• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Threshold Selection Method Based on Reciprocal Gray Entropy and Artificial Bee Colony Optimization

    2014-04-24 10:53:46WuYiquan吳一全MengTianliang孟天亮WuShihua吳詩(shī)婳LuWenping盧文平
    關(guān)鍵詞:天亮

    Wu Yiquan(吳一全),Meng Tianliang(孟天亮),Wu Shihua(吳詩(shī)婳),Lu Wenping(盧文平)

    1.College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China;2.Engineering Technology Research Center of Wuhan Intelligent Basin,Changjiang River Scientific Research Institute,Changjiang Water Resources Commission of the Ministry of Water Resources,Wuhan,430010,P.R.China;3.Key Laboratory of the Yellow River Sediment of Ministry of Water Resource,Yellow River Institute of Hydraulic Research,Zhengzhou,450003,P.R.China;4.State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin,150090,P.R.China;5.State Key Laboratory of Food Science and Technology,Jiangnan University,Wuxi,214122,P.R.China

    1 Introduction

    Image segmentation is a significant step in the process from image preprocessing to image recognition or visual detection.Thresholding is the most widely used image segmentation meth-od.It is proved to be effective and easy to implement.Thresholding is applied to many fields[1-4],such as remote sensing image monitoring,machine visual measurement and infrared object detection.The core of thresholding is searching for the optimal threshold quickly to achieve accurate segmentation.The methods[5-6]which take maximum Shannon entropy as the criterion have attracted much attention among existing threshold selection methods.One-dimensional(1-D)maximum Shannon entropy method was first proposed by Kapur,et al[7].To improve the segmentation effects of noisy images,Abutaleb[8]and Brink[9]extended the 1-D method to two-dimensional(2-D)maximum Shannon entropy threshold selection.Du,et al[10]utilized the particle swarm optimization algorithm to accelerate the processing of 2-D maximum Shannon entropy method.However,the maximum Shannon entropy method searches for the optimal threshold only according to the probability information of gray level,ignoring the gray level uniformity within classes,which results in inaccurate segmentation of some images.Considering the gray level uniformity within classes,a threshold selection method based on Shannon gray entropy was proposed[11].The gray entropy describes the gray level difference within classes.The larger the gray entropy is,the smaller the gray level difference within classes is,which indicates that the gray levels are more uniform within either objective class or background class,thus superior segmentation effects are achieved.

    The maximum Shannon entropy method and the Shannon gray entropy method mentioned above are both based on the logarithmic entropy.However,the logarithm has the drawback of undefined value at zero points,which will cause some troubles when dealing with the data.For this reason,Pal,et al[12]introduced the idea of exponential entropy,and replaced the frequently used Shannon entropy in threshold selection criterion.The problem of undefined value of logarithm was avoided and the maximum exponential entropy threshold selection method was presented.Recently,a reciprocal entropy[13]was introduced as the threshold selection criterion.It also avoided the drawback of Shannon entropy and attained good segmentation effects.Moreover,the involved multiplication and division operations in this reciprocal entropy were less time-consuming than both the logarithm operations in Shannon entropy and the exponent operations in exponential entropy in practical systems.Through the above analysis,if the advantages of reciprocal entropy are combined with those of gray entropy,a more accurate and faster image segmentation method can be expected.Meanwhile,the traditional 2-D histogram region division is kind of unreasonable[14]and has to search for two thresholds,namely original gray level threshold and neighborhood average gray level threshold.If adopting 2-D histogram oblique division,the segmentation will be more accurate,and only one threshold instead of two needs to be computed,thus the running time is significantly reduced.For further improving the processing efficiency,the artificial bee colony(ABC)algorithm proposed lately[15-16]can be adopted.ABC algorithm copies the process of bee gathering nectar.It makes use of local optimizing behavior of each bee to obtain the global optimal value.This algorithm has the advantages of high convergence precision and fast searching speed[17],and it can properly avoid the local extremum.Thus the real-time performance of reciprocal gray entropy thresholding method with 2-D histogram oblique division can be further improved with the help of ABC optimization.

    In view of the above mentioned factors,a new image threshold selection method is proposed based on reciprocal gray entropy with 2-D histogram oblique division and ABC optimization.Firstly,the definition of reciprocal gray entropy is introduced and the 1-D reciprocal gray entropy thresholding method is given.Then the criterion function of 2-D reciprocal gray entropy threshold selection is derived.To improve the real-time performance,ABC optimization is adopted to accelerate the search for optimal threshold.Finally,a large number of experiments have been performed on different kinds of images.And the proposed method is compared with the maximum Shannon entropy method with 2-D histogram oblique division and the maximum reciprocal entro-py method with 2-D histogram oblique division based on niche chaotic mutation particle swarm optimization(NCPSO)is made.

