• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Neutrinos on Angular Momentum of Dark Matter Halo

    2023-09-03 01:37:20YuChenChangZhiLuYuLuTingtingZhangandTongJieZhang

    Yu Chen ,Chang-Zhi Lu ,Yu Lu ,Tingting Zhang ,and Tong-Jie Zhang

    1 Institute for Frontiers in Astronomy and Astrophysics,Beijing Normal University,Beijing 102206,China;tjzhang@bnu.edu.cn

    2 Department of Astronomy,Beijing Normal University,Beijing 100875,China

    3 Beijing Planetarium,Beijing Academy of Science and Technology,Beijing 100044,China

    4 College of Command and Control Engineering,PLA Army Engineering University,Nanjing 210017,China

    5 Institute for Astronomical Science,Dezhou University,Dezhou 253023,China

    Abstract Massive neutrinos are expected to affect the large-scale structure formation,including the major component of solid substances,dark matter halos.How halos are influenced by neutrinos is vital and interesting,and angular momentum (AM) as a significant feature provides a statistical perspective for this issue.Exploring halos from TianNu N-body cosmological simulation with the co-evolving neutrino particles,we obtain some concrete conclusions.First,by comparing the same halos with and without neutrinos,in contrast to the neutrino-free case,over 89.71% of halos have smaller halo moduli,over 71.06% have smaller particle-mass-reduced (PMR) AM moduli,and over 95.44% change their orientations of less than 0°.65.Moreover,the relative variation of PMR modulus is more visible for low-mass halos.Second,to explore the PMR moduli of halos in dense or sparse areas,we divide the whole box into big cubes,and search for halos within a small spherical cell in a single cube.From the two-level divisions,we discover that in denser cubes,the variation of PMR moduli with massive neutrinos decreases more significantly.This distinction suggests that neutrinos exert heavier influence on halos’ moduli in compact regions.With massive neutrinos,most halos (86.60%) have lower masses than without neutrinos.

    Key words: (cosmology:)dark matter–neutrinos–(cosmology:)large-scale structure of universe–methods:data analysis

    1.Introduction

    The angular momentum (AM) plays an important role in the formation of dark matter halos.Dark matter halos in equilibrium exhibit some expected general properties,such as a universal density profile (the NFW profile,Navarro et al.1997) of virialized halos in cosmologicalN-body simulations.The universal AM profile of dark matter halos was also carefully investigated by Liao et al.(2017) with Bolshoi cosmological simulation (Klypin et al.2011).In suchN-body simulation for dark matter halos,their measured AMs(although the plural form is Angular Momenta,we still use AMs for simplicity)will vary with the concrete particle sampling in mass resolution (or unit mass) configuration (Bullock et al.2001;Chen et al.2003).Consequently,it is necessary to perform with a finer mass resolution for better computation on AM.

    At present,neutrinos are the only detectable dark matter candidate for the usually extremely weak interplay with general substance (Lineros 2017),but their mass has not been known precisely.A heavier neutrino can reduce the small-scale structure in the universe and change the power spectrum of total matter (Yu et al.2017).Accordingly,neutrinos should only be a fraction of dark matter (Massey et al.2015).Nowadays the lower limit on the sum of neutrinos’ mass is?0.05eV(Olive 2014),and the upper limit isMν?0.12 eV (Planck Collaboration et al.2020).

    The interaction between neutrinos and galactic dark matter halos via neutrino oscillation was explored by de Salas et al.(2016).Furthermore,Yu et al.(2019) believed that neutrinos make a unique contribution to the orientation of the AM fields of galaxies and halos.Based on the halos’AM profile research(Liao et al.2017),it is quite natural to seek what effect neutrinos impose on the AMs of dark matter halos.

    Massive neutrinos affect dark matter and the large-scale structure in a linear perturbation (Lesgourgues &Pastor 2006)at the early universe,but their influence now is highly nonlinear(Zhu et al.2014) and complicated for analytic investigation(Castorina et al.2015;Carbone et al.2016).Hence,our current knowledge of neutrinos dynamics mainly relies on numerical simulations.AnN-body simulation with transparent mechanism,tremendous scale and high mass resolution (Liao et al.2017)of dark matter and especially neutrinos is entailed to our research.Although in some previousN-body simulations(Pearson 2014),neutrinos were set to have zero mass and contributed little to dark halos.

    Fortunately,one of the world’s largestN-body neutrino simulations,TianNu can be used for our research.Based on a flat ΛCDM model,including more than 3 trillion particles in a giant 1200 h?1Mpc-side-length cube,the TianNu simulation was run on Tianhe-2 supercomputer to obtain a precise CDMneutrino dipole(Inman et al.2017)and to reveal the neutrinos’differential condensation according to their local dark halo density (Yu et al.2017).Additionally,Qin et al.(2018) also used the TianNu data to research the effects of massive neutrinos on the CDM halos’spatial distribution in the form of Delaunay Triangulation (DT) voids.TianNu is an improved version of the public cosmologicalN-body code CUBEP3M(Harnois-Déraps et al.2013) supporting the co-evolution of CDM and neutrinos.

    This paper is organized as follows.We make statistics of simulated halos in Section 2,including their variation of AM moduli and orientations with and without neutrinos.We analyze the relation between halo AM modulus and its environmental density in Section 3.Our discussions and conclusions are given in Sections 4 and 5,respectively.

