• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gas Phase Hydrogenated and Deuterated Fullerene Cations

    2023-09-03 01:37:08XiaoyiHuZhenruDongYananGeJiaLiuYangChenJunfengZhenandLipingQin

    Xiaoyi Hu ,Zhenru Dong ,Yanan Ge ,Jia Liu ,Yang Chen ,Junfeng Zhen,4 ,and Liping Qin

    1 Deep Space Exploration Laboratory/CAS Key Laboratory of Crust-Mantle Materials and Environment,University of Science and Technology of China,Hefei 230026,China;jfzhen@ustc.edu.cn

    2 CAS Center for Excellence in Comparative Planetology,University of Science and Technology of China,Hefei 230026,China

    3 CAS Center for Excellence in Quantum Information and Quantum Physics,Hefei National Laboratory for Physical Sciences at the Microscale,and Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China

    4 CAS Key Laboratory for Research in Galaxies and Cosmology,Department of Astronomy,University of Science and Technology of China,Hefei 230026,China

    Abstract H/D accretion,especially onto ionized fullerenes,is expected to be very efficient in space.In this work,we study hydrogenated and deuterated fullerene cations and their photodissociation behavior in the gas phase.The experimental results show that hydrogenated fullerene cations (i.e.,[C60Hn]+ and [C70Hn]+, n up to 30) and deuterated fullerene cations(i.e.,[C60Dn]+and[C70Dn]+,n up to 21)are formed efficiently through the ion-atom collision reaction pathway.Upon irradiation,the hydrogenated and deuterated fullerene cations dissociate into fullerene cations and H/H2 or D/D2 species.The structures of the newly formed hydrogenated and deuterated fullerene cations(C58 and C60)and the bonding energies for these reaction pathways are investigated by means of quantum chemical calculations.The competition between hydrogenation and dehydrogenation is confirmed,and the hydrogenation-to-dehydrogenation ratio in the accretion processes in the gas phase is determined.We infer that the proportion of accreted hydrogen and deuterium atoms on the surface of fullerenes is similar to that of hydrogen and deuterium atoms in the interstellar environment where these fullerenes are located,especially when the interstellar environments are similar to our experimental conditions,i.e.,the hot environment.

    Key words: astrochemistry– methods: laboratory: molecular– ultraviolet: ISM– ISM: molecules– molecular processes

    1.Introduction

    The buckminsterfullerene (C60) molecule was first “discovered” in 1985 in a laboratory (Kroto et al.1985).An important breakthrough came in 2010,when the infrared spectra of circumstellar and interstellar sources revealed the presence of buckminsterfullerene (C60) in space (Cami et al.2010;Sellgren et al.2010).Importantly,several near-infrared diffuse interstellar bands(DIBs)were linked for the first time to the electronic transitions of(Campbell et al.2015;Walker et al.2015;Cordiner et al.2017).The confirmation of interstellar buckminsterfullerene represents a breakthrough in our understanding of chemical complexity in the interstellar medium (ISM),providing new understanding of the types of complex molecules that may be responsible for the remaining(unidentified) DIBs in space (Campbell &Maier 2018;Cordiner et al.2019).

    As an important component of the interstellar organic inventory,extensive experimental and theoretical investigations aiming at revealing the formation mechanism of C60in the interstellar environments have been performed (Berné &Tielens 2012;Zhen et al.2014;Omont 2016;Candian et al.2018).These studies have shown that the formation of C60may start from a simple carbon-rich seeded gas,following a bottomup route (J?ger et al.2009,2011),or proceed through the photodissociation of large polycyclic aromatic hydrocarbon(PAH) molecules,following a top-down route (Berné &Tielens 2012;Zhen et al.2014;Candian et al.2019).

    It is known that the carbon cage of fullerene is very difficult to destroy or modify,which is especially true for the buckminsterfullerene (C60) molecule (Zimmerman et al.1991;Handschuh et al.1995).Experiments and molecular dynamics simulations of low-energy(10–30 eV)H interactions with the C60molecule have been carried out to investigate the possible chemical combinations at these energies (Beardmore et al.1994).However,minor modifications that preserve the cage size and composition,such as ionization,isomerization,exohedral addition of atoms,and other chemical reactions including association with PAHs (Dunk et al.2013;García-Hernández &Díaz-Luis 2013;García-Hernández et al.2013;Sato et al.2013;Bohme 2016;Hu et al.2021a,2021b),are much easier.Therefore,fullerene species,such as C60,exist in different ionization or chemical states in the ISM.Based on these findings,to calculate the total abundance of each fullerene species,the abundances of all the different ionization and chemical states were added together rather than considering the abundance in only a single state (Tielens 2013).In addition,the different ionization and chemical states of fullerene species are affected by the physical and chemical conditions,so it is critical to understand the reactivity of fullerenes with other molecules(Omont 2016;Zhen et al.2019;Hu et al.2021a,2021b).

    Hydrogen and deuterium may be bound on the outer surface of fullerenes by opening their double bonds to form strong C-H or C-D alkane bonds (Petrie et al.1992;Bohme 2016;Omont 2016).A mass spectrometric study of the hydrogenation of pure C60in thin solid films was conducted,resulting in C60Hn(n=2 up to 24),with a wide distribution ofnvalues for a given exposure(Brühwiler et al.1993).In a study by Cataldo and Iglesias-Groth,when hydrogen atoms were mixed in solvents,C60was quickly hydrogenated to form C60H36(Cataldo &Iglesias-Groth 2009;Iglesias-Groth et al.2012),which have been recognized as major members of the fullerane family(Webster 1992;Le Page et al.2001;Iglesias-Groth 2006;Cataldo &Iglesias-Groth 2009).In particular,the vibrational IR spectrum of [C60H]+and [C70H]+was recently reported(Palotás et al.2020,2021).In C60and C70,which has a very sparse IR spectrum,all vibrational normal modes become IR allowed upon protonation,resulting in a rich spectrum for[C60H]+and[C70H]+(Palotás et al.2020,2021),in their work,an atmospheric pressure chemical ionization (APCI) is used to produce the gas-phase [C60H]+and [C70H]+.

