• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transition from isotropic to polar state of self-driven eccentric disks

    2023-09-05 08:47:48JinghanWang王靜晗TianliangXu許天亮JingxiHe何景熙KangChen陳康andWendeTian田文得
    Chinese Physics B 2023年7期
    關(guān)鍵詞:天亮

    Jinghan Wang(王靜晗), Tianliang Xu(許天亮), Jingxi He(何景熙), Kang Chen(陳康), and Wende Tian(田文得)

    Center for Soft Condensed Matter Physics&Interdisciplinary Research,School of Physical Science and Technology,Soochow University,Suzhou 215006,China

    Keywords: eccentric disk,Langevin dynamics,polar order,alignment effect

    1.Introduction

    Active matter,whose agents convert either internal energy into directed motion or utilize energy from the environment,is inherently out of equilibrium.Active agents include not only natural living species ranging from,e.g.,cytoskeletons[1]and microtubule–kinesin bundles[2]to living liquid crystals (suspensions of motile bacteria in liquid crystals),[3,4]but also a lot of artificial self-driven particles such as synthesized Janus particles[5]and chiral rotors.[6,7]The non-thermal motion is the origin of many rich and interesting phenomena of active matter,e.g., giant fluctuations,[8,9]spontaneous phase separation,[10,11]pattern formation,[12,13]vortex formation,[14]active turbulence,[15,16]and swarming.[17–19]Understanding behavior of active systems is an intense area of research from the fundamental aspect.Most theoretical knowledge about such active matter and its transitions has been developed on the dependence of active Brownian particles (ABP) model[20–22]and Vicsek-like model.[23]

    For ABP model,[24]active agents are composed of selfdriven isotropic particles with isotropic pairwise interactions subjected to Brownian dynamics.A typical phenomenon in the ABP model is the motility-induced phase separation(MIPS).For Vicsek-like model, point particles travel at a speed and their direction changes according to interaction rules which comprise both explicit alignment and noise,to account for external or internal perturbations.The model shows a phase transition from disordered motion to large-scale ordered motion.[23]Also, there exist other models incorporating explicitly the body-fixed axis of particles.The alignment mechanism depends on the axis through the steric interaction of elongated objects.[11–13]Alternatively,for circular or spherical particles,a natural way of producing alignment is to incorporate inelasticity or softness in the interaction rules.[24]Recently, our group designed an eccentric robot composed of a Hexbug Nano and a circular foam(Fig.1(a)).The foamed disk adheres to the back of the Hexbug Nano, which is supported by twelve flexible legs that all bends slightly backwards.A vibration motor when turned on can set the Hexbug Nano into forward hopping motion on a solid substrate.The behavior of single robot and two-robot collision are given in supporting information (Figs.S1–S4).The interacting center of robots when colliding is the geometric center of the disk,not its center of mass.Because it is hard to eliminate the boundary effect in experiment when focusing on the collective behavior(Robots prefer to aggregate around the boundary,data not shown)and it is also difficult to control the system parameters such as activity and frictional coefficients, for the first step,here we proposed a computational model for the individual robot(Fig.1(b))to study their multi-body behaviors.

    In contrast to the ABP model, the prominent feature of this model is mutual coupling of translational and rotational freedoms, which, to a certain extent, gives rise to an orientational alignment through collision.Meanwhile, the collision-induced alignment is different with the purely effective mesoscopic (anisotropic) alignment in Vicsek-like models.Through the control of parameters such as rotational friction coefficient and rotational noise, we find that a homogeneous system without rotational noise exhibits a sharp discontinuous transition from an isotropic to a polar state when increasing rotational friction coefficient.The transition becomes continuous when adding angular noise.The formation of polar state originates from the velocity alignment effect due to the cascading-collision-induced rotation.We also find that the existence of rotational noise could reduce the alignment effect and lead to a large spatial density inhomogeneity.

    Fig.1.(a)Top and side view of the eccentric robot composed of a Hexbug Nano and a circular foam.(b) Schematic diagram of our model used in the simulation.The red point denotes the geometric center (GC) of the robot, while the black point denotes the center of mass (COM) of the robot.The robot is self-driven along the orientation, ?n, from the center of mass to the geometric center.The dotted circle denotes a hard core with diameter,?.(c)A typical snapshot of initial configuration.

    This paper is organized as follows.After the definition of our model and introduction of simulation methods in Section 2,the structure and phase behavior of the system are systematically analyzed in Section 3.Finally, we conclude our main findings in Section 4.

    2.Model and methods

    The disk was modelled by a rigid body characterized by two centers(Fig.1(b)): one is the geometric center,the other is the center of mass off-centered with a distancer0=1/3σ.Initially,Ndisks were randomly placed in a square box of sizeL×L(Fig.1(c)).A diskiis described by its geometric center(GC),ri(t),center of mass(COM),rci(t),and orientation,?ni(t)([cosθ,sinθ]), which goes from COM to GC,as shown in Fig.1(b).All disks interact with a repulsive Lennard–Jones potential,with a distance shifted by?,

    whereri jis the distance of GCs between disksiandj.

