• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An X-Ray Burst Associated with FRB 200428 from a Magnetar-asteroid Impact

    2023-09-03 01:36:52ZeNanLiuYuanPeiYangWeiYangWangZhaoJosephZhangQiaoChuLiKenChenJiaRenBinBinZhangChengKuiLiShuangNanZhang4andZiGaoDai

    Ze-Nan Liu ,Yuan-Pei Yang ,Wei-Yang Wang ,Zhao Joseph Zhang ,Qiao-Chu Li ,Ken Chen ,Jia Ren,Bin-Bin Zhang,Cheng-Kui Li,Shuang-Nan Zhang4,,and Zi-Gao Dai

    1 School of Astronomy and Space Science,Nanjing University,Nanjing 210023,China

    2 Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University),Ministry of Education,Nanjing 210023,China

    3 South-Western Institute for Astronomy Research,Yunnan University,Kunming 650500,China

    4 National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China

    5 University of Chinese Academy of Sciences,Chinese Academy of Sciences,Beijing 100049,China

    6 Key Laboratory of Particle Astrophysics,Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China

    7 Department of Astronomy,School of Physical Sciences,University of Science and Technology of China,Hefei 230026,China;daizg@ustc.edu.cn

    Abstract Fast radio bursts(FRBs)are extragalactic radio transients with millisecond duration and brightness temperature.An FRB-associated X-ray burst (XRB) was recently found to arise from the Galactic magnetar SGR J1935+2154.Following the model of Dai,in which an FRB may originate from a magnetar encountering an asteroid,we focus on explaining the spectrum of the XRB associated with FRB 200428 from SGR J1935+2154.Collisions between asteroidal fragments and the magnetar surface produce a fireball,which further expands relativistically.Due to the velocity difference among some shells in the fireball,internal shocks would form far away from the magnetar,and further emit X-ray emission.We propose that the FRB-associated XRB can be produced by synchrotron emission from the internal shocks,and then constrain the physical parameters by the observed XRB spectrum.

    Key words: stars: magnetars– minor planets– asteroids: general– radiation mechanisms: general

    1.Introduction

    Fast radio bursts (FRBs) are a kind of extragalactic radio transient with millisecond duration(Lorimer et al.2007;Keane et al.2012;Thornton et al.2013).So far,many physical models have been proposed to explain FRBs (see details Platts et al.2019;Xiao et al.2020;Zhang 2020;Lyubarsky 2021),including close-in models and far-away models based on the distance of the radiation region from the neutron star.For example,the close-in models show that the radio emission comes from the magnetosphere of a neutron star (Cordes &Wasserman 2016;Kumar et al.2017;Zhang 2017;Ghisellini&Locatelli 2018;Katz 2018;Yang&Zhang 2018;Lu&Kumar 2019;Wang et al.2019;Wadiasingh &Timokhin 2019;Dai 2020;Geng et al.2020;Lu et al.2020;Wadiasingh et al.2020;Wang et al.2020;Yang et al.2020;Zhang 2020;Yang&Zhang 2021),which is supported by the observed light curve variability timescales and the spectro-temporal correlations(Beniamini&Kumar 2020).The far-away models suggest that an outflow interacts with the ambient medium to release energy,and radio emission is generated by synchrotron maser emission(Lyubarsky 2014;Beloborodov 2017;Ghisellini 2017;Waxman 2017;Gruzinov &Waxman 2019;Metzger et al.2019;Beloborodov 2020;Margalit et al.2020;Wu et al.2020;Xiao&Dai 2020).

    Very recently,Bochenek et al.(2020) and CHIME/FRB Collaboration et al.(2020b) reported a short radio burst,FRB 200428,with two pulses from the general direction of the Galactic magnetar SGR J1935+2154.The reported FRB 200428 has two pulses with intrinsic durations of 0.60 ms and 0.34 ms,respectively(CHIME/FRB Collaboration et al.2020b;Bochenek et al.2020),and the two pulses are separated by ~29 ms.Moreover,the intriguing X-ray burst(XRB)associated with FRB 200428,which has two corresponding pulses,was coincidentally observed by high-energy satellites such as Insight-HXMT (Li et al.2021),INTEGRAL (Mereghetti et al.2020),Konus-Wind (Ridnaia et al.2021) and AGILE (Tavani et al.2021).Remarkably,since Insight-HXMT has the wider energy band observation,the extended low energy emission was observed with Insight-HXMT in the 1–250 keV energy band,and the XRB spectrum is dominated by the non-thermal component (Li et al.2021).Therefore,in the following discussion,we constrain the model parameters using Insight-HXMT data (see Section 3).Noticeably,the spectrum of the XRB is consistent with other magnetar bursts,but the cutoff energy in this event is significantly higher than the typical burst energy(Ridnaia et al.2021;Younes et al.2021).It is suggested that the associated event might be special compared with normal XRBs.Some works considered a trapped fireball and a relativistic outflow to explain the hard XRB (Ioka 2020;Yamasaki et al.2022).Subsequently,there were over 217 bursts observed during the first 1120 s from SGR J1935+2154(Younes et al.2020),but their characteristics were different from those of the XRB associated with FRB 200428,which exhibited a higher peak energy and a lower flux density at peak energy (Ridnaia et al.2021;Younes et al.2021).