    2.Methodology

    2.1.Data from TianNu Simulation

    As for the TianNu simulation,all of its physical configurations are listed in Yu et al.(2017),and all of its code details are available in Emberson et al.(2017).We just use TianNu and TianZero halos data and run the code of AM statistics.

    Two independentN-body simulations,TianNu and TianZero,are performed for comparison.TianNu contains two light species in the background cosmology by CLASS transfer function(Blas et al.2011)and a heavy one(mν=0.05eV)traced by simulated particles,while TianZero only discards massive neutrinos (ormν=0 eV) with the same other conditions.

    A flat ΛCDM is applied in the simulations.The density parameters of CDM (Ωc) and baryons (Ωb),reduced Hubble parameter (h),initial tilt (ns) and fluctuations of the power spectrum(mass variance at 8 h?1Mpc,σ8)are assigned as 0.27,0.05,0.67,0.96 and 0.83 separately.Given neutrino density parameter Ων,7Note here,Ων ≡1.68 h?2×10?5 for Σimνi=0,otherwise Ω ν≡ (9 4 h2 eV)?1Σi mνi.the total matter density parameter is ΩM=Ωc+Ωb+Ων,and it leads to ΩΛ=1 ?ΩM.

    The simulation is conducted with only 69123CDM particlegroups (mass resolution,Mr,ν=6.9×108M⊙in TianNu andMr,z=7×108M⊙in TianZero)fromz=100 toz=5.At lower redshift,the TianNu is injected with 138243neutrino particlegroups (mass resolution 3×105M⊙) to co-evolve,while the TianZero keeps neutrino-free.Under this preset of mass resolutions,the total masses of the two simulations are almost equal,making Ων≈0.37%ΩM≈0.0011.The simulation information is saved in 21 checkpoints including all positions and velocities,and the data we use are the checkpoints atz=0.01.

    A Spherical Overdensity (SO) algorithm (Yu et al.2017) is used to discover halos with their mass in TianZero from about 9×1011to 3.6×1014M⊙.The final data we get contain two halo sets (TianNu and TianZero),where the properties of each halo are described by seven parameters: its mass,threedimensional orthogonal components of position and AM modulus.The late-time injection of neutrinos makes little impact on the halo’s mass and position,which can be seen in Figure 1.The 10%variations of mass-center position and mass concerning TianZero halos were used in the former studies(Yu et al.2017;Qin et al.2018).However,considering the potential improvement of the program,we adopt an 8% variation,summing up to a 94.9% match rate and 24301359 pairs of halos.

    Figure 1.The cumulative count curves of distance and percent mass difference between halo pairs in the left and right panels correspondingly. M is halo mass,and ΔM=abs(Mν ?Mz).The blue curve is the 10%-variation case,and the red curve is the 8%-variation case taking up 97.6% of the 10% case.

    2.2.Calculation for AM

    The AM J of a dark matter halo is obtained by summing up the AMs of all particles within it:

    whereirepresents a single particle with its massmi,coordinate ri,and velocity vi.For the AM of every halo,we explore its modulus-and direction-difference individually between two data sets.

    We define the modulus of the summed AM from Equation(1)as the halo modulus (J=|J|),and plot them for all halos in Figure 2,showing highly similar distributions of the two sets.A seemingly left-skewed lognormal function can fit the characteristics.

    Figure 2.The count curves as functions of halo modulus.The blue and red curves are the TianZero and TianNu counts.The right panel plots the same distribution with logarithmic abscissa.

    We plot the ΔJ/Jz(ΔJ=Jν?Jz,Jνis the halo modulus of TianNu andJzis the halo modulus of TianZero) count in the upper panel of Figure 3,and calculate the 1σ range enveloping the median among 100 mass bins with almost same volume in the lower panel of Figure 3.ΔJ/Jzhas the mean of ?0.3717%and the median of ?0.3655%,while the 89.71% of them have smallerJunder the impact of neutrinos.

    Figure 3.The ΔJ/Jz with respect to TianZero halo mass (Mz).The total count is plotted in the upper panel with a color bar indicating the counting number.In the lower panel,the black dotted line denotes the medians of ΔJ/Jz among 100 mass bins,while the blue dashed-dotted and red dashed lines present the 1σ region around the median.The upper panel uses the bins with the same width in the abscissa,and it is why the bin widths are visually smaller at higher mass.However,the lower panel uses the bins with equal halo amount,so the data points are more concentrated at lower mass.The identical discrepancies would arise in Figures 4,5 and 12.

    Considering the different masses of the unit particle-groups in the two simulations,it is indirect to compare their AM modulus variation at a uniform mass and the traditional specific modulus is improper here.Instead,we re-scale their masses on a single particle-group and obtain the particle-mass-reduced(PMR) moduli,since they are the least simulated unit.Therefore,we explore the PMR modulus,Δj/jz(Δj=jν?jz,jz=Jz/Nzandjν=Jν/Nν,NzandNνare the amount of particlegroups forming a halo),and plot its distribution in Figure 4.Δj/jzhas the mean of ?0.5493% and the median of?0.5650%,while the 71.06% of them have smallerjunder the impact of neutrinos.

