• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Velocity Dispersion σaper Aperture Corrections as a Function of Galaxy Properties from Integral-field Stellar Kinematics of 10,000 MaNGA Galaxies

    2023-09-03 01:36:06KaiZhuRanLiXiaoyueCaoShengdongLuMicheleCappellariandShudeMao

    Kai Zhu,Ran Li,Xiaoyue Cao,Shengdong Lu,Michele Cappellari,and Shude Mao

    1 National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China;ranl@bao.ac.cn

    2 Institute for Frontiers in Astronomy and Astrophysics,Beijing Normal University,Beijing 102206,China

    3 School of Astronomy and Space Science,University of Chinese Academy of Sciences,Beijing 100049,China

    4 Department of Astronomy,Tsinghua University,Beijing 100084,China

    5 Sub-department of Astrophysics,Department of Physics,University of Oxford,Denys Wilkinson Building,Keble Road,Oxford,OX1 3RH,UK

    Abstract The second moment of the stellar velocity within the effective radius,denoted by ,is a crucial quantity in galaxy studies,as it provides insight into galaxy properties and their mass distributions.However,large spectroscopic surveys typically do not measure σe directly,instead providing σaper,the second moment of the stellar velocity within a fixed fiber aperture.In this paper,we derive an empirical aperture correction formula,given by σaperσe=(Raper Re)α,using spatially resolved stellar kinematics extracted from approximately 10,000 Sloan Digital Sky Survey–Mapping Nearby Galaxies at Apache Point Observatory integral field unit observations.Our analysis reveals a strong dependence of α on the r-band absolute magnitude Mr, g–i color,and Sérsic index nSer,where α values are lower for brighter,redder galaxies with higher Sérsic indices.Our results demonstrate that the aperture correction derived from previous literature on early-type galaxies cannot be applied to predict the aperture corrections for galaxies with intermediate Sérsic indices.We provide a lookup table of α values for different galaxy types,with parameters in the ranges of ?18>Mr>?24,0.4

    Key words: galaxies: evolution– galaxies: formation– galaxies: kinematics and dynamics– galaxies: structure

    1.Introduction

    Stellar kinematics provide crucial information for understanding the mass distributions of galaxies.The advent of integral field spectroscopy (IFS) surveys,such as the Spectroscopic Areal Unit for Research on Optical Nebulae(SAURON;de Zeeuw et al.2002),ATLAS3D(Cappellari et al.2011),Calar Alto Legacy Integral Field Area (CALIFA;Sánchez et al.2012),Sydney/AAO Multi-object Integral-field spectrograph(SAMI;Bryant et al.2015),and Mapping Nearby Galaxies at Apache Point Observatory (MaNGA;Bundy et al.2015),has allowed for spatially resolved stellar kinematics,which,when combined with well-established dynamical modeling methods,such as Schwarzschild modeling (Schwarzschild 1979) and Jeans Anisotropic Modeling (JAM;Cappellari 2008,2020),can provide accurate measurements of the mass distribution of galaxies(Cappellari et al.2006,2013;Scott et al.2015;Li et al.2018;Zhu et al.2018,Zhu et al.2023a).The scaling relations between the dynamical properties and the stellar populations of the galaxies can be explored in detail(e.g.,Cappellari 2016;Li et al.2018;Lu et al.2023).

    However,the high cost of obtaining spatially resolved kinematics limits the applicability of IFS to a significantly larger number of local galaxies,such as the millions of galaxies in the Sloan Digital Sky Survey (SDSS),or distant galaxies at high redshift that cannot be spatially resolved.Thus,the second moment of stellar velocity within an aperture σaper,which is measured using single-fiber spectroscopy,remains a fundamental quantity for understanding the dynamics of galaxies.Important scaling relations,such as fundamental plane(Djorgovski &Davis 1987;Dressler et al.1987;Jorgensen et al.1995)and mass plane(e.g.,Auger et al.2010;Cappellari et al.2013;Zhu et al.2023b),are derived with respect to σaperas well.However,galaxies have different angular sizes spanning a wide dynamic range,but the fiber size is fixed.As a result,velocity moments are not measured coherently for the entire galaxy sample.Therefore,researchers need to correct the measured velocity dispersion to a physically meaningful radius,which is typically the effective radius of a galaxy(Auger et al.2010;Chen et al.2019;de Graaff et al.2021).

    Earlier studies on velocity dispersion aperture corrections focused on early-type galaxies,with velocity dispersion profiles typically described as a power-law function of the form shown in Equation (2).Jorgensen et al.(1995) derived a power-law slope of α=?0.04 for the early-type galaxies in nine clusters,while Mehlert et al.(2003)found α=?0.063 for 35 early-type galaxies in the Coma cluster.A later study based on the SAURON IFS data analyzed 40 early-type galaxies and reported a slope of α=?0.066±0.035 (Cappellari et al.2006).The aperture corrections were extended to 300 CALIFA galaxies across the Hubble sequence (Falcón-Barroso et al.2017),which found a consistent power-law slope for the earlytype galaxies(α=?0.055±0.020)and a strong variation of α with magnitude (or stellar mass) for the late-type galaxies(α=0.047±0.021 forMr?20).Despite the α variation with magnitude,the non-negligible scatter in a givenMrbin(especially for the late-type galaxies ofMr>?20) indicates a potential secondary contributor to the variation of α.The unprecedently large sample of the MaNGA survey provides the ability to perform a further and more comprehensive analysis of the velocity dispersion aperture correction.Recently,de Graaff et al.(2021) derived α=?0.033±0.003 from the MaNGA data,but they only selected a subset of MaNGA sample (702 galaxies).

    In this work,we take advantage of the full sample(~10,000)of MaNGA IFS observations to perform a more detailed classification of galaxies and try to obtain more accurate aperture corrections for each type of galaxy.We investigate the relations between the shape of velocity dispersion profiles(quantified by a power-law form) and other properties,e.g.,magnitude,color,and Sérsic index (Sersic 1968).By selecting galaxies within a narrow parameter range,we aim to eliminate the effect of sample bias and provide a lookup table that can be applied to various types of galaxies,resulting in more precise aperture corrections.

