• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Iterative Regularization Method for the Cauchy Problem of Time-Fractional Diffusion Equation

    2023-10-06 10:45:16LVYong呂擁ZHANGHongwu張宏武
    應(yīng)用數(shù)學(xué) 2023年4期

    LV Yong(呂擁),ZHANG Hongwu(張宏武)

    (School of Mathematics and Information Science, North Minzu University,Yinchuan 750021, China)

    Abstract: We consider a Cauchy problem of the time-fractional diffusion equation,which is seriously ill-posed.This paper constructs an iterative regularization method based on Fourier truncation to overcome the ill-posedness of considered problem.And then,under the a-prior and a-posterior selection rules of regularization parameter,the convergence estimates of the proposed method are derived.Finally,we verify the effectiveness of our method by doing some numerical experiments.The corresponding numerical results show that the proposed method is stable and feasible in solving the Cauchy problem of time-fractional diffusion equation.

    Key words: Cauchy problem;Time-fractional diffusion equation;Iteration regularization method;Convergence estimate;Numerical simulation

    1.Introduction

    The time-fractional diffusion equation is deduced by replacing the first-order time derivative with the derivative of fractional order,and which has the important applications in describing the various anomalous diffusion phenomena.In the past few decades,the forward problems for time-fractional diffusion equation have been studied extensively.[1-3]In recent years,driven by practical applications,the inverse problems of this equation have attracted wide attention.The research contents mainly include the parameter identification problem,inverse initial value problem (final value problem or backward problem in time),Cauchy problem,sideways problem (inverse heat conduction problem),inverse source problem,inverse boundary condition problem,and so on.

    This paper considers the Cauchy problem of time-fractional diffusion equation

    andΓ(·) is the Gamma function.

    The physical background and motivation for the problem(1.1)can be described as below.In practical scientific research,the solute concentration of the pollution in soil at internal point and one endxLare not available to be measured since the internal point is inaccessible or the end ofxLis far away,but the solute concentration and diffusion flux can be measured at another endx0.Our task is to determine the unknown solute concentrationY(x,t)(0

    There are two main difficulties in solving the above problems.(i)Problem(1.1)is ill-posed in the sense that the solution does not depend continuously on the noisy datumωδ(t),μδ(t),so some regularized methods are required to overcome its ill-posedness and recover the stability of the solution.(ii) The Caputo derivative in time-fractional diffusion equation possesses the properties of weak singularity and non-locality,this can lead to some difficulties in the aspect of numerical computation,then in order to solve problem (1.1),one needs to design a stable discretization scheme to complete the numerical computation and simulation.In order to recover the stability of the solution and obtain the stable numerical solution for Cauchy problem of time-fractional diffusion equation,recently some works have been published,in which some meaningful regularized methods and numerical algorithms have been proposed.For example,spectral regularization and finite difference method[5],convolution type regularization and finite difference method[6],modified Tikhonov regularization and finite difference method[7],Tikhonov regularization and boundary element method[8],modified Tikhonov regularization and conjugate gradient algorithm[9],kernel-based approximation method[10],truncation-type regularization[11],etc.

    In the present paper,we propose an iterative regularization method based on Fourier truncation to recover the stability of solution for the problem(1.1).And then,the a-prior and a-posterior convergence results for this method are given and proven.Finally,in consideration of the properties of weak singularity and non-locality of Caputo derivative,we solve a direct problem to construct the exact datum by adopting an unconditionally stable finite difference scheme proposed in [2],and use the fast discrete Fourier transform and inverse transform to compute the regularized solution.Meanwhile,we verify the calculation effect of our method by doing some numerical experiments.Numerical results show that this method works well in doing with the problem (1.1).On other references for the similar iteration methods,we can see [12-16],etc.

    The rest of this article is arranged as below.Section 2 gives a mathematical description for the considered problem.Section 3 describes the ill-posedness of Cauchy problem and the construction procedure of iterative(or regularized)method.Section 4 derives the a-prior and a-posterior convergence results of regularization method.Section 5 verifies the calculation effect of our method by doing some numerical experiments.Some conclusions and further discussion are shown in Section 6.

    2.Mathematical Formulation of the Cauchy Problem

    Let2(R),Fourier transform and inverse Fourier transform are defined as

    Since we shall work with Fourier transform with respect to the variablet,we extend the domain of appearing functions with respect totby defining them to be zero for(?∞,0).