    Figure 4.The Δj/jz with respect to Mz.The total count is plotted in the upper panel with a color bar indicating the counting number.In the lower panel,the black dotted line denotes the median of Δj/jz among 100 mass bins,while the blue dashed-dotted and red dashed lines present the 1σ region around the median.

    In Figure 5,we plot the directional angular difference θ(degree) between Jνand Jz:

    Figure 5.The orientation difference(θ)with respect to Mz.The total count is plotted in the upper panel with a color bar indicating the counting number.In the lower panel,the black dotted line denotes the median of θ among 100 mass bins,while the blue dashed-dotted and red dashed lines present the 1σ region around the median.

    They have a mean of 0°.1646 and a median of 0°.0840,while 95.44% of them are smaller than 0°.6500 under the impact of neutrinos.

    3.The Influence of Neutrino and Local Density

    After investigating the relative modulus and direction variations from the TianNu and TianZero sets independently,we then consider the halos AM moduli with their local density environment.In the two simulations,we obtain the general halo number density of 1.406×10?2h3Mpc?3.

    Given the irregular and fibrous condensed structures of dark halos,it is difficult to determine their local density precisely by defining an inspected volume with consistent shape and magnitude.Additionally,the enormous amount of halos in data also reduces the efficiency of searching them by pairs.

    To avoid a computing-expensive global searching among all dark halos,we first partition the tremendous whole box into many coarse cubes with the side length of 50h?1Mpc.Considering that 100h?1Mpc (10h?1Mpc) is regarded as an upper(lower)boundary of smooth perturbed large-scale(smallscale)structures,the side length between the two values can be proper theoretically.

    We then select a cube to explore the halo AM modulus variation with different local densities and whether the neutrinos are added.For instance,in the selected cube with maximum(or minimum)matter density plotted in Figure 6(and Figure 7),we search the 360 halos located in the most compact as well as in the most scarce cells.Every cell is a sphere with a radius of 5h?1Mpc and centered in one halo,which is at least 5h?1Mpc away from the nearest block boundary.To avoid confusion in this paper,we emphasize that we use the box,cube and cell,to denote the space with 1200h?1Mpc side length,50h?1Mpc side length and 5h?1Mpc radius respectively and strictly.For the same block in TianZero and TianNu,we obtain two sets of halos in compact and scarce local regions separately,and call them neoC (Compact-cell halo set in TianNu),neoS (Scarce-cell halo set in TianNu),zeoC (Compact set in TianZero) and zeoS respectively.To collect the halos both in TianNu or TianZero,we select the first 300 halos matched from neoC-zeoC and neoS-zeoS,and name the four data sets as NeoC,NeoS,ZeoC and ZeoS.

    Figure 6.The densest cube in the TianZero box.

    Figure 7.The sparsest cube in the TianZero box.

    Figure 8.The variation of PMR moduli(Δj)of halos in extreme cubes.The left(or right)panel shows 6000 data points(300 halos from 20 sets)from the 20 densest(or sparsest) cubes.Less halo index indicates it has a more extreme (bigger or smaller) density environment.

    Figure 9.The relative variation of PMR moduli(Δj/jz)of halos in extreme cubes.The left(or right)panel shows 6000 data points(300 halos from 20 sets)from the 20 densest (or sparsest) cubes.Less halo index indicates it has a more extreme (bigger or smaller) density environment.

    Figure 10.The statistics of Δj.The left (right) panels show the case of the densest (sparsest) cubes.The upper panels show the mean (center point) and standard deviation(vertical error bar)of every 100 halos,and the blue(red)signals denote the halos from compact(scarce)cells.The lower panels show the mean and standard deviation of the first 100,200 and 300 halos,and the cyan (magenta) signals denote the halos from compact (scarce) cells.Less halo index indicates it has a more extreme (bigger or smaller) density environment.

    Figure 11.The statistics of Δj.The left (right) panels show the case of the densest (sparsest) cubes.The upper panels show the mean (center point) and standard deviation(vertical error bar)of every 100 halos,and the blue(red)signals denote the halos from compact(scarce)cells.The lower panels show the mean and standard deviation of the first 100,200 and 300 halos,and the cyan (magenta) signals denote the halos from compact (scarce) cells.Less halo index indicates it has a more extreme (bigger or smaller) density environment.

    To include more halos in more cubes for a statistical review,we select 300 compact and 300 scarce common halos from each of the 20 densest and 20 sparsest cubes respectively,summing up to four 6000-halo subsets representing the extended NeoC,NeoS,ZeoC and ZeoS sets.

    We compute each PMR modulusjfor each halo,and show the distribution of Δjand Δj/jzin the 20 densest and 20 sparsest cubes individually in Figures 8 and 9 separately.As for Δj,the halos in more compact cells(smaller index for compact halos and bigger index for scarce halos) tend to have more notable and negative Δjvalues.However,the Δj/jzseems more averagely negative for each particle-group.

    Moreover,we show the mean and standard deviation of Δjand Δj/jzcorrespondingly in Figures 10 and 11 with bin-mode(upper panels) and accumulated-mode (lower panels).The densest 100 compact and 100 scarce halos have similar Δj,although the former have doubled stand deviations.The same situation occurs in the sparsest halos which have smaller stand deviations.With more halos,extreme samples take up less proportion,and the two mean Δj(for compact and scarce halos) approach closer to each other.The Δj/jzstatistics are entirely indistinguishable in the two comparison modes.

