parallel waveguides are close to each other and form a coupling system when the distance between the waveguides is close to the magnitude of the wavelength.Due to the action of the evanescent wave, the light signals of two adjacent parallel waveguides will be transformed into energy.When the waveguide meets the phase matching condition, the energy of the signal in the HSW waveguide can be completely converted to another waveguide by selecting the optimal coupling length.The HSW is equal to that of a mode in the coupled waveguide, which is to say that the phasematching condition is satisfied and the specific model in the coupled waveguide can be precisely excited.By selecting the optimized coupling length,the energy of the signal in the HSW can be completely converted to another waveguide.

    4 Simulation results and discussions

    To further study the polarization beam splitting characteristics of the PBS, several geometric parameters (waveguide spacingG, bending radiusr1, the total length of the deviceL1, operating wavelengthλ) are discussed.The influences of the waveguide dimension parameters onG,r1,L1, andλare studied as shown in Figs.4 ~ 6 (color online).Figs.4 ~ 6 show ER and IL at the bar and cross ports when the input light is the TE and TM modes,respectively.Here,W2=302 nm,W3=550 nm,H1=560 nm,H2=60 nm,H3=180 nm andH4=460 nm.

    The influences ofGon ER and IL are shown in Fig.4 (color online).In Fig.4(a) and 4(b), ER in the TE mode first increases and then decreases with an increase ofG.The ER value increases from 30.35 dB to 31.79 dB and then decreases to 16.89 dB,while IL in the TE mode decreases first and then increase.ER of the TM mode first increased and then decreased with an increase ofG.The ER value increased from 22.6 dB to 35.9 dB and then decreased to 17.97 dB, while IL of the TM mode showed a decreasing trend.To reach a compromise between ER and IL,G=90 nm was selected.The coupling length (Lc) is identified by using the theoretical Eq.(5), the obtainedLcvalue for the proposed PBS is 5.2 μm whenG=90 nm.

    Fig.4 The influence of G on ER and IL at the cross and bar ports.Here, W2 = 302 nm, W3 = 550 nm, r1 =4 μm, λ=1.55 μm and G= 90 nm

    The curved part is connected to the tail of the straight HSW to prevent the coupling of two adjacent waveguides.As can be seen from Fig.5 (a) and(b), ER in the TE mode and ER in the TM mode first increase and then decrease withL1, while IL in the TE mode and IL in the TM mode first decrease and then increase.To reach a compromise between ER and IL,L1=9 μm was chosen.

    Fig.5 The influence of L1 on ER and IL at the cross and bar ports.Here, W2=302 nm, W3=550 nm, r1=4 μm,λ=1.55 μm and G= 90 nm

    It can be seen from Fig.6 (a) and 6(b) that ER in the TE mode is greater than 27 dB and IL is less than 1.1 dB at the wavelength of 1 525~1 625 nm.ER of the TM mode was greater than 16 dB and IL was less than 4.2 dB.To reach a compromise between ER and IL, we chose the wavelengthλ=1 550 nm.The calculated PER value in both inputs of ER is high at the operating wavelength of 1 550 nm, and the ER value of the TE input(35.1 dB) is lower than the TM input (40.9 dB).

    Fig.6 The influence of λ on ER and IL at the cross and bar ports.Here, W2=302 nm, W3=550 nm, r1=4 μm,λ=1.55 μm and G= 90 nm

    Fig.7 (a) and 7(b) (color online) show the propagation for the TE and TM modes.When the TE mode is inputted at the input port, it is strongly coupled in the coupling region and finally outputted from the cross port.However, it can also be observed from Fig.7 (b) that when launching a TM mode, it will propagate along the HSW waveguide and directly output at the bar port.Therefore, the two modes are well separated.