    The dynamics of each disk is described by the following equations:

    wheremcis the mass of COM,Iis the rotary inertia,γtis the translational friction coefficient,γrthe rotational friction coefficient,Fathe strength of self-propelled force,kBthe Boltzmann constant.TtandTrare used as parameters of strength of translational and rotational noises,respectively.For the granular system,theTt=Tris not mandatory.Γdenotes the torque on diskidue to collision.Besides,ηi(t)andξi(t)are Gaussian white noises on the COM with zero mean and unit variances,

    whereηαorηβis thex/y-th component of the vectorη(t).

    We used the home-modified LAMMPS software to perform all simulations.The equations of motion were solved using a velocity-Verlet algorithm.Periodic boundary conditions were applied in theXandYdirections in two dimensions.Reduced units were used by settingm=1,σ=1,andε=1.The corresponding time unit,.Additionally, we setmc=1.1m,I=0.01mσ2(except for investigating the effect of eccentricity),the reduced translational noise,kBTt=1.0ε,self-propelled force,Fa=500ε/σshift distance,?=σ,L=100σ,and,which results in the motion of disks effectively overdamped.We mainly paid attention to the influence of rotational noise and eccentricity on the collective behavior of disks.All simulations began from random initial configurations (Fig.1(c)).Disks with random orientation are placed homogenously in the box at the beginning.For each case,it ran in a minimum time of 1×107τwith a time step,10?4τ.

    3.Results and discussion

    We establish the phase behavior of the system and focus on the rotational noise and rotational friction coefficient.The order parameter in two dimensions was defined as〈ψ〉=2〈cos2θ〉?1,hereθis the angle between the velocity of each disk and the average velocity of all disks in the system.We distinguish two states: one is the isotropic state with a random orientation of disks,the other is the polar state with a dominant orientation(see Fig.2).The appearance of two states depends on the rotational friction coefficient which controls the time scale of its rotation.Additionally, the state transition is also affected by number density,ρ,of disks.

    3.1.Effect of γr

    Fig.2.Typical snapshots for the systems without (Tr =0) or with rotational noise(Tr =1)at various value of γr.The black arrow denotes the orientation of each disk.

    Fig.3.Order parameter, 〈ψ〉, of the system as a function of γr without,Tr=0(a),and with,Tr=1(b)rotational noise at ρ =0.1.The insets are typical snapshots at the corresponding γr.The error bar is the standard deviation of ψ.

    We first pay attention to the influence of rotational friction coefficient,γron the collective behavior atρ=0.1.Here,we choose two typical systems without(Tr=0)and with(Tr=1)rotational noise from the systematic studies ofTr(Fig.S5).The order parameters,〈ψ〉, are shown in Fig.3.AtTr=0,〈ψ〉≈0 at smallγr, implying an isotropic phase (see Fig.2 and the inset of Fig.3).At largeγr,the system shows a polar phase with〈ψ〉≈0.94, where most disks move in one direction.There exists a sharp transition from isotropic phase to polar phase with the increase ofγr.AtTr=1.0, there also exists isotropic phase at smallγrand polar phase at largeγrSurprisingly, the transition of two phases becomes continuously with the increase ofγr.The interesting questions are that: (i) what is the structural difference between two kinds of systems? (ii)How does the system evolve into the ordered structure and why does the phase transition occur?

    We analyze the structure of polar and isotropic state without and with rotational noise by radial distribution function,g(r)=n(r)/ρ·2πr·δr, wheren(r)is the number of disks at the distance interval, [r,r+δr], from a centra disk,ρthe average number density of system.As shown in Fig.4,the first and second peaks for the system atTr=1 are higher than that for the system atTr=0.This means that local density of disks is higher for the noisy system.What is more interesting,without rotational noise,the first peak ofg(r)for the system in the isotropic state shows slightly higher than that in polar state,implying polar state is more homogeneous.

    Fig.4.Radial distribution function g(r), of disks for the isotropic and polar state without or with rotational noise at the corresponding γr and ρ =0.1.

    Fig.5.The Gini coefficients Gr,as a function of γr without(a)and with(b)rotational noise at ρ =0.1.The error bar is the standard deviation of Gr.

    To explore the density heterogeneity of the whole system,we define and calculate the Gini coefficient

    as our previous work,[25–27]where ˉρis the mean density,ρithe number density of particles in thei-th partitioned space,andNthe total number of partitioned spaces.The Gini coefficients as a function ofγrwithout and with rotational noise are given in Fig.5.Without rotational noise,Grincreases firstly and then decreases with the increase ofγr.The largestGr(close to 0.13)occurs atγr=0.225.TheGrshows the similar behavior for the systems with rotational noise.The difference is thatGr(>0.13)is larger for the noisy system.This indicates that the rotational noise has a significant effect on the collective behavior of disks, which makes the collisions between disks more frequent and leads to a larger density fluctuation.Specially in Fig.5(b),Grof the noisy system increases with a larger rotational friction coefficient.This is because,in the noisy system,the increase of rotational friction coefficient indicates the increase of persistent length of self-driven disks, which promotes cluster formation due to the self-trapping mechanism,similar to the ABP model.