    The organization of this paper is as follows.In Section 2,we provide a brief overview of the stellar kinematic data and the MaNGA sample.Our main results are presented in Section 3.Finally,we summarize our conclusions in Section 4.We adopt a standard cosmology with Ωm=0.3,ΩΛ=0.7,andH0=70 km s?1Mpc?1throughout this work.

    2.Data

    2.1.The MaNGA Survey

    As a part of the SDSS-IV,the MaNGA (Bundy et al.2015)is an integral field unit (IFU) survey that uses tightly packed arrays of optical fibers to obtain spectral measurements of approximately 10,000 nearby galaxies.Using the Baryon Oscillation Spectroscopic Survey spectrographs (Smee et al.2013;Drory et al.2015) on the Sloan 2.5 m telescope (Gunn et al.2006)at the Apache Point Observatory,this survey covers a radial range up to 1.5 effective radii (Re) for the primary+sample and up to 2.5Refor the secondary sample (Law et al.2015;Wake et al.2017).MaNGA provides spatially resolved spectra with a spaxel size of 0.5〞,and the averageg-band pointspread function (PSF) FWHM throughout the survey is about 2.54〞 (Law et al.2016).

    The spectral measurements across the wavelength range of 3600–10300 ? have a spectral resolution of σ=72 km s?1(Law et al.2016).The raw observational data require spectrophotometric calibration (Yan et al.2016),which is performed using the Data Reduction Pipeline(DRP)(Law et al.2016).The DRP processes the data to produce threedimensional data cubes that can be used to create spatially resolved maps of the galaxies under observation.

    2.2.Stellar Kinematics

    The Data Analysis Pipeline (DAP;Belfiore et al.2019;Westfall et al.2019) is responsible for producing higher-level products,such as stellar kinematics,nebular emission-line properties,and spectral indices of galaxies.The stellar kinematic information is derived from the IFU spectra using the PPXF software (Cappellari &Emsellem 2004;Cappellari 2017,2022),which fits absorption lines with a subset of the Medium resolution Isaac Newton Telescope Library of Empirical Spectra (MILES;Sánchez-Blázquez et al.2006;Falcón-Barroso et al.2011) stellar library,MILES-HC.The spectra are Voronoi binned (Cappellari &Copin 2003) to S/N=10 to ensure the reliability of the derived stellar velocity dispersions,which are presented as a combination of the intrinsic velocity dispersion of stars (σ*) and the quadrature difference between the instrumental dispersion of the galaxy template and the MaNGA data (σdiff).The velocity dispersion of the galaxy can be obtained using the equation,where σobsis the observed velocity dispersion (Westfall et al.2019).In this work,we make use of the maps of stellar velocity,stellar velocity dispersion,andg-band flux,which are taken from the DAP outputs6https://www.sdss.org/dr17/manga/manga-data/data-access/.

    2.3.Sample Selection

    We obtain 10,735 DAP outputs from SDSS DR17(Abdurro’uf &Aerts 2022),which includes 10,296 observations of galaxies and the ancillary program targets,such as the Coma,IC342,M31,and globular clusters.After excluding 151 flagged data cubes that have been identified as critical quality or unusual quality from 10,296 galaxy observations,there are 10,145 high-quality data cubes corresponding to 10,010 unique galaxies and 135 repeat observations.The sample has a nearly uniform distribution of stellar masses in the range of 109–6×1011M⊙and a median redshift of approximately 0.03 (Wake et al.2017).

    In this work,we use the stellar kinematics of 10,010 unique galaxies but remove the galaxies that have been identified as having bad stellar kinematics (Zhu et al.2023a).Finally,we obtain a sample of 9132 galaxies.The distribution of the whole sample is presented in Figure 1,in which the colorg–i,therband absolute magnitudeMr,and the Sérsic index are taken from the PyMorph catalog (Domínguez Sánchez et al.2022).As shown in Figure 1,the sample spans a wide range of galactic properties:from the faint(Mr=?18 mag)to the bright(Mr=?24 mag) and from the blue (g–i=0.4 mag) to the red(g–i=1.6 mag).The large sample and various types of galaxies (i.e.,the red sequence,the blue cloud,and the green valley)enable us to comprehensively study the aperture effects on the velocity dispersion.

    Figure 1.Color–magnitude diagram,with symbols color-coded by the Sérsic index.All the quantities(r-band absolute magnitude,g–i color,and Sérsic index nSer)are taken from the PyMorph catalog(Domínguez Sánchez et al.2022).The gray contours are the two-dimensional number density distributions,while the gray histograms on the top and right are the one-dimensional distributions (normalized to unity).

    3.Results

    3.1.Integrated Stellar Velocity Dispersion Profiles

    We derive the integrated stellar velocity dispersion within a set of apertures and obtain the aperture profiles for the whole sample.The integrated velocity dispersion is defined as the flux-weighted second velocity moments within a given elliptical aperture of areaπ=A,written as

    whereVk,σk,andFkare the stellar velocity,stellar velocity dispersion,andg-band flux in thekth spaxel,respectively.Following Cappellari et al.(2013,Section 3.3.3),we choose to use the elliptical aperture instead of the circular aperture to properly account for the inclination effects.Using elliptical apertures is also more appropriate for flat galaxies,which are typically dominated by rotation.If a circular aperture defined by the effective radius is used,the peak of rotation may be located outside the aperture,resulting in an underestimated σaper.Because theVand σ of DAP outputs are derived from the Voronoi binned spectra,we assign the binned values to each 0.5〞×0.5〞spaxel belonging to each Voronoi bin.We calculate σaperwithin the elliptical apertures with fixed ellipticity and position angle (PA),which are derived from the singlecomponent Sérsic fits (Domínguez Sánchez et al.2022).