    Fig.7 The light propagations in the designed PBS of the(a) TE-Ey, (b) TM-Ez

    After the above discussion, it can be seen that whenL1=9 μm,r1=4 μm, andG=90 nm are selected, the PBS has the best performance, which is shown in Fig.8 (color online).Here, the length of the PBSL1=9 μm and the wavelength is 1 550 nm.As can be seen from Fig.8 (a) ~ 8(e), when TE polarized light in the HSW is emitted to the input port,the TE mode is mostly concentrated in the silicon layer of the HSW in section (c).In section (d), the TE mode is transmitted to the coupling region, and part of the waveguide is coupled from the HSW to the VSW.In section (e), almost all the light fields have been cross-coupled to the VSW.Similarly, it can be seen from Fig.9 when the TM polarization mode is inputted in the HSW.This is because the metal is sensitive to the TM mode in the HSW, and is not conducive to the standardized power of the TE mode.The ER and IL of the TE and TM modes were 35.1 dB, 40.9 dB, 0.34 dB, and 2.85 dB,respectively.In addition, the designed PBS has a bandwidth of 100 nm, which provides a promising platform for increasing communication capacity.

    Fig.8 TE polarization beam splitting and electric field distribution at the corresponding position for the TE mode

    Fig.9 TM polarization beam splitting and electric field distribution at the corresponding position for the TM mode

    A comparison of the designed PBS with other PBSs is shown in Table 1.PBS proposed in this paper has performed well compared with the references, as mentioned in the above table.For both polarizations of input, the IL and ER are much better than the existing works.

    5 Proposed fabrication process and fabrication tolerances

    In the experiment, the polarization beam splitter based on the asymmetric mixed plasma structure can be realized using the proposed manufacturing process, as shown in Fig.10 (color online).First, theSOI substrate is cleared and rotated and coated with a resist by using Electron Beam Lithography(EBL).Secondly, the pattern is transferred to the Si layer by Inductively Coupled Plasma (ICP) dry etching to realize the waveguide coupler.The Ag layer was deposited by vacuum evaporation to generate the HSW waveguide[36-37].The same approach implements the VSW waveguide.The Si3N4filmwas deposited by ICP Chemical Vapor Deposition(ICPCVD), scale resistance was removed by Plasma Enhanced Chemical Vapor Deposition (PECVD),and 2 μm thick SiO2cladding was deposited[38].

    Tab.1 Performance comparison of the polarization

    Fig.10 The fabrication process of the designed polarization beam splitter

    The size deviation provides great reference value to manufacture a polarization beam splitter with a mixed plasma structure.The size of the HSW waveguide (W1,H1,H2) is analyzed, as shown in Figs.11 (a)-11 (c) (color online).In Fig.11 (a),ΔERand ΔILis less than 5.8 dB and 0.47 dB withW1in the range of 292 nm to 312 nm.Because the TE mode propagates in the Si layer, the Si thicknessH1has a great influence on TE mode transmission.In Fig.11 (b), withH1in the range of 550 nm to 570 nm, TE changes more than TM with the change ofH1.For the TE mode, ΔERis less than 8.7 dB,while for the TM mode, ΔERis less than 3.6 dB.H2is closely related to ohmic loss due to the Ag layer’s thickness.In Fig.11 (c),H2ranges from 50 nm to 70 nm.With the change ofH2, ΔILfor TE mode is less than 0.4 dB, while that for TM mode is less than 0.6 dB.

    Fig.11 Effects of different dimensional tolerances on ER and IL.(a) W1=302 nm, (b) H1=560 m and (c)H2=60 nm

    The dimensions of the VSW (H3,H4) are analyzed, as shown in Fig.12 (a) and (b) (color online).In Fig.12 (a),H3ranges from 170 nm to 190 nm.For the TE mode, ΔERis less than 2 dB and ΔILis less than 0.02 dB.For the TM mode, ΔERis less than 4.8 dB and ΔILis less than 0.04 dB.In the VSW, the TM mode mainly exists in the Si.In Fig.12 (b),H4varies from 450 nm to 470 nm, and the TE mode changes little withH4.For the TM mode, ΔILis less than 2.4 dB.

    Fig.12 Effects of different dimensional tolerances on ER and IL.(a) H3=180 nm and (b) H4=460 m

    6 Conclusion

    In summary, a hybrid plasma HSW and silicon nitride hybrid VSW Polarization Beam Splitter(PBS) is proposed.According to the mode characteristics of the TM and TE modes at a 1.55 μm wavelength, the PBS is realized by phase matching the TE mode and phase mismatching the TM mode.By optimizing the parameters, ER and IL are 35.1 dB and 0.34 dB for the TE mode, 40.9 dB and 2.65 dB for the TM mode asW2= 302 nm,W3=550 nm,r1=4 μm,G=90 nm,L1=9 μm.At the same time, the PBS has a working bandwidth of 100 nm,providing a promising platform for improving communication capabilities.

