• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hybrid Multipopulation Cellular Genetic Algorithm and Its Performance

    2014-05-05 22:55:42LiMing黎明LuYuming魯宇明JieLilin揭麗琳
    關(guān)鍵詞:黎明

    Li Ming(黎明),Lu Yuming(魯宇明)*,Jie Lilin(揭麗琳)

    1.Key Laboratory of Nondestructive Testing,Ministry of Education,Nanchang Hangkong University,Nanchang,330063,P.R.China;2.College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China

    1 Introduction

    Intelligent algorithms proposed in recent years are grounded in various biological phenomena and laws.These intelligent algorithms are widely used to solve optimization problems in science and engineering.In practice,however,these optimization problems by themselves are inadequate for solving complex problems,and the results are often deficient.Therefore hybrid algorithms,which combine the desirable features of different algorithms,have attracted much interest.

    The cellular genetic algorithm (CGA)is a type of decentralized GA in which each individual is fixed in a tutorial grid,usually of dimension 2,regardless of parallel execution.Genetic operators are applied locally to the neighborhood of each individual,which enables slow diffusion of favorable individuals.While CGA encourages diversity in the population,it can delay the convergence speed of the algorithm.The CGA exhibits higher global exportation ability than GA,but converges more slowly.

    Particle swarm optimization(PSO),an optimized algorithm based on swarm intelligence,simulates the social behavior of cooperative groups such as ants,fishes and birds.The swarm develops a collective intelligence that facilitates its search for a global optimum.Desirable features of the PSO algorithm are simple rules,few parameters and rapid convergence speed.However,global search ability of the algorithm is poor.

    The evolutionary rules of cellular automata have been extensively documented[1-2].An extension of cellular automata,namely,genetic algorithms with evolutionary rules can improve population diversity.Li,et al[3]analyzed the convergence rate of canonical CGA using absorbing-state Markov chain.Many widely-used neighbor structures have been analyzed and researched in detail[4-6].Spatial states with a cell having four different types of neighbors were simulated and the effects of each neighbor were analyzed[7].Some algorithms introduced disastrous events into CGA[8-10]and proposed a hierarchical CGA,while a hybrid CGA/distribution estimation algorithm was proposed in Ref.[11].Hybrid algorithms combining GA with local searching proved effective in solving multi-objective optimization problems[12-13].From the above citations,it is apparent that improving the local search ability and convergence speed of CGA was neglected.

    The GA is based on the tradeoff between global exploration and local exploitation,which reflects selection pressure.Refs.[14-16]investigated the selection pressure of CGA on neighborhood structure,breeding strategies and selecting operation.The selection pressure imposed by CGA with disaster on size and period of disasters is also investigated[17].Selection pressure was found to be lower following a large disaster,and to occur over a shorter time period.Ref.[18]proposed a new adaptive algorithm that aims to dynamically control the exploration/exploitation trade-off,based on three-dimensional CGAs.According to their results,selection pressure varied if certain parameters were varied.This finding provides valuable insights into the tradeoff between global exploration and local exploitation.

    Recognizing that PSO possesses strong local searching ability,this paper proposes a hybrid multipopulation cellular genetic algorithm (HCGA)that combines GA with PSO.The perform-ance of the algorithm is evaluated on four typical test functions.Selection pressure and population diversity are assessed by varying the population size and the number of subpopulations.We demonstrate the superiority of HCGA in terms of global convergence rate and convergence speed.The algorithm operates most effectively when the number of subpopulation is n=2m(m=3).

    2 Description of Cellular Genetic Algorithm and Particle Swarm Optimization

    2.1 Cellular genetic algorithm description

    In CGAs,individuals are placed on a toroidal d-dimensional grid (the algorithm is usually implemented in two dimensions).Each occupied grid element(or cell)contains a single individual.Genetic reproduction and crossover can occur only between an individual and its nearest neighbors(see Fig.1).

    Fig.1 Structure of a neighborhood

    We adopt the CGA presented in Ref.[2].In the CGA,individuals are randomly classified as“active”or “inactive”(see Fig.2).Under an evaluative rule,all individuals simultaneously change state.An“active”cell is the one that can interact with its neighborhood to select and crossover.

    Fig.2 Distribution of individuals in CGA

    The pseudo-code of the CGA algorithm is provided below:

    Step 1 To classify an individual as living or dead on the L×Lgrid at random.

    Step 2 To set the stop condition.

    Step 3 To calculate fitness of individuals.

    Step 4 To select the living individual and obtain its neighborhood as parents.

    Step 5 To implement parents’recombination.

    Step 6 To evaluate fitness and replace existing individual if fitness is improved.

    Step 7 To implement individual mutation.

    Step 8 To update states synchronously according to evolution rule.

    Step 9 When the stop condition is satisfied,end.

    In the above algorithm,the current population is replaced after synchronously applying crossover and mutation to all individuals.

