• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Inertial Tseng’s Extragradient Method for Solving Split Variational Inclusion Problems and Fixed Point Problems

    2023-10-06 10:44:54PEIYonggang裴永剛GUOJingyi郭靜邑SHAOShuai邵帥
    應(yīng)用數(shù)學(xué) 2023年4期

    PEI Yonggang(裴永剛),GUO Jingyi(郭靜邑),SHAO Shuai(邵帥)

    (College of Mathematics and Information Science, Henan Normal University,Xinxiang 453007, China)

    Abstract: In this paper,we focus on solving split variational inclusion problems and fixed point problems for demimetric mappings.A new inertial Tseng’s extragradient method with non-increasing step size technique is proposed,which is inspired by Tseng’s extragradient method and the viscosity method.Strong convergence is analyzed under some mild conditions.Numerical results are also reported to show the performance of the proposed method.

    Key words: Hilbert space;Strong convergence;Demimetric mapping;Split variational inclusion problem;Tseng’s extragradient method

    1.Introduction

    Assume thatH1andH2are two real Hilbert spaces,A:H12is a bounded linear mapping,B1:H12H1,andB2:H22H2are multi-valued maximal monotone mappings.Split variational inclusion problems (SVIP) are to findx?H1such that

    whose solutions set is denoted by SVIP(B1,B2).SVIP (1.1) include split common fixed point problems,convex minimization,split variational inequality problems,and equilibrium problems,etc.[1,3-4,6-8,12,20-21,24]

    Recently,for solving SVIP,Byrne et al.[6]introduced the following iterative method(IPPA) in Hilbert spaces: For a givenx11,let{xn}be generated by the following manner:

    Alvarez and Attouch[2]considered the heavy ball method that was presented in [14-15]for maximal monotone operators on the proximal point algorithm.The algorithm is called to be the inertial proximal poin{t algorithm as follows.

    The weak convergence of the sequence{xn}constructed by (1.3) to a zero point ofTwas also proved.

    Employing the idea of Alvarez and Attouch[2],CHUANG[9]constructed a hybrid inertial proximal algorithm for solving SVIP in Hilbert spaces.

    Assume thatS:H11is ak-demicontractive mapping,A:H12is a bounded linear operator with adjointA ?:H21,B1:H1andB2:H2are multi-valued maximal monotone mappings.Under certain appropriate assumptions,they have proved that the sequence generated by Algorithm 1 converges strongly to the unique element.Stepsizes play an important role in the convergence properties of iterative methods like Algorithm 1.Armijo line search procedure is one of the effective methods which can avoid the requirement to know the Lipschitz constant or some estimation of it.It is known that the Armijo-like searches adopted can be viewed as a local approximation of the Lipschitz constant ofA.However,such method with a line search may be time-consuming because it requires many extra-computations.

    YANG et al.[23]introduced a new self-adaptive subgradient extragradient method for solving the VIPs.

    In Algorithm 2,the mappingfis a contraction onH.It should be noted that Algorithms 2 has strong convergence in real Hilbert spaces.

    Stimulated by Byrne et al.[6],Alvarez and Attouch[2],CHUANG[9]and YANG et al.[23],we propose a new hybrid inertial accelerated method for finding a common solution of split variational inclusion problems and fixed point problems to a demimetric mapping in a real Hilbert space.This method benefits from the idea of Tseng’s extragradient method and is combined with non-increasing step size technique.Strong convergence of the proposed method is shown under some mild conditions.Furthermore,we also present numerical experiments to demonstrate the efficiency of the proposed method and the comparison results with some other methods.

    2.Preliminaries

    Throughout this paper,denote byB-1(0):0,D(T) the domain ofTandFix(T) the fixed point set ofT,that is,Fix(T):xT x}.

    Lemma 2.1[18]In a real Hilbert spaceH,we have the following results.

    1)∥ku+(1?k)v∥2k∥u∥2+(1?k)∥v∥2?k(1?k)∥u ?v∥2,?u,and[0,1];

    2)∥u±v∥2∥u∥2±2〈u,v〉+∥v∥2,u,;

    3)∥u+v∥2≤∥u∥2+2〈v,u+v〉,u,.

    Lemma 2.2[11]LetCbe a nonempty closed convex subset of a real Hilbert spaceH.Forand,thenvPCuif and only if〈u ?v,w ?v〉≤0,,wherePCis the metric projection fromHontoC.