    To further inspect the structural difference,the local disk densities of final frames of our trajectories for the typical states are given in Fig.6.The blue color denotes the low-density region and the red color denotes the high-density region.It can be found that the density fluctuation is low for isotropic and polar states without noise.The system in polar state with noise exists large clusters and the density shows highly inhomogeneous.The results are consistent with the finding fromGr.The question is that,in the polar state,why the density heterogeneity is so different for two systems? This can be explained as follows: without noise, the change of disk’s orientation is mainly controlled by their collision.Otherwise, the disk will move along the self-driven direction.When one dominant direction of motion emerges,disks moving along the direction is rare to hit disks that are moving in the same direction with the same velocity.And disks deviating the direction have probability to change their direction via colliding with these disks.When all disks move in one direction, the distance of disks perpendicular to the direction will be adjusted by translational thermal noise.If there are angular noise,the orientation is also affected by rotational noise,the dominant direction maintains via increasing disk collision,i.e.,the increase of local density.

    To understand the formation of polar order,the time evolution of system without noise atγr=0.5 is given in Fig.7(a)and Movie S1.The evolution ofGrand〈ψ〉are also plotted in Fig.8.The simulation was started from a randomly orientational and spatial distribution(Fig.7(a1)).It can be seen that small clusters forms firstly (Fig.7(a2)).The moving directions of disks in the small clusters are nearly same,but not for different small clusters.Then, the small clusters collide with each other to induce a velocity alignment and the formation of large clusters (Fig.7(a3)).This is accompanied by the increase of density heterogeneity and polar order(Fig.8).With the time evolution,nearly all disks move in a dominant direction (Fig.7(a4)) through cluster fusion and the system enters into the polar state.Interestingly, the clusters of disks gradually disappear after the polar state is formed and the system becomes more homogeneous (Figs.7(a5) and 8).The time evolution of system with rotational noise is also provided in Fig.S6 and Movie S2.The formation process of polar state is similar to the case without noise except the final density heterogeneity is higher(Fig.S7).

    Fig.6.Local disk densities for the systems without (upper) or with(lower) rotational noise.Panels (a) and (b) are the local disk densities for the system without rotational noise at various values of γr.Panels(c)and(d)are for the noisy system.

    Fig.7.(a1)–(a5) Time evolution of the system at γr = 0.5 from the isotropic to the polar conformation and (b) a diagram for collisioninduced rotation of self-driven eccentric hard disks.

    The formation of polar state attributes to the collisioninduced rotation, which gives rise to the alignment effect of moving direction of disks due to the mutual coupling of the positional and orientational degrees of freedom in the dynamics of each disk (Fig.7(b)).The elastic collision results in a force acting on the GC of each disk.Due to the COM offset from the GC,the force produces a nonzero torque on the disk,which leads to the disk rotation.At a certain torque and rotational damping,the cascading collisions will eventually cause the velocity alignment.

    To further understand why the system becomes homogenous, we performed an extra simulation of system without both translational and rotational noise.It can be found that all disks are moving in a direction and their spatial inhomogeneity in the polar state does not decrease over time(see Movie S3 and Fig.S8).This means that the translational noise is the key cause of homogenous distribution of disks.The dynamics of disks in the polar state is reminiscent of fluid with drift velocity.It can be manifested by the mean-squared displacement(MSD)and Gaussian distribution of velocity without drift(see Figs.9(a)and 9(b)).The MSD shows a normal distribution at a long-time scale.The probability distributions of the non-drift velocity,?vi=vi ?ˉv,(ˉvis the average velocity of the whole system) follows an approximate Gaussian distribution.The diffusion of disks due to thermal noise facilitates the formation of a spatially homogeneous state.However,the rotational noise has the opposite effect,which could enlarge the density heterogeneity accompanied by frequenter collision.

    Fig.8.The Gini coefficients Gr and order parameter as a function of time for the system of ρ =0.1 in the polar state without rotational noise.

    Fig.9.(a)Mean-squared displacement and(b)probability distribution of non-drift velocities of disks for the system without both translational and rotational noise at ρ =0.1.

    To understand the mechanism of phase transition,we define and calculate the time correlation function,and spatial correlation function,C(r)=of each disk.As shown in Fig.10,the spatiotemporal correlation of velocity of disks in the polar state (atγr=0.5,Tr=0 and atγr=200,Tr=1) is stronger than that in the isotropic state (atγr=0.125,Tr=0 and atγr=2.22,Tr=1), which means the moving direction of disks does not change over a long time and distance.The correlation time,which determines the persistence of the disk’s polarity,is important for the polar formation.The strong correlation originates from the high rotational diffusion coefficient,which suppresses the orientation deviation of disks after collision (see the inset of Fig.10(a)).Intuitively, the effective alignment roots in the collision-induced rotation and the ability of disks keeping their moving direction.

    Fig.10.(a) The time correlation function C(t) and (b) spatial correlation function C(r) of disk’s orientation in the polar states with or without rotational noise.The inset is time evolution of the rotational angle of a disk for the system without noise at γr=0.125 and 0.5.