    2.2 Particle swarm optimization description

    The PSO searches a global optimum by simulating movement and interaction of swarming particles.A population of particles is initialized with random position and velocities.The position of a particle corresponds to one possible solution of the problem.The objective value of each particle is computed by an objective function.In the next iteration,the position and velocity of each particle is updated through tracking its own experience and that of other particles.

    3 Hybrid Multipopulation Cellular Genetic Algorithm

    3.1 Population division and immigration of individuals

    Population diversity can be maintained by dividing the population into several equally-proportioned subpopulations that do not depend on each other.Each subpopulation evolves independently,i.e.,genetic operations cannot occur between subpopulations.

    Population division usually causes isolated islands that cannot interact with other islands.To enable information exchange between subpopulations,one or a few reproductive individuals in a subpopulation are allowed to immigrate to another island according to the immigration rate when the interval generationΔT meets a specified value.Here in this paper,ΔTis 20.

    3.2 Construction of new operations

    The existing CGA imposes random mutations that are irrelevant to past and present individual states,thereby ignoring the distance between each individual and the fittest individual.Furthermore,excessively high mutation rates will destroy favorable genes,while low rates will reduce the search speed.Very low rates will stagnate the evolutionary process.In addition,since mutation is directional,the probability of low fitness will be increased.

    In this study,mutation in CGA (Step 7)is replaced by a new operation based on neighboring structures in PSO.Following the operation,the individual in the next iteration is calculated as

    where t is the generation,nthe population size,i the position order of the individual in the cell space,and xitthe gene of the ith individual.The population is denoted as Qt={x1t,x2t,…,xit,…,xnt}(1≤i≤n),and vi(t+1)is calculated as

    where wis the inertia coefficient,the fittest gene acquired by an individual,andthe fittest neighboring gene identified by the individual.r1and r2are the uniformly distributed random numbers in the interval[0,1].c1,c2are the cognitive and social learning factors,respectively.vitis the mutating velocity at generation t,calculated as

    Since Eq.(2)uses amplitude and directional information to forecast mutation of an individual,it improves the local searching ability,and eliminates the indiscriminate mutating operations that occur in CGA.

    4 Computational Experiments

    4.1 Test problems

    The algorithm is evaluated on four test functions,as summarized below:

    (1)F1Schaffer′s f6function

    Eq.(4)has a single maximum at 1.This global optimum is surrounded by a few local optima,including one at 0.990 284and another at 0.962 776.Implemented on F1,most algorithms easily reach a local optimum from which they cannot escape.

    (2)F2Needle function

    Function F2is similar to F1.One of its local maxima(at 1.128 4)is extremely close to the global maximum (at 1.151 1).Most algorithms reach the local optimum at 1.128 4.

    (3)F3Griewank′s function

    This paper adopts 30-d.Function F3,which is a multimodal function with a single global optimum surrounded by many nearby local optima.

    (4)F4Sphere function

    F4is a unimodal function with a minimum of 0at(0,0,…,0).Its dimension is the same as F3.High-dimensional versions of this function are more difficult to solve because of the strong constraints between variables.

    4.2 Parameter setting

    The parameters are as follows:number of runs is 100,cellular space size 20×20,population size 400,crossing rate 0.8,mutation 0.05.In HCGA,learning factors c1and c2are both set to be 2.Immigration rate is 0.2and the inertial weight is 1.

    5 Experimental Results

    5.1 Analysis of selection pressure

    To some extent,selection pressure represents the balance between exploration and exploitation.Selection pressure is measured by the takeover time[3],defined as the required time for a single (best)individual to occupy the entire population using the selection operator only,and ignoring crossovers and mutation.The shorter the takeover time,the higher the selection pressure.

    Fig.3plots the proportion of the best individual in the population as a function of time in CGA.Fig.4is an equivalent plot generated by HCGA,but varying the subpopulation number and population size.

    Fig.3 Growth curve of the best individual(CGA)

    In Fig.3,the curve gradually ascends to 1 and remains constant thereafter.When the proportion of the best individual reaches 1,information of the best individual cannot be spread.Then the selection pressure demonstrates the saturated condition.

    The curve of Fig.4similarly ascends but less smoothly.The proportion of the best individuals firstly gradually ascends to 1/n before 10generations,then stays stable for a period of time and goes up after 20generations.Furthermore,the similar curve jump can be observed in the later evolution,such as 40generations.The jumps are observed whenΔT=20.The phenomenon is caused by individual migration strategy,which provides potential for the best individual information in a subpopulation exchanging into other subpopulations.Information is thus disseminated between subpopulations.In this way,a fit individual can spread its genes into other subpopulations,and thereby spread more widely.But when the proportion of the best individuals is 1,the best individual cannot spread.

    Fig.4 Growth curve of the best individual(HCGA)

    Varying subpopulation numbers The population size is retained at 20×20and the subpopulation number is set to 2,4,8and 16.The resulting selection pressure is displayed in Fig.4(a).In Fig.4(a),the proportion of best individuals in the population increases more slowly when more subpopulations exist.Namely,the proportion of fittest individuals decreases as subpopulation number increases;equivalently,the selection pressure decreases as the number of subpopulations increases.

