• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Model and data of optically controlled tunable capacitor in silicon single-photon avalanche diode

    2023-09-05 08:48:38MeiLingZeng曾美玲YangWang汪洋XiangLiangJin金湘亮YanPeng彭艷andJunLuo羅均
    Chinese Physics B 2023年7期
    關(guān)鍵詞:汪洋美玲

    Mei-Ling Zeng(曾美玲), Yang Wang(汪洋), Xiang-Liang Jin(金湘亮),?, Yan Peng(彭艷), and Jun Luo(羅均)

    1School of Physics and Electronics,Hunan Normal University,Changsha 410081,China

    2School of Mechatronic Engineering and Automation,Shanghai University,Shanghai 200444,China

    Keywords: photocapacitance effect,single-photon avalanche diode,interfacial traps

    1.Introduction

    As a core device in the field of extremely weak light detection, single-photon avalanche diodes (SPADs) fabricated based on the complementary metal–oxide–semiconductor(CMOS) process have been proven to have the advantages of high signal-to-noise ratio, high temporal resolution, and high dynamic range.[1–5]With the continuous development and optimization of image sensing technology, it is possible to manufacture millions of pixels with single-photon detection capability on a single chip.[6]To date, a great deal of research has been conducted to develop SPAD devices with high performance; for example, back-illuminated three-bit stacked SPADs with extremely low tunnel noise and high photon detection probability,[7]SPAD devices with improved photon detection probability by designing antireflection nanostructures,[8]near-infrared enhanced singlephoton detectors,[9,10]et al.With the development of semiconductor technology, semiconductor devices face increasing stability and reliability problems, among which capacitance is an important factor affecting the response speed of the device.However,there are few studies on the capacitance characteristics of SPADs at present, and the research directions mainly focus on broadening the spectral response range, improving the photon detection probability, and optimizing the dark count.[11–19]As a diode, an SPAD exhibits capacitive characteristics in addition to resistive effects when an AC voltage is applied.When forward and reverse voltages are applied across the diode,the diffusion capacitance and barrier capacitance exist respectively.Ideally,both capacitances are derived from the free carrier motion of the device itself.However, in the actual silicon planar process, there are charge traps at the interface between silicon and silicon dioxide.These traps are likely to exchange charges with free carriers,which affect the density of carriers in the surface layer of the device, thereby causing capacitance influence.Does this indicate some kind of correlation between the interfacial traps of the semiconductor and the capacitance? A long time ago,the literature[20]reported that the existence of traps in the semiconductor bandgap caused the photocapacitance effect.In the literature,the photocapacitance measurement of GaP materials was used to determine the energy level and concentration of deep traps in the material.In 1997,Tanet al.studied the interface properties of SiO2/SiC through the capacitance–voltage(C–V)method and proposed a formula for calculating the average density of interface defect states.[21]Maet al.analyzed the optical power dependence of capacitance by establishing a differential capacitance model for a single-row carrier photodetector,to optimize the high-speed performance of the detector at different optical powers.[22]Sengougaet al.studied theC–Vcharacteristics of two P-type silicon-doped GaAs Schottky diodes and observed that the deviation of theC–Vcharacteristics was related to the deep body defects with non-uniform density.[23]Reference[24]reported the photocapacitance effect in organic heterojunction devices constituting a PN junction, attributing the photocapacitance effect to charge traps.It can be seen that in semiconductor devices,the capacitance is closely related to the deep trap center of the photocapacitance effect in particular.

    In this work, the capacitive properties of SPADs fabricated in a silicon-based process are investigated,and the photocapacitance effect is also reported.Through a small-signalC–Vtest at room temperature and low frequencies,the capacitance of SPAD devices under light is significantly higher than under no light.As the frequency increases,the gap gradually narrows.We believe this difference in capacitance is related to interfacial traps in the samples.

    2.Device structure and capacitance analysis

    Silicon is easily oxidized to form high-quality silicon dioxide,which allows silicon dioxide to be used as a diffusion mask during device fabrication and as an insulating material for many devices.Figure 1 is a cross-sectional view of the circular single-photon avalanche diode structure designed in this paper, and figure 2 shows the layout of the device (left)and the microscope image of the device based on the 0.18μm standard bipolar-CMOS-DMOS(BCD)process(right).In the fabrication of SPAD devices based on standard silicon technology, a layer of 0.01 μm–0.1 μm silicon dioxide is first thermally grown on a flat P-type silicon wafer as a diffusion mask layer.Next,photolithography is performed on the oxide layer,and the shallow trench isolation(STI)regions are etched and deposited with silicon dioxide.According to the specific structure of the device,multiple photolithography and implantation of high-energy phosphorus ions and boron ions are performed to form a photosensitive PN junction with a diameter of 20μm.After this,an aluminum electrode is formed on the surface of the silicon wafer by reactive sputtering to connect the device to the outside.This work adopts the dual diode structure of a P+/N-well and deep N-well/P substrate.Among them, the P+/N-well can form a high field multiplication region as a photosensitive junction.The deep N-well/P substrate acts as an isolation diode,preventing the photo-generated carriers of the substrate from entering the photosensitive junction and causing charge crosstalk.A P-well guard ring at the edge of the PN junction prevents premature edge breakdown of the device.