    3.2.Effect of rotational noise intensity

    Here, we focus on the effect of rotational noise at fixedγr= 1.The order parameter as a function ofTris presented in Fig.11(a).It can be found that the order parameter monotonously decreases with the increase ofTr, which implies that the orientation of disks gradually becomes disordered.The spatial correlation function (Fig.11(b)) and time correlation function(Fig.11(c))show that the increase of rotational noise causes the fast decrease of the spatiotemporal correlation of velocity.It not only decreases the spatial correlation length,also decrease the correlation time.This implies that the rotational noise destroys the persistence of velocity orientation and impedes the formation of polar state.

    To further understanding the effect of rotational noise,theγr–Trphase diagram is given in Fig.11(d).It can be seen that,without rotational noise, the transition from an isotropic to a polar state is sharp(without green region)with the increase ofγr.The existence of rotational noise results in the continuous phase transition (with green region).However, the feature of the phase transition is independent of intensity of non-zero rotational noise.Here the critical rotational friction coefficient,was determined by choosing〈ψ〉≈0.25.As shown in Fig.11(e),theis linearly and monotonously increases withTrwith a slope≈2.2.This is because that the appearance of polar state depends on the ratio of rotational and translational characteristic time,α=γrFa/(σTrγt).The critical ratio turns out to be nearly 11 in our case.

    Fig.11.(a) Order parameter as a function of Tr, (b) spatial correlation function, and (c) time correlation function for the systems of ρ =0.1,γr =1.(d)γr–Tr phase diagram.The order parameter from 0 to 1 is colored from blue to red.(e)Critical rotational friction coefficient γcr as a function of Tr.

    4.Conclusion

    Compared with active Brownian particles and the Vicseklike model, here we proposed a model for self-driven eccentric disks,inspired by experimental design,to study their collective behavior via Langevin dynamics simulations.Without rotational noise, the variation of orientational order parameter with the increase of rotational friction coefficient demonstrates that the homogenous system can sharply convert from an isotropic to a polar state.With the rotational noise,the transition becomes continuous.Meanwhile, the order parameter monotonously decreases with the increase of noise strength.The formation of polar state can be understood by the alignment effect due to the mutual coupling of the positional and orientational degrees of freedom of each disk influenced by the rotational friction coefficient, which plays a critical role in the persistence of disk’s orientation.The rotational noise could weaken the alignment effect and cause the large spatial density inhomogeneity but the translational thermal noise facilitates the formation of a spatially homogeneous state.Our model make further conceptual progress on how the microscopic interaction among self-driven agents yields effective alignment due to the mutual coupling of the positional and orientational degrees of freedom,which deepens our understanding of the mechanism of the velocity alignment effect.It also provides ideas for future research on self-driven eccentric hard disks in complex and confinement systems.A similar velocity alignment phenomenon was also found in previous studies on self-propelled rods.[28,29]Due to the anisotropy of the shape of the self-propelled rods,the collision between two rods would generate an interacting torque,resulting in the velocity alignment between rods.In contrast, the shape of the self-driven eccentric disk used in our simulation is isotropic,and the diskto-disc collision interaction produces similar torques due to the deviation between center of gravity and geometric center of the disk.The steric interaction is different from the system of self-propelled rods.

    It should be pointed out that it is the first step to understand the collective behavior of this kind of active matter, in which the interacting is the geometric center of the disk, not center of mass.It is different with the self-propelled rods,where the effective alignment results from the anisotropically steric interactions.Within the framework of our model,the effect of disk density on phase behavior can be further studied.Imaginably,high density will improve the collision frequency between disks,which is in favor of velocity alignment through mutual coupling of positional and rotational degrees of freedom of disks.Additionally, the effect of eccentricity is also interesting for further study(Fig.S9).We find the mutual coupling of the positional and orientational degrees of freedom of each disk is prerequisite for polar order and the degree of eccentricity does not affect the dynamics of polar formation atTr=0.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China (Grant Nos.21674078, 21774091, and 21574096).