    In Figure 2,we present an example to illustrate the calculation of integrated stellar velocity dispersion within a given elliptical aperture.In this figure,the pixels within the red ellipse of areaπ=Aare adopted to estimate the effective velocity dispersion σeusing Equation (1).The effective velocity dispersion σeis demonstrated to agree well with that measured from a single fit on the stacked spectra within the same aperture(Cappellari et al.2013).Moreover,we also calculate the integrated velocity dispersion within a circular aperture with a diameter of 3〞,like the SDSS single fibers using Equation(1).Then,we match the galaxies with the spectroscopic catalog of SDSS DR87https://www.sdss3.org/dr8/data_access.php(Aihara et al.2011) and compare the velocity dispersion values obtained with two methods in Figure 3.To ensure that the velocity dispersions derived from the SDSS single-fiber spectra are reliable,we only select the spectral measurements with median S/N>10.As shown in Figure 3,we perform a linear fit to the two quantities with the LTS_LINEFIT8https://pypi.org/project/ltsfit/software (Cappellari et al.2013),which combines the least-trimmed-squares robust technique of Rousseeuw&Driessen(2006)into a least-squares fitting algorithm and allows for the intrinsic scatter and errors in all coordinates.As shown in the figure,the slope(b=0.9784±0.0019)and the small rms scatter(Δ=11 km s?1)denote the high consistency between the two measurements,while most detected outliers are potential unreliable measurements with velocity dispersions below the resolution limit (100 km s?1) of the SDSS spectrograph.This justifies the accuracy of Equation (1) in estimating the integrated stellar velocity dispersion within a given aperture from the IFU kinematics.

    Figure 2.Illustration for the definition of σaper(MaNGA ID:12-180432).The panels from left to right are the maps of stellar velocity,stellar velocity dispersion,and g-band flux.The gray circle denotes the FWHMPSF/2.355,while the red ellipse is the half-light isophote of area π=A ,where Re is the effective radius.The Re,ellipticity,and PA are taken from the single Sérsic fits(Domínguez Sánchez et al.2022).The σe is calculated using Equation(1)and the pixels within the red ellipse,while σaper values are determined within the concentric ellipses of area π=A .

    Figure 3.Comparison of the stellar velocity dispersion derived from the MaNGA survey with the SDSS DR8 measurements(Aihara et al.2011)within the same circular aperture of 3〞diameter.The velocity dispersions of MaNGA are computed using Equation (1),while those from SDSS DR8 are from the single fit of the integrated spectra with the same aperture.The black solid,red dashed,and red dotted lines are the best-fitting,1σ,and 2.6σ lines obtained using the LTS_LINEFIT procedure(with clip=3).The coefficients of the bestfitting y=a+b×(x ?x0) are shown in the panel,while Δ is the observed rms scatter.The green symbols are the detected outliers of LTS_LINEFIT beyond 3σ confidence level.

    For each galaxy,we calculate the σaperwithin a set of elliptical apertures of areaA=.Raperranges from 0.1Reto 2.5Re,with a linear step of 0.1Re.We use theReand the effective velocity dispersion σeas normalization factors to rescale the integrated velocity dispersion profiles.The normalized profiles are presented in Figure 4,which are colored by the SDSSr-band (Stoughton et al.2002) absolute magnitudeMr(left panel),the colorg–i(middle panel),and the Sérsic indexnSer(right panel).As can be seen,the σaperprofiles vary significantly with different galactic properties: the brighter and redder galaxies with higher Sérsic index tend to have decreasing σaperprofiles,while the fainter and bluer galaxies with lower Sérsic index show increasing trends toward outside.The increasing (decreasing) trends of σaperprofiles are due to their differentV/σ profiles.The σaperof massive and red galaxies with higher Sérsic index tend to be dispersion dominated and the dispersions decrease with increasing radius,while the less massive and blue galaxies are rotation supported and the σaperprofiles increase in tandem with rotation curves.

    Figure 4.The stellar velocity dispersion integrated within elliptical apertures (the area equals π) as a function of radius.The profiles are normalized by the effective radius Re and the dispersion σe within an elliptical aperture of area A=πRe.The profiles are colored by r-band absolute magnitude Mr (left), g–i color(middle),and Sérsic index nSer (right).

    The dependencies of σaperprofiles on other galactic properties are consistent with the large variations of σaperprofiles across a wide range of morphological types observed in Falcón-Barroso et al.(2017),which analyzed the σaperprofiles for 300 CALIFA galaxies (Sánchez et al.2012).However,the significantly larger sample (approximately 10,000 galaxies) of MaNGA enables a more detailed analysis and provides more accurate aperture corrections for integrated velocity dispersion measurements for specific types of galaxies.

    3.2.Slopes of σaper Profiles for Different Types of Galaxies

    Following previous works in the literature (Jorgensen et al.1995;Cappellari et al.2006;Falcón-Barroso et al.2017),we use a power-law function to quantify the slopes of the normalized σaperprofiles as

    We fit the individual σaperprofiles for each galaxy within a range of [Rin,Rout] defined as

    where the FWHM is ing-band(from DAP),andRmaxis the largest radius of Voronoi bins,to avoid the PSF effects on the determination of α parameters.As discussed in Section 6 of Falcón-Barroso et al.(2017),beam smearing may affect the integrated velocity dispersion at the very center of galaxies and lead to potential bias in measuring α parameters.However,we argue here that α will not be clearly affected because most data points of the σaperprofiles are the integrated velocity dispersion within much larger apertures compared to the dispersion of PSF.Following Falcón-Barroso et al.(2017),we tried to convolve the MaNGA PSF to the model σaperprofiles when fitting them to the observed ones.In Figure 5,we present the comparison between the α with PSF deconvolved (fitting in a range of [0.1Re,Rmax]) and the α with PSF un-deconvolved (fitting in a range of [FWHM/2.355,Rmax]),and find the two values are in good agreement with a slope of 0.9637±0.0017 and a small rms scatter of Δ=0.018 using the LTS_LINEFIT procedure.Practically,aperture correction is usually applied to correct the velocity second moment measured within a fiber aperture that is comparable to or even larger than the effective radius of the galaxy,to the effective radius.The PSF smearing effect at the inner region of the MaNGA data is not expected to introduce a significant bias to this correction.In our project,we did not include the PSF effect in our fiducial analysis.