    Remarkably,some recent works involved the interaction between neutron stars and asteroids in explaining FRBs (Dai 2020;Geng et al.2020;Decoene et al.2021).Following Dai(2020),in this work,we propose that the XRB associated with FRB 200428 is produced by synchrotron emission from internal shocks formed by collisions between fast and slow shells produced by a relativistically expanding fireball,which can constrain the model parameters using the observed XRB spectrum.The magnetar-asteroid impact satisfies conservation of energy.The gravitational energy of the asteroid and the magnetic energy of the magnetar’s magnetosphere are converted into the kinetic energy of ejected shells.The ejected shell velocity would have some differences after impacting the magnetar’s surface due to the components of multipolar fields at the magnetar’s surface.In our model,a freely-falling asteroid with a mass ofma~1020g is impeded by an ultra-strong magnetic field at Alfvén radiusRA,and then some major fragments with a mass ofm~1019g move along the magnetic field lines and generate pulses from FRB 200428 and its associated XRB(Dai 2020).This work is organized as follows.We describe the physical process of an expanding fireball generated by the magnetar-asteroid impact in Section 2.1.We analyze the internal shock model to account for the synchrotron emission spectrum in Section 2.2.The best fitting results are shown in Section 3.The results are discussed and summarized in Section 4.The conventionQx=Q/10xin cgs units is used throughout this paper.

    2.An Expanding Fireball and X-Ray Emission from Internal Shocks

    The impact of an asteroid/comet with a neutron star was proposed early as an origin of gamma-ray bursts (GRBs,Colgate&Petschek 1981;Howard et al.1981;van Buren 1981;Mitrofanov &Sagdeev 1990;Shull &Stern 1995) and soft gamma repeaters(SGRs,Livio&Taam 1987;Boer et al.1989;Katz et al.1994).In our model,when an asteroid collides with the polar surface of a magnetar,a conical hot plasma(fireball)is ejected,which is different from the fan-shaped outflow discussed by Colgate &Petschek (1981).

    2.1.An Expanding Fireball

    We consider an asteroid with a mass ofma~1020g to freely fall in the gravitational field of a magnetar,which is disrupted tidally into some fragments at ~1010cm from the magnetar’s center.Some major fragments are distorted tidally at breakup radius (Colgate &Petschek 1981)

    where ρ0,r0,sandMare the iron-nickel asteroid’s original mass density,radius,tensile strength and stellar mass,respectively.When an asteroid falls toward the magnetar’s surface,electrons are torn off the asteroidal surface by an induced parallel electric field.These accelerated electrons move along magnetic field lines,and emit an FRB by coherent curvature radiation (Dai et al.2016).Subsequently,some fragments are accreted onto the footpoints of closed magnetic field lines (see Figure 1(a)).A fireball with electrons and baryons is generated during the collision.The fireball expands relativistically due to an extremely high initial temperature,and blackbody emission is generated from the expanding fireball at the photosphere radius(see Figure 1(b)).Synchrotron emission from collisions between different shells in the relativistic fireball produces an XRB (see Figure 1(c)).

    Figure 1.Schematic collision geometry between an elongated,compressed asteroid and a magnetar.(a)Some fragments(we just show one fragment in our picture) freely fall in the gravitational field of the magnetar until the Alfvén radius RA,and then are accreted onto the footpoints (orange stars) of closed magnetic field lines.The three purple parts illustrate the falling process of a fragment.(b) A fireball is generated by the collision,which then expands relativistically.Blackbody emission is generated from a photosphere.(c)Synchrotron emission from the collisions between different shells produces an XRB.The different fragments would contribute to the different shells.

    Figure 2.The spectrum of the XRB associated with FRB 200428 from SGR J1935+2154.We adopt the data observed with Insight-HXMT(Li et al.2021).(Top)The observed photon count spectrum over-plotted with the best-fit model and residuals.(Bottom) The panel shows the de-convolved photon spectrum,and the data points represent the “observed” photon flux which is obtained by de-convolving the observed count spectrum using instrument responses.The synchrotron radiation model can fit the spectrum corresponding to the slow cooling case plus a blackbody component.The solid green,red and brown dashed lines signify the total,blackbody emission and synchrotron emission,respectively.The blue and purple solid lines represent the synchrotron selfabsorption frequency and cooling frequency,respectively.The residuals are defined as (data-model)/error.

    When an asteroid is slowed down around the Alfvén radiusRAby an ultra-strong magnetic field of the magnetar,some major fragments with mass ~1019g move along magnetic field lines fromRAonto the footpoints of closed magnetic field lines(Dai 2020).For a dipole magnetic field configuration,the radial direction positions (R*,θ1) and (R*,θ2) signify that the boundary of a fragment corresponds to the surface of the magnetar,whereR* is the surface radius of the magnetar.We have

    whereRmax?RA,Rmaxis the maximum distance of magnetic field lines across the equator andlais the length of the compressed asteroid.At the Alfvén radius,the kinetic energy density of the fragment is equal to the magnetic energy density,and one has(Dai 2020)

    Combining Equations (2),(3) and (4),the initial size of the trapped fireball ?0,Xcan be expressed as

    Under the assumption of thermal equilibrium,the temperature of the fireballT0can be estimated by Thompson&Duncan(1995)

    wherea=7.56×10?15erg cm?3K?4corresponds to the radiation energy density constant.SincekT0is greater than the electron rest energy,the huge optical depth due to photonphoton annihilation reactions in the fireball (see Dai 2020)inevitably generates a dense population of electron and positron pairs and further makes the fireball highly collisional and opaque.The magnetic field on the surface of a magnetar will be higher due to the components of multipolar fields.The higher magnetic field will increase the initial temperature to contribute to blackbody emission from the hot spot that will produce a fireball.Meanwhile,the collisions between different relativistic shells in the fireball can produce non-thermal emission components,which will be discussed in Section 2.2.