    Interstellar PAHs,fullerene and their-related species are expected to be substantially influenced by their chemicalphysical conditions (Bakes &Tielens 1994;Le Page et al.2001).Interestingly,these hydrogenated fullerene species may also be candidates of interest for the IR interstellar bands that could motivate spectroscopic studies (Tielens 2013).To understand the co-evolution of interstellar fullerene chemistry,by tracking the H/D atoms accretion processes on fullerene cations,in this work,we present an investigation of the chemical reactivity of fullerene (C60and C70) cations and smaller fullerene (C56/58and C66/68) cations with hydrogen or deuterium atoms,as well as their photochemical behaviors in the gas phase.Experiments are carried out using a quadrupole ion trap in combination with time-of-flight mass spectrometry.Quantum chemical calculations are also performed to determine the molecular structures and the formation mechanisms.

    2.Methods

    2.1.Experimental Methods

    A brief description of the experiment is provided,and more detailed information on the experimental procedures is available in Zhen et al.(2019).First of all,fullerene (C60,or C70) containing13C and12C with a natural isotopic ratio is evaporated by heating the powder (J&K Scientific,with purity better than 99%) in oven at a temperature of ~613 K.Subsequently,evaporated C60or C70molecules are ionized using electron impact ionization and transported into the ion trap via an ion gate and a quadrupole mass filter.The third harmonic of an Nd: YAG laser (INDI,Spectra-Physics),355 nm,~6 ns,operated at 10 Hz,is used to irradiate the trapped cations.A beam shutter was used to determine the interaction time of the light with the trapped ions.The shutter is externally triggered to guarantee that the ion cloud is irradiated only for a specified amount of time during each cycle.A highprecision delay generator controls the full-timing sequence.

    A hydrogen atom beam source (HABS) (MBE-Komponenten GmbH) (Tschersich &von Bonin 1998) was installed on top of the ion trap,and used to produce the hydrogen or deuterium atoms.The hydrogen or deuterium atoms were formed by cracking D2and H2gas (with purity better than 99.99%) using a tungsten capillary at 1973 and 2113 K,respectively.The chamber pressure during the hydrogen atom beam exposure was ~1.2×10?6mbar with D2or H2flowing through the HABS (the typical background pressure in the chamber is ~6.0×10?7mbar with helium gas).The working distance from the end of tungsten capillary in the HABS to the ion trap was ~5.0 cm.The hydrogen and deuterium atom flux was incident into the ion trap through a 2.4 mm aperture in the ring electrode.The hydrogen and deuterium atoms were expected to have a flux of ~5.0×1014H atoms cm?2s?1,and~4.0×1014D atoms cm?2s?1based on the operating conditions.

    Two-time strategies are used here: (1) without laser irradiation: our setup operates with a frequency of 0.5,0.2,0.1,and 0.05 Hz,i.e.,one full measuring cycle lasts 2.0,5.0,10.0,and 20.0 s,respectively.At each experiment,the ion gate opens,allowing the ion trap to fill for a certain amount of ions.In the ion trap,the hydrogenated and deuterated fullerene cations are formed.During this procedure,helium gas is introduced continuously into the trap via a leaking valve to thermalize the ion cloud through collisions (~300 K).Adduct formation presumably occurs under our experimental operating conditions.At the end of each cycle,the resulting mass fragments are measured;(2) with laser irradiation: our setup operates with a frequency of 0.2 Hz,i.e.,one full measuring cycle lasts 5.0 s.At the leading edge of the master trigger,the ion gate is opened(0.0–4.6 s),allowing the ion trap to fill for a certain amount of ions.During this time,the trapped ion reacts with hydrogen or deuterium atoms to form new cations.Afterward,the beam shutter is opened that allowed the 355 nm laser to irradiate the ion cloud (4.6–4.9 s).At the end of irradiation,a negative square pulse is applied to the end cap of the ion trap to accelerate the ions moving out of the trap and diffusing into the field-free TOF region,where the mass fragments can be measured.

    2.2.Theoretical Chemistry Calculations Methods

    The theoretical chemistry calculations are carried out with density functional theory (DFT) with the hybrid density functional B3LYP (Lee et al.1988;Becke 1992) as implemented in the Gaussian 16 program (Frisch et al.2016).The basis set of 6-311++G(d,p) is used for all calculations.All species’ geometries were optimized at the local minimum of their potential energy surface in the calculation.The zeropoint energy and thermal corrections can be obtained from the frequency calculation to correct the molecular energy.

    3.Experimental Results

    In the experiments,the high energy of the impacting electrons(~82 eV)led to the formation of fullerene(C60and C70)cations and smaller fullerene(C56/58and C66/68)cations through C2loss(Handschuh et al.1995;Lifshitz 2000;Zhen et al.2014).The mass spectrum results are shown in Figures 1–5.

    3.1.The Hydrogenated and Deuterated Fullerene(C56/58 and C60) Cations

    Figure 3 shows the resulting mass spectrum of trapped hydrogenated and deuterated fullerene(C56/58,and C60)cations upon 355 nm irradiation at a laser energy of 0.9 mJ(irradiation times amounting to 0.3 s;i.e.,typically ~3 pulses):(A)with H atoms;(B)with D atoms.The intensity of the lower-mass peaks increased while that of the higher-mass peaks decreased upon laser irradiation(Figure 3,middle blue spectrum).For clarity,a difference spectrum was plotted for comparison(lowest trace in Figure 3),and it was found that only dehydrogenation products were formed,with no evidence of other fragmentation channels.In addition,H/H2,or D/D2loss channels exist,and we will discuss the adduct behavior with theoretical chemistry calculations in the next section.