    According to the principle of linear superposition,as in [7],problem (1.1) can be split into the following two Cauchy problems:

    ForR,by using Fourier transform with regard tot,the solutions of (2.3),(2.4) in the frequency domain can be expressed as

    Using the inverse Fourier transform,the exact solutions of (2.3) and (2.4) respectively can be expressed as

    From (2.5) and (2.6),the solution of (1.1) in the frequency domain is as below

    the exact solutionY(x,t)u(x,t)+v(x,t).

    Further,we assume that there exists a constantE>0 such that the solutions of (2.3)and (2.4) satisfy the a-priori bound

    where,∥u(L,·)∥p,∥v(L,·)∥pare both Sobolev spaceHp-norm defined by

    3.The Iteration Regularization Method

    Ⅰ The iteration regularization method for Problem (2.3)

    Take the initial guess as zero,if utilizing the original Landweber iteration method[17],we know that the iteration solution(regularization solution)of(2.3)in the frequency domain can be written as

    Ⅱ The iteration regularization method for Problem (2.4)

    Adopting the same procedure,for the problem (2.4),we also can construct the original Landweber iteration solution as

    4.Convergence Estimates for a-priori and a-posteriori Rules

    In this section,we choose the iteration numbermby the a-priori and a-posteriori rules and derive the convergence estimates for our method.We give two inequalities which can be proven by the knowledge in real analysis.We shall use them to prove the convergence of iteration method.

    Lemma 4.1[12]Let 0≤s ≤1,m ≥1,then the following results hold

    Ⅰ The a-priori convergence estimate

    Theorem 4.1(The a-priori convergence estimate for solving Problem (2.3)) Letugiven by (2.8) be the exact solution of the problem (2.3) with the exact dataω,andbe the iteration solution defined by(3.3)with the measured datawδwhich satisfy(1.4).Suppose that the a-priori condition(2.11)is satisfied.If choosing the iteration step numberm[E/δ],then for fixed 0

    ProofFrom Parseval equality and the trigonal inequality,we have

    Similar with the procedure of [7],it can be easily proven that the following inequalities hold

    Firstly,we use the a-priori condition (2.11) and the inequalities (4.2),(4.5) and (4.6),and it can be obtained that

    Combining the above two estimates onJ1,J2and (4.4),it can be derived that

    Next,we use the similar method to derive the a-priori convergence estimate for the method in the problem (2.4).

    Theorem 4.2(The a-priori convergence estimate for solving Problem(2.4)) Letvgiven by(2.9)be the exact solution of problem(2.4)with the exact dataμ,andbe the iteration solution defined by (3.6) with the measured dataμδwhich satisfy (1.4).Suppose that the a-priori condition (2.11) is satisfied.If we choose the iteration step numberm[E/δ],then for fixed 0

    ProofSimilar proof process to(4.5)and(4.6),we can prove that the following inequalities hold

    Meanwhile,note that

    Using the a-priori condition (2.11) and the inequalities (4.2),(4.8) and (4.9),it can be obtained that

    According to the above two estimates onJ3,J4,we can derived that

    Based on the conclusions in two theorems above,we can give the a-prior convergence result of our method when it is used to solve the problem (1.1).

    Corollary 4.1 LetY(x,t) be the exact solution of problem (1.1) with the exact dataω(t) andμ(t),is the iteration solution with the noisy dataωδ,μδwhich satisfy (1.4),and assume that the a-priori condition (2.11) is satisfied.If we choose the iteration step numberm[E/δ],then for fixed 0

    whereC3C1+C2.

    Ⅱ The a-posteriori convergence esimate

    We know that the a-priori stopping rule for iteration number (regularization parameter)needs the a-priori boundEof exact solution.However,a-priori bound generally can not be known,this often brings a lot of inconvenience to the actual calculation.Below,we select the iteration number by the a-posteriori stopping rule,here it does not depend on the a-priori boundEof exact solution,and depends on the noisy levelδand measured datumωδorμδ.For the general theory on the a-posteriori selection of regularization parameter,we can see the Morozov discrepancy principle[18].

    For the iterative scheme in (3.2),we control the iterative step numberby

    whereτ>1 is a constant,denotes the first iterative step which satisfies the inequality of(4.12).

    ProofFirstly,J1andJ2are similar to (4.4),from the proof process of Theorem 4.1,we know that

    Meanwhile,from the iteration scheme (3.2) and the a-posteriori stopping rule (4.12),it can be obtained that

    According to the above two estimates onJ1,J2,we can derived that

    Below,we give the a-posteriori convergence estimate for solving Problem (2.4).For the iterative scheme (3.6),we control the iterative step numberby

    whereτ>1 is a constant,denotes the first iterative step which satisfies the inequality of(4.16).