    Definition 2.1A mappingS:is called to be:

    1) nonexpansive,if

    2)γ-contractive,if there exists[0,1) such that

    3) quasi-nonexpansive,if Fix(S)? and

    4)α-strongly pseudo-contractive,if there exists a constant[0,1),such that

    5) pseudo-monotone,if

    6)k-demicontractive,if Fix(S)?and there exists[0,1),such that

    7)k-demimetric,if Fix(S)?and there exists(?∞,1),such that

    To obtain the main results,we give the following lemmas first.

    Lemma 2.3[5]LetCbe a nonempty closed convex subset of a real Hilbert spaceH,andT:be nonexpansive.Then,the mappingI ?Tis demiclosed at zero,i.e.,if{xn}converges weakly to a pointand{I ?T)xn}converges to zero,thenxT x.

    Lemma 2.4[16,19]SupposeCis a nonempty close convex subset of a real Hilbert spaceH.AssumeS:isk-demimetric such that Fix(S) is nonempty.Letκbe a real number with(0,∞) and defineT(1?κ)I+κS.Then it holds that

    1) Fix(T)Fix(S) ifκ0;

    2)Tis a quasi-nonexpansive mapping for(0,1?k];

    3) Fix(S) is a closed convex subset ofH.

    Lemma 2.6[22]Assume{an}is a sequence of nonnegative numbers satisfying the following inequality:an+1≤(1?βn)an+γn+βnδn,N,where{βn},{γn},{δn}satisfy the restrictions:

    Lemma 2.7[16]LetHbe a real Hilbert space,B:2Hbe a set-valued maximal monotone mapping.Then,

    Lemma 2.9[16]Assume thatH1andH2are real Hilbert spaces,andA:H12is a linear and bounded operator with its adjointA ?.LetB1:H11andB2:H22be a set-valued maximal monotone mappings,and letr,λ>0.Then,the following statements hold:

    3.Main Results

    LetCandQbe nonempty convex closed subsets of real Hilbert spacesH1andH2,respectively,andA:H12be a bounded linear operator with adjointA ?:H21.LetB1:H11andB2:H22be a set-valued maximal monotone mappings.Assume thatS:H11isk-demimetric andI ?Sis demiclosed at zero.LetG:H11be contractive with constant(0,1).Assume that Sol :SVIP(B1,B2)∩Fix(S)?and the following conditions are satisfied:

    Lemma 3.1[23]The sequence{λn}generated by(3.2)is well defined and limn→∞λnλand

    Lemma 3.2Suppose that(C1)-(C3)hold.Let{un},{yn}and{zn}be three sequences created by Algorithm 3.Then,forSVIP(B1,B2),

    From Lemma 2.7,we can obtain that

    NoticingA qwe obtain from Lemma 2.7(2) that

    It follows from (3.2),(3.3),(3.4) and (3.5) that

    Then,the proof is completed.

    Lemma 3.3Suppose that the sequences{un}and{yn}are created by Algorithm 3.If?z?and limn→∞∥un ?yn∥0,thenz?SVIP(B1,B2).

    This together with (3.4) and Lemma 2.8 1) and 2) yield that

    This indicates that

    Again using Lemma 2.7 and the definition ofyn,we derive

    which together with (3.6) gives that

    From limn→∞∥yn ?un∥0,one obtains that

    According to (C4),there exist a positive numberrand some positive integerN0such that 0

    Using (3.6) and Lemma 2.7 3),we obtain

    Theorem 3.1Assume that conditions(C1)-(C3)are satisfied.Then the sequence{xn}generated by Algorithm 3 converges toqin norm,whereqPSolgq.

    ProofFirstly,we prove that the sequence{xn}is bounded.Taking anySol,we can conclude from Lemma 3.2,Lemma 3.3 and assumptions(0,1) that there existsn0≥1 such that 1?>0 for alln ≥n0.Hence,we have,for alln ≥n0,

    In view of the definition ofun,one can deduce that

    Invoking (C3),there exists a positive constantM1<∞such that

    From (3.9),(3.10) and Lemma 2.4,we can obtain that

    which yields that{xn}is bounded.Using (3.9),(3.10) and the definition of{yn},we get that{zn},{yn}and{un}are bounded.According to Lemma 2.1 3),we obtain that

    whereM2supn≥0{2∥un ?q∥}<∞.

    Then,it follows from Lemma 2.4,Lemma 3.2 and (3.11) that

    SettinggnαnG xn+(1?αn)znand using (3.9),(3.11) and Lemma 2.1 1),we infer that

    Next,we shall prove that the sequence{∥xn ?q∥}converges to zero for the following two cases.