    午夜免费观看性视频| 国产欧美日韩综合在线一区二区| 一本—道久久a久久精品蜜桃钙片| 在线观看美女被高潮喷水网站| a级毛片黄视频| 97在线人人人人妻| 人体艺术视频欧美日本| 男人操女人黄网站| 精品一区在线观看国产| 少妇人妻精品综合一区二区| 热99久久久久精品小说推荐| 中文天堂在线官网| 国产国拍精品亚洲av在线观看| 18禁在线无遮挡免费观看视频| 999精品在线视频| 国产成人午夜福利电影在线观看| 亚洲av国产av综合av卡| 有码 亚洲区| 欧美 亚洲 国产 日韩一| 黑人巨大精品欧美一区二区蜜桃 | 99国产精品免费福利视频| 久久久亚洲精品成人影院| 亚洲国产欧美在线一区| 成年人午夜在线观看视频| 国产日韩欧美亚洲二区| 成年人免费黄色播放视频| av在线观看视频网站免费| 黑人猛操日本美女一级片| 在现免费观看毛片| 在线观看免费视频网站a站| 国产白丝娇喘喷水9色精品| 欧美精品一区二区大全| 另类亚洲欧美激情| 国产色婷婷99| 亚洲,欧美,日韩| 久久人妻熟女aⅴ| 午夜av观看不卡| 精品久久蜜臀av无| 一个人看视频在线观看www免费| 晚上一个人看的免费电影| 秋霞伦理黄片| 久久女婷五月综合色啪小说| 国产黄色免费在线视频| 日韩不卡一区二区三区视频在线| 国产极品粉嫩免费观看在线 | 久久99蜜桃精品久久| 午夜av观看不卡| 免费高清在线观看视频在线观看| 欧美日韩精品成人综合77777| 99热国产这里只有精品6| 亚洲综合色惰| 国产欧美另类精品又又久久亚洲欧美| 精品久久久久久久久av| av天堂久久9| 久久99热这里只频精品6学生| 国产成人免费无遮挡视频| 能在线免费看毛片的网站| 亚洲国产精品成人久久小说| 简卡轻食公司| 乱码一卡2卡4卡精品| 久久久久久久久久人人人人人人| 日韩大片免费观看网站| 国模一区二区三区四区视频| 又黄又爽又刺激的免费视频.| 成年美女黄网站色视频大全免费 | 免费人成在线观看视频色| 夜夜看夜夜爽夜夜摸| 日韩三级伦理在线观看| 97精品久久久久久久久久精品| 美女中出高潮动态图| 男女免费视频国产| 丰满乱子伦码专区| 亚洲av综合色区一区| 国产成人一区二区在线| 日本午夜av视频| 视频中文字幕在线观看| 精品亚洲成a人片在线观看| 亚洲人成77777在线视频| 草草在线视频免费看| 国产黄片视频在线免费观看| 亚洲精品国产av蜜桃| 国产精品一区二区三区四区免费观看| 我的女老师完整版在线观看| 2021少妇久久久久久久久久久| 丁香六月天网| 午夜福利网站1000一区二区三区| 午夜久久久在线观看| 简卡轻食公司| 国产探花极品一区二区| 精品国产乱码久久久久久小说| 亚洲精品久久午夜乱码| 97在线人人人人妻| 亚洲激情五月婷婷啪啪| 最近中文字幕高清免费大全6| 晚上一个人看的免费电影| 成人免费观看视频高清| 草草在线视频免费看| 国产精品久久久久久av不卡| 国产亚洲av片在线观看秒播厂| 熟女电影av网| 最黄视频免费看| 亚洲欧洲精品一区二区精品久久久 | 黄色毛片三级朝国网站| 一个人免费看片子| 满18在线观看网站| 黑人欧美特级aaaaaa片| 中文字幕人妻熟人妻熟丝袜美| 全区人妻精品视频| 久久人人爽人人爽人人片va| 欧美丝袜亚洲另类| 久久久久久久久久人人人人人人| 有码 亚洲区| 日韩一区二区三区影片| 成人亚洲精品一区在线观看| 国产成人精品婷婷| 婷婷色av中文字幕| 国产成人精品福利久久| 在线观看三级黄色| 妹子高潮喷水视频| 国产av码专区亚洲av| 日韩中文字幕视频在线看片| 国产日韩欧美视频二区| 