    2 1-D Threshold Selection Based on Reciprocal Gray Entropy

    Suppose that f(m,n)stands for the gray level of the pixel(m,n)in an image whose size is Mpixel×Npixel and total number of gray levels is L.The number of pixels with gray level i(i=0,1,…,L-1)is denoted as h(i).Now the image is segmented into two classes,i.e.,the object class Co={(m,n)|f(m,n)=0,1,…,t}and the background class Cb={(m,n)|f(m,n)=t+1,t+2,…,L-1}(We regard dark pixels as the object pixels for convenience).Suppose

    Then the reciprocal gray entropy of the object class is

    The reciprocal gray entropy of the background class is

    Larger reciprocal gray entropy means the gray levels within classes are more uniform and the segmentation effect is better.Thus the optimal threshold t*is determined by the maximum value of reciprocal gray entropy

    3 2-D Threshold Selection Based on Reciprocal Gray Entropy and Histogram Oblique Division

    Suppose the gray level and neighborhood average gray level of the pixel(m,n)are f(m,n)and g(m,n),respectively(written as i and j in the following formulae,i,j=0,1,…,L-1),and h(i,j)denotes the frequency of the pairs(i,j).Obviously

    The traditional gray level neighborhood average gray level histogram division is shown in Fig.1.Four rectangular regions around the 2-D point(t,s)are obtained.Set of dark pixels,that is lower left quarter of 2-D histogram region,stands for the object region.And the upper right quarter stands for background region.The upper left quarter and the lower right quarter are regarded as regions of edges and noise because the difference between original gray levels and neighborhood average gray levels of the pixels here is large.However,this division does not match the real 2-D gray level probability distribution.Therefore,oblique division manner is adopted to the 2-D histogram region,which is a more accurate division of object class and background class.Moreover the threshold to be computed is reduced to one.As a result,the running time of the proposed method decreases.

    Fig.1 Region division of 2-D histogram

    In Fig.1,the 2-D histogram region is divided by the straight line g=-f+t.Suppose the lower left part of the straight line is object region,and the upper right part is background region.The sums of gray levels of the object class and the background class areμo(t)= [)]Tand μb(t)=]T,respectively.Their computational methods are given later in this paper.The sum of gray levels of the whole image is

    Similar to the 1-D reciprocal gray entropy,the 2-D reciprocal gray entropy H2(t)can be written as

    where Ho(t)and Hb(t)stand for the reciprocal gray entropy of the object class and the background class,respectively.They can be calculated by the following formulae.

    (1)0≤t≤L-1

    (2)L-1<t≤2L-2

    The sums of gray levels of object class and background classμo(t)=and μb(t)=can be calculated by recursive algorithm.For example,when 0<t≤L-1

    When L-1<t≤2L-2,the recursive algorithm is similar,and unnecessary repeating is avoided here.In this way,the algorithmic running time can be reduced to a great extent.The reciprocal gray entropy threshold selection formula with 2-D histogram oblique division is as follows

    To further accelerate the search for optimal threshold,ABC optimization is adopted.

    4 ABC Optimization Algorithm

    ABC algorithm copies the process of bee gathering nectar.It includes three parts,namely leading bees,observation bees and detective bees.

    (1)Leading bees

    The number of leading bees is denoted by NL.Each leading bee corresponds to a food source.The location of food source is the potential solution of criterion function,or the potential optimal threshold.The profits of food sources are represented by the fitness of solutions

    where Xi(i=1,2,…,NL)denotes the possible solution,f(Xi)denotes the value of objective function which is corresponding to Eq.(5).Each leading bee looks for a new food source near the last one.The new position is determined by the following formula

    whereεis a random number on[-1,1],Xlthe position of the lth food source(l≠i).The leading bee chooses the better one from the two food sources in terms of corresponding fitness.

    (2)Observation bees

    Each observation bee selects a leading bee to follow.Which one to select is determined by the proportion of profits Pi.

    According to Eq.(8),the observation bee randomly observes a new food source around the leading bee it follows.The leading bee will come to the food source found by the observation bee if this one is better,otherwise it will stay.

    (3)Detective bees

    When a leading bee falls into a local extremum,this leading bee turns into a detective bee.It will randomly search a new food source to jump out of the local extremum.

    These three parts cycle until the best location is found.The specific procedures applying ABC optimization to reciprocal gray entropy threshold selection method with 2-D histogram oblique division are as follows.

    Step 1 Set the controlling values.The number of all the bees is 10,5leading bees and 5observation bees.The max cycle number CMis 10,and the cycle number CLis set to 3,which is used to judge whether a leading bee has fallen into a local extremum.The space to search is[0,510].

    Step 2 Initialize the location Xi(i=1,2,…,5)of each leading bee.Xiis a random integer in the range[0,510].Then Eq.(7)is used to calculate the fitness of Xi.

    Step 3 According to Eq.(8),each leading bee randomly looks for a new food source Ziaround the old one.The fitness of Ziis calculated,and if Ziis better,its value will replace the last value of Xi.

    Step 4 According to Eq.(9),each observation bee picks a leading bee to follow,at the same time it searches for a better food source around the leading bee,and it will also give the better value to Xiif it finds one.