    Case 1 Suppose that there existsN0N such that the sequence{∥xn ?q∥}n≥N0is monotone decreasing.Then,limn→∞∥xn ?q∥exists.From(C1)and taking the limit of both sides in (3.13) (),we have that

    It follows from (C1),(C3) and the definitions ofunthat

    By (C1),(C2),(C3) and (3.14),we obtain that

    Due to the fact thatgnαnG xn+(1?αn)zn,we infer that

    Noting min{ζ,δl ∥A ∥-2}≤λn ≤ζand the definition ofzn,Lemma 2.7 1)and(3.15),we can deduce that

    Using (3.15),(3.16) and (3.19),we have that

    Taking into account that

    we deduce from (3.17) and (3.18) that

    Noticing∥xn+1?xn∥≤∥xn+1?zn∥+∥zn ?xn∥,this together with(3.20)and(3.21)implies

    Since{xn}is bounded,it follows that there exists a subsequence{xnk}of{xn}that converges weakly to some1and

    From(3.15),(3.16)and Lemma 3.3,we obtain thatSVIP(B1,B2).From the assumption thatI ?Sis demiclosed and using (3.17),(3.18) and (3.20),we haveFix(S).Therefor,Sol.Obviously,PSolgis a contractive mapping.Banach’s Contraction Mapping Principle yields thatPSolghas a unique fixed pointqPSolgq.It follows from Lemma 2.2 that

    Therefore,we have that

    This together with (3.22) implies that

    It follows from (3.9),(3.11),Lemma 2.1 3) and Lemma 2.4 that

    Then,from (3.23),(C1),(C3) and Lemma 2.6,we obtain thatxnq.

    Case 2 Assume that{∥xn ?q∥}is not monotone decreasing.Then there exists a subsequence{∥xni ?q∥}of{∥xn ?q∥}such that

    From Lemma 2.5,there exists a nondecreasing sequence{mk}?N such that

    Similar to the argument in Case 1,we can obtain that

    As in Case 1,we can also obtainSol.Thus,we have by Lemma 2.2 that

    This together with (3.26) implies that

    Due to (3.9),(3.11),Lemma 2.1 and Lemma 2.4,we can deduce that

    which yields that

    Noticing (3.24),we obtain that

    By applying (C1),(C3) and (3.27),we get

    It thus follows from (3.25) that

    Based on the above results,we can conclude that the sequences generated by Algorithm 3 converges strongly toSol,which is the unique fixed point of the contractive mappingPSolg.Then,the proof is completed.

    Letg:(?∞,+∞] be a proper convex lower semi-continuous function.Then,the subdierential?gofgis defined as follows:

    From [13],we know that?gis maximal monotone.It is easy to verify that 0(x) if and only ifg(x)miny∈H g(y).LetICbe the indicator function ofC,i.e.,

    Then,ICis a proper lower semi-continuous convex function onH,and the subdierential?ICofICis a maximal monotone operator.Furthermore,supposeCis a nonempty closed convex subset.Then,

    For more details,one can refer to [17].

    The following algorithm is a special case of Algorithm 3 with a specifical projection in Step 2.

    The convergence of Algorithm 4 can be obtained from Theorem 3.1.

    Corollary 3.1Assume that Conditions (C1)-(C4) are satisfied.Then the sequence{xn}constructed by Algorithm 4 converges strongly to a pointq,whereqPSVIP(C,Q)fq.

    4.Numerical Results

    In this section,we present the numerical performance of the proposed method Algorithm 3 (HISVIP) in comparison with related methods,Algorithm (1.2) (IPPA in [6]),Algorithm 1 (HIPA in [9]),and Algorithm 2 (STEGM in [23]) .Numerical testing is implemented as a MATLAB code and run under MATLAB version 9.4.0.813654 (R2018a).

    The initial valuesx0are randomly generated in(0,1)and the stopping criterion is∥xn∥<10-3.We test Algorithm (1.2) (IPPA),Algorithm 1 (HIPA),and Algorithm 3 (STEGM) and Algorithm 4 (HISVIP) forx0x1and different valuesm: Case I:m10;Case II:m50;Case III:m100;Case IV:m200.The numerical results are shown in Fig.1.