    4.Discussion

    The distribution of halo’s AM moduli (J) in Figure 2 displays a plausible left-skewed lognormal distribution.It is obscure to explain why theJdistribution has a maximum value and this peak also arises from Ueda et al.(1994),Catelan &Theuns (1996),van den Bosch et al.(2002) and Liao et al.(2017).

    The relative halo moduli variation(ΔJ/Jz,Figure 3)and AM orientation variation (θ,Figure 5)are roughly the same for allmass-range halos according to their 1σ regions.Through this indicator,only the relative PMR moduli variation (Δj/jz,Figure 4) is more obvious for low-mass halos,which have fewer CDM particle-groups and spatial volumes and are consequently more easily affected.It is noteworthy that a few outliers still occur with huge variations.

    Over 70% of ΔJ/Jzand Δj/jzare less than 0,showing that the halo and PMR moduli of TianNu halos are smaller than the TianZero’s in more cases.However,the lower negativeproportion of Δj/jzthan the minus part of ΔJ/Jzindicates there should be some extra escape of particles-groups (and more mass loss) with massive neutrinos to decrease more halo AM modulus and make extra compensation to ΔJ/Jz.Therefore we plot the percent mass variation (ΔM/Mz) in Figure 12.ΔM/Mzhas a mean of ?1.2120% and median of?1.2574%,and 86.60% of them is less than 0,supporting the escape.

    Figure 12.The ΔM/Mz distribution.The ordinate is limited in [?0.08,0.08] because we set the 8% boundary of mass variation in the halo-pair matching process.This truncation and discontinuous mass unit all contribute to the oscillation in our lower-mass statistic.The total count is plotted in the upper panel with a color bar indicating the counting number.In the lower panel,the black dotted line denotes the median of ΔM/Mz among 100 mass bins,while the blue dashed-dotted and red dashed lines present the 1σ region around the median.

    There is an interesting phenomenon that Δjinvolves halo’s local density (Figure 10),while Δj/jzmore refers halo’s local density (Figure 4) instead of its mass.The former can be explained because many low-mass halos counted in the cell of a massive central halo are affected by these gravitationally gathered massive neutrinos.The latter reflects that the lowmass halo is a less-robust system since its relative PMRmodulus loss is more visible with the escape of every particlegroup.

    We also notice that Liao et al.(2017) carefully research the distribution of geometric parameters for AM modulus in a pure CDM particle simulation.However,we do not record the position,mass and AM of every inner particle.Therefore we cannot study like them in this paper.

    The truncated 50h?1Mpc cubes are used to make mass evaluation faster and easier,taking the risk of ignoring some wall-near halos which may be located at a high-density cell of some massive central halo.Besides,the most compact cells are usually centered in a massive CDM halo,while scarce cells usually include more low-mass halos.

    The differential condensation effect (Yu et al.2017) exists between the scales of our finer cell (10h?1Mpc) and coarse cube (50h?1Mpc.),where neutrinos are more likely to cluster and collide at some dense regions,flushing away the gathered particles and diminishing the entire halo AM modulus.

    TianNu was computed by CUBEP3M in the Tianhe-2 supercomputer.Its halo algorithm has some shortcomings,such as the selection of the halo mass center,the computation of AM,the coarse halo-boundary identification in SO algorithm,the possible maximum gravitational error over 200%(Harnois-Déraps et al.2013),etc.These defects could be alleviated by newer and finer code,for example,the CUBE(Yu et al.2018) which uses FoF halo finder and reduce the maximum gravitational error to 3.5%.As a co-evolution of neutrino and CDM particles,few simulations,such as the cosmo-π (Cheng et al.2020) and 4-trillion-grid Vlasov simulation (Yoshikawa et al.2021),can compete with TianNu in the particle number,box size and its resolution simultaneously.It is difficult to repeat the TianNu using the same or better conditions,and still needs more reliable data to reanalyze in further investigation.

    5.Conclusion

    In this work,we study the dark halos’ AMs,which are processed from TianNu CDM particle-neutrino co-evolution simulation with a flat ΛCDM model.

    Investigating the halo modulus(J),PMR modulus(j),mass and orientation variations due to neutrino-injection,we find the consistency that the 89.71% of ΔJ/Jz,71.06% of Δj/jzand 86.60% of ΔM/Mzunder neutrinos have negative values separately,indicating non-negligible systematic effects such as the free-streaming and differential condensation stimulated by massive neutrinos.Moreover,the 95.44%orientation shifts are less than 0°.65.

    Dividing the whole TianNu and TianZero box into coarse cubes,and searching the halos in finer local compact and scarce cells in the 20 densest and sparest cubes,we the distributions of Δjand Δj/jzfor all selected 6000 halos.In general,the Δjvaries and decreases more for the compact halos,and less for the scarce halos,indicating that Δjrelates to the halo’s local density.However,Δj/jzmore connects to halo’s mass according to their 1σ statistic instead of its local density,and more easily change in low-mass halos.

    Acknowledgments

    We sincerely appreciate the editor and referee’s kind patience and so many suggestions,which help us greatly improve our manuscript.We especially thank Hao-Ran Yu for the discussion about the TianNu simulation and halo AM processing in CUBEP3M.We also thank Cheng-zong Ruan,Kang Jiao and Jian Qin for their discussion and comments.This work was supported by the National Natural Science Foundation of China (grant Nos.11929301 and 61802428).