十八禁网站网址无遮挡| 精品久久久久久电影网| 人妻少妇偷人精品九色| 亚洲,欧美,日韩| 日本av免费视频播放| 中文字幕av电影在线播放| 丝瓜视频免费看黄片| 99视频精品全部免费 在线| 亚洲精品色激情综合| 下体分泌物呈黄色| 精品少妇黑人巨大在线播放| 中国三级夫妇交换| 国产精品99久久99久久久不卡 | 一二三四中文在线观看免费高清| 国产色婷婷99| 少妇被粗大猛烈的视频| 国模一区二区三区四区视频| kizo精华| 又大又黄又爽视频免费| 美女国产高潮福利片在线看| 国产精品一区二区三区四区免费观看| 99久久中文字幕三级久久日本| 一本一本综合久久| 欧美老熟妇乱子伦牲交| 九九久久精品国产亚洲av麻豆| 中文字幕精品免费在线观看视频 | 高清黄色对白视频在线免费看| 国产亚洲午夜精品一区二区久久| 国产精品蜜桃在线观看| 精品国产露脸久久av麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人aa在线观看| 不卡视频在线观看欧美| 大码成人一级视频| 美女视频免费永久观看网站| 亚洲精品aⅴ在线观看| 搡老乐熟女国产| 18禁观看日本| 久久久久久久久久久久大奶| 中文字幕av电影在线播放| 亚洲欧美色中文字幕在线| 一级,二级,三级黄色视频| 观看美女的网站| 亚洲av在线观看美女高潮| 中文字幕最新亚洲高清| 嘟嘟电影网在线观看| 女人久久www免费人成看片| 97超视频在线观看视频| 少妇 在线观看| 国产一区二区三区综合在线观看 | 一本大道久久a久久精品| 99久久精品一区二区三区| 成人手机av| 大片免费播放器 马上看| 天天影视国产精品| 五月伊人婷婷丁香| 国内精品宾馆在线| 18+在线观看网站| 久久精品国产自在天天线| 日韩免费高清中文字幕av| 一区二区日韩欧美中文字幕 | 99热网站在线观看| 青春草国产在线视频| 成人免费观看视频高清| 亚洲精品国产色婷婷电影| 自线自在国产av| 人妻夜夜爽99麻豆av| 美女xxoo啪啪120秒动态图| 内地一区二区视频在线| 午夜日本视频在线| 欧美 亚洲 国产 日韩一| 欧美老熟妇乱子伦牲交| 中文精品一卡2卡3卡4更新| 韩国高清视频一区二区三区| 国产成人精品在线电影| 国产国拍精品亚洲av在线观看| 亚洲精品中文字幕在线视频| 天天躁夜夜躁狠狠久久av| 色视频在线一区二区三区| 国产日韩欧美亚洲二区| 哪个播放器可以免费观看大片| 午夜福利影视在线免费观看| 国产又色又爽无遮挡免| 最近最新中文字幕免费大全7| 最近2019中文字幕mv第一页| 久久精品人人爽人人爽视色| 最近中文字幕高清免费大全6| 纯流量卡能插随身wifi吗| 亚洲欧美精品自产自拍| 国产精品久久久久久av不卡| 伦精品一区二区三区| 一级毛片 在线播放| 午夜激情福利司机影院| 国产男女超爽视频在线观看| 人人澡人人妻人| 午夜福利视频在线观看免费| 精品久久久久久久久亚洲| 日本欧美国产在线视频| 国产国拍精品亚洲av在线观看| 欧美亚洲日本最大视频资源| 日韩人妻高清精品专区| 美女cb高潮喷水在线观看| 日日摸夜夜添夜夜添av毛片| 精品久久久久久久久av| 丝袜喷水一区| 免费播放大片免费观看视频在线观看| 久久精品久久久久久久性| 国产精品久久久久久久电影| 久久97久久精品| av专区在线播放| 少妇丰满av| 国产精品久久久久久精品电影小说| 欧美激情极品国产一区二区三区 | 日韩 亚洲 欧美在线| 女性生殖器流出的白浆| 国产视频首页在线观看| 免费黄频网站在线观看国产| 五月伊人婷婷丁香| 