    Fig.1.Single-photon avalanche diode(SPAD)structure.

    Fig.2.Layout and microscope images of SPAD devices.

    SPADs need to work in a reverse-biased state, i.e., the cathode is connected to a high potential, and the anode is grounded.The two-dimensional simulation of the device is carried out in a technology computer-aided design (TCAD)simulator to obtain the electric field distribution at each position of the device in Geiger mode,as shown in Fig.3.Due to the different doping concentrations,the widths of the depletion regions of the P+/N-well,P-well/N-well,and P-well/deep Nwell junctions are different.When the device is reverse biased,the PN junction is equivalent to a large resistance and the voltage drop mainly exists in the depletion region,so the width of the depletion region can be observed through the electric field distribution.The simulation results show that the electric field strength of the central P+/N-well junction is the largest,so the avalanche breakdown is concentrated in the central P+/N-well junction and the device works normally.According to Shockley’s theory,the diode barrier capacitance can be expressed as

    whereεrandε0are the relative permittivity of silicon (11.9)and the vacuum permittivity (8.854×10?12F/m),Ais the cross-sectional area of the junction, andWis the width of the depletion region of the PN junction.The electric field affects the widthWof the depletion region, and the equivalent capacitance distribution in the SPAD device in Fig.4 can be obtained from the electric field distribution.C1is the capacitance of the photosensitive PN junction.C2,C3are the side junction capacitances of the guard ring/N-well,andC4is the guard ring/deep N-well junction capacitance.The parasitic capacitance between the deep N-well and the substrate is independent of the capacitance between the cathode and anode, so it is not indicated in the figure.The total capacitance when the SPAD device is reverse biased can be expressed asCSPAD=C1+C2+C3+C4.Equation (1) introduces the relationship between the capacitance and the width of the depletion region.During the electrostatic analysis of the abrupt junction,it is found that the dependence ofWand the bias voltage varies with the impurity distribution.The specific formula is

    whereqis the electronic charge (1.6×10?19C),NBis the impurity concentration on the lightly doped side,Vbiis the junction potential, andVRis the applied reverse bias voltage.Equation(2)can be substituted into Eq.(1)to get

    It can be seen from Eq.(3) that the barrier capacitance is related to the junction area and impurity concentration.

    Fig.3.Electric field distribution of the SPAD device operating in Geiger mode.

    Fig.4.Equivalent capacitance distribution of the SPAD device.

    However, for silicon-based photodetectors, illumination can affect the carrier concentration inside the device.It can be expressed as the following process: when a photon with energy exceeding the silicon bandgap(1.12 eV)irradiates the device,it can excite an electron from the valence band to the conduction band and leave a hole in the valence band.Electron–hole pairs move directionally in an electric field to form an electric current.Thus illumination increases the free carrier concentration inside the SPAD.The specific concentration of photo-generated carriers per unit time can be expressed asNLight=?I/(qv),where ?Iis the difference between the current and the dark current of the device under illumination,andvis the semiconductor volume.Figure 5 shows the current–voltage (I–V) characteristic curves of the SPAD device designed in this paper tested in light and dark environments(data from the previous work on this subject;see Ref.[25]).As can be seen from the figure,when the SPAD works in linear mode,the photocurrent is several tens of nanoamps higher than the dark current.Therefore, we should modify the capacitance formula to account for the effects of light and dark conditions on the device.We define Eq.(3) as the barrier capacitance under a no-light environment and Eq.(4)as the barrier capacitance under illumination,

    Fig.5.The I–V characteristic curves of the SPAD in light and no-light environments.

    3.Test and discussion

    With a SPAD in reverse bias,when the AC signalvis superimposed on the DC bias, the total voltage drop across the junction isVbias+v.Whenvis at a positive voltage, the AC signal slightly reduces the reverse bias on the junction,i.e.,the charge on both sides of the depletion region is reduced.Whenvchanges in reverse, the total reverse bias voltage across the junction increases immediately,causing an increase in charge on both sides of the junction.The effect of the AC signal can be seen as a small fluctuation of the charge density around its steady-state value.Due to the small magnitude ofv, the displacement of the fluctuating charge at the depletion layer boundary is almost negligible.The alternating increase and decrease of positive and negative charges at the edge of the SPAD depletion region are similar to the principle of physical plate capacitors, and the experiments in this paper are based on this principle to measure the capacitance characteristics of SPAD devices.The test instrument adopts the B1505A system of a power device analysis instrument,which has a touchable liquid crystal display screen for setting parameters, data display,and data processing.The test process is to put the device into the probe box, with the metal probes in contact with the cathode and anode of the SPAD,and superimpose a small sinusoidal signal with an amplitude of 100 mV and adjustable frequency on the DC reverse bias voltage of the device.To measure the photocapacitive effect, the device capacitance is measured in two cases.First,the test box is closed and a dark environment is maintained to measure the dark capacitance of the device.Second,the device’s photocapacitance is measured given a single light source.