    Step 5 If the cycle number reaches CLbut the fitness of Xiis still not improved,then the corresponding leading bee will turn into a detective bee to look for a new food source.

    Step 6 When a cycle is over,the optimal solution of this cycle is recorded,and the variable C of cycle number automatically pluses 1.

    Step 7 When the cycle number Creaches the max cycle number CM,the iteration progress is finished.Then the image is segmented by the obtained optimal threshold.Otherwise,go to Step 3to continue the cycle progress.

    5 Results and Discussion

    Experiments have been done on many different kinds of images with the proposed method,and the results are given.A large number of experimental results show that,compared with maximum Shannon entropy method with 2-D histogram oblique division[14]and maximum reciprocal entropy method with 2-D histogram oblique division based on NCPSO[13],the proposed method has obvious advantages.Now we analyze the effectiveness of the proposed method with two bright images(meat images)(252pixel×200 pixel/1024pixel×739pixel)and two dark images(SAR remote sensing images)(199pixel×199 pixel/205pixel×135pixel).The corresponding running time is listed in Table 1.The processing environment of all these three methods is Pentium(R)Dual-Core CPU 2.10GHz/2GB,Matlab R2010b.

    Figs.2,3are two bright images with low contrast.Since both maximum Shannon entropy method with 2-D histogram oblique division[14]and maximum reciprocal entropy method with 2-Dhistogram oblique division based on NCPSO[13]tend to focus on small targets(small areas with very different gray levels),their segmentation results are not so satisfactory.However,the proposed method takes into account the gray level uniformity within classes,not just the probability distribution.Therefore,better segmentation results are obtained.It can be seen that the proposed method is able to segment meat images excellently.Not only the outlines are clear but also the lean meat areas and the fat meat areas are distinguished accurately.For the same reason,in Fig.4the first two methods regard the highlighted bridge as the target,as a result large area of shadow which is connected with the water area is segmented in the land area.This will surely make troubles for river extraction in the next step.The proposed method segments the river in the SAR remote sensing image 1accurately,meanwhile it keeps the details of land areas well.In Fig.5,maximum Shannon entropy method with 2-D histogram oblique division[14]basically has the river detected,but the edges and details are not clear.Maximum reciprocal entropy method with 2-D histogram oblique division based on NCPSO[13]does not segment the image effectively,the infor-

    mation of the river area is annihilated.The result of the proposed method shows river area and land area clearly,and many details are also kept very well.

    Table 1 Comparisons of three methods in optimal thresholds and running time

    Fig.2 Meat image 1and segmentation results

    Fig.3 Meat image 2and segmentation results

    Fig.4 SAR remote sensing image 1and segmentation results

    Fig.5 SAR remote sensing image 2and segmentation results

    From data shown in Table 1,it can be seen that maximum Shannon entropy method with 2-D histogram oblique division[14]can deal with images with small size quickly,but when the size of images is large,the processing time increases rapidly.Maximum reciprocal entropy method with 2-D histogram oblique division based on NCPSO[13]and the proposed method do not suffer from the problem,and both can satisfy the real-time requirement.

    6 Conclusions

    The definition of reciprocal gray entropy and the 1-D reciprocal gray entropy threshold selection method are introduced.Based on this,reciprocal gray entropy threshold selection method with 2-D histogram oblique division is proposed.Furthermore,ABC optimization algorithm is adopted to accelerate the searching process.The proposed method avoids the drawback of undefined value at zero points of Shannon entropy.Moreover,taking into account the gray level uniformity within classes the image segmentation accuracy is improved.The object and background are segmented accurately and the details in the segmented image are kept very well.A large number of experimental results show that,compared with maximum Shannon entropy method with 2-D histogram oblique division[14]and maximum reciprocal entropy method with 2-D histogram oblique division based on NCPSO[13],the proposed method has obvious advantages in segmentation effects and can meet the real-time processing requirement.

    [1] An Chengjin,Niu Zhaodong,Li Zhijun,et al.Otsu threshold comparison and SAR water segmentation result analysis[J].Journal of Electronics and Information Technology,2010,32(9):2215-2219.(in Chinese)

    [2] Zheng D M,Dai Z D,Wang H M.Development and preliminary application of objectifying system for TCM color inspection[J].Transactions of Nanjing University of Aeronautics and Astronautics,2012,29(4):395-403.

    [3] Liu Songlin,Niu Zhaodong,Chen Zengping.Minimum error thresholding for infrared image under constraint of cross entropy[J].Infrared and Laser Engineering,2014,43(3):979-984.(in Chinese)

    [4] Gao Weiwei,Shen Jianxin,Wang Yuliang.Comparative approaches for automated detection of hard exudates in fundus images[J].Journal of Nanjing University of Aeronautics and Astronautics,2013,45(1):55-61.(in Chinese)

    [5] Cao L,Shi Z K,Cheng K W.Automatic multilevel thresholding method based on maximum entropy[J].Transactions of Nanjing University of Aeronautics and Astronautics,2005,22(4):335-338.