    Varying population size Retaining the sub-population number at 8,the population size is set to 200,400,800and 1 600,respectively.The results are plotted in Fig.4(b).From Fig.4(b),we observe that selection pressure decreases as population size increases,up to the 10th generation.Between generations 10and 20,it is relatively constant,because the fittest individual is not spread until the conditions favor migration.Beyond the 20th generation,selection pressure again increases with population size.

    The above analysis reveals that by segmenting the population,HCGA reduces the selection pressure relative to CGA,and improves the global convergence of the algorithm.

    5.2 Performance of HCGA and CGA

    HCGA is compared with CGA with respect to global convergence rate(P),average convergence generation(G),average run time(T),and the average and standard deviation(STD)of the best value.

    The results implemented on F1—F4are shown in Table 1.The global convergence of HCGA on F1and F2is 100%and the algorithm never becomes trapped in local optima.The convergence generation of HCGA is lower than CGA and the algorithm converges more quickly.Especially on F2,CGA converges to the global optimum in only 17%of trials,and its convergence speed is three times slower than that of HCGA.On F3,CGA never converges to the global optimum,while HCGA converges in 100%of trials.On F4,although both algorithms converge 100%of the time,the convergence speed of HCGA far exceeds that of CGA.The convergence rate of HCGA is attributed to the population segmentation and individual migration,which reduces selection pressure,slows down information dissemination and avoids premature convergence.Moveover,the new operation is directional,and the convergence speed is thus improved.

    5.3 Performance under varying population segment number

    The number of subpopulations is an impor-tant parameter in HCGA.This section compares the algorithm performance for different subpopulations n,where n=2m(m=1,2,3,4).Population size is retained constant at 400.The other parameters are as specified in Section 4.2.

    Table 2compares the global convergence rate(P),average convergence generation (G),average run time(t),and average and the standard deviation(STD)of the best value.

    The larger the number of subpopulations,the lower the selection pressure (see Fig.4).Hence,on each of the four test functions,the global convergence rate increases as the number of subpopulations increases.Initially,the spending time decreases as the number of subpopulations increases and later increases,except on F1.When the number of subpopulations is too large,the selection pressure will be too low.It is unfavorable for information dissemination,which can reduce the performance of HPCGA.The STD of the fittest individual is also improved as subpopulation increases,and later decreases.

    Table 1 Comparison of performance in terms of HCGA and CGA

    Table 2 Comparisons of performance of different numbers with sub-population

    5.4 Diversity performance

    Population diversity is crucial in evolutionary algorithms.Only in a diverse population can the algorithm seek a global optimum.Therefore,maintaining population diversity is guaranteed to improve algorithm performance.This section investigates changes in diversity over time,while varying the number of subpopulations.Diversity is measured as the ratio of population entropy to the maximum of population entropy[17].

    The CGA and HCGA algorithms are implemented 100times on F1and F3.Figs.5,6plot the evolution of diversity calculated by CGA and HCGA,respectively,for the four population segmentation numbers.The population diversity drops dramatically with the increasing generation in CGA.On F1and F4,population diversity is very low at generations 500and 1 000,respectively.However,in HCGA,the population diversity declines slowly and maintains high over a long period.Most importantly,population diversity is strengthened as subpopulation number increases,up to m=3.When m=3and 4,the algorithm can keep population diversity better than that of the case with m=1or 2.

    Fig.5 Diversity change of F1on HCGA with different subpopulation numbers

    Fig.6 Diversity change of F4on HCGA with different subpopulation numbers

    6 Conclusions

    The HCGA is proposed,in which GA is combined with a new operation inspired by PSO.The new operation replaces mutation in standard CGA,and enables population segmentation and genetic migration.By enhancing population diversity and reducing selection pressure,HCGA achieves a favorable global exploration/local exploitation balance.It improves not only the convergence rate and speed of conventional CGA,but also its stability.This paper also investigates the effect of subpopulation number on HCGA performance.The algorithm performs most effectively at a critical number of subpopulations.The result demonstrates that HGCA performance can be optimized by selecting an appropriate number of subpopulations.On each of the four test functions,the algorithm performance is optimized at the population segmentation number of 8(m=3).

    [1] Billings S A,Yang Y.Identification of the neighborhood and CA rules from station-temporal CA patterns[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2003,33(2):332-339.

    [2] Lu Y M,Li M,Li L.The cellular genetic algorithm with evolutionary rule[J].Acta Electronica Sinica,2010,38(7):1603-1607.(in Chinese)

    [3] Li J H,Li M.Convergence analysis and convergence rate estimate of cellular genetic algorithms [J].Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence,2012,25(5):874-878.(in Chinese)

    [4] Alba E,Dorronsoro B.Cellular genetic algorithms[M].USA:Springer Science and Business Media,LLC,2008,21-34.