    Meanwhile,from the iteration scheme (3.5) and the a-posteriori stopping rule (4.16),it can be obtained that

    Finally,based on the results in two Theorems above,we give the a-posteriori convergence estimate of our method when it is used to solving the problem (1.1).

    Remark 4.1Note that,based on the ill-posedness analysis and iteration method in this paper,the following iterative scheme for solving problem (2.3) can also be constructed

    Similarly,the iterative scheme for solving the problem (2.4) can be designed as

    5.Numerical Implementations

    In this section,the feasibility and effectiveness of the proposed method are verified by several numerical examples.LetL,T>0,in order to do numerical experiments,we restrict the problem in a bounded domainG(0,L)×(0,T).Since explicit exact solution is difficult to be constructed,we consider the direct problem

    and the boundary condition

    The Neumann data for Cauchy problem (1.1) can be constructed by

    The measured data is generated by the random perturbation from

    whereε1denotes the noisy level ofω,ε2denotes the noisy level ofμ,the corresponding measured error bound is calculated byδε1∥ω∥+ε2∥μ∥.

    For the fixedx,we calculate the relative error between the exact and iteration solutions by

    Example 5.1In the direct problem(5.1),we takew(t)1?e-2tandg(t)2 sin(8πt).It is clear thatg(t) is a smooth function,and it belongs toHp(R)?L2(R).To verify the effect ofpon the error results,atx1,ε0.001,α0.01,the relative errors and iterative step numbers for variouspare presented in Tab.1.Next we will selectp2 to do the numerical experiment.Since∥Y(L,·)∥H2∥g(t)∥H2894.0026<895,we takeE895.Forε0.001,p2,α0.1,the exact and iteration solutions atx1.0,0.3 are shown in Fig.1.Forε0.001,p2,α0.01,the exact and iteration solutions atx1.0,0.3 are shown in Fig.2.Atx1,p2,α0.01,the relative errors and iterative step numbers for various noisy levelεare presented in Tab.2.

    Fig.1 At x=1.0,0.3, p=2, E=895, α=0.1,the exact and iterative solutions for ε=0.001

    Tab.2 At x=1, p=2, E=895, α=0.01,the relative errors and iterative step numbers for various ε

    Example 5.2In the forward problem (5.1),we takeω(t)0,and

    We know thatg(t) is a continuous function,but it only belongs toH1(R)?L2(R).Note that,∥Y(L,·)∥H1∥g(t)∥H1<1,so we choose the a-priori bondE1.Forε0.001,p1,α0.1,the exact and iteration solutions atx1.0,0.3 are shown in Fig.3.Forε0.001,p1,α0.01,the exact and iteration solutions atx1.0,0.3 are shown in Fig.4.Atx1,p1,α0.01,the relative errors and iterative step numbers for various noisy levelεare presented in Tab.3.

    Fig.3 At x=1.0,0.3, p=1, E=1, α=0.1,the exact and iterative solutions for ε=0.001

    Fig.4 At x=1.0,0.3, p=1, E=1, α=0.01,the exact and iterative solutions for ε=0.001

    Tab.3 At x=1, p=1, E=1, α=0.01,the relative errors and iterative step numbers for various ε

    Example 5.3In the forward problem (5.1),letω(t)1?e-t2,and

    We know thatg(t) is a discontinuous function,it does not belong toHp(R),but it belongs toL2(R).Note that,∥Y(L,·)∥L2∥g(t)∥L2<2,we choose the a-priori bondE2.Meanwhile,in order to verify the simulation e ect of iterative method,we still takep2 to calculateξ1.Forε0.001,p2,α0.1,the exact and iteration solutions atx1.0,0.3 are shown in Fig.5.Forε0.001,p2,α0.01,the exact and iteration solutions atx1.0,0.3 are shown in Fig.6.Atx1,p2,α0.01,the relative errors and iterative step numbers for various noisy levelεare presented in Tab.4.

    Fig.5 At x=1.0,0.3, p=2, E=2, α=0.1,the exact and iterative solutions for ε=0.001

    Fig.6 At x=1.0,0.3, p=2, E=2, α=0.01,the exact and iterative solutions for ε=0.001

    Tab.4 At x=1, p=2, E=2, α=0.01,the relative errors and iterative step numbers for various ε

    Tab.1 shows that,phas no significant effect on the numerical results.From Figs.1-6 and Tabs.2-4,we can see that our iteration method is stable and feasible in doing with the smooth and non-smooth cases.Figs.1-6 show that numerical results become worse asxapproaches to 1,this is mainly because the given data point (x0) is far away from the inversion point (x1),it is a common phenomenon in solving inverse problems of partial dierential equation.Meanwhile,it can be concluded that as the orderαdecreases,the calculation effect becomes well.Tabs.2-4 indicate that,as the iteration step numbermincreases,the calculation error of each example is gradually stable.