    Figure 5.Comparison of the power-law index α from fitting within FWHMPSF2.355

    We divide the full sample into different subsamples based on theirr-band absolute magnitudeMrandg–icolor.There are sixMrbins ranging from ?18 to ?24(from faint to bright)in a step of 1 mag and six bins ofg–icolor from 0.4 to 1.6(from blue to red).In Figure 6,we present the σaperprofiles color-coded by Sérsic index,which still show large variations in a given narrow bin of(Mr,g–i).Thus,in each (Mr,g–i) bin,we further split the galaxies into different Sérsic index groups,i.e.,nSer<2,2

    Figure 6.Normalized integrated velocity dispersion profiles in different Mr and g–i bins,where Mr is the r-band absolute magnitude and g–i color is the difference between g-band and i-band absolute magnitudes.The σaper profiles are colored by the Sérsic index nSer.In each panel within a given (Maper, g–i) bin,the biweight mean profiles for different nSer are shown as blue circles(nSer<2),green triangles(2

    We create a lookup table9A Python script is provided in https://github.com/kaizhu-astro/aperture_correction to obtain the correction factors from the lookup table.(Table 1) of aperture corrections for various types of galaxies by assuming a power-law function of σaperprofiles.The table lists the mean and standard deviation of α,which are determined from bootstrapping with 100 iterations,for galaxies within given (Mr,g–i,nSer) bins.

    Table 1Lookup Table for the Aperture Correction Factors of Integrated Stellar Velocity Dispersion

    In Figure 7,we investigate the relations between α parameters andMrfor galaxies with differentg–icolor and Sérsic index.Overall,the α values are smaller for brighter(smallerMr),redder(higherg–i)galaxies with highernSer.The smaller α parameters(i.e.,the galaxies have larger central σaper)for galaxies with highernSerare due to the fact that a largernSerimplies a greater concentration of central stellar mass,resulting in an increased central σaperand a steeper σaperprofile.

    Figure 7.Power-law index α of integrated velocity dispersion profiles as a function of r-band absolute magnitude Mr for different g–i color (see the legends in the right panel)and Sérsic index nSer(see the top of each panel).The horizontal black dashed line is α=?0.04 from Jorgensen et al.(1995),the horizontal black dashed–dotted line is α=?0.063 from Mehlert et al.(2003),and the black solid line is α=?0.066 from the SAURON project(Cappellari et al.2006).The value of MaNGA subset (brown horizontal line),α=?0.033,is taken from de Graaff et al.(2021),whose sample is dominated by the high Sérsic index galaxies but is not selected based on morphology.The gray-shaded squares are taken from the CALIFA survey (Falcón-Barroso et al.2017),which derived α for both early-type and late-type galaxies.

    The left panel of Figure 7 shows that for galaxies with 0Mr>?20 bin,as compared to the α values of CALIFA late-type galaxies(Falcón-Barroso et al.2017).In the brightest bin (?22>Mr>?24),the α values of MaNGA late-type galaxies tend to be slightly smaller than those in Falcón-Barroso et al.(2017),likely due to the latter deriving values from galaxies with positive α instead of selecting galaxies based on Sérsic index or morphology.

    Similar but weaker trends,where brighter and redder galaxies have smaller α,are also observed in the sample with 2

    Our results for the 4

    The results of this paper demonstrate that the aperture correction derived from previous literature on early-type galaxies cannot be applied to predict the aperture corrections for galaxies with intermediate Sérsic indices,regardless of their color.

    3.3.Corrections for the Velocity Dispersion Measured within a Circular Aperture

    The clear trends that α varies withMr,g–i,andnSerhighlight the enhanced accuracy of aperture corrections in this study.However,it is difficult to apply such aperture corrections in reality due to the fact of circular apertures in single-fiber observations.To further account for the effect of aperture shape,we also calculate the σaper,circ,which is also defined as Equation(1)but within a circular aperture with a radius ofRaper.We fit the σaper,circprofiles for each galaxy,which are normalized as

    to obtain the power-law index αcirc.The αcirccan be applied in real single-fiber observations to obtain the σe.

    In Figure 8,we show the αcirc?α as a function of axial ratioq≡b/a.As can be seen,the systematic difference between α and αcircis negligible for galaxies withq>0.4,while flat galaxies(q<0.4)tend to have smaller αcircthan α.Given the small fraction(~20%)of galaxies withq<0.4 in our sample,we do not present the αcircvalues in each (Mr,g–i,nSer),which are expected to be similar to α.As shown in the Appendix,similar trends can be seen if replacing α in Figure 7 with αcirc.However,we also found that the biweight mean σaper,circ/σeprofiles in some(Mr,g–i,nSer)bins cannot be well described by the function,especially for thenSer<2 galaxies that may suffer from strong inclination effects.This is likely due to the fact that the normalization of σaper,circ/σeis nonphysical and will bring uncertainties when stacking the normalized profiles in a given(Mr,g–i,nSer)bin.Thus,we choose to only present the α values and derive an empirical relation between α and αcirc,which relates to the axial ratioqin the form of

    Figure 8.The αcirc ?α as a function of axial ratio q.The α and αcirc are derived from Equations (2) and (4),respectively,while the q is derived from Sérsic fits (Domínguez Sánchez et al.2022).The black dashed curve and the gray-shaded region are the median value and [16th,84th] percentiles.The red curve is the best-fitting empirical relation for all galaxies.

    One can use Table 1 to obtain α in a given (Mr,g–i,nSer) bin and then use Equation (5) to obtain the αcircif necessary(q<0.4),but one should also be aware of the large scatter of(αcirc?α) for very flat galaxies.