    [6] Guo Haitao,Tian Tan,Wang Lianyu,et al.Image segmentation using the maximum entropy of the twodimensional bound histogram[J].Acta Optica Sinica,2006,26(4):506-509.(in Chinese)

    [7] Kapur J N,Sahoo P K,Wong A K C.A new method for gray-level picture thresholding using the entropy of histogram[J].Computer Vision,Graphics and Image Processing,1985,29(1):273-285.

    [8] Abutaleb A S.Automatic thresholding of gray-level picture using two-dimensional entropies[J].Pattern Recognition,1989,47(1):22-32.

    [9] Brink A D.Thresholding of digital image using twodimensional entropies[J].Pattern Recognition,1992,25(8):803-808.

    [10]Du F,Shi W K,Chen L Z,et al.Infrared image seg-mentation with 2Dmaximum entropy method based on particle swarm optimization[J].Pattern Recognition Letters,2005,26(5):597-603.

    [11]Wu Yiquan,Ji Shouxin,Wu Shihua,et al.Gray entropy image thresholding based on two-dimensional histogram vertical and oblique segmentation[J].Journal of Tianjin University,2011,44(12):1043-1049.(in Chinese)

    [12]Pal S K,Pal N R.Entropic thresholding[J].Signal Processing,1989,16(2):97-108.

    [13]Wu Yiquan,Zhan Bichao.Thresholding based on reciprocal entropy and chaotic particle swarm optimization[J].Signal Processing,2010,26(7):1044-1049.(in Chinese)

    [14]Wu Yiquan,Pan Zhe,Wu Wenyi.Maximum entropy image thresholding based on two-dimensional histo-gram oblique segmentation[J].Pattern Recognition and Artificial Intelligence,2009,22(1):162-168.(in Chinese)

    [15]Xiao Y H,Cao Y F,Yu W Y,et al.Multi-level threshold selection based on artificial bee colony algorithm and maximum entropy for image segmentation[J].International Journal of Computer Applications in Technology,2012,43(4):343-350.

    [16]Horng M H.Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation[J].Expert Systems with Applications,2011,38(11):13785-13791.

    [17]Ma M,Liang J H,Guo M,et al.SAR image segmentation based on artificial bee colony algorithm[J].Applied Soft Computing Journal,2011,11(8):5205-5214.