    After generating a fireball by the collisions,some baryons might be contaminated,similar to the SGR 1806-20 giant flare in 2004 (Granot et al.2006).According to the conservation of baryon number and energy,we can get the magnitude of bulk Lorentz factor (i.e.,the fireball can be accelerated to the maximum Lorentz factor),which is limited by the total entropy per baryon in the fireball as (Yamasaki et al.2022)Γi=1+(kT0/mec2)?10,wherekis the Boltzmann constant.

    Because the fireball pressure is comparable to the magnetic field pressure,the fireball can expand outside along the magnetic field lines.IfR>R*,the expanding fireball size ?Xevolves as?X=?0,X(R*)32in the magnetosphere of a magnetar (Thompson &Duncan 1995).The Lorentz factor evolves as Γ ∝?X,and the temperature of the fireball evolves asT∝during adiabatic expansion (Thompson &Duncan 2001).The bulk Lorentz factor and comoving temperature of the expanding fireball evolve as

    We find γshellis comparable to Γi,indicating that our derivation is self-consistent.As shown in Equation (9),the mass range of each shell will be affected by the Lorentz factor of the ejected shell.If the shell mass is too large,it is hardly accelerated to relativistic velocity.If the shell mass is too small,the Lorentz factor of the ejected shell will be larger than the maximum Lorentz factor.It is not consistent with Equation(6).Thus,the shell mass should be limited by the maximum Lorentz factor.Asteroids would fall randomly into different positions on the magnetar surface.Even though the relative collision location of different fragments is random,the fireball will expand along the open magnetic field lines,resulting in a consistent velocity direction for different fireballs.However,some differences in the magnetic field would exist due to the components of multipolar fields from the magnetar surface.The ejected shell velocity would have some differences.Therefore,internal shocks can be generated by the collisions between fireballs.

    When the fireball moves to the photosphere radius,the Thomson optical depth can be given by,whereZis the atomic number,σTis the Thomson cross-section anddenotes the comoving baryon number density.For a high-load fireball,electrons and baryons dominate the number density.According to conservation of the electron number density,the radial evolution of the electron number density whenR>Rccan be given by Yamasaki et al.(2022)

    whereAis the mass number.The Thomson optical depth becomes thin where the fireball expands to the size of?X?3.5×105cm,and we also obtain the temperature at the radius of the photospherekT?7 keV at 5×107cm.These results are consistent with the fitting parameters(see Section 3).

    2.2.X-Ray Emission from Internal Shocks

    When a fast shell catches up with a slow shell in front of it,the electrons in the shells are accelerated and produce synchrotron radiation.In general,fast and slow shells would be combined after the collision ends,and the whole process satisfies the conservation of energy and momentum.We assume that the mass,velocity,and Lorentz factor of the fast and slow shell can be expressed asM2,β2,γ2andM1,β1,γ1,respectively.The separation distance between the fast and the slow shell can be expressed bycδt,where δt~0.3 s corresponds to the time of light variable structure(Mereghetti et al.2020;Li et al.2021;Ridnaia et al.2021;Tavani et al.2021).The shell collision radius is (Paczynski &Xu 1994;Rees &Meszaros 1994)

    From the time of light variables,we can get the collision radius:Rint?5×1010cm.Below,we adopt physical parameters:γ1=2,γ2=10 and δt?0.3 s.According to the conservation of energy and momentum (Paczynski &Xu 1994),the velocity,Lorentz factor and the internal random motion Lorentz factor can be given by

    and then we can get the β,γ and γint

    wherempis the proton mass.The kinetic energy of the shell will be converted into internal energy,which can be written asEshell(γint?1)/γint,where (γint?1)/γintis the conversion efficiency.One can obtain the magnetic energy?BEshell(γint?1)/γint,and the magnetic energy densityB2/8π.Thus,the comoving magnetic field can be given by Zhang &Mészáros (2002)

    whereEshellis the shell energy.The characteristic frequency of synchrotron radiation at an electron Lorentz factor γecorresponds to photon energy

    The observed peak flux at distanceDfrom the source,and the total electron numbers can be written asNe=Mshell/mp.SGR J1935+2154 is associated with the supernova remnant (SNR) G57.2+0.8 (Gaensler 2014).The distanceDof the SNR G57.2+0.8 was estimated to be in a range of ~6.6 to ~12.5 kpc(Pavlovi? et al.2013;Surnis et al.2016;Kothes et al.2018;Zhong et al.2020;Zhou et al.2020).Electrons can cool down to γcfor γm>γc(fast cooling case) and γc>γm(slow cooling case) (Sari et al.1998).We compare γmand γcto decide the fast or slow cooling case.and γc=6πmec/σTB2δtγint?10.3.Below,we adopt typical physical parameters: γ1=2,γ2=10,?e=0.1,?B=0.1,Eshell=1039erg,mshell=1019g andp=2.5.The slow cooling case is suitable for our model due to γc>γm.Thus,we consider the slow cooling case to fit the spectrum of XRB.We also find the fast cooling case corresponds to the condition of higher shell energy and γ1<<γ2.The total energy of the observed XRB from SGR J1935+2154 ~1040erg is far less than the energy released by the GRB.Thus,the GRB is always in a fast cooling regime.Moreover,if the shell in front is in a state of non-relativistic motion,it will also cause a fast cooling case.The flux at the observer in the slow cooling case can be given by Gao et al.(2013),

    3.The Fitting Results

    We restrict our model parameters by the Markov Chain Monte Carlo (MCMC) method with the code PyMultiNest(Buchner et al.2014).The log-likelihood of these parameters can be given by a fitting statistic of Poisson data with Gaussian background,i.e.,

    and

    Hereirepresents different data from different channels,Sithe observed counts,Bithe background data andmithe predicted counts based on our model with current parameters,which has been convolved with the instrumental response matrix.tsandtbare the exposure times for the source and background spectra,respectively.By minimizing thePGfor a wide range of the parameters,we obtain the distribution of the best-fitting parameters,the central values of which maximize the log-likelihood function.