    Fig.1 Example 4.1,top left: Case I;top right: Case II,bottom left: Case III,bottom right:Case IV

    Algorithm(1.2)(IPPA),Algorithm 1(HIPA),and Algorithm 2(STEGM)and Algorithm 3 (HISVIP) are compared for different values ofx0andx1as follows:

    Case Ix0t4andx1t+1;

    Case IIx03t4+t ?6 andx15t;

    Case IIIx02cos(t) andx1sin(t);

    Case IVx0etandx13et.

    The comparison results are presented in Fig.2.

    Fig.2 Example 4.2,top left: Case I;top right: Case II,bottom left: Case III,bottom right:Case IV

    From the numerical results,it can be seen that the efficiency of Algorithm 3 is able to be comparable with Algorithm (1.2) (IPPA),Algorithm 1 (HIPA),and Algorithm 2 (STEGM),at least for these examples.

    国产高清不卡午夜福利| 色视频在线一区二区三区| av电影中文网址| 老汉色∧v一级毛片| 久热这里只有精品99| 香蕉丝袜av| av福利片在线| 精品国内亚洲2022精品成人| 黄色 视频免费看| 草草在线视频免费看| 日韩欧美免费精品| 免费在线观看亚洲国产| 看黄色毛片网站| 国产成人欧美| 19禁男女啪啪无遮挡网站| 亚洲五月婷婷丁香| 国产精品一区二区免费欧美| 欧美亚洲日本最大视频资源| 99在线人妻在线中文字幕| 久久性视频一级片| 国内精品久久久久精免费| 女同久久另类99精品国产91| 欧美午夜高清在线| 十八禁人妻一区二区| 亚洲第一电影网av| 亚洲三区欧美一区| 他把我摸到了高潮在线观看| 99riav亚洲国产免费| 美女扒开内裤让男人捅视频| 国产精品乱码一区二三区的特点| 中文字幕人成人乱码亚洲影| av超薄肉色丝袜交足视频| 精品久久蜜臀av无| 久久久久国产精品人妻aⅴ院| 亚洲美女黄片视频| а√天堂www在线а√下载| 精品无人区乱码1区二区| 一级毛片精品| 成人av一区二区三区在线看| 久久久久久国产a免费观看| 99精品久久久久人妻精品| 高潮久久久久久久久久久不卡| 女同久久另类99精品国产91| 天堂动漫精品| 亚洲成av人片免费观看| 亚洲天堂国产精品一区在线| 欧美日韩黄片免| 国产精品,欧美在线| 欧美黑人巨大hd| 欧美一级毛片孕妇| 777久久人妻少妇嫩草av网站| 美女午夜性视频免费| 欧美成人性av电影在线观看| 色综合欧美亚洲国产小说| 欧美日本视频| 欧美av亚洲av综合av国产av| 亚洲五月天丁香| 欧洲精品卡2卡3卡4卡5卡区| 又紧又爽又黄一区二区| 成人三级黄色视频| 88av欧美| 免费av毛片视频| 日韩欧美一区视频在线观看| 午夜福利欧美成人| 久久精品成人免费网站| 极品教师在线免费播放| 国产高清有码在线观看视频 | 国产亚洲精品综合一区在线观看 | 黄片播放在线免费| 9191精品国产免费久久| 亚洲人成网站在线播放欧美日韩| 国产成人欧美| 99国产综合亚洲精品| 亚洲精品久久国产高清桃花| 亚洲第一电影网av| 国产伦一二天堂av在线观看| 成人国产一区最新在线观看| 国产精品二区激情视频| 久久久久国内视频| 欧美丝袜亚洲另类 | 麻豆av在线久日| 国产高清videossex| 亚洲专区国产一区二区| 天堂动漫精品| 国产亚洲欧美98| 欧美乱码精品一区二区三区| 久久亚洲精品不卡| av超薄肉色丝袜交足视频| 丰满人妻熟妇乱又伦精品不卡| 一级a爱视频在线免费观看| 久久精品aⅴ一区二区三区四区| 成人一区二区视频在线观看| 可以在线观看毛片的网站| 热re99久久国产66热| 亚洲国产日韩欧美精品在线观看 | 好男人电影高清在线观看| 亚洲成人精品中文字幕电影| 亚洲精品久久成人aⅴ小说| 久久香蕉国产精品| 欧美日韩乱码在线| 久久九九热精品免费| 桃色一区二区三区在线观看| 精品国产乱子伦一区二区三区| 欧美精品啪啪一区二区三区| 久久久久亚洲av毛片大全| 欧美黄色片欧美黄色片| 国内毛片毛片毛片毛片毛片| 麻豆成人午夜福利视频| 最新美女视频免费是黄的| 中文亚洲av片在线观看爽| 亚洲国产欧洲综合997久久, | 午夜福利在线在线| 国产精品 国内视频| 午夜久久久久精精品| 欧美三级亚洲精品| 午夜福利免费观看在线| 特大巨黑吊av在线直播 | 欧美色视频一区免费| 午夜免费鲁丝| 久久精品人妻少妇| 亚洲aⅴ乱码一区二区在线播放 | 日韩欧美 国产精品| or卡值多少钱| 国产精品永久免费网站| 中文亚洲av片在线观看爽| 长腿黑丝高跟| 在线观看免费午夜福利视频| 亚洲va日本ⅴa欧美va伊人久久| 久久狼人影院| 午夜免费激情av| 人妻丰满熟妇av一区二区三区| 亚洲 国产 在线| 极品教师在线免费播放| 中文在线观看免费www的网站 | 天堂√8在线中文| 免费在线观看黄色视频的| 国产亚洲精品一区二区www| 亚洲第一av免费看| 一本一本综合久久| 日韩国内少妇激情av| 久久精品夜夜夜夜夜久久蜜豆 | 99久久国产精品久久久| 黄色成人免费大全| 视频区欧美日本亚洲| 首页视频小说图片口味搜索| 亚洲电影在线观看av| 国产黄a三级三级三级人| 非洲黑人性xxxx精品又粗又长| 亚洲一区二区三区不卡视频| 亚洲成人国产一区在线观看| 中文字幕精品亚洲无线码一区 | 成人免费观看视频高清| 亚洲国产精品久久男人天堂| 日韩精品青青久久久久久| 一夜夜www| 在线播放国产精品三级| 亚洲av成人不卡在线观看播放网| 中国美女看黄片| 啦啦啦韩国在线观看视频| 久久久久亚洲av毛片大全| 大型av网站在线播放| 久久国产精品人妻蜜桃| 亚洲美女黄片视频| 后天国语完整版免费观看| netflix在线观看网站| 欧美在线黄色| av福利片在线| 少妇 在线观看| АⅤ资源中文在线天堂| 国产97色在线日韩免费| 精品国产亚洲在线| 国产成人精品无人区| 成人18禁高潮啪啪吃奶动态图| 欧美+亚洲+日韩+国产| 免费女性裸体啪啪无遮挡网站| 国内久久婷婷六月综合欲色啪| 不卡一级毛片| 丝袜美腿诱惑在线| 亚洲成人久久爱视频| 精品久久久久久久久久久久久 | 亚洲最大成人中文| 黄网站色视频无遮挡免费观看| 久久欧美精品欧美久久欧美| 日本精品一区二区三区蜜桃| 老鸭窝网址在线观看| 免费看日本二区| 一级毛片精品| 夜夜看夜夜爽夜夜摸| 在线观看一区二区三区| 国产精品爽爽va在线观看网站 | 色av中文字幕| 精品国产国语对白av| 天天躁夜夜躁狠狠躁躁| 久久久水蜜桃国产精品网| 99精品久久久久人妻精品| 免费在线观看视频国产中文字幕亚洲| 男女床上黄色一级片免费看| 亚洲欧美精品综合久久99| 欧美成人午夜精品| 18禁美女被吸乳视频| 久久国产精品人妻蜜桃| 男女午夜视频在线观看| 久久午夜亚洲精品久久| 又黄又爽又免费观看的视频| 国产精品日韩av在线免费观看| 男人的好看免费观看在线视频 | 一区二区三区高清视频在线| 国产精品久久久久久人妻精品电影| 欧美一级a爱片免费观看看 | 99riav亚洲国产免费| 精品国产国语对白av| 欧美午夜高清在线| 性欧美人与动物交配| 黄网站色视频无遮挡免费观看| 亚洲性夜色夜夜综合| 