    猜你喜歡
    天亮
    金雞報(bào)曉
    Transition from isotropic to polar state of self-driven eccentric disks
    云的味道
    女“鬼”出動(dòng)
    故事林(2019年7期)2019-04-18 02:35:26
    等來(lái)一場(chǎng)雨
    眠空
    青春(2017年5期)2017-05-22 11:53:46
    天亮了嗎
    GO GO SLEEP!睡出水光??!
    《云端三公尺》:下一個(gè)天亮,誰(shuí)在等你
    浪費(fèi)時(shí)間
    俄罗斯特黄特色一大片| 国产精品1区2区在线观看. | 日韩免费av在线播放| 久久热在线av| 日本撒尿小便嘘嘘汇集6| 99riav亚洲国产免费| 精品人妻熟女毛片av久久网站| 乱人伦中国视频| 妹子高潮喷水视频| 亚洲午夜精品一区,二区,三区| 一级毛片精品| 高潮久久久久久久久久久不卡| av天堂久久9| 亚洲国产欧美在线一区| 亚洲黑人精品在线| 亚洲综合色网址| 国产精品美女特级片免费视频播放器 | 满18在线观看网站| 国产成人精品在线电影| 日韩熟女老妇一区二区性免费视频| 欧美激情 高清一区二区三区| 国产av一区二区精品久久| 十八禁高潮呻吟视频| 欧美日韩亚洲高清精品| 亚洲国产欧美日韩在线播放| 亚洲精品成人av观看孕妇| 亚洲中文日韩欧美视频| 色视频在线一区二区三区| 我的亚洲天堂| 天堂8中文在线网| 久久久久久久久免费视频了| 免费久久久久久久精品成人欧美视频| 精品午夜福利视频在线观看一区 | 成人18禁在线播放| 亚洲精品乱久久久久久| 日本vs欧美在线观看视频| 日韩有码中文字幕| 免费在线观看黄色视频的| 国产色视频综合| 中文欧美无线码| 91国产中文字幕| 国产黄频视频在线观看| 最新的欧美精品一区二区| 色精品久久人妻99蜜桃| a级毛片在线看网站| 国产成人精品无人区| 国产福利在线免费观看视频| 极品教师在线免费播放| 精品国产乱码久久久久久男人| 久久久欧美国产精品| 亚洲第一青青草原| 99在线人妻在线中文字幕 | 亚洲专区中文字幕在线| 国产成人欧美| 大型黄色视频在线免费观看| 亚洲精品在线观看二区| 国产成人系列免费观看| 国产欧美日韩一区二区三| 午夜福利乱码中文字幕| 亚洲第一av免费看| tube8黄色片| 亚洲国产看品久久| 久久毛片免费看一区二区三区| 精品人妻在线不人妻| 午夜福利一区二区在线看| 黄色成人免费大全| 777久久人妻少妇嫩草av网站| 亚洲精品久久午夜乱码| 一级毛片精品| 大片免费播放器 马上看| 一级毛片精品| 日日摸夜夜添夜夜添小说| 国产在线精品亚洲第一网站| 国产1区2区3区精品| 美女福利国产在线| 美女福利国产在线| 久久国产亚洲av麻豆专区| 超碰成人久久| 亚洲一区中文字幕在线| 变态另类成人亚洲欧美熟女 | 激情视频va一区二区三区| 757午夜福利合集在线观看| 国产成+人综合+亚洲专区| 亚洲av成人一区二区三| 夜夜骑夜夜射夜夜干| 久久精品亚洲精品国产色婷小说| 在线十欧美十亚洲十日本专区| 不卡av一区二区三区| 午夜福利影视在线免费观看| 中文字幕av电影在线播放| 欧美日韩国产mv在线观看视频| 亚洲自偷自拍图片 自拍| 一本综合久久免费| 成人永久免费在线观看视频 | 亚洲av日韩精品久久久久久密| 久久国产精品大桥未久av| 性色av乱码一区二区三区2| 精品久久久久久久毛片微露脸| 日韩欧美免费精品| 纵有疾风起免费观看全集完整版| 嫁个100分男人电影在线观看| 99香蕉大伊视频| 国产单亲对白刺激| 国产男女内射视频| 久久午夜综合久久蜜桃| 肉色欧美久久久久久久蜜桃| 午夜福利免费观看在线| 国内毛片毛片毛片毛片毛片| av网站免费在线观看视频| 久久精品91无色码中文字幕| 久久香蕉激情| 少妇的丰满在线观看| 国产高清videossex| 免费在线观看日本一区| 久久99热这里只频精品6学生| 一本大道久久a久久精品| 777久久人妻少妇嫩草av网站| 亚洲精品在线美女| 国产一区二区三区视频了| 新久久久久国产一级毛片| 久久中文看片网| 免费观看人在逋| 国产成人影院久久av| 国产欧美日韩综合在线一区二区| 国产单亲对白刺激| 丰满人妻熟妇乱又伦精品不卡| 国精品久久久久久国模美| 一本综合久久免费| 在线 av 中文字幕| 欧美日韩黄片免| 18禁观看日本| 久久精品熟女亚洲av麻豆精品| 精品乱码久久久久久99久播| 国产欧美日韩精品亚洲av| 久久国产精品大桥未久av| 精品福利永久在线观看| 国产精品偷伦视频观看了| 日韩大片免费观看网站| 