    猜你喜歡
    天亮
    金雞報(bào)曉
    云的味道
    女“鬼”出動(dòng)
    故事林(2019年7期)2019-04-18 02:35:26
    等來(lái)一場(chǎng)雨
    眠空
    青春(2017年5期)2017-05-22 11:53:46
    天亮了嗎
    GO GO SLEEP!睡出水光肌!
    《云端三公尺》:下一個(gè)天亮,誰(shuí)在等你
    Threshold Selection Method Based on Reciprocal Gray Entropy and Artificial Bee Colony Optimization
    浪費(fèi)時(shí)間
    久久精品国产综合久久久| 看免费av毛片| 免费一级毛片在线播放高清视频| 欧美最黄视频在线播放免费| 丁香六月欧美| 不卡av一区二区三区| 亚洲av片天天在线观看| 特级一级黄色大片| 2021天堂中文幕一二区在线观| 床上黄色一级片| 桃红色精品国产亚洲av| 亚洲avbb在线观看| 亚洲一区中文字幕在线| 欧美黑人精品巨大| 麻豆av在线久日| 亚洲精品国产一区二区精华液| 搞女人的毛片| 国产精品久久久av美女十八| 成人午夜高清在线视频| 国产激情久久老熟女| 99国产精品一区二区三区| 午夜免费成人在线视频| 在线观看美女被高潮喷水网站 | 国产在线精品亚洲第一网站| 欧美日韩黄片免| 久久中文看片网| 亚洲精品中文字幕一二三四区| 最新在线观看一区二区三区| 特级一级黄色大片| 啦啦啦免费观看视频1| 极品教师在线免费播放| 又爽又黄无遮挡网站| 韩国av一区二区三区四区| 91字幕亚洲| 麻豆国产97在线/欧美 | 精品一区二区三区视频在线观看免费| 成人av在线播放网站| 日本撒尿小便嘘嘘汇集6| 精品久久久久久成人av| 伊人久久大香线蕉亚洲五| 中文字幕熟女人妻在线| 午夜精品在线福利| 欧美不卡视频在线免费观看 | 嫁个100分男人电影在线观看| 成人手机av| 久久久久久久久免费视频了| 悠悠久久av| 欧美日韩乱码在线| 黄色视频,在线免费观看| 最好的美女福利视频网| 又粗又爽又猛毛片免费看| 色在线成人网| 精品欧美国产一区二区三| 精品久久蜜臀av无| 少妇粗大呻吟视频| 国产精品电影一区二区三区| 免费人成视频x8x8入口观看| 妹子高潮喷水视频| 高清毛片免费观看视频网站| 久久久久久国产a免费观看| 亚洲国产欧美网| 99国产综合亚洲精品| 黄色 视频免费看| 国产日本99.免费观看| 亚洲一区中文字幕在线| 国产成人啪精品午夜网站| 日韩欧美免费精品| 白带黄色成豆腐渣| 99精品久久久久人妻精品| 久久婷婷成人综合色麻豆| svipshipincom国产片| а√天堂www在线а√下载| 99久久综合精品五月天人人| 老汉色av国产亚洲站长工具| 久久国产精品影院| 亚洲成av人片免费观看| 99国产极品粉嫩在线观看| 观看免费一级毛片| 亚洲精品久久国产高清桃花| 美女免费视频网站| 国产亚洲精品一区二区www| 两人在一起打扑克的视频| 亚洲成人中文字幕在线播放| 精品日产1卡2卡| 久久久久国产精品人妻aⅴ院| 日本 欧美在线| 午夜两性在线视频| 国产久久久一区二区三区| 久久草成人影院| 日日摸夜夜添夜夜添小说| 少妇熟女aⅴ在线视频| 精品国产亚洲在线| 日韩国内少妇激情av| 国产成人av教育| 国产精品野战在线观看| 国产精品综合久久久久久久免费| 国产精品久久久久久人妻精品电影| 久久热在线av| 中文字幕熟女人妻在线| 美女午夜性视频免费| 欧美日韩国产亚洲二区| 高清在线国产一区| 91国产中文字幕| 国产99白浆流出| 午夜日韩欧美国产| 国产激情久久老熟女| 国产精品自产拍在线观看55亚洲| 精品国产亚洲在线| 国产精品亚洲一级av第二区| 777久久人妻少妇嫩草av网站| 亚洲免费av在线视频| 18禁国产床啪视频网站| 国产午夜福利久久久久久| 老司机在亚洲福利影院| 老司机在亚洲福利影院| 亚洲av五月六月丁香网| 成人精品一区二区免费| 国产精华一区二区三区| 人人妻,人人澡人人爽秒播| 国产99白浆流出| 成人av一区二区三区在线看| 国产精品综合久久久久久久免费| 男人舔奶头视频| 美女大奶头视频| 亚洲片人在线观看| www日本黄色视频网| 搡老岳熟女国产| 丁香欧美五月| 国产av一区二区精品久久| 五月玫瑰六月丁香| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久久午夜电影| 国产一区二区在线观看日韩 | 制服丝袜大香蕉在线| 久久久久久免费高清国产稀缺| 