    The code used in this article is CUBEP3M (Harnois-Déraps et al.2013;Yu et al.2017).

    99riav亚洲国产免费| 麻豆久久精品国产亚洲av| 国产伦精品一区二区三区四那| 嘟嘟电影网在线观看| 日本一二三区视频观看| 天天躁日日操中文字幕| 欧美一区二区国产精品久久精品| 日韩欧美 国产精品| 尾随美女入室| 内射极品少妇av片p| 老女人水多毛片| 在线免费十八禁| 婷婷六月久久综合丁香| 99久久精品热视频| ponron亚洲| 久久久久国产网址| 欧美变态另类bdsm刘玥| kizo精华| 免费一级毛片在线播放高清视频| 成人一区二区视频在线观看| 校园春色视频在线观看| 免费看日本二区| 如何舔出高潮| 麻豆乱淫一区二区| 久久精品久久久久久久性| 免费看日本二区| 日本在线视频免费播放| 久久久a久久爽久久v久久| 国产精品麻豆人妻色哟哟久久 | 色尼玛亚洲综合影院| 国产精品久久久久久久久免| 韩国av在线不卡| 内地一区二区视频在线| 国产激情偷乱视频一区二区| 亚洲国产高清在线一区二区三| 久久亚洲精品不卡| 日韩成人av中文字幕在线观看| 秋霞在线观看毛片| 欧美人与善性xxx| 久久久午夜欧美精品| 一级毛片电影观看 | 欧美3d第一页| 亚洲国产精品合色在线| 日韩欧美一区二区三区在线观看| 亚洲最大成人手机在线| 国产成人a区在线观看| 夜夜看夜夜爽夜夜摸| 亚洲综合色惰| 久久午夜亚洲精品久久| 亚洲人成网站高清观看| 精品少妇黑人巨大在线播放 | 亚洲人成网站在线观看播放| 日本-黄色视频高清免费观看| 国内精品美女久久久久久| 亚洲成人久久性| 神马国产精品三级电影在线观看| 少妇人妻一区二区三区视频| 亚洲美女视频黄频| 长腿黑丝高跟| 国产一区亚洲一区在线观看| 中文字幕熟女人妻在线| 成年免费大片在线观看| 国产毛片a区久久久久| 婷婷色综合大香蕉| 欧美成人一区二区免费高清观看| 十八禁国产超污无遮挡网站| 1000部很黄的大片| 中文字幕熟女人妻在线| 国产91av在线免费观看| 波多野结衣巨乳人妻| 婷婷精品国产亚洲av| 精品国产三级普通话版| 一本久久中文字幕| 高清毛片免费看| 国产高清三级在线| 欧美三级亚洲精品| 免费观看a级毛片全部| 一边亲一边摸免费视频| 在线免费十八禁| 国产欧美日韩精品一区二区| 久久99精品国语久久久| 青青草视频在线视频观看| 久久99热6这里只有精品| 在线播放无遮挡| av天堂在线播放| or卡值多少钱| 成人亚洲精品av一区二区| 亚洲欧美日韩东京热| 91av网一区二区| 日本免费a在线| 欧美3d第一页| 99久久九九国产精品国产免费| 精品国产三级普通话版| 老司机影院成人| 国内精品久久久久精免费| 在线天堂最新版资源| 日韩欧美三级三区| 在线免费观看不下载黄p国产| 国产探花在线观看一区二区| 自拍偷自拍亚洲精品老妇| 观看美女的网站| 一级av片app| 亚洲欧美日韩东京热| 男人舔女人下体高潮全视频| 国内精品宾馆在线| 亚洲无线观看免费| 欧美精品一区二区大全| 在线观看av片永久免费下载| 国产精品一区www在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品99久久久久久久久| ponron亚洲| 我的女老师完整版在线观看| 中国国产av一级| 日本一二三区视频观看| 99热这里只有精品一区| 国产免费男女视频| 人妻夜夜爽99麻豆av| 国产av在哪里看| 日本免费一区二区三区高清不卡| 国产精品综合久久久久久久免费| 免费无遮挡裸体视频| 国产在线男女| 欧美最新免费一区二区三区| 一区二区三区高清视频在线| 精品一区二区三区人妻视频| 1000部很黄的大片| 边亲边吃奶的免费视频| 26uuu在线亚洲综合色| 国产成人91sexporn| 国产国拍精品亚洲av在线观看| 草草在线视频免费看| 九色成人免费人妻av| 免费电影在线观看免费观看| 亚洲美女视频黄频| 26uuu在线亚洲综合色| 长腿黑丝高跟| 淫秽高清视频在线观看| 日韩强制内射视频| 色哟哟·www| 内射极品少妇av片p| 亚洲精品自拍成人| 免费电影在线观看免费观看| 国产av不卡久久| 有码 亚洲区| 国产精品爽爽va在线观看网站| 国产一区二区在线av高清观看| 色综合站精品国产| 好男人视频免费观看在线| 少妇猛男粗大的猛烈进出视频 | 亚洲婷婷狠狠爱综合网| 国产日本99.