精品第一国产精品| 91九色精品人成在线观看| av不卡在线播放| 在线观看www视频免费| 亚洲成人免费av在线播放| 99re6热这里在线精品视频| 亚洲欧美一区二区三区黑人| 欧美精品人与动牲交sv欧美| 后天国语完整版免费观看| 国产亚洲欧美精品永久| 高潮久久久久久久久久久不卡| 热99国产精品久久久久久7| 老汉色∧v一级毛片| avwww免费| 久久久水蜜桃国产精品网| 久久人妻熟女aⅴ| 国产精品成人在线| 亚洲人成电影免费在线| 成人亚洲精品一区在线观看| 欧美国产精品一级二级三级| 精品高清国产在线一区| 天天躁日日躁夜夜躁夜夜| 老熟女久久久| 黑人操中国人逼视频| av在线播放免费不卡| 欧美 日韩 精品 国产| 午夜福利视频精品| 狂野欧美激情性xxxx| 十八禁人妻一区二区| 久久精品国产亚洲av高清一级| 视频区欧美日本亚洲| 91麻豆精品激情在线观看国产 | 日韩欧美一区视频在线观看| 咕卡用的链子| 中文字幕最新亚洲高清| 老司机午夜十八禁免费视频| 亚洲色图 男人天堂 中文字幕| 黑人猛操日本美女一级片| 亚洲欧洲精品一区二区精品久久久| 亚洲精华国产精华精| 亚洲,欧美精品.| 热re99久久精品国产66热6| 曰老女人黄片| 国产高清视频在线播放一区| 18禁观看日本| 国产一区有黄有色的免费视频| 亚洲视频免费观看视频| 欧美黄色片欧美黄色片| 视频区欧美日本亚洲| 久久久国产成人免费| 99精品久久久久人妻精品| 亚洲av欧美aⅴ国产| 国产精品自产拍在线观看55亚洲 | 午夜激情av网站| 午夜激情av网站| 一区二区三区激情视频| 在线观看免费高清a一片| 国产精品电影一区二区三区 | 国产精品亚洲av一区麻豆| 日本一区二区免费在线视频| 亚洲七黄色美女视频| 久久久欧美国产精品| 肉色欧美久久久久久久蜜桃| 欧美人与性动交α欧美精品济南到| 久久久久久亚洲精品国产蜜桃av| av片东京热男人的天堂| 制服人妻中文乱码| 中文字幕精品免费在线观看视频| 伊人久久大香线蕉亚洲五| 欧美变态另类bdsm刘玥| 国产精品自产拍在线观看55亚洲 | 久久精品亚洲精品国产色婷小说| 热99国产精品久久久久久7| 中文亚洲av片在线观看爽 | 一边摸一边做爽爽视频免费| 国产精品影院久久| 80岁老熟妇乱子伦牲交| 成人免费观看视频高清| 色精品久久人妻99蜜桃| av又黄又爽大尺度在线免费看| 亚洲精品国产一区二区精华液| 成年女人毛片免费观看观看9 | 老汉色av国产亚洲站长工具| 久久久国产精品麻豆| 一级,二级,三级黄色视频| 99riav亚洲国产免费| 成人黄色视频免费在线看| 久久久久视频综合| 亚洲第一欧美日韩一区二区三区 | 久久精品亚洲精品国产色婷小说| 老熟妇乱子伦视频在线观看| 黄色成人免费大全| 日本五十路高清| 免费看a级黄色片| 午夜福利乱码中文字幕| 另类精品久久| 成人国产一区最新在线观看| 一区福利在线观看| 久久精品人人爽人人爽视色| 精品国产乱码久久久久久男人| 香蕉丝袜av| 免费看十八禁软件| 亚洲黑人精品在线| 99久久国产精品久久久| 99久久精品国产亚洲精品| 夜夜爽天天搞| 高清毛片免费观看视频网站 | 视频区欧美日本亚洲| 一个人免费在线观看的高清视频| 国产一卡二卡三卡精品| 十八禁网站网址无遮挡| 香蕉丝袜av| 99国产精品免费福利视频| www.999成人在线观看| 欧美日本中文国产一区发布| 亚洲精品粉嫩美女一区| 久久人妻福利社区极品人妻图片| 亚洲欧美一区二区三区黑人| 免费人妻精品一区二区三区视频| 99久久国产精品久久久| 老司机福利观看| 午夜福利影视在线免费观看| 飞空精品影院首页| 欧美黄色片欧美黄色片| 91精品三级在线观看| 欧美日韩亚洲综合一区二区三区_| 日韩人妻精品一区2区三区| 久久天躁狠狠躁夜夜2o2o| 欧美精品一区二区免费开放| 极品人妻少妇av视频| 午夜免费鲁丝| 日韩欧美三级三区| 亚洲视频免费观看视频| 天天添夜夜摸| 精品国产乱码久久久久久小说| 三级毛片av免费| 国产亚洲午夜精品一区二区久久| 高潮久久久久久久久久久不卡| 欧美 亚洲 国产 日韩一| 欧美日韩亚洲高清精品| av天堂在线播放| 80岁老熟妇乱子伦牲交| videosex国产| 亚洲av欧美aⅴ国产| 欧美成人免费av一区二区三区 | 亚洲性夜色夜夜综合| 国产精品 国内视频| 欧美中文综合在线视频| 欧美乱码精品一区二区三区| av线在线观看网站| 99在线人妻在线中文字幕 | 国产有黄有色有爽视频| 在线观看免费日韩欧美大片| 国产精品美女特级片免费视频播放器 | 欧美在线一区亚洲| 日本一区二区免费在线视频| 高清av免费在线| 9191精品国产免费久久| 国产亚洲av高清不卡| 免费看a级黄色片| 