    4.Conclusions

    We conducted a comprehensive analysis of the aperture corrections for the integrated stellar velocity dispersion σaperusing the full MaNGA sample.With a large sample size of approximately 10,000 galaxies,we were able to study aperture corrections in detail for a diverse range of galaxy types(Figure 1)for the first time.We derived the σaperprofiles for the entire sample (Figure 4) and used a power-law function(Equation (2)) to quantify the profiles of different subsamples based on theirr-band absolute magnitudeMr,g–icolor,and Sérsic indexnSer(Figure 6).The relationships between the power-law index α and the three properties (Mr,g–i,andnSer)are presented in Table 1 and Figure 7.

    Our analysis revealed several important findings regarding the aperture corrections of the integrated stellar velocity dispersion σaper.First,we observed decreasing trends of the power-law index α with increasingMr,redderg–icolor,and higher Sérsic indexnSer.While the α values of early-type galaxies with highnSer(4

    In addition,we established an empirical relation between the power-law index α and αcirc,as shown in Equation (5).Here,αcircis defined as the power-law index derived from the velocity dispersion profile measured within circular apertures,which can be used to calculate σefor circular apertures with any given radius defined by the size of observational fiber.We believe that our findings will enable more precise aperture corrections for single-fiber spectroscopic survey,such as those from the SDSS and Dark Energy Spectroscopic Instrument survey.However,our empirical relations are derived from the MaNGA sample with a median redshift ofz=0.03,and some care should be taken when extrapolated to higher redshift galaxies.A possible solution could be using the higher redshift IFS observations (e.g.,Multi Unit Spectroscopic Explorer) to calibrate the relations.

    Acknowledgments

    We acknowledge the support of the National Natural Science Foundation of China(Nos.11988101 and 12022306),National Key R&D Program of China(No.2022YFF0503403),Ministry of Science and Technology of China(No.2020SKA0110100),science research grants from the China Manned Space Project(Nos.CMS-CSST-2021-B01 and CMS-CSST-2021-A01),CAS Project for Young Scientists in Basic Research (No.YSBR-062),and K.C.Wong Education Foundation.

    Funding for the Sloan Digital Sky Survey (SDSS)-IV has been provided by the Alfred P.Sloan Foundation,the U.S.Department of Energy’s Office of Science,and the participating institutions.

    SDSS-IV acknowledges support and resources from the Center for High Performance Computing at the University of Utah.The SDSS website is www.sdss.org.

    SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration,including the Brazilian Participation Group;Carnegie Institution for Science;Carnegie Mellon University;Center for Astrophysics—Harvard and Smithsonian;the Chilean Participation Group;the French Participation Group;Instituto de Astrofísica de Canarias;The Johns Hopkins University;Kavli Institute for the Physics and Mathematics of the Universe/University of Tokyo;the Korean Participation Group;Lawrence Berkeley National Laboratory;Leibniz-Institut für Astrophysik Potsdam;Max-Planck-Institut für Astronomie (MPIA Heidelberg);Max-Planck-Institut für Astrophysik (MPA Garching);Max-Planck-Institut für Extraterrestrische Physik;National Astronomical Observatories of China;New Mexico State University;New York University;University of Notre Dame;Observatório Nacional/Ministério da Ciência,Tecnologia e Inova??es;The Ohio State University;Pennsylvania State University;Shanghai Astronomical Observatory;United Kingdom Participation Group;Universidad Nacional Autónoma de México;University of Arizona;University of Colorado Boulder;University of Oxford;University of Portsmouth;University of Utah;University of Virginia;University of Washington;University of Wisconsin;Vanderbilt University;and Yale University.

    Appendix Tests on Using αcirc to Predict σaper,circ Profiles

    We present two figures(Figures A1 and A2)that are similar to Figures 6 and 7,but σaperprofiles and α are replaced with σaper,circprofiles and αcirc,respectively.We do not recommend directly using αcircto predict σaper,circprofiles.See the text in Section 3.3 for a detailed discussion.

    Figure A1. The same as Figure 6,but replacing σaper with σaper,circ.

    Figure A2. The same as Figure 7,but replacing α with αcirc.