    Silicon-based SPAD devices can only respond to visible light,so this test uses red,orange,green,and blue light as light sources and the measured capacitance is represented byCred,Corange,Cgreen, andCblue, respectively, with the dark capacitance represented byCdark.The bias voltage of the device is from 0 V to 5 V,and theC–Vtest results are shown in Fig.6.

    Fig.6.The C–V curves of the device with and without light at 1 kHz frequency.

    As can be seen from the figure, the dark capacitance of the device is around 1.8 pF and the photocapacitance generally fluctuates around 6.3 pF.Moreover,the wavelength of the light source has little effect on the capacitance of the device,which can be ignored.?C=Clight?Cdark≈4.5 pF,indicating that light can increase the junction capacitance of the device,because light excites photo-generated electron–hole pairs and increases the carrier concentration.The width of the depletion layer of the PN junction swings around the stable value with a small AC signal,which enables the carriers to respond in time to the AC signal.In silicon-based semiconductor devices,the response time of the majority carrier is in the range of 10?10s or less,indicating that the device can respond to very high signal frequencies.Therefore,we extended our research scope to study the frequency dependence of the capacitance of SPAD devices.

    Figure 7 shows the capacitance variation curves of SPAD devices at frequencies from 1 kHz to 5 MHz.Among them,the blue curves represent capacitance versus voltage measured under a single blue light source at different frequencies.The black curves represent capacitance versus voltage measured in dark conditions at various frequencies,and the additionally marked small graphs show details of the dark capacitance.The figure shows that under the same bias voltage,the dark capacitance of the device remains almost unchanged with increasing frequency.However, with increasing frequency, the photocapacitance decreases significantly.We obtain the preliminary conclusion that the photocapacitance of SPAD increases at low frequencies and decreases at high frequencies.According to Eq.(4), the difference between the dark capacitance and the photocapacitance is caused by the change in the carrier concentration, and the changing trend of the capacitance should be consistent at different frequencies.However,there are differences in the actual test results.

    Fig.7.The C–V curves of dark capacitance and photocapacitance at different frequencies.

    In Ref.[23], the authors observed the frequency dependence of capacitance in different types of deep-level traps,which was also observed in organic heterojunction devices in Ref.[24].The silicon-based SPAD devices fabricated by the planar process all contained the Si–SiO2system,and it is obvious that the movement space of the carriers was mainly in the surface layer of the silicon wafer.With the development of the manufacturing process,the quality and performance of the device have been greatly improved.However,additional charges and traps are still introduced in the Si–SiO2structure.Since the charge distribution is closely linked to the occurrence of vacancies,traps play an important role in the electron transport properties.For example,an SPAD with STI as the guard ring introduces huge noise to the device,[26]because there are many trap states in the STI region filled with SiO2, which trap and release the carriers in the device and increase the after-pulse.Therefore, we attribute this effect of SPAD photocapacitance to the interfacial traps of the Si–SiO2system, which can explain the photocapacitance versus frequency in Fig.7.When the device receives photons with energy greater than the band gap, electrons in the valence band absorb the energy of the photons and are excited into the conduction band to become free electrons.The concentration of photocarriers in light is far greater than that under dark conditions, and the photocapacitance is greater than the dark capacitance.

    Next,the effect of interface traps on photocapacitance is considered.First of all,the interface trap is mainly due to the formation of a“dangling bond”between Si and SiO2(that is,the silicon atom has an atomic bond in a dangling state), or the oxygen atom at the interface is not connected to the silicon atom,but is in an interstitial position or missing.Interface traps introduce energy levels in the forbidden band of the Si–SiO2interface(which generally can be distributed in the whole forbidden band range),and these traps can trap both electrons and holes.If the energy level is electrically neutral when occupied by electrons and positively charged after releasing electrons, it is called a donor interface state; if the energy level is negatively charged after accepting electrons, it is called an acceptor interface state.In semiconductor silicon, the typical response time of the majority carrier is 10?10s or less,so when making capacitance measurements,the majority of the carrier can flow in and out quickly, so the carrier can respond to the AC signal promptly.However, the time constant of the interface state is large and decreases exponentially as the value ofEF?Eiincreases.Therefore, interface traps cannot respond to high-frequency signals.Assuming that the interface state is a donor state, when the device receives a photon, the energy of the electron in the trap absorbs the photon transitions from the forbidden band to the conduction band, thereby affecting the charge distribution inside the device.These trap states are charged and discharged as the bias voltage changes.In the frequency range below 1 MHz,the charge and discharge of the interface traps can follow the low-frequency signal, so the medium photocapacitor includes the trap capacitance,and the change of the total photocapacitance follows the law;that is,it decreases with increasing frequency.After the frequency continues to increase, the interface traps do not respond and do not charge and discharge, so the capacitance at frequencies above 1 MHz is significantly reduced.Since there are no trap states involved, there is only a small change in capacitance from 1 MHz to 5 MHz.The interface state density is an important criterion to measure the quality of the Si–SiO2interface.The interface state density represents the interface defect density per unit area and unit energy(number of defects×cm?2·eV?1):

    In the formula,Qitis the charge amount of the defect state,andEtis the depth of the defect energy level.These trap states act as recombination centers and affect the density and motion of charge carriers within the silicon surface.The interface trap energy is in the silicon forbidden band, and the distribution presents a non-uniform distribution of dense band edges and sparse center bands.Figure 8(a)is a schematic diagram of the energy bands of the SiO2/Si structure containing interfacial traps.Figure 8(b)is an equivalent circuit diagram considering interface traps.