    Figure 1.The mass spectrum of the evolution of hydrogenated and deuterated fullerene (C56/58 and C60) cations with increasing H/D exposure time: (A) with H atoms;(B) with D atoms.

    Figure 2.The zoom in mass spectrum of the evolution of hydrogenated and deuterated fullerene (C56/58) cations with increasing H/D exposure time: (A) with H atoms;(B) with D atoms.

    Figure 3.Mass spectrum of hydrogenated and deuterated fullerene (C56/58 and C60) cations trapped in QIT upon 355 nm irradiation at a laser energy of 0.9 mJ(irradiation times amounting to 0.3 s,from 4.6?4.9 s): without irradiation (red),with irradiation (blue),and the difference spectrum (black) of the irradiation and without irradiation experiments: (A) with H atoms;(B) with D atoms.

    Accordingly,we propose the following photodissociation pathway for the hydrogenated and deuterated fullerene(C56/58,and C60) cations:

    3.2.The Hydrogenated and Deuterated Fullerene(C66/68 and C70) Cations

    Similar to the fullerene (C56/58,and C60) cation system,the mass spectrum of the evolution of hydrogenated and deuterated fullerene (C66/68,and C70) cations with increasing H/D exposure time is shown in Figure 4: (A) with H atoms;(B)with D atoms.Clearly,a series of peaks attributed to hydrogenated and deuterated fullerene cations were observed.Upon H/D exposure,the m/z distribution exhibited the expected shift to higher masses,accompanied by a broadening of the distribution.By varying the exposure time (2.0,5.0,10.0,and 20.0 s),the degree of hydrogenation or deuteration of fullerene (C66/68,and C70) cations changed.In particular,at an exposure time of 20.0 s,the largest hydrogenated and deuterated fullerene cations,[C70H25]+,m/z=865,and [C70D21]+,m/z=882,were observed.The series of peaks shown in the mass spectrum (m/z >840 for) are composed of[12C70Hn]+and [13C12C70Hn?1]+.In addition,the experiments showed that smaller fullerene(C66/68)cations exhibited reaction behavior with H/D atoms very similar to that of.

    Figure 4.The mass spectrum of the evolution of hydrogenated and deuterated fullerene (C66/68 and C70) cations with increasing H/D exposure time: (A) with H atoms;(B) with D atoms.

    From the obtained mass spectrum,we can see that the degree of deuteration of fullerenes (C66/68,and C70) was lower than the hydrogenation at the same reaction timescale,which was attributed mainly to the flux of D atom being lower than the flux of H atom.Similarly,under natural conditions,the abundance of neutral12C is higher than13C;i.e.,the peak intensity of m/z=840 (12) was stronger than that of m/z=841 (13C12).However,we noted that the peak intensity of m/z=841 (13C12) was stronger than of m/z=840 (12),as shown in Figure 4,which is related to the natural carbon element abundance;i.e.,13C-containing species gave rise to a stronger peak intensity than pure12C species,possibly due to the experimental setup conditions.

    In terms of the hydrogenation and deuteration pathway of fullerene (C70) cations,similar to the fullerene (C60) cation system,these hydrogenated and deuterated fullerene cations were formed through ion-atom reaction pathways,i.e.,+H/D atoms.The reaction between fullerene cations and H/D atoms occurred through sequential steps with repeated addition of H/D atoms on the surface of the fullerene cages.Similarly,H2/D2also formed as a secondary product through[C70Hn]++H →[C70Hn?1]++H2or[C70Dn]++D →[C70Dn?1]++D2(Petrie et al.1992;Le Page et al.2001).

    Based on these findings,the reaction pathways between fullerene(C70)cations and H/D atoms are summarized as follows:

    Figure 5 shows the resulting mass spectrum of trapped hydrogenated and deuterated fullerene(C66/68,and C70)cations upon 355 nm irradiation at a laser energy of 0.9 mJ(irradiation times amounting to 0.3 s;i.e.,typically ~3 pulses):(A)with H atoms;(B)with D atoms.The intensity of the lower-mass peaks increased while that of the higher-mass peaks decreased upon laser irradiation(Figure 5,middle blue spectrum).For clarity,a difference spectrum was plotted for comparison(lowest trace in Figure 5),which showed that only dehydrogenation products are formed,with no evidence of other fragmentation channels.In addition,H/H2,or D/D2loss channels were found to exist.

    Figure 5.Mass spectrum of the hydrogenated and deuterated fullerene (C66/68 and C70) cations trapped in QIT upon 355 nm irradiation at a laser energy of 0.9 mJ(irradiation times amounting to 0.3 s,from 4.6?4.9 s): without irradiation (red),with irradiation (blue),and the difference spectrum (black) of the irradiation and without irradiation experiments: (A) with H atoms;(B) with D atoms.

    Accordingly,we propose the following photodissociation pathway for the hydrogenated and deuterated fullerene(C66/68,and C70) cations:

    4.Theoretical Chemistry Calculation Results

    To understand the obtained experimental results,we take the reaction pathway of+H/D,[C60H]++H or [C60D]++D,[C60H]++D or[C60D]++H,and+H/D,as a typical example to theoretically study the H/D accretion process.In addition,we note that all the calculation results are based on the electronic ground state.For PAH and fullerene molecules,it is commonly accepted that excitation to an excited electronic state is followed by internal conversion (IC) to a highly excited vibrational state of the electronic ground state.Intramolecular vibrational redistribution (IVR) then quickly equilibrates the excess energy among all available vibrational states.IC and IVR leave the PAH and fullerene molecules in the electronic ground state and available for further photon absorption through the same transition.IC occurs on a timescale of picoseconds.Studies on PAH molecules reveal an IVR timescale of less than 10–50 ps if the internal energy exceeds 1000 cm?1(Felker &Zewail 1988;Heikal et al.1991).