狠狠狠狠99中文字幕| 欧美黑人巨大hd| 中文亚洲av片在线观看爽| 欧美成人一区二区免费高清观看 | 亚洲av第一区精品v没综合| 高潮久久久久久久久久久不卡| 美女免费视频网站| 正在播放国产对白刺激| 国产亚洲av嫩草精品影院| 黄色视频不卡| 人妻夜夜爽99麻豆av| 日本一二三区视频观看| 国产免费av片在线观看野外av| 久久久久久久久久黄片| 欧美日韩乱码在线| 一个人免费在线观看电影 | 婷婷亚洲欧美| 久久久精品大字幕| 欧美激情久久久久久爽电影| 亚洲精品在线观看二区| 99热只有精品国产| 亚洲黑人精品在线| 亚洲免费av在线视频| 看片在线看免费视频| 亚洲人成网站在线播放欧美日韩| 少妇人妻一区二区三区视频| 国产亚洲欧美在线一区二区| 日韩大码丰满熟妇| 国产人伦9x9x在线观看| 日韩欧美在线乱码| 亚洲熟女毛片儿| 精华霜和精华液先用哪个| 床上黄色一级片| 毛片女人毛片| 丰满人妻熟妇乱又伦精品不卡| 亚洲自偷自拍图片 自拍| 亚洲 国产 在线| 国产精品一区二区三区四区久久| 欧美黑人巨大hd| 老司机福利观看| 久久久久免费精品人妻一区二区| 久久久久久九九精品二区国产 | 国产视频内射| 脱女人内裤的视频| 全区人妻精品视频| 国产免费av片在线观看野外av| 国产黄色小视频在线观看| 最近在线观看免费完整版| 亚洲一区高清亚洲精品| 日韩大尺度精品在线看网址| 一区二区三区激情视频| 久久久久亚洲av毛片大全| 欧美精品啪啪一区二区三区| 99久久久亚洲精品蜜臀av| 久久天堂一区二区三区四区| 久久婷婷成人综合色麻豆| 99国产极品粉嫩在线观看| 欧美黄色片欧美黄色片| 精品免费久久久久久久清纯| 99精品久久久久人妻精品| 首页视频小说图片口味搜索| 9191精品国产免费久久| 国产精品综合久久久久久久免费| 男女床上黄色一级片免费看| 一级片免费观看大全| 老司机午夜福利在线观看视频| 香蕉久久夜色| 日韩精品青青久久久久久| 国产一区二区激情短视频| 亚洲成av人片免费观看| 黑人欧美特级aaaaaa片| 国产精品亚洲一级av第二区| 草草在线视频免费看| 丝袜人妻中文字幕| 欧美国产日韩亚洲一区| 午夜福利高清视频| av超薄肉色丝袜交足视频| 欧美最黄视频在线播放免费| 色在线成人网| 18禁黄网站禁片午夜丰满| 欧美不卡视频在线免费观看 | 欧美中文综合在线视频| 午夜福利高清视频| 国产成人影院久久av| 亚洲国产欧美网| 免费av毛片视频| 精品一区二区三区四区五区乱码| 国产精品98久久久久久宅男小说| 听说在线观看完整版免费高清| svipshipincom国产片| www.自偷自拍.com| 91国产中文字幕| 国产伦在线观看视频一区| 欧美午夜高清在线| 日本撒尿小便嘘嘘汇集6| 欧美精品啪啪一区二区三区| 国产又色又爽无遮挡免费看| 国产av在哪里看| 人妻夜夜爽99麻豆av| 在线观看一区二区三区| 亚洲九九香蕉| 老鸭窝网址在线观看| 色综合欧美亚洲国产小说| 搡老熟女国产l中国老女人| 老熟妇仑乱视频hdxx| 国产精品久久久久久精品电影| 欧美在线一区亚洲| 国产97色在线日韩免费| 在线观看舔阴道视频| 国产野战对白在线观看| 两个人视频免费观看高清| 成熟少妇高潮喷水视频| 国产熟女xx| 国产人伦9x9x在线观看| 日本黄色视频三级网站网址| 精品乱码久久久久久99久播| 午夜福利在线观看吧| 特大巨黑吊av在线直播| 99国产精品一区二区三区| 丰满的人妻完整版| 午夜福利视频1000在线观看| 欧美久久黑人一区二区| 日韩中文字幕欧美一区二区| 亚洲精品色激情综合| 久久性视频一级片| 99热这里只有是精品50| 日本黄大片高清| 亚洲精品国产精品久久久不卡| 热99re8久久精品国产| 国产精品野战在线观看| 国产三级中文精品| 一个人免费在线观看电影 | 很黄的视频免费| 日韩中文字幕欧美一区二区| 亚洲精华国产精华精| 欧美日韩国产亚洲二区| 国产精品爽爽va在线观看网站| 最新美女视频免费是黄的| 久久国产乱子伦精品免费另类| 亚洲欧美日韩高清专用| 全区人妻精品视频| 中国美女看黄片| 又黄又粗又硬又大视频| 久久精品影院6| svipshipincom国产片| 久久人人精品亚洲av| 久久久国产成人免费| 国产精品一区二区精品视频观看| 精品久久久久久久毛片微露脸| 天堂影院成人在线观看| 黄色女人牲交| 欧美中文综合在线视频| 在线视频色国产色| 老司机午夜十八禁免费视频| 999精品在线视频| 最近最新免费中文字幕在线| 国产免费男女视频| 舔av片在线| 精品国产乱子伦一区二区三区| 久久婷婷人人爽人人干人人爱| 精品一区二区三区四区五区乱码| 国产av一区二区精品久久| 亚洲av熟女| 国产成人av教育| 亚洲天堂国产精品一区在线| 久久久久久久久免费视频了| 天天一区二区日本电影三级| 全区人妻精品视频| 国产精品国产高清国产av| 人妻夜夜爽99麻豆av| 2021天堂中文幕一二区在线观| 亚洲,欧美精品.