    6.Conclusions and Further Discussions

    This article studies a Cauchy problem of the time-fractional diffusion equation.This problem is ill-posed in the sense that its solution is instable.We constructed an iterative regularization method to overcome its ill-posedness and derived the prior and posterior convergence results,respectively.Meanwhile,by making some numerical experiments we also verify the effectiveness of our method in doing with the smooth and non-smooth cases.Numerical results show that the proposed method is stable and feasible in solving the considered problem.

    We point out that this paper mainly investigates the regularization theory and algorithm for problem(1.1),but not considers the conditional stability.In 2011,[19]used the Carleman estimate to establish a stability result for a special time-fractional diffusion equation(the orderα1/2) in bounded domain.In 2014,[7] derived a stability estimate of H?lder type,but this result is invalid for the endxL.Therefore,it is quite necessary to establish an optimal stability result that can be valid for all 0

    AcknowledgmentsThe authors would like to thank the reviewers for their constructive comments and valuable suggestions that improve the quality of our paper.The work was supported by the NSF of Ningxia (2022AAC03234),the NSF of China (11761004),the Construction Project of First-Class Disciplines in Ningxia Higher Education(NXYLXK2017B09)and the Postgraduate Innovation Project of North Minzu University (YCX22094).

    神马国产精品三级电影在线观看 | 人人妻人人看人人澡| 1024手机看黄色片| www.