    In our model,when the asteroid collides with the magnetar surface,a hot fireball with electrons and baryons is generated with a high temperatureT0estimated by Equation(6).The initial temperature of the fireball determines the relativistic expansion in the later stage due to adiabatic expansion.As the fireball expands,the size and temperature of the fireball begin to evolve(see Section 2.1).Thermal X-rays from a photosphere in the relativistically expanding fireball are emitted.In Section 2.1,we calculated the blackbody temperature and the size of expanding fireball.The Thomson optical depth becomes thin when the fireball expands to the size of ?X?3.5×105cm.We obtain the temperature at the radius of the photospherekT?7 keV at 5×107cm,and find that the size and temperature of the expanding fireball are consistent with the fitting results.

    During the fireball expansion,the Lorentz factor of the fireball is also evolving (see Section 2.1).First,the Lorentz factor of the fireball increases withR.When the fireball reaches its maximum acceleration radius,the fireball will keep moving at a constant Lorentz factor.According to the conservation of energy,we calculate the Lorentz factor of the ejected shell γshell.In this section,we fit the Lorentz factors of the fast and slow shells and find that the Lorentz factor of the shell is comparable to γshell.Since the components of multipolar fields are from the magnetar surface,differences would exist in the magnetic field.Therefore,the Lorentz factor of the ejected shell would have some differences when forming the fast and slow shells.

    Moreover,collisions between fast and slow shells in the fireball will cause synchrotron emission.The confined shell collision radiusRintis larger than the photosphere radius,demonstrating that our model is self-consistent.We fit the spectrum of the XRB well to constrain reasonably other parameters (e.g.,p,Ne,B) in the internal shock model.In addition,the asteroid-magnetar gravitational energy contributes ~1040erg to the XRB,which is consistent with the total energy of the observed XRB from SGR J1935+2154.Figure 3 affirms that the confined shell energy and mass are comparable to the XRB energy and the fragmental mass,respectively.

    Figure 3.Corner plot of our model parameters.Histograms and contours are the log-likelihood of the parameter constraints by the McSpecFit package (Zhang et al.2016),which shows one and two-dimensional posterior probability distributions of parameters.Red crosses mark the best-fit values and error bars are 1σ uncertainties.

    4.Conclusion and Discussion

    In this paper,following Dai(2020)we have proposed that the XRB associated with FRB 200428 could be generated by synchrotron emission from the internal shocks between fast and slow shells formed by a relativistically expanding fireball and constrain the model parameters.The model parameters and conclusions are summarized as follows.

    1.In our model,the blackbody emission of the XRB spectrum could be contributed by an expanding fireball at the photosphere radius.Moreover,we can constrain the initial size of the trapped fireball,?0,X?1.3×104cm.Then,the fireball will expand along magnetic field lines to the size of ?X?3.5×105cm,and we can get the blackbody temperaturekT?7 keV,which is consistent with observations of the XRB(Mereghetti et al.2020;Li et al.2021;Ridnaia et al.2021;Tavani et al.2021).

    2.Subsequently,collisions between fast and slow shells in the relativistic fireball could generate internal shocks and synchrotron emission.We consider the internal shock model to constrain the physical parameters.

    Interestingly,the onset of the XRB is tens of milliseconds ahead of the FRBs(Mereghetti et al.2020;Li et al.2021;Ridnaia et al.2021;Tavani et al.2021).Such observation is understandable well based on our physical processes.After an asteroid is disrupted tidally into some fragments,those disrupted small fragments would fall toward the magnetar’s surface earlier to contribute to the onset of the XRB,and then one of two major fragments crosses magnetic field lines at the Alfvén radius to generate a pulse of the FRB.This observation would provide strong evidence in favor of our model.In addition,Dai (2020)found that the FRB energy is proportional to,and the ratio of radio and XRB energies.Therefore,the difference in the asteroidal mass may affect this ratio.

    The spectrum becomes hard at the two peaks observed by Insight-HXMT(Li et al.2021),implying that more high-energy electrons can be generated.In our model,collisions between different shells in the fireball lead to electrons being accelerated to high energy,forming more high-energy electrons.The physical process corresponds to the evolution of the spectrum from soft to hard.Moreover,in the internal shock model,the combined shells can continue colliding with other shells,leading to weaker bursts.Our model may have important implications for why there were some weaker spikes after the two peaks were observed by Insight-HXMT (Li et al.2021).

    We briefly discuss the spectrum of radiation escaping the photosphere of a fireball under strong magnetic fields.The spectrum from the trapped fireball that formed during the SGR outburst can be described by Lyubarsky (2002):.The spectrum is flat at low energy (?

    Furthermore,recent observations indicate that some repeating FRBs manifest periodic activity (CHIME/FRB Collaboration et al.2020;Rajwade et al.2020;Pastor-Marazuela et al.2021;Pleunis et al.2021).These observations can also be explained in the pulsar-asteroid impact model of Dai et al.(2016).Periodicity in FRB 121102 and FRB 180916.J0158+65 can be explained by the orbital period of a pulsar and a stellar-mass companion,and extragalactic asteroid belt parameters can be constrained well (Dai &Zhong 2020).In addition,some repeating FRBs show the time-frequency downward drifting patterns (Caleb et al.2020),and nearly 100% linear polarization (Day et al.2020).The frequency drifting is mainly caused by the geometric structure of a pulsar magnetosphere,and the linear polarization can be constrained (Liu et al.2020).