    [5] Ishibuchi H,Sakane Y,Tsukamoto N,NojimaA Y.Implementation of cellular genetic algorithms with two neighborhood structures for single-objective and multi-objective optimization[J].Soft Computing,2011,15(9):1749-1767.

    [6] Alba E,Dorronsoro B.The exploration/exploitation tradeoff in dynamic cellular genetic algorithms[J].IEEE Transactions on Evolutionary Computation,2005,9(2):126-142.

    [7] Billings S,Yang Y.Identification of probabilistic cellular automata[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2003,33(2):225-236.

    [8] Kirley M.A cellular genetic algorithm with disturbance:optimization using dynamic spatial interactions[J].Journal of Heuristics,2002,8(3):321-342.

    [9] Lu Y,Li M,Li L.Improved genetic algorithm based on migration differential individuals [J].Systems Engineering and Electronics,2011,33(3):1-4.(in Chinese)

    [10]Liu Nan,Huang Jinquan.Performance seeking of turbo-shaft engines based on improved particle swarm optimization algorithm[J].Journal of Nanjing University of Aeronautics and Astronautics,2013,45(3),303-308.

    [11]Keedwele E,Khu S T.A hybrid genetic algorithm for the design of water distribution networks [J].Engineering Applications of Artificial Intelligence,2005,18(4):461-472.

    [12]Jiang Yu,Yang Yingbao,Zhou Hang.Innovative predatory search algorithm for aircraft arrival sequencing and scheduling problems[J].Transactions of Nanjing University of Aeronautics and Astronautics,2010,27(4):361-364.

    [13]Rezaeian J,Javadian N,Tavakkoli M R,Jolai F.A hybrid approach based on the genetic algorithm and neural network to design an incremental cellular manufacturing system[J].Applied Soft Computing Journal,2011,11(6):4195-4202.

    [14]Jiradej V,Nasimul N,Hitoshi I.Polynomial selection:A new way to tune selective pressure[C]∥Proceedings of The 2nd World Congress on Nature and Biologically Inspired Computing.Fukuoka,Japan:IEEE,2010,597-602.

    [15]Kaveh A,SHahrouzi M.Dynamic selective pressure using hybrid evolutionary and ant system strategies for structural optimization[J].International Journal for Numerical Methods in Engineering,2008,73(4):544-563.

    [16]Camargo G,Camargo J,Naufal J,Matiussi G.Definition of selective pressure control methods for optimization of genetic algorithms in air traffic control[C]∥Proceedings of the 10th IASTED International Conference on Artificial Intelligence and Soft Computing.[S.l.].ASC,2006,304-311.

    [17]Chen S,Lu Y,Yang H,et al.Selection pressure study of cellular genetic with disturbances[J].Computer Engineering and Applications,2011,47(27):32-35.(in Chinese)

    [18]Asmaa Al-Naqi,Erdogan A T,Arslan T.Adaptive three-dimensional cellular genetic algorithm for balancing exploration and exploitation processes[J].Soft Computing,2013,17(4):1-13.