    ORCID iDs

    美女被艹到高潮喷水动态| 久久精品国产亚洲网站| 18禁在线播放成人免费| 中文字幕熟女人妻在线| 亚洲18禁久久av| 国产真实伦视频高清在线观看| 国内精品一区二区在线观看| av在线亚洲专区| kizo精华| 18禁动态无遮挡网站| 久久99热这里只频精品6学生 | 成人三级黄色视频| 国产精品电影一区二区三区| 高清在线视频一区二区三区 | 久久精品国产亚洲av涩爱| 成人高潮视频无遮挡免费网站| 十八禁国产超污无遮挡网站| 国产欧美日韩精品一区二区| 国产一区有黄有色的免费视频 | 亚洲欧美精品专区久久| 大话2 男鬼变身卡| 国产欧美日韩精品一区二区| 亚洲一区高清亚洲精品| 嫩草影院入口| 国产av不卡久久| 五月伊人婷婷丁香| 国产精品国产高清国产av| 全区人妻精品视频| 精品人妻熟女av久视频| 搡老妇女老女人老熟妇| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中文字幕免费在线视频6| 国产亚洲精品久久久com| 乱系列少妇在线播放| 一级毛片我不卡| 最后的刺客免费高清国语| 日韩欧美精品免费久久| 18禁裸乳无遮挡免费网站照片| 简卡轻食公司| 嘟嘟电影网在线观看| 能在线免费看毛片的网站| 国产精品一区www在线观看| 麻豆成人午夜福利视频| 桃色一区二区三区在线观看| 国产精品久久久久久av不卡| 97热精品久久久久久| 国产亚洲av嫩草精品影院| 1024手机看黄色片| 能在线免费观看的黄片| 国产精华一区二区三区| 麻豆乱淫一区二区| 久久6这里有精品| 国产亚洲av嫩草精品影院| 99热这里只有是精品在线观看| 免费看av在线观看网站| 国产高清三级在线| 国产精品野战在线观看| 国产成人freesex在线| 三级男女做爰猛烈吃奶摸视频| 亚洲成色77777| 国产爱豆传媒在线观看| 免费无遮挡裸体视频| 国产黄片美女视频| 精品国产露脸久久av麻豆 | 久久精品国产亚洲av涩爱| 在线播放国产精品三级| 午夜免费男女啪啪视频观看| 国产淫语在线视频| 成人综合一区亚洲| 看免费成人av毛片| 91精品一卡2卡3卡4卡| 免费av观看视频| 蜜桃久久精品国产亚洲av| 色视频www国产| 在线播放国产精品三级| 亚洲精品乱码久久久v下载方式| 日韩视频在线欧美| 国产精品美女特级片免费视频播放器| 亚洲欧美日韩卡通动漫| 在现免费观看毛片| 欧美一区二区亚洲| 2021少妇久久久久久久久久久| 午夜福利视频1000在线观看| 亚洲五月天丁香| 高清av免费在线| av视频在线观看入口| АⅤ资源中文在线天堂| av免费在线看不卡| www日本黄色视频网| 国产精品福利在线免费观看| 久久欧美精品欧美久久欧美| 亚洲国产精品sss在线观看| 亚洲av免费在线观看| av在线蜜桃| 国产极品天堂在线| 男人舔奶头视频| 亚洲综合色惰| 免费电影在线观看免费观看| 亚洲自偷自拍三级| 国产午夜精品久久久久久一区二区三区| 最新中文字幕久久久久| 亚洲欧美精品专区久久| 精品熟女少妇av免费看| 91午夜精品亚洲一区二区三区| 边亲边吃奶的免费视频| 哪个播放器可以免费观看大片| 国产亚洲5aaaaa淫片| 黑人高潮一二区| 亚洲自拍偷在线| av.在线天堂| 国产伦一二天堂av在线观看| 国产黄片美女视频| 亚洲色图av天堂| 汤姆久久久久久久影院中文字幕 | 干丝袜人妻中文字幕| 老司机福利观看| 亚洲国产最新在线播放| 国产v大片淫在线免费观看| 亚洲av成人精品一区久久| 亚洲成av人片在线播放无| 欧美日本视频| 九九在线视频观看精品| 国产激情偷乱视频一区二区| 国产av码专区亚洲av| 久久久久久久久久成人| 久久久久国产网址| 啦啦啦观看免费观看视频高清| 亚洲成人av在线免费| 深夜a级毛片| 黄片无遮挡物在线观看| eeuss影院久久| 色哟哟·www| 嫩草影院入口| 91久久精品国产一区二区三区| 日日摸夜夜添夜夜爱| 女人十人毛片免费观看3o分钟| 建设人人有责人人尽责人人享有的 | 欧美区成人在线视频| 人人妻人人澡欧美一区二区| 国产精品无大码| 我的女老师完整版在线观看| 舔av片在线| 亚洲精品成人久久久久久| 天堂√8在线中文| 久久久久久久久大av| av视频在线观看入口| 中国国产av一级| 亚洲成色77777| 欧美精品一区二区大全| 国产激情偷乱视频一区二区| 99视频精品全部免费 在线| 少妇高潮的动态图| 亚洲精品aⅴ在线观看| 国产三级中文精品| 中文精品一卡2卡3卡4更新| 久久久久性生活片| 国产成人a∨麻豆精品| 精品无人区乱码1区二区| 国产精品久久久久久av不卡| 91精品国产九色| 亚洲欧美一区二区三区国产| 国产精品久久久久久久久免| 成人欧美大片| 可以在线观看毛片的网站| 日本黄大片高清| 国产高潮美女av| 精品久久久久久电影网 | 99久久精品国产国产毛片| 国产视频内射| 久久久精品大字幕| 国产成人精品一,二区| 亚洲av二区三区四区| 国产精品久久久久久久电影| 婷婷色综合大香蕉| 亚洲av不卡在线观看| 美女内射精品一级片tv| 久久久久久久国产电影| 美女高潮的动态| 久久久久久久国产电影| 亚洲国产日韩欧美精品在线观看| av专区在线播放| 国产亚洲精品av在线| 看片在线看免费视频| 1000部很黄的大片| 亚洲av.av天堂| 亚洲精品国产成人久久av| 国产老妇伦熟女老妇高清| 又爽又黄a免费视频| 亚洲色图av天堂| 免费av毛片视频| 天天躁日日操中文字幕| 老司机福利观看| 欧美+日韩+精品| 91久久精品电影网| 热99在线观看视频| av卡一久久| 蜜桃亚洲精品一区二区三区| 亚洲最大成人中文| 亚洲精品日韩av片在线观看| 