    Fig.8.(a)Schematic of the SiO2/Si band with interface traps,(b)equivalent circuit model considering interface traps.

    HereRAis the total resistance of the SPAD,VBis the breakdown voltage,and the switchSAsimulates the arrival of photons.In the dark state of the SPAD, the internal capacitance of the device is a capacitorCdarkthat does not change with frequency;when the device is in a light environment,the switchSAis closed, and an additional frequency-dependent capacitorClight(ω) is added to the equivalent circuit.When the energy level of the surface trap is displaced relative to the Fermi levelEF, the electron filling state in the trap changes,resulting in a change in charge.The intuitive effect of this change is a change in capacitance.When a reverse bias is applied to the SPAD in Fig.1,the energy band at the P+surface of the central photosensitive region is bent downward,and the energy level of the interface state moves downward relative toEF.When the acceptor state close to the conduction band moves toEF, due to the electrons occupying the acceptor interface state and the electrons accumulating at the surface of Si–SiO2,forming an accumulation phenomenon,there are additional negative charges in the interface state.

    It can be seen that the change in the applied bias voltage causes a charge change in the interface state; that is, the charge–discharge effect occurs in the interface state.The interface defect state can be characterized in theC–Vcurve when the charge of the interface defect is exchanged with the photosensitive region P+, that is, the interface defect captures and emits electrons.Under no-light conditions, the interface defect states below the intermediate energy level of the forbidden band do not have the energy provided by photons and cannot capture and emit electrons normally.When the device absorbs the energy of the photon,the photo-generated carriers are exchanged with the interface defect state,which changes the capture rate of the trap,that is,reduces the lifetime of the trap.In other words,the energy brought by the light affects the emission and capture rates of electrons in the defect, resulting in a shortened trap lifetime.In addition, when the frequency of the small signal applied by the SPAD is high, the filling and release rates of trap states cannot keep up with the AC signal,which leads to a significant decrease in the photocapacitance of the device at high frequencies, and the photocapacitance exhibits frequency dependence.

    4.Conclusion

    The photocapacitance effect of SPADs is experimentally studied.First, to distinguish the general capacitance of the PN junction, SPAD capacitance is divided into dark capacitance and photocapacitance.The photon energy excites the device to generate photogenerated electron–hole pairs, which increases the internal carrier concentration, thereby increasing the capacitance.Second, it is noted that the photocapacitance has a frequency scattering effect, and the capacitance decreases significantly with increasing frequency.This is due to the existence of interface traps in planar silicon devices,and the photon energy affects the trapping rate of interface traps in SPAD devices,resulting in changes in trap lifetime.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos.62174052 and 61827812), Hunan Science and Technology Department Huxiang High-level Talent Gathering Project (Grant No.2019RS1037), Innovation Project of Science and Technology Department of Hunan Province (Grant No.2020GK2018), and Postgraduate Scientific Research Innovation Project of Hunan Province (Grant No.QL20210131).