| 51午夜福利影视在线观看| 久久久国产成人免费| 黄色丝袜av网址大全| 亚洲午夜理论影院| 全区人妻精品视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产欧洲综合997久久,| 久久精品91无色码中文字幕| 欧美黄色淫秽网站| 国产av麻豆久久久久久久| 变态另类成人亚洲欧美熟女| 国产一区二区在线观看日韩 | 精品久久蜜臀av无| 成人特级黄色片久久久久久久| АⅤ资源中文在线天堂| 桃色一区二区三区在线观看| av免费在线观看网站| 久久婷婷人人爽人人干人人爱| 在线观看免费日韩欧美大片| 国产成+人综合+亚洲专区| 日韩欧美一区二区三区在线观看| 18禁裸乳无遮挡免费网站照片| 国产av麻豆久久久久久久| 美女免费视频网站| 国产成人影院久久av| 日日夜夜操网爽| 亚洲精品在线观看二区| 午夜亚洲福利在线播放| 最新在线观看一区二区三区| 国产精品99久久99久久久不卡| 国产精品,欧美在线| 真人一进一出gif抽搐免费| 国产99久久九九免费精品| 亚洲 国产 在线| 午夜福利在线观看吧| 亚洲中文日韩欧美视频| 宅男免费午夜| 99久久精品国产亚洲精品| 色老头精品视频在线观看| 天堂动漫精品| 最新在线观看一区二区三区| 午夜两性在线视频| 嫩草影院精品99| 久久热在线av| 精品人妻1区二区| 欧美zozozo另类| 两个人看的免费小视频| ponron亚洲| 亚洲精品中文字幕一二三四区| 国产高清videossex| 此物有八面人人有两片| 国产成人精品久久二区二区91| 怎么达到女性高潮| 国产不卡一卡二| 三级毛片av免费| 国产精品98久久久久久宅男小说| 久久久久久国产a免费观看| 欧洲精品卡2卡3卡4卡5卡区| 18禁观看日本| 国产精品 国内视频| 国产成人精品久久二区二区免费| 国产av一区二区精品久久| x7x7x7水蜜桃| 国产视频一区二区在线看| 嫩草影院精品99| 黑人欧美特级aaaaaa片| 国产在线观看jvid| 久久久国产成人免费| 久久婷婷成人综合色麻豆| 一个人观看的视频www高清免费观看 | 俺也久久电影网| 99热这里只有精品一区 | 99国产精品一区二区蜜桃av| www国产在线视频色| 黑人操中国人逼视频| 久久欧美精品欧美久久欧美| 嫩草影院精品99| av片东京热男人的天堂| 老司机深夜福利视频在线观看| 国产一区在线观看成人免费| 99re在线观看精品视频| 国产又黄又爽又无遮挡在线| 小说图片视频综合网站| 黄片小视频在线播放| 丝袜人妻中文字幕| 午夜久久久久精精品| 亚洲中文字幕日韩| 中文字幕人妻丝袜一区二区| 国产精华一区二区三区| 性欧美人与动物交配| 91老司机精品| 欧美日韩黄片免| 亚洲片人在线观看| 国产精品久久久人人做人人爽| 国产精品久久久久久人妻精品电影| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲精品一区二区www| 国产精品免费一区二区三区在线| 最新在线观看一区二区三区| 麻豆久久精品国产亚洲av| 亚洲aⅴ乱码一区二区在线播放 | 精华霜和精华液先用哪个| 国产成人aa在线观看| 777久久人妻少妇嫩草av网站| 中文字幕熟女人妻在线| 国产在线精品亚洲第一网站| 一级a爱片免费观看的视频| av福利片在线| 亚洲人成网站在线播放欧美日韩| а√天堂www在线а√下载| 成人欧美大片| 久久99热这里只有精品18| 国产亚洲欧美98| 亚洲成人久久性| 欧美色视频一区免费| 国产爱豆传媒在线观看 | 久久亚洲精品不卡| 日本一本二区三区精品| 琪琪午夜伦伦电影理论片6080| netflix在线观看网站| 国产伦人伦偷精品视频| 国产精品国产高清国产av| a级毛片在线看网站| 亚洲中文字幕日韩| 国产蜜桃级精品一区二区三区| 成人18禁高潮啪啪吃奶动态图| 一二三四社区在线视频社区8| 国产高清videossex| 亚洲 国产 在线| 国产爱豆传媒在线观看 | 久久国产精品人妻蜜桃| 国产成人系列免费观看| 一级作爱视频免费观看| 亚洲专区国产一区二区| 叶爱在线成人免费视频播放| 日韩大尺度精品在线看网址| 99久久精品热视频| 又爽又黄无遮挡网站| 成人av一区二区三区在线看| 免费看十八禁软件| 超碰成人久久| 色综合站精品国产| 午夜福利高清视频| 三级毛片av免费| 精品久久久久久,| 熟女少妇亚洲综合色aaa.