    猜你喜歡
    黎明
    風(fēng)云三號(hào)E星——黎明星
    黎明之光
    黎明之子
    美若黎明
    青年歌聲(2019年9期)2019-09-17 09:02:54
    黎明被一群鳥(niǎo)兒啄出
    誰(shuí)家的可可④ 這里的黎明靜悄悄
    幽默大師(2018年4期)2018-11-02 05:38:54
    黎明
    讀者(2017年8期)2017-03-29 20:11:49
    黎明的軍號(hào)
    灶神星上的“黎明”
    太空探索(2015年4期)2015-07-12 14:16:21
    谷神星迎來(lái)新“黎明”
    太空探索(2015年4期)2015-07-12 14:16:08
    久久女婷五月综合色啪小说| svipshipincom国产片| 色视频在线一区二区三区| 久久久久网色| 一级爰片在线观看| 男女床上黄色一级片免费看| 久久99精品国语久久久| 欧美国产精品一级二级三级| 狂野欧美激情性bbbbbb| 久久天堂一区二区三区四区| 国产福利在线免费观看视频| av又黄又爽大尺度在线免费看| 精品卡一卡二卡四卡免费| 亚洲国产欧美日韩在线播放| 高清视频免费观看一区二区| 制服诱惑二区| 久久久久久久久免费视频了| 精品少妇一区二区三区视频日本电影 | 亚洲人成网站在线观看播放| 亚洲av国产av综合av卡| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久久久精品电影小说| 国产野战对白在线观看| 精品国产乱码久久久久久男人| 日韩不卡一区二区三区视频在线| 精品少妇内射三级| 新久久久久国产一级毛片| 日韩熟女老妇一区二区性免费视频| 亚洲色图 男人天堂 中文字幕| 国产视频首页在线观看| 最近2019中文字幕mv第一页| 国产av一区二区精品久久| 欧美激情高清一区二区三区 | 国产精品香港三级国产av潘金莲 | 桃花免费在线播放| 久久韩国三级中文字幕| av在线app专区| 久久精品人人爽人人爽视色| 久久久精品国产亚洲av高清涩受| 日韩欧美精品免费久久| 三上悠亚av全集在线观看| 天堂中文最新版在线下载| 一区二区av电影网| 亚洲综合精品二区| 搡老岳熟女国产| av有码第一页| 菩萨蛮人人尽说江南好唐韦庄| 国产成人免费无遮挡视频| 国产成人欧美| 不卡视频在线观看欧美| 视频区图区小说| 中文字幕av电影在线播放| 蜜桃国产av成人99| 国产一区二区三区综合在线观看| 少妇人妻久久综合中文| 超碰成人久久| 亚洲第一av免费看| 久久天躁狠狠躁夜夜2o2o | 国产黄色视频一区二区在线观看| 久久狼人影院| 这个男人来自地球电影免费观看 | 亚洲中文av在线| 美女主播在线视频| 又黄又粗又硬又大视频| 一区福利在线观看| 免费人妻精品一区二区三区视频| 啦啦啦视频在线资源免费观看| 老司机靠b影院| 国产探花极品一区二区| 精品国产乱码久久久久久小说| 最近中文字幕高清免费大全6| 婷婷成人精品国产| 国产成人精品在线电影| 久久久久国产一级毛片高清牌| 欧美 亚洲 国产 日韩一| 久久久国产欧美日韩av| 久久精品国产亚洲av高清一级| 可以免费在线观看a视频的电影网站 | 亚洲成色77777| 一区二区av电影网| 成年人午夜在线观看视频| 国产xxxxx性猛交| 男女免费视频国产| 亚洲精品国产色婷婷电影| 亚洲精品第二区| 免费看不卡的av| 国产精品国产三级专区第一集| av天堂久久9| 麻豆乱淫一区二区| 亚洲久久久国产精品| 亚洲天堂av无毛| av在线播放精品| 三上悠亚av全集在线观看| 国产精品一区二区在线观看99| 菩萨蛮人人尽说江南好唐韦庄| 人妻人人澡人人爽人人| 久热这里只有精品99| 欧美日韩成人在线一区二区| 色视频在线一区二区三区| 国产成人欧美| 男女之事视频高清在线观看 | 天美传媒精品一区二区| 国产精品蜜桃在线观看| 精品国产乱码久久久久久男人| 777米奇影视久久| 亚洲国产精品成人久久小说| 国产一区二区三区综合在线观看| 少妇的丰满在线观看| 五月天丁香电影| 午夜福利乱码中文字幕| 亚洲精品,欧美精品| 色视频在线一区二区三区| 熟妇人妻不卡中文字幕| 久久人妻熟女aⅴ| 大码成人一级视频| 欧美日韩精品网址| 人妻一区二区av| 日本午夜av视频| 中文字幕高清在线视频| 巨乳人妻的诱惑在线观看| 久久久久精品人妻al黑| 国产成人一区二区在线| 日韩不卡一区二区三区视频在线| 欧美国产精品va在线观看不卡| 午夜福利乱码中文字幕| 精品国产乱码久久久久久小说| 国产免费一区二区三区四区乱码| 日韩 欧美 亚洲 中文字幕| 亚洲国产欧美一区二区综合| 国产1区2区3区精品| 国产乱人偷精品视频| 欧美日韩一区二区视频在线观看视频在线| 国产视频首页在线观看| 高清在线视频一区二区三区| 午夜福利网站1000一区二区三区| 看免费av毛片| 精品一区二区三卡| 一区在线观看完整版| 国产免费一区二区三区四区乱码| 精品人妻在线不人妻| 91aial.com中文字幕在线观看| 日日摸夜夜添夜夜爱| 精品亚洲成a人片在线观看| 亚洲国产精品一区二区三区在线| 日本爱情动作片www.