99精品欧美一区二区三区四区| 久久久久久久久久久久大奶| 国产成人免费观看mmmm| 国产日韩一区二区三区精品不卡| 夜夜骑夜夜射夜夜干| 蜜桃国产av成人99| 久久亚洲精品不卡| 露出奶头的视频| 国产熟女午夜一区二区三区| 国产精品一区二区免费欧美| 我要看黄色一级片免费的| 老熟女久久久| 久久久水蜜桃国产精品网| 国产黄色免费在线视频| 成人三级做爰电影| 丝袜美足系列| 国产视频一区二区在线看| 国产xxxxx性猛交| 天堂动漫精品| 满18在线观看网站| 亚洲人成伊人成综合网2020| 国产精品免费大片| 亚洲色图综合在线观看| 亚洲欧美精品综合一区二区三区| av天堂在线播放| 宅男免费午夜| 成人亚洲精品一区在线观看| 90打野战视频偷拍视频| 人成视频在线观看免费观看| av一本久久久久| 欧美精品亚洲一区二区| a级片在线免费高清观看视频| 汤姆久久久久久久影院中文字幕| 成人影院久久| 国产视频一区二区在线看| 国产欧美日韩一区二区三| 欧美成狂野欧美在线观看| e午夜精品久久久久久久| 色视频在线一区二区三区| 老司机在亚洲福利影院| 欧美精品亚洲一区二区| 18禁美女被吸乳视频| 国产精品 国内视频| aaaaa片日本免费| 国产精品久久久久久精品电影小说| 两个人免费观看高清视频| 日本一区二区免费在线视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av美国av| www.熟女人妻精品国产| 精品亚洲乱码少妇综合久久| 久9热在线精品视频| 美女国产高潮福利片在线看| 91av网站免费观看| 日日摸夜夜添夜夜添小说| 国产主播在线观看一区二区| 老司机午夜十八禁免费视频| 激情视频va一区二区三区| 母亲3免费完整高清在线观看| 我要看黄色一级片免费的| 人人妻人人澡人人爽人人夜夜| 国产精品电影一区二区三区 | 夜夜夜夜夜久久久久| 飞空精品影院首页| 超色免费av| 黄色视频在线播放观看不卡| 国产免费福利视频在线观看| 一本综合久久免费| 天天添夜夜摸| 一区二区三区国产精品乱码| 一本一本久久a久久精品综合妖精| 亚洲欧洲精品一区二区精品久久久| av在线播放免费不卡| 国产成人欧美在线观看 | 国产精品自产拍在线观看55亚洲 | 日韩制服丝袜自拍偷拍| 中文字幕人妻熟女乱码| 丰满饥渴人妻一区二区三| 啪啪无遮挡十八禁网站| 成年人午夜在线观看视频| 中文字幕人妻丝袜制服| 精品久久久精品久久久| 精品久久久久久久毛片微露脸| 黄色毛片三级朝国网站| 19禁男女啪啪无遮挡网站| 色视频在线一区二区三区| 亚洲,欧美精品.| 正在播放国产对白刺激| 考比视频在线观看| 免费av中文字幕在线| 国产淫语在线视频| 亚洲综合色网址| 啦啦啦免费观看视频1| 国产成人免费观看mmmm| 嫩草影视91久久| 女警被强在线播放| 自线自在国产av| 国产精品美女特级片免费视频播放器 | 9热在线视频观看99| 中文字幕另类日韩欧美亚洲嫩草| av电影中文网址| 99国产综合亚洲精品| 香蕉久久夜色| 午夜福利在线免费观看网站| 亚洲欧美一区二区三区久久| 人人妻人人澡人人爽人人夜夜| 桃花免费在线播放| 一级片'在线观看视频| 人人妻人人添人人爽欧美一区卜| 国产精品国产高清国产av | tube8黄色片| 首页视频小说图片口味搜索| 99久久人妻综合| 老司机午夜十八禁免费视频| 国产深夜福利视频在线观看| av片东京热男人的天堂| 无遮挡黄片免费观看| 久久精品国产99精品国产亚洲性色 | 亚洲av日韩精品久久久久久密| 91精品国产国语对白视频| 91成年电影在线观看| 王馨瑶露胸无遮挡在线观看| 欧美日韩亚洲综合一区二区三区_| 香蕉国产在线看| 精品免费久久久久久久清纯 | 一进一出抽搐动态| 国产99久久九九免费精品| 97在线人人人人妻| 国产熟女午夜一区二区三区| 好男人电影高清在线观看| 久久这里只有精品19| 久久久国产欧美日韩av| 2018国产大陆天天弄谢| 一进一出好大好爽视频| 高潮久久久久久久久久久不卡| 久久久久精品人妻al黑| netflix在线观看网站| 香蕉丝袜av| 欧美精品啪啪一区二区三区| 色精品久久人妻99蜜桃| 动漫黄色视频在线观看| 国产极品粉嫩免费观看在线| 涩涩av久久男人的天堂| 欧美另类亚洲清纯唯美| a级片在线免费高清观看视频| 国产成人av激情在线播放| 亚洲精品美女久久av网站| 在线观看免费高清a一片| 成在线人永久免费视频| 色老头精品视频在线观看| 日韩大码丰满熟妇| 三上悠亚av全集在线观看| 精品一区二区三区四区五区乱码| 在线观看一区二区三区激情| 久久久精品94久久精品| 99re6热这里在线精品视频| 91精品国产国语对白视频| 国产亚洲精品久久久久5区| 