    猜你喜歡
    汪洋美玲
    長(zhǎng)大以后做什么
    Polysaccharides Based Random and Unidirectional Aerogels for Thermal and Mechanical Stability
    汪洋作品
    美玲:我的幸福是與萌貨親密接觸
    金色年華(2017年10期)2017-06-21 09:46:49
    趙美玲
    春天的早晨
    渡過語(yǔ)言的汪洋
    亙貫古今的汪洋臺(tái)
    汪洋之中一條船
    好看av亚洲va欧美ⅴa在| 亚洲av成人精品一区久久| 日本a在线网址| 日韩欧美一区二区三区在线观看| 婷婷亚洲欧美| 久久热在线av| 国产日本99.免费观看| 俺也久久电影网| 99在线人妻在线中文字幕| 成人国产一区最新在线观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧洲精品一区二区精品久久久| 18禁裸乳无遮挡免费网站照片| 19禁男女啪啪无遮挡网站| 中文字幕人成人乱码亚洲影| 一边摸一边做爽爽视频免费| 黄色毛片三级朝国网站| 亚洲一区高清亚洲精品| 1024视频免费在线观看| 免费看美女性在线毛片视频| 十八禁网站免费在线| 精品国产亚洲在线| 亚洲av成人一区二区三| 国产又黄又爽又无遮挡在线| 日本撒尿小便嘘嘘汇集6| 日本 欧美在线| 久久久久久国产a免费观看| 日韩 欧美 亚洲 中文字幕| 精品一区二区三区视频在线观看免费| 国产免费男女视频| 国产成人av激情在线播放| 91麻豆av在线| 午夜福利视频1000在线观看| av视频在线观看入口| www.999成人在线观看| 国内揄拍国产精品人妻在线| 色噜噜av男人的天堂激情| 久久精品91蜜桃| 精品国产乱子伦一区二区三区| 亚洲第一欧美日韩一区二区三区| a级毛片在线看网站| 黄频高清免费视频| 亚洲av电影在线进入| 一进一出好大好爽视频| 97人妻精品一区二区三区麻豆| 久久精品人妻少妇| 国产亚洲av高清不卡| 两个人的视频大全免费| 久热爱精品视频在线9| 国产亚洲精品一区二区www| 日日摸夜夜添夜夜添小说| 欧美国产日韩亚洲一区| 久久这里只有精品19| 成人手机av| 亚洲精品久久成人aⅴ小说| 大型黄色视频在线免费观看| 国产精品免费视频内射| 欧美日本视频| 波多野结衣巨乳人妻| 人妻丰满熟妇av一区二区三区| 亚洲avbb在线观看| 精品欧美国产一区二区三| 俺也久久电影网| 国产精品久久久久久人妻精品电影| 免费在线观看完整版高清| 男女下面进入的视频免费午夜| 久久久久亚洲av毛片大全| 国产午夜福利久久久久久| 女同久久另类99精品国产91| 欧美日本视频| 亚洲国产欧美网| 黄色毛片三级朝国网站| 啦啦啦观看免费观看视频高清| 久久久久精品国产欧美久久久| 午夜福利成人在线免费观看| 久久久国产成人精品二区| aaaaa片日本免费| 亚洲人成电影免费在线| 欧美乱妇无乱码| 岛国在线免费视频观看| 亚洲熟妇熟女久久| 两人在一起打扑克的视频| 嫩草影视91久久| 国产男靠女视频免费网站| 19禁男女啪啪无遮挡网站| 最近最新免费中文字幕在线| 精品一区二区三区四区五区乱码| 成人18禁高潮啪啪吃奶动态图| 久久精品国产综合久久久| 精品国产乱子伦一区二区三区| 亚洲欧美日韩东京热| 成人高潮视频无遮挡免费网站| 国产精品1区2区在线观看.| 在线国产一区二区在线| 级片在线观看| 特大巨黑吊av在线直播| 少妇的丰满在线观看| 99久久精品国产亚洲精品| 亚洲欧美激情综合另类| 99久久精品国产亚洲精品| 非洲黑人性xxxx精品又粗又长| 免费在线观看黄色视频的| 久久香蕉激情| 午夜精品久久久久久毛片777| 一本一本综合久久| 久9热在线精品视频| 1024手机看黄色片| 久久午夜亚洲精品久久| 99riav亚洲国产免费| 1024视频免费在线观看| 午夜福利视频1000在线观看| 国产亚洲av嫩草精品影院| 久久性视频一级片| 亚洲成av人片免费观看| 午夜免费激情av| 久久久久九九精品影院| 桃红色精品国产亚洲av| 男人的好看免费观看在线视频 | 九色成人免费人妻av| 国产精品九九99| 19禁男女啪啪无遮挡网站| 亚洲无线在线观看| 一个人免费在线观看的高清视频| 俄罗斯特黄特色一大片| 香蕉丝袜av| 日韩av在线大香蕉| 一个人观看的视频www高清免费观看 | 午夜免费激情av| 好男人在线观看高清免费视频| 91国产中文字幕| 在线观看午夜福利视频| www.www免费av| 亚洲精品久久国产高清桃花| 亚洲黑人精品在线| 国模一区二区三区四区视频 | 色综合亚洲欧美另类图片| 少妇被粗大的猛进出69影院| 亚洲国产看品久久| 亚洲美女视频黄频| 亚洲欧美日韩无卡精品| 亚洲真实伦在线观看| 亚洲乱码一区二区免费版| 国产亚洲精品第一综合不卡| 国产真人三级小视频在线观看| 男女做爰动态图高潮gif福利片| 免费在线观看完整版高清| 久久香蕉国产精品| av在线天堂中文字幕| 我要搜黄色片| 国产成人精品无人区| a级毛片在线看网站| 久久性视频一级片| 在线观看日韩欧美| 国产麻豆成人av免费视频| 少妇的丰满在线观看| www.