在线观看| 亚洲av成人不卡在线观看播放网 | 久久久国产精品麻豆| 日韩大片免费观看网站| 一区二区三区激情视频| 精品国产露脸久久av麻豆| 2018国产大陆天天弄谢| 欧美成人精品欧美一级黄| 午夜福利在线免费观看网站| 激情五月婷婷亚洲| 人人妻,人人澡人人爽秒播 | 日本wwww免费看| 2021少妇久久久久久久久久久| 精品人妻在线不人妻| 午夜av观看不卡| 王馨瑶露胸无遮挡在线观看| 久久久欧美国产精品| 免费观看a级毛片全部| 美国免费a级毛片| h视频一区二区三区| 久热爱精品视频在线9| 1024香蕉在线观看| 日韩中文字幕视频在线看片| 亚洲精品第二区| 伦理电影大哥的女人| 亚洲av成人精品一二三区| 老司机深夜福利视频在线观看 | 波多野结衣av一区二区av| 国产精品 国内视频| 综合色丁香网| 国产免费又黄又爽又色| av福利片在线| 久久人人爽人人片av| 国产在线免费精品| 欧美另类一区| 亚洲成人免费av在线播放| 天天躁夜夜躁狠狠久久av| 天美传媒精品一区二区| 天天躁狠狠躁夜夜躁狠狠躁| av福利片在线| 韩国av在线不卡| 成人免费观看视频高清| 黑人猛操日本美女一级片| 丝袜在线中文字幕| 亚洲一码二码三码区别大吗| 亚洲色图综合在线观看| 一区二区日韩欧美中文字幕| 亚洲av成人精品一二三区| 欧美日韩av久久| 啦啦啦 在线观看视频| 爱豆传媒免费全集在线观看| 欧美成人精品欧美一级黄| 在线看a的网站| 久久久久久久久免费视频了| av在线老鸭窝| 丝袜人妻中文字幕| 2021少妇久久久久久久久久久| 国产成人一区二区在线| 国产成人啪精品午夜网站| 国产一级毛片在线| 亚洲欧美一区二区三区黑人| 久久 成人 亚洲| 亚洲国产看品久久| 精品久久久久久电影网| 日韩一区二区三区影片| 纵有疾风起免费观看全集完整版| 大片免费播放器 马上看| 在线观看免费视频网站a站| 99热国产这里只有精品6| 亚洲一区中文字幕在线| 国产探花极品一区二区| 亚洲欧洲精品一区二区精品久久久 | 国产一区二区三区综合在线观看| 国产精品人妻久久久影院| 啦啦啦啦在线视频资源| 一级,二级,三级黄色视频| 亚洲国产欧美网| 午夜免费男女啪啪视频观看| 七月丁香在线播放| 如何舔出高潮| 婷婷色麻豆天堂久久| 少妇猛男粗大的猛烈进出视频| 欧美97在线视频| 欧美人与性动交α欧美精品济南到| 中文字幕精品免费在线观看视频| 久久精品人人爽人人爽视色| 午夜免费鲁丝| 欧美变态另类bdsm刘玥| 国产精品秋霞免费鲁丝片| 亚洲欧美中文字幕日韩二区| 精品国产一区二区三区久久久樱花| 亚洲国产精品一区三区| 午夜影院在线不卡| 看非洲黑人一级黄片| 亚洲欧美中文字幕日韩二区| 亚洲第一区二区三区不卡| 我的亚洲天堂| 成年动漫av网址| 99香蕉大伊视频| 最近的中文字幕免费完整| 大陆偷拍与自拍| 国产成人av激情在线播放| 欧美成人精品欧美一级黄| 精品福利永久在线观看| 一本久久精品| 18禁国产床啪视频网站| av片东京热男人的天堂| 中文字幕制服av| 人成视频在线观看免费观看| 无限看片的www在线观看| 国产精品二区激情视频| 日韩av免费高清视频| 婷婷成人精品国产| 欧美日韩成人在线一区二区| 国产黄色视频一区二区在线观看| 在线看a的网站| 热re99久久国产66热| 久久天堂一区二区三区四区| 国产精品三级大全| 美女中出高潮动态图| bbb黄色大片| 天堂俺去俺来也www色官网| 欧美日韩亚洲综合一区二区三区_| 国产日韩一区二区三区精品不卡| av在线老鸭窝| 桃花免费在线播放| 精品亚洲乱码少妇综合久久| 中文字幕人妻熟女乱码| 天堂俺去俺来也www色官网| 男女免费视频国产| 亚洲自偷自拍图片 自拍| 久久精品国产亚洲av涩爱| 2018国产大陆天天弄谢| 免费少妇av软件| 久久久精品国产亚洲av高清涩受| 国产欧美日韩一区二区三区在线| 亚洲精品久久久久久婷婷小说| 99久国产av精品国产电影| 午夜福利免费观看在线| 亚洲 欧美一区二区三区| 久久天堂一区二区三区四区| 久久久精品94久久精品| 