一边摸一边抽搐一进一出视频| 午夜福利在线观看吧| 久久婷婷成人综合色麻豆| 国产成人av教育| 无遮挡黄片免费观看| 国产精品欧美亚洲77777| 精品乱码久久久久久99久播| 久久国产亚洲av麻豆专区| 成在线人永久免费视频| av免费在线观看网站| 国产黄频视频在线观看| 成人国产一区最新在线观看| 成年女人毛片免费观看观看9 | 大香蕉久久网| 夜夜骑夜夜射夜夜干| 欧美精品人与动牲交sv欧美| 国产精品久久久久久精品古装| 视频区图区小说| 国产在线观看jvid| 成人影院久久| 五月开心婷婷网| 国产精品熟女久久久久浪| 午夜福利在线观看吧| 少妇粗大呻吟视频| 国产区一区二久久| 久久精品国产亚洲av香蕉五月 | 每晚都被弄得嗷嗷叫到高潮| 国产成人免费观看mmmm| 欧美午夜高清在线| 日日摸夜夜添夜夜添小说| 精品免费久久久久久久清纯 | 精品少妇黑人巨大在线播放| 亚洲欧美一区二区三区久久| 午夜福利在线观看吧| 在线亚洲精品国产二区图片欧美| 91麻豆av在线| 国产精品二区激情视频| 女人爽到高潮嗷嗷叫在线视频| 久久久久久久精品吃奶| 亚洲国产欧美日韩在线播放| 亚洲第一欧美日韩一区二区三区 | 成人三级做爰电影| 日韩欧美三级三区| 9191精品国产免费久久| 夜夜爽天天搞| 飞空精品影院首页| 国产成人精品久久二区二区91| 精品卡一卡二卡四卡免费| 亚洲九九香蕉| 国产精品99久久99久久久不卡| 欧美人与性动交α欧美精品济南到| 免费看a级黄色片| 亚洲欧洲日产国产| av有码第一页| 色老头精品视频在线观看| tocl精华| 一个人免费看片子| 青青草视频在线视频观看| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美日韩另类电影网站| bbb黄色大片| 91成人精品电影| 丰满人妻熟妇乱又伦精品不卡| 99国产精品免费福利视频| 国产成人精品久久二区二区免费| 高清黄色对白视频在线免费看| 日韩中文字幕欧美一区二区| 免费看十八禁软件| 欧美精品亚洲一区二区| 免费女性裸体啪啪无遮挡网站| 啦啦啦在线免费观看视频4| 99re在线观看精品视频| 女警被强在线播放| 久久久久久人人人人人| 国产色视频综合| 美女国产高潮福利片在线看| 90打野战视频偷拍视频| 免费久久久久久久精品成人欧美视频| 麻豆乱淫一区二区| 久久中文字幕一级| 黑人欧美特级aaaaaa片| 国产av一区二区精品久久| 精品久久蜜臀av无| 自线自在国产av| 日韩有码中文字幕| 水蜜桃什么品种好| 亚洲精品中文字幕一二三四区 | 精品乱码久久久久久99久播| 欧美国产精品一级二级三级| 女人高潮潮喷娇喘18禁视频| 欧美日韩一级在线毛片| 国产亚洲av高清不卡| 国产一区二区三区在线臀色熟女 | 飞空精品影院首页| 久久亚洲真实| 亚洲国产欧美网| 亚洲精品中文字幕一二三四区 | 大香蕉久久成人网| 精品人妻1区二区| 熟女少妇亚洲综合色aaa.| 久久毛片免费看一区二区三区| 精品国内亚洲2022精品成人 | 国产精品二区激情视频| 国产片内射在线| 亚洲欧美色中文字幕在线| 80岁老熟妇乱子伦牲交| 一进一出抽搐动态| 老司机深夜福利视频在线观看| 欧美黑人欧美精品刺激| www.熟女人妻精品国产| 国产精品免费一区二区三区在线 | 1024视频免费在线观看| 亚洲欧美日韩另类电影网站| 亚洲va日本ⅴa欧美va伊人久久| 亚洲七黄色美女视频| 成年版毛片免费区| 丝袜人妻中文字幕| 丰满饥渴人妻一区二区三| 在线观看免费午夜福利视频| 99久久人妻综合| 18禁裸乳无遮挡动漫免费视频| 99re在线观看精品视频| 黄色丝袜av网址大全| 国产伦理片在线播放av一区| 一级毛片女人18水好多| 视频区欧美日本亚洲| 美女国产高潮福利片在线看| 亚洲人成伊人成综合网2020| 两个人免费观看高清视频| 一区二区三区乱码不卡18| 久久性视频一级片| 国产成人系列免费观看| 久久99热这里只频精品6学生| 国产成人精品久久二区二区91| 午夜精品国产一区二区电影| 久久ye,这里只有精品| 国产男女超爽视频在线观看| 亚洲精品成人av观看孕妇| 最新在线观看一区二区三区| 亚洲久久久国产精品| 久久久久网色| 99香蕉大伊视频| 午夜福利乱码中文字幕| 亚洲av片天天在线观看| 在线观看免费日韩欧美大片| 国产不卡一卡二| 免费一级毛片在线播放高清视频 | 少妇粗大呻吟视频| 午夜激情久久久久久久| 国产精品国产av在线观看| 夜夜骑夜夜射夜夜干| 99热国产这里只有精品6| a级片在线免费高清观看视频| 五月天丁香电影| 日韩有码中文字幕| 黄片小视频在线播放| 欧美激情久久久久久爽电影 | 久久精品aⅴ一区二区三区四区| 精品卡一卡二卡四卡免费|