韩国av在线不卡| 最近中文字幕2019免费版| 日韩强制内射视频| 久久久a久久爽久久v久久| av播播在线观看一区| 久久国内精品自在自线图片| 欧美最新免费一区二区三区| 一级二级三级毛片免费看| 一级爰片在线观看| 亚洲欧美成人综合另类久久久| 一级黄片播放器| 欧美日韩一区二区视频在线观看视频在线| 亚洲色图综合在线观看| 在线播放无遮挡| 五月玫瑰六月丁香| 18禁动态无遮挡网站| 人成视频在线观看免费观看| 人妻人人澡人人爽人人| 国产精品一区二区三区四区免费观看| 视频中文字幕在线观看| 熟女av电影| 欧美精品国产亚洲| 久久久a久久爽久久v久久| 美女主播在线视频| 亚洲人与动物交配视频| 国产成人精品久久久久久| 啦啦啦中文免费视频观看日本| 免费人成在线观看视频色| 国产成人91sexporn| 久久99热6这里只有精品| 男女免费视频国产| 美女cb高潮喷水在线观看| 久久久久国产网址| 亚洲国产精品一区三区| 午夜免费男女啪啪视频观看| 国产亚洲午夜精品一区二区久久| 成人综合一区亚洲| 亚洲一级一片aⅴ在线观看| 亚洲国产欧美日韩在线播放| 国产午夜精品久久久久久一区二区三区| 春色校园在线视频观看| 国产精品一区二区在线观看99| 人人澡人人妻人| 在线观看免费视频网站a站| 亚洲av.av天堂| 精品国产露脸久久av麻豆| 青春草亚洲视频在线观看| 天天影视国产精品| 久久久久视频综合| 日本91视频免费播放| 哪个播放器可以免费观看大片| 国产黄色视频一区二区在线观看| 91久久精品电影网| 国内精品宾馆在线| .国产精品久久| 青青草视频在线视频观看| 成人午夜精彩视频在线观看| 777米奇影视久久| 亚洲少妇的诱惑av| 亚洲国产精品专区欧美| 丝袜在线中文字幕| 男女边摸边吃奶| 日韩亚洲欧美综合| 欧美三级亚洲精品| 一级毛片我不卡| 成年人免费黄色播放视频| 亚洲av电影在线观看一区二区三区| 免费少妇av软件| 日日撸夜夜添| 精品亚洲乱码少妇综合久久| 最黄视频免费看| 欧美3d第一页| 欧美日韩视频精品一区| 另类精品久久| 亚洲色图 男人天堂 中文字幕 | 欧美日韩亚洲高清精品| 国产精品一国产av| 另类精品久久| 男人操女人黄网站| 香蕉精品网在线| 婷婷色麻豆天堂久久| 女性被躁到高潮视频| 久久久久久久久久人人人人人人| av国产久精品久网站免费入址| 国产亚洲精品久久久com| 五月开心婷婷网| 校园人妻丝袜中文字幕| 日本黄色日本黄色录像| 校园人妻丝袜中文字幕| 十八禁网站网址无遮挡| 91在线精品国自产拍蜜月| 日韩在线高清观看一区二区三区| 亚洲内射少妇av| 一个人免费看片子| 各种免费的搞黄视频| 99久久人妻综合| 最新中文字幕久久久久| 亚洲精品国产av蜜桃| 久久久午夜欧美精品| 亚洲国产色片| 精品熟女少妇av免费看| 国产亚洲精品久久久com| 精品国产露脸久久av麻豆| 亚洲婷婷狠狠爱综合网| 最近中文字幕2019免费版| 美女内射精品一级片tv| 大香蕉久久网| 日日摸夜夜添夜夜爱| 精品少妇黑人巨大在线播放| 国精品久久久久久国模美| 不卡视频在线观看欧美| 国产成人免费无遮挡视频| 欧美激情 高清一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 夜夜看夜夜爽夜夜摸| 日韩欧美精品免费久久| 欧美日韩综合久久久久久| 好男人视频免费观看在线| 亚洲中文av在线| xxxhd国产人妻xxx| 日本黄色日本黄色录像| 久久国产亚洲av麻豆专区| 不卡视频在线观看欧美| 久久狼人影院| 