免费观看| 老师上课跳d突然被开到最大视频| 久久久久国产网址| 2021天堂中文幕一二区在线观| 国产男人的电影天堂91| 女人十人毛片免费观看3o分钟| 亚洲自偷自拍三级| 国产精品爽爽va在线观看网站| 一本久久精品| 欧洲精品卡2卡3卡4卡5卡区| 国产伦在线观看视频一区| 99久久无色码亚洲精品果冻| 亚洲精品456在线播放app| 九九爱精品视频在线观看| 国内精品一区二区在线观看| 亚洲国产精品sss在线观看| 男女边吃奶边做爰视频| 亚洲最大成人手机在线| 国内久久婷婷六月综合欲色啪| 97超碰精品成人国产| 久久亚洲国产成人精品v| 久久精品91蜜桃| 蜜臀久久99精品久久宅男| 免费不卡的大黄色大毛片视频在线观看 | 日韩三级伦理在线观看| 日韩av在线大香蕉| 久99久视频精品免费| 日本在线视频免费播放| 午夜视频国产福利| 美女脱内裤让男人舔精品视频 | 国产精品久久久久久av不卡| 国产69精品久久久久777片| 黄色欧美视频在线观看| 国内精品一区二区在线观看| 一进一出抽搐gif免费好疼| 亚洲成人中文字幕在线播放| 国产精品日韩av在线免费观看| 毛片一级片免费看久久久久| 日韩一区二区三区影片| 国产 一区 欧美 日韩| 国产免费男女视频| 女同久久另类99精品国产91| av在线观看视频网站免费| 色吧在线观看| 成人午夜高清在线视频| 午夜激情欧美在线| 十八禁国产超污无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 中文精品一卡2卡3卡4更新| 亚洲成a人片在线一区二区| 亚洲av二区三区四区| 国产一区二区激情短视频| 久久精品国产99精品国产亚洲性色| 精品不卡国产一区二区三区| 99九九线精品视频在线观看视频| 男女那种视频在线观看| 婷婷色综合大香蕉| 午夜激情福利司机影院| 久久精品91蜜桃| 欧美性感艳星| 亚洲欧美日韩高清在线视频| 亚洲精品日韩av片在线观看| 国产成人影院久久av| 99久久人妻综合| 国产爱豆传媒在线观看| 日本一二三区视频观看| 欧美不卡视频在线免费观看| 中文字幕熟女人妻在线| 欧美最黄视频在线播放免费| 热99在线观看视频| 麻豆av噜噜一区二区三区| 一个人看的www免费观看视频| 色综合亚洲欧美另类图片| 六月丁香七月| 成人鲁丝片一二三区免费| 成人午夜精彩视频在线观看| 国产高潮美女av| av又黄又爽大尺度在线免费看 | 亚洲欧洲国产日韩| 岛国在线免费视频观看| a级毛色黄片| 国产伦理片在线播放av一区 | 校园人妻丝袜中文字幕| 成人鲁丝片一二三区免费| 91精品一卡2卡3卡4卡| 神马国产精品三级电影在线观看| or卡值多少钱| 99久国产av精品国产电影| 天堂影院成人在线观看| 国产午夜福利久久久久久| 精品午夜福利在线看| 在现免费观看毛片| 亚洲av成人精品一区久久| 男的添女的下面高潮视频| or卡值多少钱| 99热精品在线国产| 国产高清激情床上av| 少妇人妻精品综合一区二区 | 亚洲国产精品成人综合色| 亚洲人成网站在线观看播放| 一边亲一边摸免费视频| 国产在线精品亚洲第一网站| 久久精品夜夜夜夜夜久久蜜豆| 日韩 亚洲 欧美在线| av天堂中文字幕网| 久久6这里有精品| 中文字幕av在线有码专区| 99久久中文字幕三级久久日本| 久久草成人影院| 日韩人妻高清精品专区| 好男人在线观看高清免费视频| 国产毛片a区久久久久| 狂野欧美激情性xxxx在线观看| 国产综合懂色| av国产免费在线观看| 能在线免费观看的黄片| 日本黄大片高清| 卡戴珊不雅视频在线播放| 内地一区二区视频在线| 此物有八面人人有两片| 国产真实乱freesex| 色综合色国产| 成人午夜高清在线视频| 免费看光身美女| 亚洲精品国产成人久久av| 真实男女啪啪啪动态图| 精品一区二区免费观看| 亚洲国产精品成人久久小说 | 舔av片在线| 久久精品国产99精品国产亚洲性色| 成人高潮视频无遮挡免费网站| 搡女人真爽免费视频火全软件| 久久午夜福利片| 99热这里只有是精品在线观看| 日本在线视频免费播放| 亚洲丝袜综合中文字幕| 中国美白少妇内射xxxbb| 精品少妇黑人巨大在线播放 | 99久久精品一区二区三区| 国产毛片a区久久久久| 91久久精品电影网| 亚洲精品成人久久久久久| avwww免费| 日韩强制内射视频| 中国美女看黄片| 成人性生交大片免费视频hd| 亚洲av不卡在线观看| 久久久a久久爽久久v久久| 精品少妇黑人巨大在线播放 | 免费一级毛片在线播放高清视频| 国产精品一区二区三区四区免费观看| 