| 两个人免费观看高清视频| 国产aⅴ精品一区二区三区波| 亚洲熟妇熟女久久| 亚洲国产日韩欧美精品在线观看 | 国产精品一区二区三区四区久久| 国产成人av教育| 国产精品免费视频内射| 欧美日韩亚洲综合一区二区三区_| 亚洲精品av麻豆狂野| 18禁国产床啪视频网站| www.精华液| 欧美一区二区精品小视频在线| 国产成人精品无人区| 啦啦啦韩国在线观看视频| 欧美日韩黄片免| 亚洲五月天丁香| 99精品在免费线老司机午夜| 日本 av在线| 亚洲欧美激情综合另类| 色哟哟哟哟哟哟| 禁无遮挡网站| 久久香蕉精品热| 色精品久久人妻99蜜桃| 国产精品乱码一区二三区的特点| 中文字幕熟女人妻在线| 国产成人精品久久二区二区免费| 日韩三级视频一区二区三区| 国产精品一区二区免费欧美| 国产精品一及| 欧美国产日韩亚洲一区| 国内揄拍国产精品人妻在线| 久久精品国产99精品国产亚洲性色| 午夜免费成人在线视频| 久久久国产成人免费| 不卡一级毛片| 青草久久国产| 日韩中文字幕欧美一区二区| 18禁裸乳无遮挡免费网站照片| 国产精品免费视频内射| 一本久久中文字幕| 午夜福利在线在线| 欧美国产日韩亚洲一区| 久久久久久国产a免费观看| 天天一区二区日本电影三级| 给我免费播放毛片高清在线观看| 午夜福利在线在线| 亚洲第一电影网av| 午夜福利免费观看在线| 午夜激情av网站| 99在线视频只有这里精品首页| 久久人人精品亚洲av| 正在播放国产对白刺激| 19禁男女啪啪无遮挡网站| 不卡av一区二区三区| 亚洲国产精品成人综合色| 一区二区三区激情视频| e午夜精品久久久久久久| 久久这里只有精品中国| 国产精品电影一区二区三区| 国产伦人伦偷精品视频| 精品一区二区三区视频在线观看免费| 国产97色在线日韩免费| 黄片小视频在线播放| 在线观看舔阴道视频| 久久天躁狠狠躁夜夜2o2o| 久久久久久九九精品二区国产 | 草草在线视频免费看| 国产精品野战在线观看| 免费搜索国产男女视频| 精品电影一区二区在线| 国产成人啪精品午夜网站| 19禁男女啪啪无遮挡网站| 亚洲国产精品合色在线| 亚洲一卡2卡3卡4卡5卡精品中文| 美女午夜性视频免费| 啦啦啦观看免费观看视频高清| 免费看美女性在线毛片视频| 亚洲电影在线观看av| 1024手机看黄色片| 亚洲国产精品sss在线观看| 精品第一国产精品| 国内毛片毛片毛片毛片毛片| 亚洲 欧美 日韩 在线 免费| 久久久国产成人精品二区| 久久中文看片网| 好看av亚洲va欧美ⅴa在| 男女视频在线观看网站免费 | 国产v大片淫在线免费观看| 男女床上黄色一级片免费看| 天天一区二区日本电影三级| 最近在线观看免费完整版| 美女免费视频网站| 国产99久久九九免费精品| 久久久久久久精品吃奶| 午夜福利高清视频| 日本三级黄在线观看| 91成年电影在线观看| 国语自产精品视频在线第100页| bbb黄色大片| 国产av一区二区精品久久| 亚洲国产欧美网| 十八禁人妻一区二区| 亚洲自拍偷在线| 黄色a级毛片大全视频| 久久精品国产亚洲av高清一级| 亚洲成人久久性| 亚洲男人的天堂狠狠| 国产精品日韩av在线免费观看| 激情在线观看视频在线高清| 狂野欧美白嫩少妇大欣赏| 日本 av在线| 欧美高清成人免费视频www| 99riav亚洲国产免费| 亚洲乱码一区二区免费版| xxx96com| www日本黄色视频网| 国产成人啪精品午夜网站| 91成年电影在线观看| 少妇熟女aⅴ在线视频| 免费看十八禁软件| 老司机靠b影院| 国产三级黄色录像| 亚洲欧美激情综合另类| 成人国产一区最新在线观看| 国产亚洲欧美98| 亚洲精品在线观看二区| 国产日本99.免费观看| 两个人的视频大全免费| 国产精品美女特级片免费视频播放器 | 免费看日本二区| 亚洲成人中文字幕在线播放| 熟女少妇亚洲综合色aaa.| 亚洲成人国产一区在线观看| 亚洲 欧美一区二区三区| 成在线人永久免费视频| 在线十欧美十亚洲十日本专区| 免费人成视频x8x8入口观看| 中文亚洲av片在线观看爽| 亚洲人成电影免费在线| 亚洲成人精品中文字幕电影| 亚洲avbb在线观看| 美女高潮喷水抽搐中文字幕| 国产激情欧美一区二区| 久久中文字幕一级| av免费在线观看网站| 好男人在线观看高清免费视频| 波多野结衣高清无吗| 色av中文字幕| 日韩欧美三级三区| 中文字幕高清在线视频| 欧美成人性av电影在线观看| 久久久久久免费高清国产稀缺| 欧美极品一区二区三区四区| 嫩草影院精品99| 亚洲精品中文字幕在线视频| 欧洲精品卡2卡3卡4卡5卡区| 俄罗斯特黄特色一大片| 悠悠久久av| 中文字幕最新亚洲高清| 制服丝袜大香蕉在线| 大型黄色视频在线免费观看| 久久热在线av|