    We carried out the calculation for the fullerene (C60) cation system and defective fullerene (C58)cation system due to their similarity to other fullerene systems.The molecular geometry of C58was obtained by C2unit loss between two hexagons of C60,assuming that there is no carbon skeleton rearrangement(except for the C2loss at a local position) during the electron impact ionization and fragmentation process (Candian et al.2019;Zhen et al.2019).As shown in Figure 6,the energy for the reaction pathways was obtained.The molecular geometry and the truncated icosahedral graph of fullerene (C58and C60)cations are also presented in Figures 6,and the numbers indicating the carbon sites were categorized into the same groups.

    Figure 6.The energies for the reaction pathways of fullerene(C60)and defective fullerene(C58)cations with H/D atoms,and the red atoms represent carbon atoms on the seven C-ring.

    For the subsequent dissociation pathway initiated by laser irradiation,as shown in Figures 3 and 5,the hydrogenated and deuterated fullerene cations evolve toward breaking the C-H/C-D bonds.In the process of photolysis,if two CH/CD units are not adjacent,then the photolysis product will be H/D atoms.

    If two CH/CD units are adjacent,it is possible to have a sufficiently close distance during the continuous vibration of the C-H/C-D bonds,then the photolysis product will be H2/D2molecules (energy allowed;the endothermic energy is very small,lower than 1.0 eV).But it is difficult to have an impact on each other between two nonadjacent C-H/C-D bonds due to the relatively long distance between them,even though energy allowed.Two typical types of H2/D2molecule loss channels are obtained: forming groups of [C60H2]+(1,2) and [C60H2]+(1,5)and forming groups of[C60D2]+(1,2)and[C60D2]+(1,5).The calculation results are presented below:

    In the photolysis process,possible dynamical processes play an important role,and further studies will be required to address this issue.

    5.Discussion

    As presented in Figure 6,the occurrence of dehydrogenation(1-1 (+H2),?1.9 eV) or dedeuteration (1-1 (+D2),?1.9 eV) reactions has been proved in the H/D accretion process,and the exothermic energies of the hydrogenation and dehydrogenation reactions are similar.In addition,we also calculated the reaction pathway of[C60H]++D →+HD,?2.0 eV and [C60D]++H →+HD,?1.8 eV.

    Since both hydrogenation and dehydrogenation events are relatively independent and random,the chance of their occurrence is completely determined by the sites of the already hydrogenated and still unhydrogenated carbon sites on the fullerene surface (Tielens 2013;Omont 2016).The free H-D exchange (energy allowed) processes suggest that the proportion of accreted hydrogen and deuterium atoms on the surface of fullerenes is similar to that of hydrogen and deuterium atoms in the interstellar environment where these fullerenes are located (Le Page et al.2001;Montillaud et al.2013;Omont 2016).The flux density of H-atoms in our laboratory studies is expected ~105times higher than the photodissociation regions(PDRs,e.g.,NGC 7023),which means 20 s in our experiments,equals to the reaction time of ~20 days in PDRs(Tielens 2013).Nevertheless,in the present,we assume that the formation and photochemistry of hydrogenated and deuterated fullerene cations in space follow the similar mechanism with our experiments.

    A previous study indicated that the H2form from PAHs may be an important pathway for the formation of H2in PDRs(Boschman et al.2012;Montillaud et al.2013;Croiset et al.2016).In addition,in solvents,heat treatment of C60H36can cause dehydrogenation and easily release H2molecules(Cataldo &Iglesias-Groth 2009;Iglesias-Groth et al.2012).Given the results presented in this work,the potential for fullerene cations to react with H/D atoms to form hydrogenated and deuterated fullerene cations must also be considered,which provides a catalytic pathway for molecular H2/D2formation,and it is also important to consider the reaction between graphene molecules and H/D atoms(Pantazidis et al.2019;Thrower et al.2019).

    Overall,the theoretical chemistry calculation results are consistent with the experimental results.We can conclude that ion-atom reactions between fullerene cations and hydrogen or deuterium atoms readily occur,producing a large number of hydrogenated fullerene cations(i.e.,[C60Hn]+and[C70Hn]+,nup to 30) and deuterated fullerene cations (i.e.,[C60Dn]+and[C70Dn]+,nup to 21) in experiments,also resulting in a very large number of reaction pathways.These newly formed hydrogenated and deuterated fullerene cations can be quite stable (binding energy of ~2.0 eV).Smaller fullerene cations(e.g.,)have reactivity similar to that of larger fullerene cations (e.g.,) in the adduction process with hydrogen or deuterium atoms.Additionally,the competition between hydrogenation and dehydrogenation or between deuteration and dedeuteration was confirmed,and the hydrogenation and deuteration channel ratios of fullerene cations in the accretion reaction in the gas phase were determined.Subsequent photoprocessing (355 nm was used here) can diminish these cations to their most stable forms and convert them back to fullerene cations and H/H2or D/D2species again.We note that we did not perform all possible related theoretical chemistry calculations (this was not a full survey);when the amount of hydrogen or deuterium addition is higher(e.g.,[C60H30]+,and [C60D21]+),there may be some intramolecular interactions or other reaction formation pathways and photodissociation channels(Omont 2016;Zhen et al.2019).In addition,during the formation process,possible dynamical processes play an important role,and further studies will be required to address this issue.