    Acknowledgments

    We are grateful to Fa-Yin Wang,He Gao,Tong Bao,Shu-Qing Zhong and Jun Yang for their helpful discussions and constructive comments.This work was supported by the National Key Research and Development Program of China (Grant Nos.2017YFA0402600,2018YFA0404204),the National SKA Program of China (Grant No.2020SKA0120300),the National Natural Science Foundation of China (NSFC,Grant Nos.11833003,U2038105) and the Program for Innovative Talents,Entrepreneur in Jiangsu.Y.P.Y.is supported by the National Natural Science Foundation of China (NSFC,Grant No.12003028)and Yunnan University(Grant No.C176220100087).C.K.L.thanks support from the National Natural Science Foundation of China (NSFC,Grant No.U1838113).B.B.Z.acknowledges support by Fundamental Research Funds for the Central Universities (14380046),the National Key Research and Development Programs of China (2018YFA0404204),the National Natural Science Foundation of China (NSFC,Grant Nos.11833003 and U2038105),the science research grants from the China Manned Space Project with NO.CMS-CSST-2021-B11,and the Program for Innovative Talents,Entrepreneur in Jiangsu.

    欧美成人免费av一区二区三区| 精品一区二区免费观看| 免费看美女性在线毛片视频| 亚洲欧美一区二区三区国产| 国产成人精品一,二区| 伦理电影大哥的女人| 久久欧美精品欧美久久欧美| 国产一区二区亚洲精品在线观看| 老司机影院成人| 精品久久久久久久久久久久久| www.av在线官网国产| 亚洲真实伦在线观看| 国产精品一区二区三区四区久久| 日本一二三区视频观看| 亚洲人成网站高清观看| 人妻夜夜爽99麻豆av| 高清日韩中文字幕在线| 国产在视频线精品| 亚洲天堂国产精品一区在线| 精品不卡国产一区二区三区| 久久久久久久久大av| 91久久精品国产一区二区成人| 国产69精品久久久久777片| 亚洲成av人片在线播放无| 中文天堂在线官网| 色综合站精品国产| 国产精品一区www在线观看| 日韩欧美国产在线观看| 全区人妻精品视频| www.色视频.com| 日韩av在线大香蕉| 99久久成人亚洲精品观看| 黄色配什么色好看| 久久亚洲精品不卡| 日韩欧美精品免费久久| av在线老鸭窝| 国产一级毛片七仙女欲春2| 亚洲av.av天堂| 好男人视频免费观看在线| 中文字幕亚洲精品专区| 波野结衣二区三区在线| 我的女老师完整版在线观看| 2021少妇久久久久久久久久久| 高清在线视频一区二区三区 | 亚洲精品,欧美精品| 久久久久久国产a免费观看| 日韩亚洲欧美综合| a级一级毛片免费在线观看| 久久热精品热| 国产视频首页在线观看| 成年免费大片在线观看| 人妻制服诱惑在线中文字幕| 少妇丰满av| 成人午夜高清在线视频| 直男gayav资源| 国产白丝娇喘喷水9色精品| 婷婷色综合大香蕉| videossex国产| 欧美成人午夜免费资源| 熟女电影av网| 高清av免费在线| 精品一区二区三区视频在线| 国产在线男女| 日韩欧美精品v在线| 欧美性感艳星| 极品教师在线视频| 欧美最新免费一区二区三区| 少妇丰满av| 欧美成人a在线观看| 欧美高清性xxxxhd video| 少妇高潮的动态图| 久久婷婷人人爽人人干人人爱| 亚洲国产精品成人综合色| 成人亚洲精品av一区二区| 国产精品无大码| 国产一区二区在线av高清观看| 国产美女午夜福利| 欧美激情国产日韩精品一区| 亚洲自拍偷在线| 一个人免费在线观看电影| 干丝袜人妻中文字幕| 麻豆成人av视频| 中文欧美无线码| 国产亚洲午夜精品一区二区久久 | 夜夜爽夜夜爽视频| 成人美女网站在线观看视频| 亚洲性久久影院| 