国产午夜福利久久久久久| 99国产极品粉嫩在线观看| 国产高清激情床上av| 狠狠狠狠99中文字幕| 高清毛片免费看| 婷婷亚洲欧美| 婷婷六月久久综合丁香| 给我免费播放毛片高清在线观看| 国产 一区 欧美 日韩| 欧美精品一区二区大全| a级毛片免费高清观看在线播放| 婷婷色av中文字幕| 黄色配什么色好看| 草草在线视频免费看| 国内精品宾馆在线| 久久久欧美国产精品| 亚洲精品成人久久久久久| 亚洲婷婷狠狠爱综合网| 国内精品久久久久精免费| 欧美又色又爽又黄视频| 青春草亚洲视频在线观看| 国产麻豆成人av免费视频| 亚洲无线观看免费| avwww免费| 国产亚洲精品久久久com| 小蜜桃在线观看免费完整版高清| 国产三级中文精品| 国产黄色小视频在线观看| av黄色大香蕉| h日本视频在线播放| 日韩三级伦理在线观看| 99riav亚洲国产免费| 亚洲av中文字字幕乱码综合| 中文欧美无线码| 亚洲va在线va天堂va国产| 中文字幕久久专区| 亚洲激情五月婷婷啪啪| 国产黄片视频在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 国产午夜福利久久久久久| 最后的刺客免费高清国语| 网址你懂的国产日韩在线| 日本爱情动作片www.在线观看| 日日摸夜夜添夜夜添av毛片| av在线天堂中文字幕| 在线国产一区二区在线| 激情 狠狠 欧美| 国产精品野战在线观看| 国产精品三级大全| 精品久久久久久久人妻蜜臀av| 国产国拍精品亚洲av在线观看| 亚洲在线自拍视频| 长腿黑丝高跟| 国产精品野战在线观看| 欧美性猛交黑人性爽| 一级毛片aaaaaa免费看小| 精品午夜福利在线看| 丝袜喷水一区| 国产成人精品婷婷| 日韩一区二区视频免费看| 国产男人的电影天堂91| 国产av麻豆久久久久久久| 99在线人妻在线中文字幕| 99热这里只有是精品50| 波多野结衣高清作品| 亚洲在线观看片| 深夜精品福利| 亚洲欧美日韩高清在线视频| av又黄又爽大尺度在线免费看 | 天堂av国产一区二区熟女人妻| 亚洲内射少妇av| 中文字幕久久专区| 国国产精品蜜臀av免费| 赤兔流量卡办理| a级毛片免费高清观看在线播放| 久久这里有精品视频免费| 色哟哟·www| av专区在线播放| 国产一区二区激情短视频| 日韩一区二区视频免费看| 亚洲内射少妇av| 国产欧美日韩精品一区二区| 亚洲最大成人av| 少妇的逼水好多| 国产精品爽爽va在线观看网站| 免费av观看视频| 噜噜噜噜噜久久久久久91| 亚洲欧美成人精品一区二区| 国产黄色小视频在线观看| 日韩国内少妇激情av| 国产高清有码在线观看视频| 亚洲色图av天堂| 美女内射精品一级片tv| 国产熟女欧美一区二区| 精品一区二区三区视频在线| 亚洲精品自拍成人| 国产亚洲欧美98| 中文欧美无线码| 免费看日本二区| 欧美bdsm另类| 精品99又大又爽又粗少妇毛片| 久久亚洲精品不卡| 国产 一区 欧美 日韩| 国产成年人精品一区二区| 又黄又爽又刺激的免费视频.| 深夜精品福利| a级一级毛片免费在线观看| 淫秽高清视频在线观看| 欧美激情国产日韩精品一区| 久久韩国三级中文字幕| 亚洲国产高清在线一区二区三| 精品欧美国产一区二区三| 国产高潮美女av| 热99re8久久精品国产| 亚洲av中文av极速乱| 99热全是精品| 成人三级黄色视频| 亚洲国产精品国产精品| 中文精品一卡2卡3卡4更新| 成人欧美大片| 一级毛片久久久久久久久女| 伦理电影大哥的女人| 国模一区二区三区四区视频| 日本-黄色视频高清免费观看| 国产淫片久久久久久久久| 日韩一本色道免费dvd| a级毛色黄片| 18禁黄网站禁片免费观看直播| 中文字幕制服av| 国产亚洲91精品色在线| 中文字幕av在线有码专区| 青青草视频在线视频观看| 九草在线视频观看| 男插女下体视频免费在线播放| 国产女主播在线喷水免费视频网站 | 精品人妻视频免费看| 欧美极品一区二区三区四区| 在线免费观看的www视频| 国产探花在线观看一区二区| 青春草亚洲视频在线观看| 天天一区二区日本电影三级| 国产成人a∨麻豆精品| 亚洲在久久综合| 久久久精品欧美日韩精品| 99热这里只有精品一区| 日韩欧美 国产精品| 国产视频首页在线观看| 如何舔出高潮| 一进一出抽搐gif免费好疼| 国产视频首页在线观看| av黄色大香蕉| 国产一区二区三区av在线 | 十八禁国产超污无遮挡网站| 亚洲精品日韩av片在线观看| 麻豆精品久久久久久蜜桃| 日韩人妻高清精品专区| 1024手机看黄色片| 