    Furthermore,these hydrogenated and deuterated fullerene cations may also be promising candidates of interest for the IR interstellar bands (Zhang et al.2017).Because the structure of hydrogenated and deuterated fullerene cations initially formed is diverse,their contribution to the spectral profile and the spectral features for detections in the ISM should be investigated.

    6.Conclusions

    In summary,we have investigated the formation and photochemistry of hydrogenated and deuterated fullerene cations both experimentally and theoretically.Fullerene cations(e.g.,C56/58,C66/68and C60/70cations) form adducts with hydrogen or deuterium atoms much more readily;i.e.,hydrogenated fullerene cations (i.e.,[C60Hn]+and [C70Hn]+,nup to 30)and deuterated fullerene cations(i.e.,[C60Dn]+and[C70Dn]+,nup to 21) are formed efficiently through ion-atom reactions.Smaller fullerene cations (e.g.,)have reactivities similar to or higher than those of larger fullerene cations (e.g.,and) during the adduction with hydrogen or deuterium atoms.Hence,if these fullerenes are present in space,the formation of hydrogenated and deuterated fullerene could produce an extended family of large molecules.Likewise,these types of hydrogenated and deuterated fullerene may play a role in the IR spectral complexity of circumstellar environments where C60is prominent.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (NSFC,grant Nos.41930216 and 12073027),the Pre-research Project on Civil Aerospace Technologies (D020202) of the Chinese National Space Administration,the Fundamental Research Funds for the Central Universities of China (WK3410000019),and the Frontier Scientific Research Program of Deep Space Exploration Laboratory under grant No.2022-QYKYJH-HXYF-019.The theoretical calculations were performed at the Supercomputing Center of University of Science and Technology of China.