熟女人妻精品国产| 激情在线观看视频在线高清| 日韩成人在线观看一区二区三区| 亚洲成av片中文字幕在线观看| 国产成人精品久久二区二区91| 18禁黄网站禁片午夜丰满| 久久久久久久久免费视频了| 亚洲成人免费电影在线观看| 88av欧美| 日韩大码丰满熟妇| xxx96com| 国产高清视频在线播放一区| 亚洲精品美女久久久久99蜜臀| 午夜免费激情av| 久久伊人香网站| 美国免费a级毛片| 亚洲av成人一区二区三| 日韩欧美国产一区二区入口| 在线观看舔阴道视频| 一级毛片精品| 国产激情欧美一区二区| 国产激情偷乱视频一区二区| 久久精品国产综合久久久| 超碰成人久久| 国产精品免费视频内射| 不卡一级毛片| 欧美+亚洲+日韩+国产| 搡老岳熟女国产| 亚洲激情在线av| 久久久国产精品麻豆| 免费女性裸体啪啪无遮挡网站| 色精品久久人妻99蜜桃| 国产精品美女特级片免费视频播放器 | 亚洲精品中文字幕一二三四区| 国产成人系列免费观看| 1024香蕉在线观看| 99久久久亚洲精品蜜臀av| 免费在线观看影片大全网站| 亚洲精品在线美女| 嫩草影视91久久| 亚洲欧美日韩无卡精品| 一区福利在线观看| 亚洲专区中文字幕在线| 午夜福利欧美成人| 久久久久久久午夜电影| 搡老妇女老女人老熟妇| avwww免费| 欧美另类亚洲清纯唯美| 一边摸一边抽搐一进一小说| 国产极品粉嫩免费观看在线| 国产久久久一区二区三区| 免费观看精品视频网站| 午夜两性在线视频| 在线视频色国产色| 亚洲第一青青草原| av超薄肉色丝袜交足视频| 精品熟女少妇八av免费久了| 好男人在线观看高清免费视频 | 国产精品98久久久久久宅男小说| 国产一区二区三区视频了| 91成人精品电影| 国产欧美日韩一区二区三| 成人免费观看视频高清| 久久亚洲真实| 午夜精品久久久久久毛片777| 国产久久久一区二区三区| 欧美日本视频| 精品一区二区三区视频在线观看免费| 一进一出抽搐gif免费好疼| 波多野结衣av一区二区av| 十八禁网站免费在线| 日韩视频一区二区在线观看| 日本 欧美在线| 大香蕉久久成人网| 97超级碰碰碰精品色视频在线观看| 高清在线国产一区| 精品国产乱子伦一区二区三区| 国产又黄又爽又无遮挡在线| 黑人欧美特级aaaaaa片| 国产主播在线观看一区二区| 欧美日韩中文字幕国产精品一区二区三区| 久久久精品欧美日韩精品| 国产精品 国内视频| 在线观看免费日韩欧美大片| 日韩欧美免费精品| 韩国精品一区二区三区| 国内少妇人妻偷人精品xxx网站 | 黄片大片在线免费观看| 悠悠久久av| 淫妇啪啪啪对白视频| 窝窝影院91人妻| 欧美性长视频在线观看| 天堂影院成人在线观看| av视频在线观看入口| 一区二区三区精品91| 国产亚洲欧美在线一区二区| 啪啪无遮挡十八禁网站| 久久久久九九精品影院| 亚洲成a人片在线一区二区| 亚洲精品国产一区二区精华液| 欧美最黄视频在线播放免费| 国产aⅴ精品一区二区三区波| 日本一本二区三区精品| 亚洲欧美日韩高清在线视频| 国产精品电影一区二区三区| 国产aⅴ精品一区二区三区波| 淫妇啪啪啪对白视频| 黄片播放在线免费| 黑人欧美特级aaaaaa片| 人人妻人人看人人澡| 国产伦一二天堂av在线观看| 国产精品乱码一区二三区的特点| 美国免费a级毛片| 色播在线永久视频| 9191精品国产免费久久| 99国产精品一区二区三区| 国产精品98久久久久久宅男小说| 久久国产乱子伦精品免费另类| 男女午夜视频在线观看| 亚洲第一青青草原| 欧美日韩乱码在线| 1024手机看黄色片| 国产精品久久电影中文字幕| 欧美最黄视频在线播放免费| 国产黄片美女视频| 国产精品影院久久| 午夜免费观看网址| 亚洲av第一区精品v没综合| 免费在线观看黄色视频的| 国产久久久一区二区三区| av电影中文网址| 色哟哟哟哟哟哟| 午夜a级毛片| 成人亚洲精品一区在线观看| 亚洲人成伊人成综合网2020| 一级黄色大片毛片| 亚洲狠狠婷婷综合久久图片| 校园春色视频在线观看| 亚洲熟女毛片儿| 老汉色av国产亚洲站长工具| 欧美丝袜亚洲另类 | 国产成人影院久久av| 精品一区二区三区av网在线观看| 国产男靠女视频免费网站| 久久人妻福利社区极品人妻图片| 久久伊人香网站| 国产99白浆流出| 亚洲精品粉嫩美女一区| 国产单亲对白刺激| 亚洲一区二区三区色噜噜| 亚洲狠狠婷婷综合久久图片| svipshipincom国产片| 国产视频一区二区在线看| 免费高清视频大片| 精品欧美一区二区三区在线| 一进一出抽搐gif免费好疼| 久久中文字幕人妻熟女| 50天的宝宝边吃奶边哭怎么回事| 在线视频色国产色| 最近在线观看免费完整版| 精品久久久久久久人妻蜜臀av| 日韩成人在线观看一区二区三区| 桃红色精品国产亚洲av| 中文字幕精品免费在线观看视频| 99热只有精品国产| 首页视频小说图片口味搜索| 丝袜在线中文字幕| 