熟女人妻精品国产| 国产在线精品亚洲第一网站| 国产片内射在线| xxx96com| 国产亚洲精品综合一区在线观看 | 长腿黑丝高跟| 美女黄网站色视频| 午夜福利免费观看在线| 国产亚洲精品久久久久5区| av超薄肉色丝袜交足视频| 国产av又大| 国产亚洲欧美98| www.精华液| 怎么达到女性高潮| 岛国在线观看网站| 久久久久久人人人人人| 丰满的人妻完整版| 在线观看午夜福利视频| 狂野欧美激情性xxxx| 精品高清国产在线一区| 777久久人妻少妇嫩草av网站| 国产精品乱码一区二三区的特点| 国产精品亚洲美女久久久| 激情在线观看视频在线高清| 国产精品98久久久久久宅男小说| 妹子高潮喷水视频| 亚洲精品在线观看二区| 日韩精品免费视频一区二区三区| 精品乱码久久久久久99久播| 国产一区二区三区在线臀色熟女| 搡老妇女老女人老熟妇| 禁无遮挡网站| 国产一区在线观看成人免费| www日本黄色视频网| 久久天堂一区二区三区四区| 琪琪午夜伦伦电影理论片6080| 久久精品国产亚洲av高清一级| 男女视频在线观看网站免费 | 无限看片的www在线观看| 老熟妇仑乱视频hdxx| 国产黄a三级三级三级人| 亚洲成av人片免费观看| 怎么达到女性高潮| 好看av亚洲va欧美ⅴa在| 激情在线观看视频在线高清| 三级国产精品欧美在线观看 | 久久香蕉精品热| 一进一出抽搐gif免费好疼| 无遮挡黄片免费观看| 亚洲av美国av| 久久中文字幕一级| 日韩大码丰满熟妇| 国产区一区二久久| 制服人妻中文乱码| 国产成+人综合+亚洲专区| 在线观看www视频免费| 人人妻人人澡欧美一区二区| 91麻豆精品激情在线观看国产| 亚洲av电影在线进入| 亚洲精品久久国产高清桃花| 久久久久性生活片| 丰满人妻熟妇乱又伦精品不卡| 中文字幕av在线有码专区| 国产精品1区2区在线观看.| 999久久久国产精品视频| 少妇人妻一区二区三区视频| 国产高清视频在线观看网站| 丝袜美腿诱惑在线| 禁无遮挡网站| 性欧美人与动物交配| 久久国产精品人妻蜜桃| 成人永久免费在线观看视频| 中文亚洲av片在线观看爽| 亚洲全国av大片| 少妇被粗大的猛进出69影院| 久久久国产精品麻豆| 免费看十八禁软件| 亚洲欧美激情综合另类| 一本精品99久久精品77| 亚洲av成人一区二区三| 精品少妇一区二区三区视频日本电影| 午夜福利高清视频| av在线播放免费不卡| 欧美黑人欧美精品刺激| 亚洲一码二码三码区别大吗| 国产成人av教育| 观看免费一级毛片| www日本在线高清视频| 18禁观看日本| 国产精品,欧美在线| 日日干狠狠操夜夜爽| 免费在线观看黄色视频的| 丰满人妻熟妇乱又伦精品不卡| 搡老熟女国产l中国老女人| 亚洲中文字幕日韩| 2021天堂中文幕一二区在线观| 久久99热这里只有精品18| 亚洲无线在线观看| 99riav亚洲国产免费| 精品欧美一区二区三区在线| 50天的宝宝边吃奶边哭怎么回事| 亚洲av五月六月丁香网| 久久欧美精品欧美久久欧美| 黄片小视频在线播放| 香蕉丝袜av| bbb黄色大片| 最新美女视频免费是黄的| 成人永久免费在线观看视频| 在线观看www视频免费| 色在线成人网| 国产精品,欧美在线| 国产精品自产拍在线观看55亚洲| 午夜福利视频1000在线观看| 成年免费大片在线观看| 欧美久久黑人一区二区| 免费观看精品视频网站| netflix在线观看网站| 国产精品99久久99久久久不卡| 日韩免费av在线播放| 91麻豆精品激情在线观看国产| 亚洲一码二码三码区别大吗| 亚洲成a人片在线一区二区| 啦啦啦韩国在线观看视频| 精品少妇一区二区三区视频日本电影| 国产精品久久久av美女十八| 女生性感内裤真人,穿戴方法视频| 午夜免费激情av| 亚洲avbb在线观看| 亚洲一区二区三区不卡视频| 18禁观看日本| 国产欧美日韩精品亚洲av| 亚洲五月天丁香| 日本在线视频免费播放| 色老头精品视频在线观看| 国产精品久久久av美女十八| av有码第一页| 一级片免费观看大全| 免费看日本二区| 日日摸夜夜添夜夜添小说| 亚洲电影在线观看av| 婷婷六月久久综合丁香| 听说在线观看完整版免费高清| 午夜福利视频1000在线观看| 欧美另类亚洲清纯唯美| 久久精品亚洲精品国产色婷小说| 波多野结衣高清无吗| 久久精品91无色码中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩欧美国产在线观看| 一本综合久久免费| 国产精品影院久久| 99热只有精品国产| 久久精品成人免费网站| 熟女少妇亚洲综合色aaa.