欧美日韩一区二区视频在线观看视频在线 | 久久久成人免费电影| 欧美性猛交黑人性爽| 国产精品久久视频播放| 中文字幕精品亚洲无线码一区| 老司机福利观看| 国产伦精品一区二区三区四那| 夫妻性生交免费视频一级片| 国产成人精品婷婷| 欧美xxxx性猛交bbbb| 国产午夜精品一二区理论片| 国产午夜精品久久久久久一区二区三区| 美女xxoo啪啪120秒动态图| 麻豆av噜噜一区二区三区| 国产伦在线观看视频一区| 日韩欧美精品v在线| 69av精品久久久久久| 九九爱精品视频在线观看| 黄色日韩在线| 亚洲av男天堂| 最近2019中文字幕mv第一页| 内射极品少妇av片p| 亚洲成人中文字幕在线播放| 日本一二三区视频观看| 中国美白少妇内射xxxbb| av免费观看日本| 亚洲五月天丁香| 亚洲美女搞黄在线观看| 国产老妇女一区| 亚洲av免费在线观看| 国产精品一区www在线观看| 国产综合懂色| 日本免费一区二区三区高清不卡| 嫩草影院新地址| 免费黄网站久久成人精品| 在线a可以看的网站| 中文精品一卡2卡3卡4更新| 亚洲欧美日韩高清专用| 波多野结衣巨乳人妻| 日产精品乱码卡一卡2卡三| 免费观看人在逋| 成人亚洲精品av一区二区| 人妻制服诱惑在线中文字幕| 国产成年人精品一区二区| 亚洲人与动物交配视频| 欧美最新免费一区二区三区| 亚洲内射少妇av| 久久人人爽人人片av| 伦精品一区二区三区| eeuss影院久久| 欧美xxxx黑人xx丫x性爽| 国产高清三级在线| 又粗又爽又猛毛片免费看| 搡老妇女老女人老熟妇| 亚洲人成网站高清观看| 婷婷色麻豆天堂久久 | 在线a可以看的网站| 亚洲av成人av| 特大巨黑吊av在线直播| 中文亚洲av片在线观看爽| 精品久久国产蜜桃| 直男gayav资源| 国产免费一级a男人的天堂| 丰满乱子伦码专区| 一级av片app| 一级黄色大片毛片| 精品久久国产蜜桃| 国产精品永久免费网站| 亚洲av日韩在线播放| 久久久精品欧美日韩精品| 国产精品久久久久久久久免| 欧美最新免费一区二区三区| 成人漫画全彩无遮挡| 久久久久久久国产电影| 男女啪啪激烈高潮av片| 91久久精品国产一区二区成人| 亚洲人成网站高清观看| 3wmmmm亚洲av在线观看| 热99re8久久精品国产| 亚洲最大成人中文| 久久精品综合一区二区三区| 天堂影院成人在线观看| 自拍偷自拍亚洲精品老妇| 天天躁日日操中文字幕| 18+在线观看网站| 国产一区二区在线观看日韩| 国产美女午夜福利| 99视频精品全部免费 在线| 麻豆国产97在线/欧美| 亚洲一区高清亚洲精品| 高清午夜精品一区二区三区| 青青草视频在线视频观看| 亚洲图色成人| 汤姆久久久久久久影院中文字幕 | 国产老妇伦熟女老妇高清| 97超碰精品成人国产| 九九久久精品国产亚洲av麻豆| 精品欧美国产一区二区三| 在线播放无遮挡| 久久99热这里只有精品18| 简卡轻食公司| 欧美最新免费一区二区三区| 日本免费a在线| 国产色爽女视频免费观看| 蜜臀久久99精品久久宅男| 久久午夜福利片| 可以在线观看毛片的网站| 91aial.com中文字幕在线观看| 欧美xxxx黑人xx丫x性爽| 欧美变态另类bdsm刘玥| 久久久久久伊人网av| 国产美女午夜福利| 日本黄色视频三级网站网址| 搡老妇女老女人老熟妇| a级一级毛片免费在线观看| 日韩精品有码人妻一区| 少妇熟女欧美另类| 中文亚洲av片在线观看爽| 国产精品精品国产色婷婷| 又爽又黄a免费视频| 亚洲精品久久久久久婷婷小说 | 国产伦理片在线播放av一区| 高清日韩中文字幕在线| 中文字幕亚洲精品专区| 日产精品乱码卡一卡2卡三| 一边摸一边抽搐一进一小说| 亚洲欧美日韩东京热| 免费电影在线观看免费观看| 欧美3d第一页| 国产午夜福利久久久久久| 日本免费a在线| 国产成人a区在线观看| 2021天堂中文幕一二区在线观| 久久久久九九精品影院| 日韩成人伦理影院| 亚洲欧洲日产国产| 99热这里只有是精品50| 26uuu在线亚洲综合色| 亚洲国产最新在线播放| 亚洲av成人精品一区久久| 久久精品91蜜桃| 国产av在哪里看| 久久久久久久午夜电影| 成人性生交大片免费视频hd| 成人欧美大片| 日本黄大片高清| 少妇的逼好多水| 亚洲成人久久爱视频| 国产午夜精品一二区理论片| 日日啪夜夜撸| 超碰av人人做人人爽久久| 中文字幕免费在线视频6| 国产精品一区二区三区四区免费观看| 男女下面进入的视频免费午夜| 嫩草影院精品99| 色视频www国产| 成人高潮视频无遮挡免费网站| 久久99热这里只有精品18| 一二三四中文在线观看免费高清| 啦啦啦韩国在线观看视频| 亚洲av成人精品一二三区| 久久人人爽人人片av| 你懂的网址亚洲精品在线观看 | 网址你懂的国产日韩在线| 国产男人的电影天堂91| 久久精品国产鲁丝片午夜精品| 2021天堂中文幕一二区在线观| 大香蕉97超碰在线| 欧美最新免费一区二区三区| 久久精品久久精品一区二区三区| 国产又色又爽无遮挡免| 亚洲欧美成人综合另类久久久 | 嫩草影院新地址| 亚洲婷婷狠狠爱综合网| 免费看av在线观看网站| 