    ORCID iDs

    一区二区三区精品91| 精品一品国产午夜福利视频| 久久久久久大精品| 别揉我奶头~嗯~啊~动态视频| 午夜久久久在线观看| 亚洲一区二区三区不卡视频| 国产成人系列免费观看| 美女高潮到喷水免费观看| 两性夫妻黄色片| 成人三级做爰电影| 老熟妇乱子伦视频在线观看| 午夜两性在线视频| 中文字幕av电影在线播放| 久久精品91蜜桃| 午夜精品久久久久久毛片777| 国产一区二区在线av高清观看| 黄色成人免费大全| 国产成人精品久久二区二区免费| 日本免费a在线| 亚洲精品国产区一区二| 亚洲一区高清亚洲精品| 精品国产超薄肉色丝袜足j| e午夜精品久久久久久久| 嫁个100分男人电影在线观看| 一本久久中文字幕| 视频在线观看一区二区三区| 中文字幕人妻熟女乱码| 一区在线观看完整版| 可以免费在线观看a视频的电影网站| 精品久久久久久久久久免费视频| 欧美日本视频| 可以在线观看毛片的网站| 夜夜爽天天搞| av视频免费观看在线观看| 亚洲 国产 在线| 九色亚洲精品在线播放| 天天一区二区日本电影三级 | 久久人妻av系列| aaaaa片日本免费| 夜夜爽天天搞| 女性被躁到高潮视频| 亚洲欧美精品综合久久99| 久久这里只有精品19| 99在线视频只有这里精品首页| 欧美乱妇无乱码| 日本一区二区免费在线视频| 亚洲一区高清亚洲精品| 国产片内射在线| √禁漫天堂资源中文www| 美女国产高潮福利片在线看| 中文字幕人成人乱码亚洲影| 国产精品久久久久久人妻精品电影| 久久久国产成人精品二区| 搡老熟女国产l中国老女人| www.自偷自拍.com| 日日干狠狠操夜夜爽| 亚洲第一欧美日韩一区二区三区| 777久久人妻少妇嫩草av网站| 亚洲国产看品久久| av视频在线观看入口| 亚洲人成伊人成综合网2020| 正在播放国产对白刺激| 韩国av一区二区三区四区| 一进一出抽搐动态| 午夜福利欧美成人| 精品久久久久久久毛片微露脸| 亚洲精品久久成人aⅴ小说| 国产精品二区激情视频| 欧美日本中文国产一区发布| 在线观看午夜福利视频| 中文字幕人妻熟女乱码| 欧美色欧美亚洲另类二区 | 少妇熟女aⅴ在线视频| 亚洲 欧美 日韩 在线 免费| 此物有八面人人有两片| 日韩精品免费视频一区二区三区| 日本精品一区二区三区蜜桃| 淫秽高清视频在线观看| 国产欧美日韩一区二区精品| 一卡2卡三卡四卡精品乱码亚洲| 精品久久久久久久久久免费视频| 精品久久久精品久久久| 亚洲人成网站在线播放欧美日韩| 一级a爱片免费观看的视频| 亚洲精品美女久久av网站| 久久久久久久久久久久大奶| 99久久国产精品久久久| 日韩欧美国产在线观看| 国产精品电影一区二区三区| 国产1区2区3区精品| 亚洲国产精品合色在线| 9热在线视频观看99| 久久婷婷成人综合色麻豆| 成人三级黄色视频| 午夜免费观看网址| 亚洲狠狠婷婷综合久久图片| 一级作爱视频免费观看| 又黄又粗又硬又大视频| 国产蜜桃级精品一区二区三区| 色精品久久人妻99蜜桃| 日日夜夜操网爽| 此物有八面人人有两片| 午夜久久久久精精品| 亚洲国产精品合色在线| 国产精品,欧美在线| 如日韩欧美国产精品一区二区三区| 夜夜躁狠狠躁天天躁| 老熟妇仑乱视频hdxx| 色综合站精品国产| 国产亚洲欧美精品永久| 精品国产超薄肉色丝袜足j| 日韩三级视频一区二区三区| 午夜精品在线福利| 国产成人精品久久二区二区免费| av欧美777| 最近最新免费中文字幕在线| 九色国产91popny在线| 亚洲精品国产区一区二| 日本免费a在线| 精品久久久久久成人av| 不卡一级毛片| 丝袜美腿诱惑在线| 两人在一起打扑克的视频| 国产伦一二天堂av在线观看| 国产精品,欧美在线| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美绝顶高潮抽搐喷水| 免费在线观看完整版高清| 嫁个100分男人电影在线观看| 一级毛片女人18水好多| 免费少妇av软件| 电影成人av| 91大片在线观看| 身体一侧抽搐| 狠狠狠狠99中文字幕| 黄色丝袜av网址大全| 麻豆久久精品国产亚洲av| 国产黄a三级三级三级人| 久久久精品国产亚洲av高清涩受| 欧美 亚洲 国产 日韩一| 精品一品国产午夜福利视频| 18禁黄网站禁片午夜丰满| 亚洲自偷自拍图片 自拍| 国产不卡一卡二| 久久久久国内视频| 精品高清国产在线一区| 亚洲片人在线观看| 欧美人与性动交α欧美精品济南到| 在线国产一区二区在线| av在线播放免费不卡| 又大又爽又粗| 国产熟女xx| 日韩精品免费视频一区二区三区| 国产极品粉嫩免费观看在线| 97人妻天天添夜夜摸| 亚洲第一青青草原| 欧美中文日本在线观看视频| 妹子高潮喷水视频| 免费女性裸体啪啪无遮挡网站| 国产精品 欧美亚洲| 999久久久精品免费观看国产| АⅤ资源中文在线天堂| e午夜精品久久久久久久| 国产精品99久久99久久久不卡| 欧美黑人欧美精品刺激| 亚洲成a人片在线一区二区| 老熟妇乱子伦视频在线观看| 亚洲无线在线观看| 国内久久婷婷六月综合欲色啪| 亚洲中文字幕一区二区三区有码在线看 | 香蕉丝袜av| www.熟女人妻精品国产| 欧美+亚洲+日韩+国产| 亚洲av第一区精品v没综合| av天堂久久9| 精品电影一区二区在线| 视频在线观看一区二区三区| 久久久久久久久中文| 国产又爽黄色视频| 久久久国产成人免费| av电影中文网址| 在线永久观看黄色视频| av片东京热男人的天堂| 夜夜看夜夜爽夜夜摸| 国产精品爽爽va在线观看网站 | 黄片播放在线免费| 国产不卡一卡二| 国产欧美日韩一区二区精品| 精品福利观看| 国产一区二区三区在线臀色熟女| 黄片播放在线免费| av欧美777| 国产熟女午夜一区二区三区| 97人妻天天添夜夜摸| 国产精品九九99| 自拍欧美九色日韩亚洲蝌蚪91| 一区二区三区激情视频| 国产高清有码在线观看视频 | 久9热在线精品视频| 亚洲专区字幕在线| 变态另类丝袜制服| 中文字幕最新亚洲高清| 国产成人系列免费观看| 午夜老司机福利片| 欧美日韩瑟瑟在线播放| 