亚洲精品中文字幕一二三四区| 制服人妻中文乱码| 日韩成人在线观看一区二区三区| 极品教师在线免费播放| 久久天躁狠狠躁夜夜2o2o| 亚洲全国av大片| 国内揄拍国产精品人妻在线 | 老鸭窝网址在线观看| 精品久久蜜臀av无| 在线国产一区二区在线| 悠悠久久av| 亚洲精品久久成人aⅴ小说| 久久久精品欧美日韩精品| 麻豆国产av国片精品| 制服人妻中文乱码| av免费在线观看网站| 村上凉子中文字幕在线| 成人免费观看视频高清| 91国产中文字幕| 成人18禁在线播放| 欧美不卡视频在线免费观看 | 男女做爰动态图高潮gif福利片| av在线天堂中文字幕| 国产精品美女特级片免费视频播放器 | 97碰自拍视频| 长腿黑丝高跟| 免费在线观看亚洲国产| 不卡一级毛片| cao死你这个sao货| 精品国产国语对白av| 一区二区日韩欧美中文字幕| 国产日本99.免费观看| 白带黄色成豆腐渣| 国产黄a三级三级三级人| 国产区一区二久久| 又黄又粗又硬又大视频| 黄片小视频在线播放| 欧美色欧美亚洲另类二区| 女同久久另类99精品国产91| 成人免费观看视频高清| 淫妇啪啪啪对白视频| 亚洲国产精品sss在线观看| 亚洲成av人片免费观看| 国产精品免费视频内射| 露出奶头的视频| 亚洲男人的天堂狠狠| 一边摸一边做爽爽视频免费| 香蕉国产在线看| 日本一本二区三区精品| 国产精品一区二区免费欧美| 欧美成人午夜精品| 国产蜜桃级精品一区二区三区| 香蕉丝袜av| 国内精品久久久久久久电影| 窝窝影院91人妻| 老司机靠b影院| 天堂动漫精品| 久久性视频一级片| 中文在线观看免费www的网站 | 在线看三级毛片| 亚洲人成77777在线视频| 成年人黄色毛片网站| 黄色毛片三级朝国网站| 国产一级毛片七仙女欲春2 | 一区福利在线观看| 在线观看66精品国产| 国产免费男女视频| www.熟女人妻精品国产| 高潮久久久久久久久久久不卡| 99国产极品粉嫩在线观看| 国产精品综合久久久久久久免费| 曰老女人黄片| 女性被躁到高潮视频| 超碰成人久久| 亚洲av成人一区二区三| 伦理电影免费视频| 久久久精品国产亚洲av高清涩受| 久久香蕉激情| 国产日本99.免费观看| 国产真实乱freesex| 日韩有码中文字幕| 国产成人欧美在线观看| 在线av久久热| 精品午夜福利视频在线观看一区| 法律面前人人平等表现在哪些方面| 色av中文字幕| 观看免费一级毛片| 国产高清有码在线观看视频 | 国产激情久久老熟女| 国产片内射在线| 人妻丰满熟妇av一区二区三区| 精品久久久久久久人妻蜜臀av| 女人爽到高潮嗷嗷叫在线视频| av电影中文网址| 日韩中文字幕欧美一区二区| 午夜视频精品福利| 村上凉子中文字幕在线| 久久精品国产亚洲av香蕉五月| av在线播放免费不卡| 波多野结衣高清作品| 国产精品av久久久久免费| 搡老岳熟女国产| av中文乱码字幕在线| 99久久99久久久精品蜜桃| 国产精品乱码一区二三区的特点| 一级a爱视频在线免费观看| 国产99白浆流出| 色婷婷久久久亚洲欧美| 久久精品亚洲精品国产色婷小说| videosex国产| 国产精品一区二区三区四区久久 | 天堂动漫精品| АⅤ资源中文在线天堂| 亚洲久久久国产精品| 88av欧美| 亚洲成av片中文字幕在线观看| 国产av一区二区精品久久| 国产又色又爽无遮挡免费看| 久久人人精品亚洲av| 国产野战对白在线观看| 婷婷精品国产亚洲av在线| 99国产极品粉嫩在线观看| 婷婷精品国产亚洲av在线| 亚洲真实伦在线观看| 波多野结衣高清无吗| 国产成年人精品一区二区| av福利片在线| 国产亚洲精品综合一区在线观看 | 在线看三级毛片| 久久久久久亚洲精品国产蜜桃av| 国产成人一区二区三区免费视频网站| 操出白浆在线播放| 很黄的视频免费| 亚洲成a人片在线一区二区| av片东京热男人的天堂| 最新在线观看一区二区三区| 亚洲欧美激情综合另类| 97超级碰碰碰精品色视频在线观看| 久久这里只有精品19| 国产97色在线日韩免费| 国产单亲对白刺激| 精品欧美一区二区三区在线| 免费看日本二区| 亚洲avbb在线观看| 制服人妻中文乱码| 日日夜夜操网爽| 波多野结衣巨乳人妻| 亚洲一区二区三区不卡视频| 中文字幕精品免费在线观看视频| 亚洲国产精品合色在线| 