成人漫画全彩无遮挡| 亚洲最大成人手机在线| 久久久a久久爽久久v久久| 精品不卡国产一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 久久6这里有精品| 免费黄网站久久成人精品| 网址你懂的国产日韩在线| av免费观看日本| 国产高清有码在线观看视频| 久久草成人影院| 欧美激情国产日韩精品一区| 亚洲成人中文字幕在线播放| 欧美zozozo另类| 国产精品永久免费网站| 国产精品一区二区在线观看99 | 久久99精品国语久久久| 五月玫瑰六月丁香| 亚洲欧美日韩高清专用| 日韩视频在线欧美| 久久久久久九九精品二区国产| 性插视频无遮挡在线免费观看| 日本猛色少妇xxxxx猛交久久| 国产淫片久久久久久久久| 国产成人精品一,二区| 三级国产精品欧美在线观看| 亚洲av免费在线观看| 在现免费观看毛片| 国产精品麻豆人妻色哟哟久久 | 午夜福利网站1000一区二区三区| 国产成人精品婷婷| 能在线免费观看的黄片| 国产又色又爽无遮挡免| 亚洲精品自拍成人| 偷拍熟女少妇极品色| 啦啦啦啦在线视频资源| 亚洲欧美日韩东京热| 男女下面进入的视频免费午夜| 国产精品久久久久久av不卡| 高清在线视频一区二区三区 | 国产一区二区亚洲精品在线观看| 成人av在线播放网站| 午夜免费男女啪啪视频观看| av播播在线观看一区| 日本av手机在线免费观看| 精品久久久久久成人av| 内射极品少妇av片p| av免费观看日本| 男女啪啪激烈高潮av片| 国产精品爽爽va在线观看网站| 色视频www国产| 欧美不卡视频在线免费观看| 五月伊人婷婷丁香| 91在线精品国自产拍蜜月| 中文字幕免费在线视频6| 一个人看的www免费观看视频| 国产成人免费观看mmmm| 亚洲va在线va天堂va国产| 亚洲国产精品久久男人天堂| 国产精品99久久久久久久久| 久久精品国产自在天天线| 97热精品久久久久久| 亚洲av成人精品一区久久| 永久网站在线| 国产一区二区亚洲精品在线观看| 超碰97精品在线观看| 国语自产精品视频在线第100页| 国产成人免费观看mmmm| 日韩亚洲欧美综合| 久久久a久久爽久久v久久| 男的添女的下面高潮视频| 欧美性感艳星| 免费看日本二区| 成人高潮视频无遮挡免费网站| 日韩精品有码人妻一区| 欧美成人一区二区免费高清观看| 夜夜爽夜夜爽视频| 神马国产精品三级电影在线观看| 综合色av麻豆| 国产精品蜜桃在线观看| 美女脱内裤让男人舔精品视频| 亚洲av成人av| 99热这里只有是精品在线观看| 精品酒店卫生间| 精品久久久久久电影网 | 亚洲第一区二区三区不卡| 亚州av有码| 插阴视频在线观看视频| 青春草视频在线免费观看| 日韩精品青青久久久久久| 天美传媒精品一区二区| 亚洲天堂国产精品一区在线| 亚洲电影在线观看av| 欧美性猛交黑人性爽| 成人二区视频| 最近中文字幕2019免费版| 国产av不卡久久| 日韩 亚洲 欧美在线| 国产精品99久久久久久久久| 久久亚洲精品不卡| 男插女下体视频免费在线播放| 可以在线观看毛片的网站| 美女大奶头视频| 少妇猛男粗大的猛烈进出视频 | 免费搜索国产男女视频| 国产成人精品一,二区| 亚洲精品亚洲一区二区| 丰满乱子伦码专区| 亚洲精品456在线播放app| 欧美日韩综合久久久久久| 日韩大片免费观看网站 | 国产成人freesex在线| 国产成人免费观看mmmm| 国产精品久久久久久精品电影小说 | 国产成人一区二区在线| 草草在线视频免费看| 国产精品嫩草影院av在线观看| 亚洲欧美成人精品一区二区| 亚洲国产精品专区欧美| 久99久视频精品免费| 高清视频免费观看一区二区 | 麻豆国产97在线/欧美| 国产精品伦人一区二区| 夜夜看夜夜爽夜夜摸| av在线天堂中文字幕| av黄色大香蕉| 国产av在哪里看| 中国国产av一级| 欧美成人午夜免费资源| av在线蜜桃| 日日摸夜夜添夜夜爱| 中文字幕久久专区| 日产精品乱码卡一卡2卡三| av国产久精品久网站免费入址| 秋霞伦理黄片| 自拍偷自拍亚洲精品老妇| 午夜福利在线观看吧| 中文字幕av在线有码专区| 国产一区二区三区av在线| 日韩欧美精品免费久久| 久久久欧美国产精品| 少妇被粗大猛烈的视频| 国产精品嫩草影院av在线观看| 国产精品99久久久久久久久| 免费电影在线观看免费观看| 久久精品国产亚洲网站| 亚洲欧美日韩东京热| 亚洲av福利一区| 成人二区视频| 国产极品精品免费视频能看的| 乱人视频在线观看| 高清毛片免费看| 欧美又色又爽又黄视频| 两个人视频免费观看高清| 精品国内亚洲2022精品成人| 国产精品无大码| 2021少妇久久久久久久久久久| 少妇的逼水好多| 免费看a级黄色片| 69人妻影院| 夜夜爽夜夜爽视频| 久久精品国产自在天天线| 国产片特级美女逼逼视频| 不卡视频在线观看欧美| 亚州av有码| 久久99热6这里只有精品| 国产午夜福利久久久久久| av在线天堂中文字幕| 精品久久久噜噜| 成人三级黄色视频| 男人和女人高潮做爰伦理| 亚洲无线观看免费| 色吧在线观看| 精品无人区乱码1区二区| 精品国产露脸久久av麻豆 | 亚洲内射少妇av| 亚洲精品乱码久久久v下载方式| 又粗又爽又猛毛片免费看| 18禁在线无遮挡免费观看视频| 亚洲国产日韩欧美精品在线观看| 最近最新中文字幕免费大全7| 极品教师在线视频| 欧美一区二区精品小视频在线| 亚洲aⅴ乱码一区二区在线播放| 免费观看精品视频网站| 久久精品夜夜夜夜夜久久蜜豆| 熟女人妻精品中文字幕| 99久久九九国产精品国产免费| 国产精品一区二区性色av| 一区二区三区四区激情视频| 看片在线看免费视频| 久久久久久久久大av| 免费看av在线观看网站| 