| 天天一区二区日本电影三级| 亚洲精品在线观看二区| 90打野战视频偷拍视频| 欧美人与性动交α欧美精品济南到| 国产人伦9x9x在线观看| 国产精品99久久99久久久不卡| 丁香欧美五月| 国产精品爽爽va在线观看网站| 在线观看免费午夜福利视频| 最新美女视频免费是黄的| av福利片在线观看| 美女午夜性视频免费| 亚洲av第一区精品v没综合| 免费在线观看成人毛片| 国产亚洲精品综合一区在线观看 | 听说在线观看完整版免费高清| tocl精华| 91大片在线观看| 日本免费一区二区三区高清不卡| 免费看美女性在线毛片视频| 国产欧美日韩一区二区精品| 午夜成年电影在线免费观看| 黑人操中国人逼视频| 久久香蕉精品热| 久久久久亚洲av毛片大全| 美女黄网站色视频| 日本a在线网址| aaaaa片日本免费| 精品国内亚洲2022精品成人| 岛国在线观看网站| av中文乱码字幕在线| 免费在线观看完整版高清| 国产伦人伦偷精品视频| 国产成人aa在线观看| 最新美女视频免费是黄的| 色老头精品视频在线观看| 2021天堂中文幕一二区在线观| www.999成人在线观看| 母亲3免费完整高清在线观看| 夜夜夜夜夜久久久久| 亚洲精品av麻豆狂野| 亚洲 欧美 日韩 在线 免费| 国产主播在线观看一区二区| 国产黄色小视频在线观看| bbb黄色大片| 亚洲欧美日韩高清在线视频| 一级黄色大片毛片| 五月伊人婷婷丁香| 国产精品av久久久久免费| 日本一区二区免费在线视频| 亚洲天堂国产精品一区在线| 久久精品亚洲精品国产色婷小说| 一进一出抽搐gif免费好疼| 亚洲男人天堂网一区| 国产精品久久视频播放| 校园春色视频在线观看| 不卡av一区二区三区| 国产亚洲精品第一综合不卡| 亚洲av日韩精品久久久久久密| 国产av又大| 精品第一国产精品| 国产黄片美女视频| 亚洲国产精品sss在线观看| 九九热线精品视视频播放| 香蕉国产在线看| 国产久久久一区二区三区| 曰老女人黄片| 国产又色又爽无遮挡免费看| 国产亚洲精品久久久久5区| 在线观看日韩欧美| 亚洲人成网站高清观看| 成年版毛片免费区| 日本 av在线| 少妇裸体淫交视频免费看高清 | 精品久久久久久成人av| 欧美性长视频在线观看| 亚洲美女黄片视频| 欧美性猛交╳xxx乱大交人| 黄色片一级片一级黄色片| 高潮久久久久久久久久久不卡| 亚洲熟女毛片儿| 两个人免费观看高清视频| 岛国在线免费视频观看| 老司机午夜福利在线观看视频| 在线a可以看的网站| 九九热线精品视视频播放| 老司机福利观看| 99国产极品粉嫩在线观看| 午夜福利在线观看吧| 超碰成人久久| 久久久久久久久久黄片| 精品久久久久久成人av| 国产精品影院久久| 欧美日韩一级在线毛片| 亚洲成人免费电影在线观看| 午夜亚洲福利在线播放| 91在线观看av| 国产精品免费一区二区三区在线| www国产在线视频色| 一二三四在线观看免费中文在| 国产91精品成人一区二区三区| 午夜老司机福利片| 午夜两性在线视频| 老鸭窝网址在线观看| 免费在线观看视频国产中文字幕亚洲| 变态另类丝袜制服| 女人高潮潮喷娇喘18禁视频| 国产欧美日韩一区二区精品| 一本精品99久久精品77| 日本黄大片高清| 亚洲人成77777在线视频| www.精华液| 999精品在线视频| 丝袜美腿诱惑在线| 久久国产精品人妻蜜桃| 日韩欧美国产一区二区入口| 男人的好看免费观看在线视频 | 91成年电影在线观看| 免费在线观看日本一区| 久久精品aⅴ一区二区三区四区| 免费在线观看成人毛片| 亚洲最大成人中文| 亚洲精品美女久久久久99蜜臀| e午夜精品久久久久久久| 午夜a级毛片| www.www免费av| 中文字幕av在线有码专区| 在线永久观看黄色视频| 国产精品美女特级片免费视频播放器 | 夜夜爽天天搞| 一本综合久久免费| 在线永久观看黄色视频| www日本在线高清视频| 精品国产亚洲在线| 亚洲欧美一区二区三区黑人| 久久人妻av系列| 亚洲成人精品中文字幕电影| 午夜精品久久久久久毛片777| 在线十欧美十亚洲十日本专区| 美女高潮喷水抽搐中文字幕| 久久伊人香网站| 亚洲国产精品sss在线观看| 欧美日韩一级在线毛片| 国产精品1区2区在线观看.