精品久久国产蜜桃| kizo精华| 天美传媒精品一区二区| av有码第一页| videossex国产| 国产白丝娇喘喷水9色精品| 一二三四中文在线观看免费高清| 夫妻性生交免费视频一级片| 丰满少妇做爰视频| 日本免费在线观看一区| 亚洲av免费高清在线观看| 日本免费在线观看一区| a级毛片黄视频| 91久久精品电影网| 99热全是精品| 国产精品成人在线| 婷婷色av中文字幕| 最新中文字幕久久久久| 涩涩av久久男人的天堂| 亚州av有码| tube8黄色片| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美亚洲二区| 大码成人一级视频| 成人午夜精彩视频在线观看| 丰满迷人的少妇在线观看| 日韩成人伦理影院| 国产高清有码在线观看视频| 五月开心婷婷网| 国产成人a∨麻豆精品| 国产精品.久久久| 美女福利国产在线| 色网站视频免费| 一本大道久久a久久精品| 成年美女黄网站色视频大全免费 | 国产一区二区三区av在线| 国产一级毛片在线| 日韩精品有码人妻一区| 久久久国产欧美日韩av| 一级a做视频免费观看| 久久毛片免费看一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 在现免费观看毛片| 一级,二级,三级黄色视频| 国产乱来视频区| 街头女战士在线观看网站| 啦啦啦啦在线视频资源| 亚洲欧美成人综合另类久久久| av黄色大香蕉| 少妇的逼好多水| 久久这里有精品视频免费| 狂野欧美激情性xxxx在线观看| 亚洲国产精品999| 久久人人爽av亚洲精品天堂| 黄色配什么色好看| 一区二区三区免费毛片| 人妻夜夜爽99麻豆av| 亚洲人与动物交配视频| 午夜av观看不卡| 国产爽快片一区二区三区| 搡女人真爽免费视频火全软件| 新久久久久国产一级毛片| 最近最新中文字幕免费大全7| 久久国产精品男人的天堂亚洲 | 秋霞在线观看毛片| 日韩中字成人| 日日啪夜夜爽| 在线观看三级黄色| 91精品一卡2卡3卡4卡| 免费大片18禁| .国产精品久久| 热99国产精品久久久久久7| 天天躁夜夜躁狠狠久久av| 建设人人有责人人尽责人人享有的| 黄片无遮挡物在线观看| 18禁观看日本| 精品午夜福利在线看| 国产av一区二区精品久久| 日本av免费视频播放| 国产精品嫩草影院av在线观看| 交换朋友夫妻互换小说| 欧美3d第一页| 少妇人妻 视频| 精品亚洲成a人片在线观看| 国产国拍精品亚洲av在线观看| 18+在线观看网站| 国产黄片视频在线免费观看| 九九在线视频观看精品| 丝袜脚勾引网站| 亚洲精品日韩在线中文字幕| 亚洲精品456在线播放app| 九九久久精品国产亚洲av麻豆| 午夜影院在线不卡| 男女国产视频网站| 国产在线免费精品| 一本大道久久a久久精品| 天天躁夜夜躁狠狠久久av| 免费看av在线观看网站| 美女国产视频在线观看| 两个人免费观看高清视频| 成人18禁高潮啪啪吃奶动态图 | 国产精品免费大片| 99re6热这里在线精品视频| 亚洲婷婷狠狠爱综合网| 男的添女的下面高潮视频| 人妻系列 视频| 国产极品粉嫩免费观看在线 | 亚洲美女视频黄频| 国产淫语在线视频| 日本av手机在线免费观看| 成人亚洲精品一区在线观看| a级毛片黄视频| 中文欧美无线码| 亚洲国产成人一精品久久久| 成人国语在线视频| 亚洲精品一二三| av在线播放精品| av.