男女无遮挡免费网站观看| 亚洲美女视频黄频| 成年av动漫网址| 超色免费av| 9热在线视频观看99| 成人亚洲精品一区在线观看| 一区二区三区四区激情视频| 国产伦理片在线播放av一区| 精品一区在线观看国产| 秋霞伦理黄片| 亚洲欧洲日产国产| 欧美97在线视频| 女人精品久久久久毛片| 亚洲美女搞黄在线观看| 美女主播在线视频| 如何舔出高潮| 别揉我奶头~嗯~啊~动态视频 | 水蜜桃什么品种好| av网站免费在线观看视频| 中文字幕精品免费在线观看视频| 丝袜美腿诱惑在线| 亚洲国产欧美网| 在线天堂中文资源库| 精品一区在线观看国产| 两个人免费观看高清视频| 亚洲精品乱久久久久久| 亚洲图色成人| 又大又黄又爽视频免费| 男人舔女人的私密视频| av福利片在线| 国产爽快片一区二区三区| 免费人妻精品一区二区三区视频| 亚洲欧美激情在线| 交换朋友夫妻互换小说| 五月天丁香电影| 狠狠婷婷综合久久久久久88av| 久久国产亚洲av麻豆专区| 久久av网站| 一级毛片电影观看| 男人添女人高潮全过程视频| 一边亲一边摸免费视频| 亚洲国产看品久久| 国产男女内射视频| 精品人妻在线不人妻| 啦啦啦在线观看免费高清www| 亚洲av在线观看美女高潮| 国产国语露脸激情在线看| 亚洲精品国产av蜜桃| 国产精品偷伦视频观看了| 亚洲精品第二区| 久久久亚洲精品成人影院| 老司机影院成人| 免费高清在线观看日韩| 女人爽到高潮嗷嗷叫在线视频| av有码第一页| 午夜日韩欧美国产| 成人午夜精彩视频在线观看| 午夜激情久久久久久久| 美女中出高潮动态图| 亚洲av福利一区| 亚洲av在线观看美女高潮| 又大又黄又爽视频免费| 午夜精品国产一区二区电影| 中文字幕人妻熟女乱码| 亚洲美女搞黄在线观看| 99热网站在线观看| 极品少妇高潮喷水抽搐| e午夜精品久久久久久久| 国产乱人偷精品视频| 亚洲国产av影院在线观看| 激情视频va一区二区三区| 日韩av在线免费看完整版不卡| 777久久人妻少妇嫩草av网站| 满18在线观看网站| 中文乱码字字幕精品一区二区三区| 免费观看人在逋| 天天躁日日躁夜夜躁夜夜| 人人妻人人澡人人爽人人夜夜| 91精品伊人久久大香线蕉| 国产精品.久久久| 美女福利国产在线| 欧美最新免费一区二区三区| 亚洲国产最新在线播放| 成人亚洲精品一区在线观看| 美国免费a级毛片| 国产熟女欧美一区二区| 免费在线观看视频国产中文字幕亚洲 | 99久久人妻综合| 亚洲国产av影院在线观看| 亚洲图色成人| 少妇的丰满在线观看| 国产成人系列免费观看| 国产精品亚洲av一区麻豆 | 久久久久人妻精品一区果冻| 免费在线观看完整版高清| 黑人欧美特级aaaaaa片| 国产欧美亚洲国产| 热re99久久国产66热| 久久国产精品大桥未久av| 精品久久久精品久久久| 久久人妻熟女aⅴ| 免费日韩欧美在线观看| 交换朋友夫妻互换小说| 日韩一区二区三区影片| 欧美人与性动交α欧美精品济南到| 女的被弄到高潮叫床怎么办| 久久久久精品久久久久真实原创| 新久久久久国产一级毛片| 各种免费的搞黄视频| 国产一区有黄有色的免费视频| 亚洲精品乱久久久久久| 午夜免费观看性视频| 欧美精品av麻豆av| 日本黄色日本黄色录像| 国产免费视频播放在线视频| 亚洲av电影在线进入| 美国免费a级毛片| 免费女性裸体啪啪无遮挡网站| 女性被躁到高潮视频| 国产女主播在线喷水免费视频网站| 97人妻天天添夜夜摸| 国产黄色免费在线视频| 久久久久久免费高清国产稀缺| 观看av在线不卡| 韩国精品一区二区三区| 最近最新中文字幕免费大全7| 无遮挡黄片免费观看| 在线观看三级黄色| 国产不卡av网站在线观看| 青春草亚洲视频在线观看| 尾随美女入室| 91精品伊人久久大香线蕉| 99精国产麻豆久久婷婷| 国产精品久久久久久精品电影小说| 亚洲激情五月婷婷啪啪| 亚洲精品在线美女| 国产麻豆69| 亚洲国产毛片av蜜桃av| www.熟女人妻精品国产| 亚洲精品美女久久av网站| 午夜福利视频精品| 国产成人精品久久久久久| a级毛片黄视频| 国产黄色免费在线视频| 久久久久久人人人人人| 国产成人91sexporn| 一个人免费看片子| 国产激情久久老熟女| 亚洲人成网站在线观看播放| 免费观看性生交大片5| 国产精品一区二区在线观看99| 制服丝袜香蕉在线| 最近的中文字幕免费完整| 国产一区二区三区av在线| 男人舔女人的私密视频| 大码成人一级视频| 久久亚洲国产成人精品v| 一区二区三区四区激情视频| 国产熟女欧美一区二区| 久热爱精品视频在线9| 国产精品一国产av| www.