亚洲成av片中文字幕在线观看| 操美女的视频在线观看| 久久国产精品影院| 少妇裸体淫交视频免费看高清 | 亚洲国产精品成人综合色| 50天的宝宝边吃奶边哭怎么回事| 中文字幕人成人乱码亚洲影| 女警被强在线播放| 成人特级黄色片久久久久久久| 国产精品av久久久久免费| 亚洲精品国产色婷婷电影| 国产精品影院久久| 亚洲色图 男人天堂 中文字幕| 亚洲一区二区三区不卡视频| 国产一区二区激情短视频| 亚洲国产中文字幕在线视频| 国产野战对白在线观看| 国产欧美日韩综合在线一区二区| 午夜两性在线视频| 性色av乱码一区二区三区2| 黄色a级毛片大全视频| 成人三级黄色视频| 国产欧美日韩综合在线一区二区| 激情视频va一区二区三区| 午夜亚洲福利在线播放| 久久 成人 亚洲| 久久婷婷人人爽人人干人人爱 | 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩福利视频一区二区| 动漫黄色视频在线观看| 日本免费a在线| 怎么达到女性高潮| 亚洲成人国产一区在线观看| 亚洲男人的天堂狠狠| 午夜精品国产一区二区电影| 一本久久中文字幕| 老司机深夜福利视频在线观看| 国产欧美日韩精品亚洲av| 精品欧美一区二区三区在线| 亚洲av成人不卡在线观看播放网| 国产熟女午夜一区二区三区| 日本黄色视频三级网站网址| 电影成人av| 精品久久久精品久久久| 最近最新免费中文字幕在线| 窝窝影院91人妻| 一a级毛片在线观看| 久99久视频精品免费| 精品福利观看| 欧美成人性av电影在线观看| 国产熟女xx| 91精品三级在线观看| 午夜久久久在线观看| 亚洲伊人色综图| 99riav亚洲国产免费| 美国免费a级毛片| 91精品三级在线观看| 国产成人啪精品午夜网站| 久久欧美精品欧美久久欧美| 午夜精品久久久久久毛片777| 国语自产精品视频在线第100页| or卡值多少钱| 99精品在免费线老司机午夜| 日本精品一区二区三区蜜桃| 91大片在线观看| 久久国产精品男人的天堂亚洲| bbb黄色大片| 女同久久另类99精品国产91| 人成视频在线观看免费观看| 天天一区二区日本电影三级 | 欧美不卡视频在线免费观看 | 久久香蕉国产精品| 中文字幕久久专区| 91麻豆精品激情在线观看国产| 亚洲第一欧美日韩一区二区三区| 欧美日本亚洲视频在线播放| 国内精品久久久久久久电影| 久久久久久人人人人人| 欧美乱妇无乱码| 精品福利观看| 一个人观看的视频www高清免费观看 | 亚洲欧美日韩无卡精品| 99久久精品国产亚洲精品| 麻豆久久精品国产亚洲av| 1024视频免费在线观看| 777久久人妻少妇嫩草av网站| 日韩欧美免费精品| 波多野结衣巨乳人妻| 日本精品一区二区三区蜜桃| 久久久久精品国产欧美久久久| 久久国产乱子伦精品免费另类| 18禁黄网站禁片午夜丰满| 久久久久久免费高清国产稀缺| 欧美在线一区亚洲| 久久精品亚洲熟妇少妇任你| 搡老妇女老女人老熟妇| 欧美 亚洲 国产 日韩一| 91成年电影在线观看| 午夜免费鲁丝| 一二三四社区在线视频社区8| 日本三级黄在线观看| 亚洲国产精品999在线| 国产麻豆成人av免费视频| 亚洲一区二区三区色噜噜| 日本 欧美在线| 天天一区二区日本电影三级 | 又紧又爽又黄一区二区| 母亲3免费完整高清在线观看| 免费在线观看视频国产中文字幕亚洲| 国产av精品麻豆| 一区二区三区国产精品乱码| 国产三级黄色录像| 国产精品野战在线观看| 变态另类丝袜制服| 亚洲精品av麻豆狂野| 88av欧美| 久久久久久久久免费视频了| 国产成年人精品一区二区| √禁漫天堂资源中文www| 巨乳人妻的诱惑在线观看| aaaaa片日本免费| 亚洲 国产 在线| 99精品久久久久人妻精品| 999久久久精品免费观看国产| 日韩高清综合在线| 日韩中文字幕欧美一区二区| 国产精品久久久久久人妻精品电影| 一本综合久久免费| 91av网站免费观看| 亚洲av片天天在线观看| 成人免费观看视频高清| 丁香六月欧美| 啦啦啦免费观看视频1| 精品国产一区二区久久| 国产精品亚洲一级av第二区| 亚洲精品在线观看二区| 757午夜福利合集在线观看| av中文乱码字幕在线| 亚洲av熟女| 欧美一级a爱片免费观看看 | 制服诱惑二区| 99国产精品一区二区三区| 婷婷六月久久综合丁香| 久久香蕉激情| 欧美 亚洲 国产 日韩一| 男人舔女人下体高潮全视频| 中文字幕人妻熟女乱码| 欧美乱色亚洲激情| 88av欧美| 日本撒尿小便嘘嘘汇集6| 国产成+人综合+亚洲专区| 色综合亚洲欧美另类图片| 久久香蕉激情| 免费在线观看视频国产中文字幕亚洲| 99精品欧美一区二区三区四区| 国产极品粉嫩免费观看在线| 成年版毛片免费区| 老汉色av国产亚洲站长工具| 婷婷丁香在线五月| 亚洲全国av大片| 夜夜爽天天搞| 91精品国产国语对白视频| 在线视频色国产色| 麻豆国产av国片精品| 国产片内射在线| 校园春色视频在线观看| 国产一级毛片七仙女欲春2 | 国产一区二区激情短视频| 精品久久蜜臀av无| 国产免费男女视频| 88av欧美| 人妻久久中文字幕网| 亚洲精品国产区一区二| 亚洲av第一区精品v没综合| 丰满人妻熟妇乱又伦精品不卡| 精品电影一区二区在线| 母亲3免费完整高清在线观看| 欧美最黄视频在线播放免费| 91成人精品电影| tocl精华| 国产亚洲精品一区二区www| 国产av精品麻豆| 黄色丝袜av网址大全| 欧美+亚洲+日韩+国产| 久久亚洲真实| 成人精品一区二区免费| 一区二区日韩欧美中文字幕| 中文字幕人妻熟女乱码| 97人妻天天添夜夜摸| 欧美日韩中文字幕国产精品一区二区三区 | 美女国产高潮福利片在线看| 视频在线观看一区二区三区| 亚洲精品中文字幕在线视频| 18禁黄网站禁片午夜丰满| 亚洲av成人不卡在线观看播放网| 欧美中文日本在线观看视频| 日本 av在线| 欧洲精品卡2卡3卡4卡5卡区| 国产91精品成人一区二区三区| 精品第一国产精品| 天堂√8在线中文| 国产精品野战在线观看| 久久中文字幕一级| 成人国产综合亚洲| 又大又爽又粗| 久久久久久人人人人人| 