中文亚洲av片在线观看爽| 狠狠狠狠99中文字幕| 国产午夜精品一二区理论片| 亚洲av免费在线观看| 别揉我奶头 嗯啊视频| 亚洲欧美日韩无卡精品| 国产中年淑女户外野战色| 两个人的视频大全免费| 亚洲精品影视一区二区三区av| 精品少妇黑人巨大在线播放 | 亚洲欧美日韩卡通动漫| 特级一级黄色大片| 亚洲精品国产成人久久av| 美女被艹到高潮喷水动态| 亚洲国产欧美在线一区| 国产在视频线在精品| 国产一区二区在线观看日韩| 中出人妻视频一区二区| 国产精品无大码| 色视频www国产| 午夜福利在线在线| 99热6这里只有精品| 亚洲av中文av极速乱| 在线免费观看不下载黄p国产| ponron亚洲| 在线免费十八禁| 男的添女的下面高潮视频| 好男人在线观看高清免费视频| 成人特级黄色片久久久久久久| 99国产精品一区二区蜜桃av| 免费一级毛片在线播放高清视频| 日韩三级伦理在线观看| 久久久久久久久久久丰满| 3wmmmm亚洲av在线观看| 久久草成人影院| 精品人妻视频免费看| 麻豆av噜噜一区二区三区| 自拍偷自拍亚洲精品老妇| 日本撒尿小便嘘嘘汇集6| 日产精品乱码卡一卡2卡三| 韩国av在线不卡| 免费看a级黄色片| 久久久久性生活片| 亚洲精品久久久久久婷婷小说 | 色哟哟·www| 中文字幕免费在线视频6| 日本-黄色视频高清免费观看| 国产精品精品国产色婷婷| 色尼玛亚洲综合影院| 中文字幕av成人在线电影| 99久久无色码亚洲精品果冻| 免费人成在线观看视频色| 日韩中字成人| 麻豆成人午夜福利视频| 久久鲁丝午夜福利片| 国产成人精品婷婷| 人妻久久中文字幕网| 12—13女人毛片做爰片一| 99久久无色码亚洲精品果冻| 亚洲av中文字字幕乱码综合| 久久99热这里只有精品18| 午夜激情欧美在线| 亚洲人成网站在线播放欧美日韩| 一级毛片久久久久久久久女| 亚洲av成人精品一区久久| 免费电影在线观看免费观看| 黄色欧美视频在线观看| 亚洲国产欧美人成| 18+在线观看网站| 精品午夜福利在线看| 亚洲人成网站在线播| 国产精品福利在线免费观看| 日本一二三区视频观看| 伦理电影大哥的女人| 99九九线精品视频在线观看视频| 老师上课跳d突然被开到最大视频| 精品人妻视频免费看| 国产v大片淫在线免费观看| 少妇丰满av| 色尼玛亚洲综合影院| 91麻豆精品激情在线观看国产| 老女人水多毛片| 国产亚洲91精品色在线| 成人欧美大片| 九九热线精品视视频播放| 在线播放无遮挡| 日本av手机在线免费观看| 99久久九九国产精品国产免费| 美女内射精品一级片tv| 欧美日韩一区二区视频在线观看视频在线 | 美女黄网站色视频| 亚洲三级黄色毛片| 成人特级av手机在线观看| 国产亚洲精品av在线| 日本爱情动作片www.在线观看| 网址你懂的国产日韩在线| 亚洲va在线va天堂va国产| 国产女主播在线喷水免费视频网站 | 天堂中文最新版在线下载 | 欧美日本亚洲视频在线播放| 成人二区视频| 菩萨蛮人人尽说江南好唐韦庄 | 欧美极品一区二区三区四区| 美女国产视频在线观看| 国内精品久久久久精免费| 欧美一区二区国产精品久久精品| 午夜视频国产福利| 欧美日韩乱码在线| 白带黄色成豆腐渣| 亚洲欧美清纯卡通| 寂寞人妻少妇视频99o| 午夜爱爱视频在线播放| 午夜福利在线在线| 国产v大片淫在线免费观看| 日韩制服骚丝袜av| 精品久久久噜噜| 久久久精品欧美日韩精品| 伦精品一区二区三区| 久久韩国三级中文字幕| 国产熟女欧美一区二区| 人妻少妇偷人精品九色| 日本与韩国留学比较| 亚洲av不卡在线观看| 国产精品,欧美在线| 99热精品在线国产| 偷拍熟女少妇极品色| 久久久久久久久久久免费av| 久久国内精品自在自线图片| 欧美+亚洲+日韩+国产| 国产单亲对白刺激| 丰满的人妻完整版| 成人综合一区亚洲| 乱人视频在线观看| 黄色一级大片看看| 18禁黄网站禁片免费观看直播| 99久久成人亚洲精品观看| 少妇裸体淫交视频免费看高清| 国产高潮美女av| 人妻久久中文字幕网| 在线免费观看的www视频| 看黄色毛片网站| 狠狠狠狠99中文字幕| 亚洲电影在线观看av| 免费在线观看成人毛片| 国产高清激情床上av| 精品国内亚洲2022精品成人| 一级毛片久久久久久久久女| 亚洲成人av在线免费| 国产精品一区www在线观看| 免费观看a级毛片全部| 国产色爽女视频免费观看| 久久久精品欧美日韩精品| 亚洲经典国产精华液单| 成人av在线播放网站| 久久国产乱子免费精品| 国产 一区 欧美 日韩|