自偷自拍.com| 国产精品亚洲av一区麻豆 | 亚洲,一卡二卡三卡| 国产精品一区二区在线观看99| 不卡av一区二区三区| 母亲3免费完整高清在线观看| 在线免费观看不下载黄p国产| 青草久久国产| www.自偷自拍.com| 2018国产大陆天天弄谢| 男女床上黄色一级片免费看| 久久精品国产综合久久久| 精品免费久久久久久久清纯 | 国产毛片在线视频| 99久久99久久久精品蜜桃| 免费女性裸体啪啪无遮挡网站| 日韩 亚洲 欧美在线| 欧美日韩视频精品一区| 亚洲av在线观看美女高潮| 成人三级做爰电影| 在线精品无人区一区二区三| 亚洲国产最新在线播放| 亚洲激情五月婷婷啪啪| 天天躁夜夜躁狠狠躁躁| 中文字幕色久视频| kizo精华| 好男人视频免费观看在线| 国产成人精品无人区| 欧美成人午夜精品| bbb黄色大片| 美女午夜性视频免费| 国产高清国产精品国产三级| 国产成人精品福利久久| 在线 av 中文字幕| 久久精品亚洲av国产电影网| 九九爱精品视频在线观看| 中文精品一卡2卡3卡4更新| 尾随美女入室| 日韩欧美精品免费久久| 午夜日本视频在线| 18禁观看日本| 国产男女内射视频| 19禁男女啪啪无遮挡网站| 欧美 亚洲 国产 日韩一| 免费高清在线观看视频在线观看| 亚洲av在线观看美女高潮| 亚洲国产中文字幕在线视频| 91精品三级在线观看| 午夜福利影视在线免费观看| 精品福利永久在线观看| 亚洲国产成人一精品久久久| 亚洲精品乱久久久久久| 人妻一区二区av| 日韩欧美精品免费久久| 婷婷色麻豆天堂久久| 嫩草影视91久久| 亚洲国产中文字幕在线视频| 大香蕉久久网| 欧美日韩av久久| 美女主播在线视频| 美女中出高潮动态图| xxxhd国产人妻xxx| 精品国产乱码久久久久久男人| 秋霞在线观看毛片| 免费不卡黄色视频| 亚洲成人国产一区在线观看 | 精品亚洲乱码少妇综合久久| 国产片内射在线| 岛国毛片在线播放| 9热在线视频观看99| 美女主播在线视频| 精品视频人人做人人爽| 黄色毛片三级朝国网站| 美女大奶头黄色视频| 亚洲精品中文字幕在线视频| 国产精品人妻久久久影院| 亚洲成av片中文字幕在线观看| 丰满少妇做爰视频| 一区二区三区精品91| 国产在线一区二区三区精| 国产亚洲午夜精品一区二区久久| 久久鲁丝午夜福利片| 国产老妇伦熟女老妇高清| 只有这里有精品99| tube8黄色片| 亚洲国产精品一区三区| 免费观看人在逋| 激情视频va一区二区三区| 18禁裸乳无遮挡动漫免费视频| 国产成人一区二区在线| 不卡av一区二区三区| 亚洲熟女精品中文字幕| 美女中出高潮动态图| 色婷婷av一区二区三区视频| 免费看不卡的av| 亚洲国产最新在线播放| 国产精品偷伦视频观看了| 久久久国产欧美日韩av| 观看美女的网站| 狠狠婷婷综合久久久久久88av| 啦啦啦啦在线视频资源| 色综合欧美亚洲国产小说| 在线天堂中文资源库| 9热在线视频观看99| 成人国产麻豆网| 国产午夜精品一二区理论片| 大片免费播放器 马上看| 婷婷色麻豆天堂久久| videos熟女内射| 亚洲欧洲精品一区二区精品久久久 | 一区二区av电影网| 久久天堂一区二区三区四区| 亚洲综合精品二区| 亚洲色图 男人天堂 中文字幕| 国产色婷婷99| 午夜福利视频精品| 18在线观看网站| 久久久国产欧美日韩av| 久久99热这里只频精品6学生| 香蕉丝袜av| 精品国产超薄肉色丝袜足j| 国产精品亚洲av一区麻豆 | 超碰成人久久| 99精品久久久久人妻精品| 欧美黑人精品巨大| 一区二区三区四区激情视频| 久久免费观看电影| 涩涩av久久男人的天堂| 久久久久久久精品精品| 母亲3免费完整高清在线观看| 亚洲图色成人| 国产成人啪精品午夜网站| 欧美最新免费一区二区三区| 性色av一级| 精品久久蜜臀av无| 亚洲中文av在线| 亚洲欧美激情在线| 国产精品人妻久久久影院| 岛国毛片在线播放| 久久人人爽人人片av| 成年女人毛片免费观看观看9 | 亚洲七黄色美女视频| 欧美日韩亚洲高清精品| 伦理电影免费视频| 肉色欧美久久久久久久蜜桃| 久久久久久人人人人人| 亚洲精品国产色婷婷电影| 国产伦人伦偷精品视频| 狠狠精品人妻久久久久久综合| svipshipincom国产片| 香蕉丝袜av| 中文字幕亚洲精品专区| 久久ye,这里只有精品| 欧美xxⅹ黑人| 韩国精品一区二区三区| 久久人人爽av亚洲精品天堂| 中文天堂在线官网| 乱人伦中国视频| 久久热在线av| 男女免费视频国产| 99久久人妻综合| 日韩成人av中文字幕在线观看| 亚洲国产欧美一区二区综合| 在线观看人妻少妇| 亚洲,一卡二卡三卡| 亚洲人成电影观看| 久久狼人影院| 国产免费一区二区三区四区乱码|