桃色一区二区三区在线观看| 男人舔女人下体高潮全视频| 久久影院123| 88av欧美| 看黄色毛片网站| 91成年电影在线观看| 美国免费a级毛片| 高清黄色对白视频在线免费看| 国产精品99久久99久久久不卡| 又大又爽又粗| 欧美一区二区精品小视频在线| 国产精品美女特级片免费视频播放器 | 在线观看午夜福利视频| 久久婷婷成人综合色麻豆| 国产国语露脸激情在线看| 黑人巨大精品欧美一区二区蜜桃| 亚洲第一欧美日韩一区二区三区| 他把我摸到了高潮在线观看| 啦啦啦韩国在线观看视频| 精品久久久久久久毛片微露脸| 欧美绝顶高潮抽搐喷水| 老鸭窝网址在线观看| 久热爱精品视频在线9| 桃红色精品国产亚洲av| 成人av一区二区三区在线看| 最新在线观看一区二区三区| netflix在线观看网站| 国产主播在线观看一区二区| 人人澡人人妻人| 99国产极品粉嫩在线观看| 十八禁人妻一区二区| 97超级碰碰碰精品色视频在线观看| 99在线视频只有这里精品首页| 女人爽到高潮嗷嗷叫在线视频| 久久中文看片网| 欧美中文综合在线视频| av免费在线观看网站| 亚洲人成77777在线视频| 国产精品一区二区免费欧美| 久久国产乱子伦精品免费另类| 如日韩欧美国产精品一区二区三区| 国语自产精品视频在线第100页| 性色av乱码一区二区三区2| 热re99久久国产66热| 国产黄a三级三级三级人| 91大片在线观看| 国产av一区二区精品久久| 校园春色视频在线观看| 亚洲国产毛片av蜜桃av| av福利片在线| 免费在线观看影片大全网站| 嫁个100分男人电影在线观看| 国产精品免费视频内射| 欧美在线一区亚洲| 久久精品亚洲熟妇少妇任你| 极品教师在线免费播放| 色播在线永久视频| 久久久久久大精品| 日日摸夜夜添夜夜添小说| 天堂动漫精品| 中文字幕最新亚洲高清| 久久婷婷人人爽人人干人人爱 | 亚洲成人免费电影在线观看| 丝袜人妻中文字幕| 又紧又爽又黄一区二区| 亚洲精华国产精华精| 国产精品亚洲美女久久久| 天天添夜夜摸| 久久青草综合色| 成人免费观看视频高清| 激情在线观看视频在线高清| 欧美成狂野欧美在线观看| 婷婷精品国产亚洲av在线| 成人三级做爰电影| 一二三四社区在线视频社区8| 欧美乱码精品一区二区三区| 久久精品成人免费网站| 18禁观看日本| 美女扒开内裤让男人捅视频| 欧美日本中文国产一区发布| 久久精品亚洲熟妇少妇任你| 亚洲成av人片免费观看| 亚洲成人精品中文字幕电影| 久久国产精品人妻蜜桃| 亚洲人成77777在线视频| 97人妻天天添夜夜摸| 91国产中文字幕| 老司机靠b影院| aaaaa片日本免费| 日韩欧美一区视频在线观看| 国产99久久九九免费精品| 午夜亚洲福利在线播放| 在线观看www视频免费| 99久久精品国产亚洲精品| 久热这里只有精品99| 精品国产一区二区三区四区第35| 欧美中文综合在线视频| 国产一区二区激情短视频| 亚洲国产精品合色在线| 午夜精品久久久久久毛片777| 美女免费视频网站| 精品国产乱子伦一区二区三区| 欧美日韩亚洲综合一区二区三区_| 国产精品99久久99久久久不卡| 久99久视频精品免费| 午夜福利欧美成人| 成人欧美大片| 久久亚洲真实| 好男人电影高清在线观看| 国产激情久久老熟女| 国产欧美日韩精品亚洲av| 不卡av一区二区三区| 国产精华一区二区三区| 涩涩av久久男人的天堂| 亚洲情色 制服丝袜| 香蕉丝袜av| 激情视频va一区二区三区| 欧美黄色淫秽网站| 99精品欧美一区二区三区四区| 又黄又粗又硬又大视频| 国产av又大| 国产又爽黄色视频| 国产激情欧美一区二区| 久久亚洲真实| 久久欧美精品欧美久久欧美| 色尼玛亚洲综合影院| 欧美日韩中文字幕国产精品一区二区三区 | 久久人人精品亚洲av| 久久人妻av系列| 免费看美女性在线毛片视频| 久久久久久免费高清国产稀缺| 国产成人欧美在线观看| 免费高清视频大片| 曰老女人黄片| 国产麻豆成人av免费视频| 国产av一区二区精品久久| 午夜日韩欧美国产| 久久久久九九精品影院| 亚洲自拍偷在线| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品中文字幕一二三四区| 99久久久亚洲精品蜜臀av| 亚洲精品国产一区二区精华液| 深夜精品福利| 不卡av一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 一区福利在线观看| 色播在线永久视频| 男人的好看免费观看在线视频 | 自线自在国产av| 成熟少妇高潮喷水视频| 女性生殖器流出的白浆| 精品少妇一区二区三区视频日本电影| 亚洲免费av在线视频| 男女床上黄色一级片免费看| 757午夜福利合集在线观看| 在线观看免费午夜福利视频| 国产免费av片在线观看野外av| 咕卡用的链子| 精品欧美国产一区二区三| 久久国产精品男人的天堂亚洲| 亚洲精品av麻豆狂野| 亚洲精华国产精华精| 涩涩av久久男人的天堂| 人妻丰满熟妇av一区二区三区| 国产成人精品久久二区二区91| 好男人电影高清在线观看| 中文字幕最新亚洲高清| 精品免费久久久久久久清纯| 日本免费一区二区三区高清不卡 | 女性生殖器流出的白浆| 久久香蕉精品热| 中文字幕色久视频| 国产黄a三级三级三级人| 亚洲专区国产一区二区| 欧美丝袜亚洲另类 | 少妇熟女aⅴ在线视频| 免费在线观看黄色视频的| 国产欧美日韩一区二区三| 熟妇人妻久久中文字幕3abv| 欧美日韩一级在线毛片| 欧美午夜高清在线| 久久精品亚洲熟妇少妇任你| 国产极品粉嫩免费观看在线| 宅男免费午夜| 欧美精品啪啪一区二区三区| 午夜老司机福利片| 欧美黑人欧美精品刺激| 精品福利观看| 亚洲一区高清亚洲精品| 久久香蕉国产精品| 亚洲欧美激情在线| 精品久久蜜臀av无| 91成年电影在线观看| 欧美日韩黄片免| 午夜成年电影在线免费观看| 香蕉丝袜av| 天天躁夜夜躁狠狠躁躁| 久久热在线av| 色播亚洲综合网| 91成人精品电影| 黄色毛片三级朝国网站| 这个男人来自地球电影免费观看| 在线视频色国产色|