久久久久免费精品人妻一区二区| 国内精品美女久久久久久| 九色成人免费人妻av| 精品人妻熟女av久视频| 久久亚洲国产成人精品v| 精品久久久久久久久亚洲| 国模一区二区三区四区视频| 国产色婷婷99| 国产三级在线视频| 国产成人a∨麻豆精品| 老师上课跳d突然被开到最大视频| 午夜福利在线观看免费完整高清在| 亚洲国产欧美人成| 干丝袜人妻中文字幕| 三级经典国产精品| 亚洲综合色惰| 国产淫片久久久久久久久| 国产亚洲精品av在线| 国产不卡一卡二| 好男人视频免费观看在线| 国产探花在线观看一区二区| 黄片无遮挡物在线观看| 韩国av在线不卡| 亚洲中文字幕一区二区三区有码在线看| 69人妻影院| 97超碰精品成人国产| 久久精品影院6| 直男gayav资源| 免费观看a级毛片全部| 国产中年淑女户外野战色| 大话2 男鬼变身卡| 18禁裸乳无遮挡免费网站照片| 国产免费男女视频| 超碰av人人做人人爽久久| 成人午夜精彩视频在线观看| 中文精品一卡2卡3卡4更新| 亚洲伊人色综图| 欧美人与性动交α欧美精品济南到 | av国产精品久久久久影院| 高清毛片免费看| 精品国产一区二区三区久久久樱花| 18禁裸乳无遮挡动漫免费视频| 大香蕉97超碰在线| 国产成人精品福利久久| 日韩成人av中文字幕在线观看| 国产精品国产av在线观看| 黑人高潮一二区| 久久精品国产鲁丝片午夜精品| 美女主播在线视频| 亚洲精品中文字幕在线视频| 制服诱惑二区| 美女视频免费永久观看网站| 亚洲天堂av无毛| 久久人人爽人人片av| 男的添女的下面高潮视频| 中文字幕精品免费在线观看视频 | 亚洲四区av| 亚洲av电影在线进入| xxxhd国产人妻xxx| 久久鲁丝午夜福利片| 免费大片18禁| 国产毛片在线视频| 国产成人av激情在线播放| 18+在线观看网站| 国产亚洲午夜精品一区二区久久| 亚洲国产看品久久| 色吧在线观看| 欧美精品高潮呻吟av久久| 99热网站在线观看| 日本91视频免费播放| 亚洲国产av影院在线观看| 黄色 视频免费看| 街头女战士在线观看网站| 狂野欧美激情性bbbbbb| 日韩人妻精品一区2区三区| 亚洲av免费高清在线观看| 你懂的网址亚洲精品在线观看| 好男人视频免费观看在线| 国产精品.久久久| 免费观看性生交大片5| 熟女av电影| 久久久久人妻精品一区果冻| 人妻一区二区av| 精品一区在线观看国产| a级片在线免费高清观看视频| 日本猛色少妇xxxxx猛交久久| 夜夜爽夜夜爽视频| 精品久久国产蜜桃| 免费看不卡的av| 欧美少妇被猛烈插入视频| 精品一品国产午夜福利视频| 久久久精品94久久精品| a级片在线免费高清观看视频| 成人影院久久| 伦精品一区二区三区| 9色porny在线观看| 伦精品一区二区三区| 两个人看的免费小视频| 人人妻人人爽人人添夜夜欢视频| 最近中文字幕高清免费大全6| 色5月婷婷丁香| 中国国产av一级| 18禁国产床啪视频网站| 视频中文字幕在线观看| 国产一区二区三区综合在线观看 | 免费高清在线观看日韩| 春色校园在线视频观看| 永久网站在线| 水蜜桃什么品种好| 午夜日本视频在线| 麻豆精品久久久久久蜜桃| 日产精品乱码卡一卡2卡三| 少妇熟女欧美另类| 免费在线观看黄色视频的| 纯流量卡能插随身wifi吗| 26uuu在线亚洲综合色| 狠狠精品人妻久久久久久综合| 一区在线观看完整版| 亚洲成人一二三区av| 亚洲熟女精品中文字幕| 久久人人97超碰香蕉20202| 欧美bdsm另类| 久久精品国产a三级三级三级| av免费观看日本| 老司机影院成人| 在线观看免费视频网站a站| 精品亚洲成a人片在线观看| 久久久久久久久久久久大奶| 国产精品女同一区二区软件| av在线app专区| av福利片在线| 成年av动漫网址| 日韩制服骚丝袜av| 免费黄频网站在线观看国产| 国产国拍精品亚洲av在线观看| 日韩精品免费视频一区二区三区 | 国产精品久久久久久精品电影小说| 伊人亚洲综合成人网| 51国产日韩欧美| 国产成人精品久久久久久| 亚洲国产色片| 国产精品一区二区在线观看99| 97在线人人人人妻| 亚洲国产欧美在线一区| 久久这里有精品视频免费| 有码 亚洲区| 国产又色又爽无遮挡免| 最近中文字幕高清免费大全6| 五月开心婷婷网| 久久午夜福利片| av.在线天堂| 热99国产精品久久久久久7| 天天操日日干夜夜撸| 狂野欧美激情性bbbbbb| 亚洲色图 男人天堂 中文字幕 | 汤姆久久久久久久影院中文字幕| 国产成人欧美| 亚洲伊人久久精品综合| 国产一区有黄有色的免费视频| 精品午夜福利在线看| 国产又爽黄色视频| 中文字幕最新亚洲高清| 十八禁网站网址无遮挡| 精品国产国语对白av| 久久人妻熟女aⅴ| 在线 av 中文字幕| 精品人妻偷拍中文字幕| 婷婷成人精品国产| 少妇人妻久久综合中文| 日本欧美视频一区| 国产高清国产精品国产三级| 九草在线视频观看| 夜夜骑夜夜射夜夜干| 国产免费福利视频在线观看| 99热全是精品| 2022亚洲国产成人精品| 香蕉精品网在线| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲av片在线观看秒播厂| 久久人人爽人人爽人人片va| 两个人免费观看高清视频| 久久午夜综合久久蜜桃| 国产精品.