黄色成人免费大全| 久热爱精品视频在线9| 久久精品91蜜桃| 久热爱精品视频在线9| 国产午夜福利久久久久久| 天天躁夜夜躁狠狠躁躁| av天堂在线播放| 亚洲国产毛片av蜜桃av| 美女免费视频网站| 国产主播在线观看一区二区| 18禁国产床啪视频网站| 在线天堂中文资源库| 99在线人妻在线中文字幕| 成人亚洲精品一区在线观看| 最近最新中文字幕大全免费视频| a级毛片在线看网站| 1024视频免费在线观看| 制服诱惑二区| 亚洲人成伊人成综合网2020| 成年女人毛片免费观看观看9| 一卡2卡三卡四卡精品乱码亚洲| 首页视频小说图片口味搜索| 国产单亲对白刺激| 制服人妻中文乱码| 亚洲国产欧美网| 国产精品乱码一区二三区的特点| 久久国产精品影院| 成人av一区二区三区在线看| 2021天堂中文幕一二区在线观 | 高清毛片免费观看视频网站| 制服诱惑二区| 欧美中文日本在线观看视频| 99热这里只有精品一区 | 亚洲av电影不卡..在线观看| 91大片在线观看| 精品国产国语对白av| 欧美日韩瑟瑟在线播放| 日韩中文字幕欧美一区二区| www.自偷自拍.com| www日本黄色视频网| 男女床上黄色一级片免费看| 免费高清在线观看日韩| a级毛片在线看网站| 日韩有码中文字幕| 欧美成人免费av一区二区三区| 男女那种视频在线观看| 黑人操中国人逼视频| 一二三四在线观看免费中文在| 国产99白浆流出| 国产成人系列免费观看| 久久久久久久久久黄片| 国产精品精品国产色婷婷| 中亚洲国语对白在线视频| bbb黄色大片| 国产精品久久电影中文字幕| 亚洲欧美日韩高清在线视频| 欧美乱码精品一区二区三区| 久久久久国产精品人妻aⅴ院| 亚洲 欧美 日韩 在线 免费| 亚洲av成人不卡在线观看播放网| 老司机在亚洲福利影院| 成人国产综合亚洲| 身体一侧抽搐| 午夜福利欧美成人| 在线天堂中文资源库| 男人舔女人下体高潮全视频| 日本免费a在线| 操出白浆在线播放| 韩国av一区二区三区四区| 午夜免费成人在线视频| 欧美日韩乱码在线| 亚洲国产中文字幕在线视频| 国产精品99久久99久久久不卡| 国产91精品成人一区二区三区| 麻豆国产av国片精品| 久久久久久久久中文| 久久精品国产清高在天天线| 精品第一国产精品| 国产精品1区2区在线观看.| 欧美在线黄色| 视频在线观看一区二区三区| 一进一出好大好爽视频| 日本撒尿小便嘘嘘汇集6| 欧美国产精品va在线观看不卡| 两个人免费观看高清视频| 欧美色视频一区免费| 一级毛片女人18水好多| 国产亚洲精品第一综合不卡| 亚洲精品中文字幕一二三四区| 欧美大码av| 国产精品久久久久久亚洲av鲁大| av在线天堂中文字幕| 成人三级做爰电影| 国产精品亚洲一级av第二区| 国产一区二区在线av高清观看| 夜夜夜夜夜久久久久| 久热爱精品视频在线9| 久久香蕉国产精品| 精品日产1卡2卡| 身体一侧抽搐| 日本免费a在线| 久久人妻av系列| 韩国精品一区二区三区| 亚洲精品中文字幕一二三四区| 黑人欧美特级aaaaaa片| www.自偷自拍.com| 母亲3免费完整高清在线观看| 日日爽夜夜爽网站| 国产91精品成人一区二区三区| 久久香蕉激情| 亚洲va日本ⅴa欧美va伊人久久| 两个人免费观看高清视频| 在线观看免费午夜福利视频| 久久久久国产精品人妻aⅴ院| 十八禁网站免费在线| 亚洲成国产人片在线观看| 少妇 在线观看| 嫩草影院精品99| 中文字幕最新亚洲高清| 18禁观看日本| 搡老妇女老女人老熟妇| 中文字幕最新亚洲高清| 午夜免费成人在线视频| 一本久久中文字幕| 亚洲国产欧美网| 1024手机看黄色片| 中文字幕久久专区| 欧美av亚洲av综合av国产av| 欧美乱妇无乱码| 国产精品亚洲美女久久久| 美女高潮喷水抽搐中文字幕| 两人在一起打扑克的视频| 一级a爱视频在线免费观看| 亚洲中文av在线| 国产激情久久老熟女| 日韩欧美 国产精品| 色播亚洲综合网| 人人妻人人看人人澡| 91麻豆精品激情在线观看国产| 国产视频内射| 国产一级毛片七仙女欲春2 | 欧美黄色片欧美黄色片| 久久草成人影院| 老熟妇仑乱视频hdxx| 国产成人精品无人区| 看片在线看免费视频| 久久亚洲精品不卡| 很黄的视频免费| 精品国产超薄肉色丝袜足j| 