| av在线天堂中文字幕| 久久久精品大字幕| 丁香欧美五月| 操出白浆在线播放| 国产99白浆流出| 亚洲精华国产精华精| 亚洲va日本ⅴa欧美va伊人久久| 天堂√8在线中文| 国产精品久久电影中文字幕| 人人妻,人人澡人人爽秒播| 国产欧美日韩一区二区精品| 亚洲一区中文字幕在线| 国产av不卡久久| √禁漫天堂资源中文www| 午夜福利18| 在线观看日韩欧美| 老汉色∧v一级毛片| a级毛片在线看网站| 757午夜福利合集在线观看| 丝袜美腿诱惑在线| 精品国内亚洲2022精品成人| 在线免费观看的www视频| 99热这里只有精品一区 | 国产人伦9x9x在线观看| 午夜福利欧美成人| 国产成人欧美在线观看| 国产一级毛片七仙女欲春2| 成人午夜高清在线视频| 国产激情欧美一区二区| 国产一区在线观看成人免费| 亚洲欧美激情综合另类| 久久精品91蜜桃| 嫩草影院精品99| 怎么达到女性高潮| 精品乱码久久久久久99久播| 精品久久久久久成人av| 国产精品影院久久| 制服诱惑二区| 欧美不卡视频在线免费观看 | 亚洲人成网站高清观看| 中文字幕人成人乱码亚洲影| 女人被狂操c到高潮| 999精品在线视频| 啪啪无遮挡十八禁网站| 亚洲国产欧美网| 中文字幕人妻丝袜一区二区| 日本在线视频免费播放| 久久久国产欧美日韩av| 制服诱惑二区| 日本成人三级电影网站| 两个人视频免费观看高清| 一区二区三区国产精品乱码| 亚洲男人天堂网一区| 日韩欧美国产在线观看| 国产在线观看jvid| 精品熟女少妇八av免费久了| 成人国产综合亚洲| 90打野战视频偷拍视频| 黄色丝袜av网址大全| 精华霜和精华液先用哪个| 亚洲成av人片免费观看| 亚洲专区国产一区二区| 一个人免费在线观看电影 | 九色国产91popny在线| 亚洲乱码一区二区免费版| 在线观看免费午夜福利视频| 人妻夜夜爽99麻豆av| 夜夜爽天天搞| 国产成人精品久久二区二区免费| 亚洲精品美女久久久久99蜜臀| 最近最新中文字幕大全电影3| 免费av毛片视频| 亚洲国产精品久久男人天堂| 男人舔女人下体高潮全视频| 久久久久国产一级毛片高清牌| 婷婷精品国产亚洲av在线| 日韩有码中文字幕| 黄色 视频免费看| tocl精华| 亚洲中文字幕一区二区三区有码在线看 | 此物有八面人人有两片| 国内精品久久久久久久电影| 亚洲成人久久性| 91国产中文字幕| 欧美成人午夜精品| 十八禁人妻一区二区| 日韩中文字幕欧美一区二区| 久久精品成人免费网站| 欧美日韩瑟瑟在线播放| 国产高清有码在线观看视频 | av中文乱码字幕在线| 99久久精品国产亚洲精品| 国产一区二区三区视频了| 国产成人影院久久av| 亚洲熟女毛片儿| 午夜免费激情av| 国产精品99久久99久久久不卡| 中亚洲国语对白在线视频| 成人高潮视频无遮挡免费网站| 少妇裸体淫交视频免费看高清 | 国产男靠女视频免费网站| 很黄的视频免费| 国产精品久久久久久亚洲av鲁大| 国产成人av教育| ponron亚洲| 久久这里只有精品19| 99国产极品粉嫩在线观看| 狂野欧美白嫩少妇大欣赏| 男人舔奶头视频| 三级毛片av免费| av中文乱码字幕在线| 夜夜夜夜夜久久久久| 精品人妻1区二区| 精品无人区乱码1区二区| 日韩免费av在线播放| bbb黄色大片| 小说图片视频综合网站| 这个男人来自地球电影免费观看| 一边摸一边做爽爽视频免费| 欧美成狂野欧美在线观看| 小说图片视频综合网站| 一边摸一边抽搐一进一小说| 日本成人三级电影网站| 亚洲成av人片免费观看| 麻豆久久精品国产亚洲av| 一级作爱视频免费观看| 午夜福利高清视频| x7x7x7水蜜桃| 少妇人妻一区二区三区视频| 精品日产1卡2卡| av欧美777| 亚洲av成人精品一区久久| 五月玫瑰六月丁香| 亚洲美女视频黄频| 国产成人aa在线观看| 欧美精品亚洲一区二区| 国产精华一区二区三区| 亚洲中文字幕日韩| 欧美乱妇无乱码| 一进一出抽搐gif免费好疼| 99精品久久久久人妻精品| 国产爱豆传媒在线观看 | 一级黄色大片毛片| 日本 欧美在线| 国产亚洲精品久久久久久毛片| 又大又爽又粗| 亚洲 欧美 日韩 在线 免费| 最近在线观看免费完整版| 91字幕亚洲| 黄色片一级片一级黄色片| 亚洲真实伦在线观看| 色av中文字幕| 久久这里只有精品中国| 正在播放国产对白刺激| 丰满人妻一区二区三区视频av | 亚洲全国av大片| 最新在线观看一区二区三区| 97人妻精品一区二区三区麻豆| www.精华液| 亚洲成人国产一区在线观看| 欧美最黄视频在线播放免费| 舔av片在线|