在线天堂| 久久人人爽人人片av| 69精品国产乱码久久久| 欧美精品高潮呻吟av久久| 欧美另类一区| 国产欧美亚洲国产| 老司机影院成人| 久久99蜜桃精品久久| 乱人伦中国视频| 亚洲综合色网址| 亚洲,欧美,日韩| av电影中文网址| 亚洲精品视频女| 熟妇人妻不卡中文字幕| 亚洲综合色网址| 国产精品99久久久久久久久| 夜夜骑夜夜射夜夜干| 男女啪啪激烈高潮av片| 国产成人aa在线观看| 国产一区二区三区av在线| 国产亚洲精品第一综合不卡 | 简卡轻食公司| 精品久久久久久久久亚洲| 亚洲欧美色中文字幕在线| 99九九线精品视频在线观看视频| 欧美日韩综合久久久久久| 狂野欧美激情性bbbbbb| 亚洲av成人精品一二三区| 一级毛片aaaaaa免费看小| 日本爱情动作片www.在线观看| 夜夜看夜夜爽夜夜摸| a级毛色黄片| 少妇人妻久久综合中文| 国产精品人妻久久久久久| 热re99久久国产66热| 美女大奶头黄色视频| 丝袜在线中文字幕| 亚洲av成人精品一二三区| h视频一区二区三区| 精品少妇久久久久久888优播| 亚洲经典国产精华液单| 最近2019中文字幕mv第一页| 视频区图区小说| 久久这里有精品视频免费| 免费观看无遮挡的男女| 美女大奶头黄色视频| 久久久久久久国产电影| 国产亚洲欧美精品永久| 九草在线视频观看| 国产精品嫩草影院av在线观看| 亚洲熟女精品中文字幕| 欧美97在线视频| 免费观看性生交大片5| 在线看a的网站| 香蕉精品网在线| 久久人人爽人人爽人人片va| 国产不卡av网站在线观看| 男男h啪啪无遮挡| 欧美精品人与动牲交sv欧美| 中文字幕制服av| 99热网站在线观看| 亚洲国产精品999| 婷婷色综合www| 欧美日韩成人在线一区二区| 午夜福利视频在线观看免费| 天堂8中文在线网| 黄色一级大片看看| av女优亚洲男人天堂| 欧美人与性动交α欧美精品济南到 | 国产精品三级大全| 亚洲经典国产精华液单| 久久人人爽人人片av| 日日撸夜夜添| 欧美人与善性xxx| 日韩亚洲欧美综合| 国产午夜精品久久久久久一区二区三区| 国产高清三级在线| 久久人人爽av亚洲精品天堂| 日本黄大片高清| 亚洲精品456在线播放app| 亚洲av.av天堂| 麻豆成人av视频| 国产精品嫩草影院av在线观看| 五月伊人婷婷丁香| 精品人妻在线不人妻| 精品国产国语对白av| 国产黄色免费在线视频| 久久久a久久爽久久v久久| 黄色怎么调成土黄色| 纵有疾风起免费观看全集完整版| 熟妇人妻不卡中文字幕| av天堂久久9| av.在线天堂| 国产精品蜜桃在线观看| 97在线视频观看| 99国产综合亚洲精品| 亚洲成人一二三区av| 2018国产大陆天天弄谢| 精品酒店卫生间| 九色亚洲精品在线播放| 精品久久久久久电影网| 高清视频免费观看一区二区| 男人爽女人下面视频在线观看| 日韩不卡一区二区三区视频在线| 久久国产精品男人的天堂亚洲 | 久久精品久久久久久久性| 国产男人的电影天堂91| 久久久久久久久久久免费av| 日韩一区二区三区影片| 极品人妻少妇av视频| 亚洲精品一二三| 精品国产国语对白av| 亚洲美女黄色视频免费看| 日韩精品免费视频一区二区三区 | 国产精品久久久久久精品电影小说| 一区二区av电影网| 日韩一区二区视频免费看| 午夜老司机福利剧场| 亚洲天堂av无毛| 大又大粗又爽又黄少妇毛片口| 丝袜美足系列| 国产精品无大码| 国产一区有黄有色的免费视频| 日日爽夜夜爽网站| 91午夜精品亚洲一区二区三区| 在线观看人妻少妇| 国精品久久久久久国模美| 婷婷色麻豆天堂久久| 天天影视国产精品| 热re99久久国产66热| 亚洲美女黄色视频免费看| 在线观看免费视频网站a站| 人妻人人澡人人爽人人| 美女主播在线视频|