欧美激情高清一区二区三区| 亚洲欧美日韩高清在线视频| 亚洲国产看品久久| 午夜精品久久久久久毛片777| 婷婷精品国产亚洲av| 亚洲九九香蕉| 中文字幕最新亚洲高清| 久久久国产欧美日韩av| 国产亚洲av嫩草精品影院| 亚洲人成网站高清观看| 婷婷精品国产亚洲av在线| 夜夜爽天天搞| 久久国产亚洲av麻豆专区| 亚洲片人在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 曰老女人黄片| 久久久久久久午夜电影| 国产高清videossex| 嫩草影视91久久| 久久久久国内视频| 女人爽到高潮嗷嗷叫在线视频| 国产男靠女视频免费网站| 免费看美女性在线毛片视频| 亚洲在线自拍视频| 日韩成人在线观看一区二区三区| 桃红色精品国产亚洲av| 国产精品乱码一区二三区的特点| 亚洲男人天堂网一区| 老司机福利观看| 国产精品影院久久| 免费看十八禁软件| 国产亚洲精品一区二区www| 长腿黑丝高跟| 亚洲avbb在线观看| 免费看a级黄色片| 午夜精品在线福利| www日本在线高清视频| 亚洲熟妇中文字幕五十中出| 国产成人啪精品午夜网站| av中文乱码字幕在线| 99在线视频只有这里精品首页| 国产精品98久久久久久宅男小说| 亚洲人成77777在线视频| 国产成人av激情在线播放| 日韩欧美一区视频在线观看| 免费在线观看成人毛片| 欧美亚洲日本最大视频资源| 免费人成视频x8x8入口观看| 欧美乱码精品一区二区三区| 变态另类丝袜制服| 国产人伦9x9x在线观看| 国产真人三级小视频在线观看| 亚洲人成电影免费在线| 国产精品亚洲一级av第二区| 国产成人精品久久二区二区91| 久久 成人 亚洲| 免费电影在线观看免费观看| 狂野欧美激情性xxxx| 亚洲 国产 在线| 亚洲色图 男人天堂 中文字幕| 曰老女人黄片| 制服丝袜大香蕉在线| 成人精品一区二区免费| www.999成人在线观看| 国产人伦9x9x在线观看| 一a级毛片在线观看| 国产亚洲欧美98| 成人国产一区最新在线观看| 欧美色视频一区免费| 夜夜看夜夜爽夜夜摸| 中亚洲国语对白在线视频| 欧美绝顶高潮抽搐喷水| 亚洲性夜色夜夜综合| 国产精品 国内视频| 熟女电影av网| 一级作爱视频免费观看| 丝袜在线中文字幕| 日韩有码中文字幕| 老汉色∧v一级毛片| 亚洲五月婷婷丁香| 亚洲五月色婷婷综合| 久久亚洲真实| 国产精品亚洲美女久久久| 91成年电影在线观看| 亚洲精品av麻豆狂野| 长腿黑丝高跟| 欧美一级a爱片免费观看看 | 国产免费av片在线观看野外av| 人妻久久中文字幕网| 欧美日本亚洲视频在线播放| 大香蕉久久成人网| 久久香蕉精品热| 中国美女看黄片| 久热爱精品视频在线9| 老鸭窝网址在线观看| 757午夜福利合集在线观看| 制服丝袜大香蕉在线| 美国免费a级毛片| 听说在线观看完整版免费高清| 国产成人精品久久二区二区免费| 亚洲精品美女久久av网站| 亚洲欧美日韩高清在线视频| 亚洲精品色激情综合| 精品久久久久久久人妻蜜臀av| 视频区欧美日本亚洲| 国产伦一二天堂av在线观看| 午夜亚洲福利在线播放| 免费在线观看视频国产中文字幕亚洲| 亚洲九九香蕉| 又黄又粗又硬又大视频| 一夜夜www| 少妇熟女aⅴ在线视频| 亚洲七黄色美女视频| 欧美激情久久久久久爽电影| 91av网站免费观看| 中文字幕精品免费在线观看视频| 日韩视频一区二区在线观看| 久久久久久久久中文| 天天添夜夜摸| 国产伦一二天堂av在线观看| 国内毛片毛片毛片毛片毛片| 国产伦一二天堂av在线观看| 国产伦人伦偷精品视频| 色婷婷久久久亚洲欧美| 国产成人精品久久二区二区91| 激情在线观看视频在线高清| 色播亚洲综合网| 一级黄色大片毛片| 在线观看免费日韩欧美大片| 国产一区二区三区视频了| 久久久国产成人免费| 悠悠久久av| 午夜老司机福利片| 村上凉子中文字幕在线| 中出人妻视频一区二区| 男女下面进入的视频免费午夜 | 国产精品一区二区精品视频观看| 最近最新免费中文字幕在线| 婷婷精品国产亚洲av| 国产成人影院久久av| 亚洲一区二区三区色噜噜| 在线观看日韩欧美| 男人舔奶头视频| 亚洲一区高清亚洲精品| 欧美av亚洲av综合av国产av| 欧美另类亚洲清纯唯美|