久久久| 国产在视频线精品| 久久免费观看电影| 香蕉精品网在线| 日本vs欧美在线观看视频| 免费少妇av软件| 国产视频首页在线观看| 欧美日本中文国产一区发布| 国产在视频线精品| 视频在线观看一区二区三区| 中文字幕亚洲精品专区| 国产欧美另类精品又又久久亚洲欧美| 国产成人午夜福利电影在线观看| 日日摸夜夜添夜夜爱| 亚洲成人av在线免费| 美女国产高潮福利片在线看| 久久99一区二区三区| av不卡在线播放| 色5月婷婷丁香| 国产在线免费精品| 91久久精品国产一区二区三区| 在线观看人妻少妇| 亚洲天堂av无毛| 一二三四在线观看免费中文在 | av天堂久久9| 亚洲性久久影院| 成年av动漫网址| 国产 一区精品| 激情视频va一区二区三区| 国产免费一级a男人的天堂| 美女内射精品一级片tv| 亚洲性久久影院| 亚洲精品国产色婷婷电影| 日韩电影二区| 自拍欧美九色日韩亚洲蝌蚪91| 精品人妻一区二区三区麻豆| 视频区图区小说| 国产精品久久久久久久久免| 2022亚洲国产成人精品| 国产精品久久久久久精品电影小说| 成人毛片60女人毛片免费| 女性被躁到高潮视频| 高清黄色对白视频在线免费看| 9热在线视频观看99| 成人毛片a级毛片在线播放| 久久精品夜色国产| 最新的欧美精品一区二区| 日韩一区二区三区影片| 久久99蜜桃精品久久| 少妇人妻精品综合一区二区| 视频在线观看一区二区三区| 麻豆精品久久久久久蜜桃| 大香蕉久久成人网| 亚洲av综合色区一区| 91国产中文字幕| 久久人人爽人人片av| 亚洲一区二区三区欧美精品| 女性被躁到高潮视频| 熟女电影av网| 最后的刺客免费高清国语| 纵有疾风起免费观看全集完整版| 建设人人有责人人尽责人人享有的| 亚洲av成人精品一二三区| 精品视频人人做人人爽| 91在线精品国自产拍蜜月| 亚洲第一区二区三区不卡| 建设人人有责人人尽责人人享有的| 免费在线观看黄色视频的| 国产免费又黄又爽又色| 久久久久久久精品精品| 天堂中文最新版在线下载| 久久99热6这里只有精品| 日本vs欧美在线观看视频| 少妇被粗大的猛进出69影院 | 国产淫语在线视频| 日本av手机在线免费观看| 美女脱内裤让男人舔精品视频| 少妇人妻精品综合一区二区| 亚洲美女视频黄频| 欧美变态另类bdsm刘玥| 亚洲成人手机| 美女大奶头黄色视频| 国产精品久久久久久久久免| 欧美精品国产亚洲| 欧美激情国产日韩精品一区| 大香蕉97超碰在线| 亚洲熟女精品中文字幕| 国产高清三级在线| 日韩成人av中文字幕在线观看| 欧美日韩一区二区视频在线观看视频在线| 建设人人有责人人尽责人人享有的| 搡女人真爽免费视频火全软件| 男人添女人高潮全过程视频| 日本av手机在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 国产69精品久久久久777片| 中国三级夫妇交换| 在线精品无人区一区二区三| 春色校园在线视频观看| 亚洲色图 男人天堂 中文字幕 | 成人国产麻豆网| 人妻 亚洲 视频| 99久久综合免费| 久久免费观看电影| 久久精品国产a三级三级三级| www.熟女人妻精品国产 | 国产 精品1| 人人妻人人澡人人看| 80岁老熟妇乱子伦牲交| 精品卡一卡二卡四卡免费| 久久免费观看电影| 精品亚洲乱码少妇综合久久| 国产视频首页在线观看| 插逼视频在线观看| 天堂俺去俺来也www色官网| 亚洲一级一片aⅴ在线观看| 亚洲性久久影院| 99久国产av精品国产电影| 亚洲成av片中文字幕在线观看 | 国产黄频视频在线观看| 亚洲欧美一区二区三区国产| 母亲3免费完整高清在线观看 | 丝袜在线中文字幕| 久久人人爽人人爽人人片va| 国产精品.久久久| 久久久久国产精品人妻一区二区| 少妇人妻 视频| 国产精品人妻久久久久久| 一本久久精品| 丝袜人妻中文字幕| 晚上一个人看的免费电影| 精品久久久久久电影网| 亚洲国产精品成人久久小说| 国产淫语在线视频| 日本猛色少妇xxxxx猛交久久| 日韩电影二区| 国产精品一区二区在线不卡| 捣出白浆h1v1| 最近2019中文字幕mv第一页| 日日撸夜夜添| 国产av一区二区精品久久| 精品国产国语对白av| 街头女战士在线观看网站| 男人添女人高潮全过程视频| 亚洲成人手机| av播播在线观看一区| 99久久人妻综合| 亚洲精品色激情综合| 国产亚洲精品第一综合不卡 | 99热国产这里只有精品6| 亚洲精品国产av蜜桃| 日韩中字成人| 亚洲图色成人| 亚洲成国产人片在线观看| 亚洲欧美色中文字幕在线| 一级a做视频免费观看| 18禁国产床啪视频网站| 丝袜美足系列| 亚洲av日韩在线播放| 一边摸一边做爽爽视频免费| 亚洲欧洲国产日韩| 免费少妇av软件| 人人妻人人添人人爽欧美一区卜| 国产成人精品在线电影| 高清欧美精品videossex| 超色免费av| 亚洲伊人色综图| av一本久久久久| 亚洲中文av在线| 中文乱码字字幕精品一区二区三区| 男女啪啪激烈高潮av片|