中文在线观看免费www的网站 | 国产黄色小视频在线观看| 黄片播放在线免费| 久久婷婷人人爽人人干人人爱| 日本免费一区二区三区高清不卡| АⅤ资源中文在线天堂| 麻豆成人午夜福利视频| 看黄色毛片网站| 亚洲成人精品中文字幕电影| 最近最新中文字幕大全免费视频| 99久久综合精品五月天人人| 好看av亚洲va欧美ⅴa在| 色在线成人网| 亚洲国产精品成人综合色| 国产高清videossex| 日本成人三级电影网站| 黄片小视频在线播放| 男人操女人黄网站| 一级毛片高清免费大全| 免费电影在线观看免费观看| 国产v大片淫在线免费观看| 亚洲精品中文字幕在线视频| 亚洲精华国产精华精| 波多野结衣巨乳人妻| 两个人免费观看高清视频| 免费在线观看亚洲国产| 欧美一区二区精品小视频在线| 啪啪无遮挡十八禁网站| 91在线观看av| 美女高潮到喷水免费观看| 国产精品久久电影中文字幕| 亚洲国产毛片av蜜桃av| xxxwww97欧美| 国产精品综合久久久久久久免费| 99riav亚洲国产免费| 日韩国内少妇激情av| 国产三级黄色录像| 亚洲欧洲精品一区二区精品久久久| 午夜福利在线在线| 国产精品美女特级片免费视频播放器 | www.www免费av| 国产亚洲精品综合一区在线观看 | 欧美成人一区二区免费高清观看 | 成人欧美大片| 男女床上黄色一级片免费看| 久久久久精品国产欧美久久久| 91成人精品电影| 给我免费播放毛片高清在线观看| 亚洲av五月六月丁香网| 亚洲无线在线观看| 国产成人av激情在线播放| 亚洲美女黄片视频| 在线观看免费午夜福利视频| 国产视频一区二区在线看| 嫩草影院精品99| 精品久久久久久久久久免费视频| 色综合亚洲欧美另类图片| 国产单亲对白刺激| 少妇粗大呻吟视频| 视频在线观看一区二区三区| 白带黄色成豆腐渣| 亚洲中文av在线| 国产av一区在线观看免费| 亚洲真实伦在线观看| 国产欧美日韩一区二区精品| 亚洲中文字幕日韩| 欧美黑人巨大hd| 国产熟女xx| 中文字幕人妻丝袜一区二区| 亚洲天堂国产精品一区在线| 丰满的人妻完整版| svipshipincom国产片| 日韩成人在线观看一区二区三区| 免费在线观看成人毛片| 男人舔女人的私密视频| 免费在线观看黄色视频的| 夜夜看夜夜爽夜夜摸| 啪啪无遮挡十八禁网站| 曰老女人黄片| 亚洲精品中文字幕一二三四区| 国产亚洲精品综合一区在线观看 | 午夜精品久久久久久毛片777| 国产精品98久久久久久宅男小说| 日韩欧美免费精品| 男男h啪啪无遮挡| 在线免费观看的www视频| 精品午夜福利视频在线观看一区| 日韩欧美国产一区二区入口| 99在线视频只有这里精品首页| 又黄又爽又免费观看的视频| 少妇裸体淫交视频免费看高清 | 国产激情久久老熟女| 一区二区三区高清视频在线| 日本 欧美在线| 香蕉久久夜色| 91成年电影在线观看| 国产高清videossex| 国产男靠女视频免费网站| 日韩大码丰满熟妇| 国产精品国产高清国产av| 美女高潮到喷水免费观看| 天堂影院成人在线观看| 国产高清激情床上av| x7x7x7水蜜桃| 999久久久国产精品视频| 99riav亚洲国产免费| 日韩精品中文字幕看吧| а√天堂www在线а√下载| 国产成人啪精品午夜网站| 999精品在线视频| 欧美激情高清一区二区三区| 两人在一起打扑克的视频| 啦啦啦观看免费观看视频高清| 日韩中文字幕欧美一区二区| 宅男免费午夜| 成年人黄色毛片网站| 99久久99久久久精品蜜桃| 国产精品香港三级国产av潘金莲| tocl精华| 亚洲一区二区三区不卡视频| 香蕉av资源在线| 午夜激情福利司机影院| 欧美绝顶高潮抽搐喷水| 免费电影在线观看免费观看| 免费在线观看亚洲国产| 黑人巨大精品欧美一区二区mp4| 亚洲熟妇中文字幕五十中出| 欧美一级毛片孕妇| 国产精品综合久久久久久久免费| 久久亚洲真实| 精品久久久久久久久久免费视频| 久久99热这里只有精品18| 精品午夜福利视频在线观看一区| av在线播放免费不卡| 婷婷丁香在线五月| 巨乳人妻的诱惑在线观看| 成人国语在线视频| 人人妻人人澡欧美一区二区| av片东京热男人的天堂| 亚洲国产毛片av蜜桃av| 国产亚洲欧美精品永久| 久久婷婷人人爽人人干人人爱| 精品日产1卡2卡| 欧美在线黄色| 国产精品 欧美亚洲| 久久精品aⅴ一区二区三区四区| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产精品999在线| 国产精品亚洲av一区麻豆| 男女午夜视频在线观看| 久久草成人影院| 2021天堂中文幕一二区在线观 | 在线视频色国产色| 色av中文字幕| 少妇被粗大的猛进出69影院| 精品第一国产精品| 男女床上黄色一级片免费看| 成人一区二区视频在线观看| 成人亚洲精品一区在线观看| 香蕉久久夜色| 最近最新中文字幕大全免费视频| 国产精品一区二区精品视频观看| 一本久久中文字幕| 国产成人欧美| 中文字幕人妻熟女乱码| 午夜福利在线在线| 国产亚洲欧美精品永久| 一进一出抽搐gif免费好疼| 满18在线观看网站| 可以在线观看毛片的网站| 草草在线视频免费看| 热99re8久久精品国产| 精品福利观看| 午夜福利免费观看在线| 天堂影院成人在线观看| 日韩成人在线观看一区二区三区| 麻豆国产av国片精品| 婷婷亚洲欧美| 亚洲av电影在线进入| 久久国产精品人妻蜜桃| 精华霜和精华液先用哪个| 麻豆成人午夜福利视频| 国产精品一区二区精品视频观看| 欧美日韩亚洲综合一区二区三区_| 亚洲在线自拍视频| 亚洲片人在线观看| 亚洲免费av在线视频| 午夜视频精品福利| 黄片大片在线免费观看| 美女国产高潮福利片在线看| 午夜福利一区二区在线看| 久久草成人影院| 午夜福利在线在线| 久久久国产成人免费| 中文亚洲av片在线观看爽| 夜夜爽天天搞| 好看av亚洲va欧美ⅴa在| 久久久久久国产a免费观看| 日本一本二区三区精品| 日韩欧美一区二区三区在线观看| www国产在线视频色| 在线视频色国产色| 色尼玛亚洲综合影院| 免费电影在线观看免费观看| 日日摸夜夜添夜夜添小说| a级毛片a级免费在线| 成人永久免费在线观看视频| 日本a在线网址| 757午夜福利合集在线观看| 日韩av在线大香蕉| 在线观看www视频免费| 在线观看日韩欧美| 色在线成人网| 成人18禁在线播放| АⅤ资源中文在线天堂| 搡老熟女国产l中国老女人| 狠狠狠狠99中文字幕| 亚洲午夜精品一区,二区,三区| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品久久久久久毛片| 真人一进一出gif抽搐免费| 久久精品人妻少妇| 婷婷丁香在线五月| 在线免费观看的www视频| 国产激情欧美一区二区| 嫩草影院精品99| 日韩精品中文字幕看吧| 国产精品 国内视频| 亚洲 欧美 日韩 在线 免费| 久久香蕉激情| 无遮挡黄片免费观看| 欧美中文综合在线视频| 在线免费观看的www视频| 可以在线观看毛片的网站| 国产精品自产拍在线观看55亚洲| 亚洲午夜精品一区,二区,三区| 日韩大码丰满熟妇| 亚洲 国产 在线| 久久精品国产99精品国产亚洲性色| 亚洲精品久久成人aⅴ小说| 两个人看的免费小视频| 久久久久久大精品| 激情在线观看视频在线高清| 桃红色精品国产亚洲av| 波多野结衣高清无吗| 精品久久蜜臀av无| 国产精品,欧美在线| 国产精品野战在线观看| 亚洲七黄色美女视频| 一级黄色大片毛片| 精品熟女少妇八av免费久了| 美女免费视频网站| 亚洲天堂国产精品一区在线| 欧美性猛交黑人性爽| 色婷婷久久久亚洲欧美| 大香蕉久久成人网| 久久精品人妻少妇| 熟女少妇亚洲综合色aaa.| 岛国视频午夜一区免费看| 精品高清国产在线一区| 国产成人精品无人区| 精品国产亚洲在线| av片东京热男人的天堂| 日韩欧美一区二区三区在线观看| 久久 成人 亚洲| 国产精品精品国产色婷婷| 岛国在线观看网站| 1024手机看黄色片| 国产亚洲精品第一综合不卡| 欧美国产日韩亚洲一区| 久久久水蜜桃国产精品网| 一本大道久久a久久精品| 一边摸一边抽搐一进一小说| 伊人久久大香线蕉亚洲五| 老司机福利观看| 美女高潮喷水抽搐中文字幕| 美国免费a级毛片| 麻豆av在线久日| 日韩免费av在线播放| 欧美一级毛片孕妇| 国产精品二区激情视频| 又黄又粗又硬又大视频| 午夜福利视频1000在线观看| 日韩欧美国产一区二区入口| svipshipincom国产片| 19禁男女啪啪无遮挡网站| 日本熟妇午夜| 禁无遮挡网站| 久久久国产欧美日韩av| 久久人妻av系列| 久久久精品欧美日韩精品| 国语自产精品视频在线第100页| 久久午夜亚洲精品久久| 亚洲国产精品sss在线观看| 久久人妻av系列| 国产精品自产拍在线观看55亚洲| 又紧又爽又黄一区二区| x7x7x7水蜜桃| 午夜免费观看网址| 色综合婷婷激情| 亚洲国产精品成人综合色| 国产99白浆流出| 亚洲人成电影免费在线| 少妇粗大呻吟视频| 国产熟女午夜一区二区三区| 侵犯人妻中文字幕一二三四区| a级毛片在线看网站| 欧美激情久久久久久爽电影| 国产亚洲精品久久久久5区| 欧美乱色亚洲激情| 少妇裸体淫交视频免费看高清 | 色av中文字幕| 国产精品香港三级国产av潘金莲| 亚洲男人的天堂狠狠| 男女下面进入的视频免费午夜 | 黑人巨大精品欧美一区二区mp4| 日韩大码丰满熟妇| 国产午夜福利久久久久久| 欧美人与性动交α欧美精品济南到| 999精品在线视频| 操出白浆在线播放| 男人舔奶头视频| 在线av久久热| 日韩 欧美 亚洲 中文字幕| 久久伊人香网站| 国产精品免费一区二区三区在线| 两个人看的免费小视频| 免费高清视频大片| 色综合婷婷激情| 午夜亚洲福利在线播放| 美女国产高潮福利片在线看| 中国美女看黄片| 国产午夜福利久久久久久| 久久久国产成人精品二区| 天堂动漫精品| 老司机深夜福利视频在线观看| 久久午夜亚洲精品久久| 日韩 欧美 亚洲 中文字幕| 中文字幕av电影在线播放| 一级片免费观看大全| 国产成人欧美| 老司机午夜十八禁免费视频| 巨乳人妻的诱惑在线观看| 夜夜躁狠狠躁天天躁| 欧美成人性av电影在线观看| 欧美成人午夜精品| 别揉我奶头~嗯~啊~动态视频| 欧美又色又爽又黄视频| 成人18禁高潮啪啪吃奶动态图| 中文字幕另类日韩欧美亚洲嫩草| 老汉色∧v一级毛片| 美女扒开内裤让男人捅视频| 淫秽高清视频在线观看| 午夜两性在线视频| 免费看日本二区| 国产黄a三级三级三级人| 欧美精品亚洲一区二区| 97超级碰碰碰精品色视频在线观看| 欧美黄色片欧美黄色片| 色婷婷久久久亚洲欧美| 国产成人av教育| 国产91精品成人一区二区三区| 熟妇人妻久久中文字幕3abv| 亚洲一卡2卡3卡4卡5卡精品中文| 国产不卡一卡二| 看黄色毛片网站| 禁无遮挡网站| 久久狼人影院| 亚洲午夜理论影院| 黄片大片在线免费观看| 国产一区在线观看成人免费| 亚洲中文日韩欧美视频| 一本久久中文字幕| 国产真人三级小视频在线观看| 真人做人爱边吃奶动态| 久久久久九九精品影院| 久久国产精品男人的天堂亚洲| 99国产精品99久久久久| 黄片大片在线免费观看| 嫁个100分男人电影在线观看| 亚洲全国av大片| 成年女人毛片免费观看观看9| 国产高清激情床上av| 精品国内亚洲2022精品成人| 欧美激情高清一区二区三区| 侵犯人妻中文字幕一二三四区| 操出白浆在线播放| 国产一区在线观看成人免费| 国产精品一区二区免费欧美| 国产一区二区三区在线臀色熟女| 亚洲色图av天堂| 别揉我奶头~嗯~啊~动态视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久精品国产欧美久久久| 亚洲中文av在线| 757午夜福利合集在线观看| 一区二区三区精品91| 99国产极品粉嫩在线观看| 日本三级黄在线观看| 欧美激情极品国产一区二区三区|