国产精品综合久久久久久久免费| 99久久无色码亚洲精品果冻| 18+在线观看网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美一区二区精品小视频在线| 亚洲va在线va天堂va国产| 成人高潮视频无遮挡免费网站| 丰满乱子伦码专区| 国产高清三级在线| 少妇丰满av| 久久精品久久久久久久性| 91久久精品电影网| 欧美成人一区二区免费高清观看| 欧美+日韩+精品| 精品久久久久久久久av| 国产精品永久免费网站| 国产午夜精品久久久久久一区二区三区| 国产精品熟女久久久久浪| 久久久久久久久久久免费av| 国产精品精品国产色婷婷| 啦啦啦韩国在线观看视频| 3wmmmm亚洲av在线观看| 三级国产精品片| 亚洲中文字幕日韩| 我要搜黄色片| 中文字幕av在线有码专区| 国产男人的电影天堂91| 亚洲精品乱码久久久v下载方式| 男的添女的下面高潮视频| 久久久久九九精品影院| 免费无遮挡裸体视频| 欧美一区二区亚洲| 国产激情偷乱视频一区二区| 久久久久久久久久黄片| 久久久久久久国产电影| 91aial.com中文字幕在线观看| 精品欧美国产一区二区三| 熟女电影av网| 国产成人a∨麻豆精品| 熟妇人妻久久中文字幕3abv| 97在线视频观看| 亚洲在线自拍视频| 免费播放大片免费观看视频在线观看 | 女人被狂操c到高潮| 精品人妻偷拍中文字幕| 日韩高清综合在线| 三级经典国产精品| 日本爱情动作片www.在线观看| 国产精品不卡视频一区二区| 精品久久国产蜜桃| 99热这里只有是精品50| 久久久成人免费电影| 国产v大片淫在线免费观看| 2021天堂中文幕一二区在线观| 亚洲国产精品成人久久小说| 免费观看在线日韩| 美女内射精品一级片tv| 成人高潮视频无遮挡免费网站| 亚洲av一区综合| 精品国内亚洲2022精品成人| 亚洲精品乱久久久久久| 国产久久久一区二区三区| 少妇被粗大猛烈的视频| 嘟嘟电影网在线观看| 少妇熟女欧美另类| 免费av观看视频| 男女国产视频网站| 一级毛片aaaaaa免费看小| 最近最新中文字幕免费大全7| 亚洲图色成人| 26uuu在线亚洲综合色| 麻豆av噜噜一区二区三区| 日韩av在线免费看完整版不卡| 国产淫片久久久久久久久| 精品一区二区三区人妻视频| 亚洲最大成人手机在线| 你懂的网址亚洲精品在线观看 | 人体艺术视频欧美日本| 91精品伊人久久大香线蕉| 看免费成人av毛片| av视频在线观看入口| 天天一区二区日本电影三级| 一个人免费在线观看电影| 麻豆成人av视频| 18禁在线播放成人免费| 日韩在线高清观看一区二区三区| 国国产精品蜜臀av免费| 黄色欧美视频在线观看| 久久久久久伊人网av| 高清毛片免费看| 在线观看一区二区三区| 晚上一个人看的免费电影| 婷婷色综合大香蕉| 欧美成人精品欧美一级黄| 久久国产乱子免费精品| 91精品国产九色| www日本黄色视频网| 99久国产av精品| 黄片wwwwww| 欧美极品一区二区三区四区| 男女下面进入的视频免费午夜| 99热这里只有精品一区| 男人舔女人下体高潮全视频| 亚洲美女搞黄在线观看| 久久亚洲精品不卡| 色尼玛亚洲综合影院| 国产精品久久久久久精品电影| 国产 一区 欧美 日韩| 亚洲av.av天堂| 真实男女啪啪啪动态图| 国产欧美另类精品又又久久亚洲欧美| 国产日韩欧美在线精品| 国产男人的电影天堂91| 欧美潮喷喷水| 色综合站精品国产| 少妇的逼水好多| av在线天堂中文字幕| 内射极品少妇av片p| 亚洲欧美日韩卡通动漫| 看十八女毛片水多多多| 欧美成人a在线观看| 最近中文字幕2019免费版| 久久久久九九精品影院| 亚洲第一区二区三区不卡| 99在线视频只有这里精品首页| 身体一侧抽搐| 熟女人妻精品中文字幕| 久久欧美精品欧美久久欧美| 成年免费大片在线观看| 美女大奶头视频| 亚洲人成网站在线播| 久久99热这里只有精品18| 亚洲天堂国产精品一区在线| 亚洲18禁久久av| 欧美潮喷喷水| 舔av片在线| 亚洲最大成人中文| 国产高清有码在线观看视频| 亚洲色图av天堂| 一本久久精品| 大话2 男鬼变身卡| 熟女人妻精品中文字幕| 日本五十路高清| 久热久热在线精品观看| 成人国产麻豆网| 尤物成人国产欧美一区二区三区| 日韩三级伦理在线观看| a级一级毛片免费在线观看| av在线天堂中文字幕| 少妇熟女aⅴ在线视频| 色播亚洲综合网| 国产老妇女一区| 欧美色视频一区免费| 久久欧美精品欧美久久欧美| 91精品国产九色| 久久久成人免费电影| 亚洲在线观看片| 国国产精品蜜臀av免费| 久久久久免费精品人妻一区二区| av在线播放精品| 人妻制服诱惑在线中文字幕| 乱系列少妇在线播放| 边亲边吃奶的免费视频| 非洲黑人性xxxx精品又粗又长| 国产三级在线视频| 99热这里只有精品一区| 美女国产视频在线观看| 国产乱人偷精品视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日日撸夜夜添| 国产亚洲av片在线观看秒播厂 | 午夜福利在线观看免费完整高清在| 两个人视频免费观看高清| 亚洲性久久影院| 最近中文字幕高清免费大全6| 成人亚洲欧美一区二区av| 国产片特级美女逼逼视频| 蜜臀久久99精品久久宅男| 亚洲av不卡在线观看| 亚洲伊人久久精品综合 | 精品一区二区三区人妻视频| 一级黄片播放器| 国产一区二区三区av在线| 国产精品永久免费网站| 少妇的逼好多水| 伦精品一区二区三区| 精品免费久久久久久久清纯| 插逼视频在线观看| 亚洲成人久久爱视频| 91av网一区二区| 午夜久久久久精精品| 久久精品综合一区二区三区| 日韩国内少妇激情av| 亚洲va在线va天堂va国产| 国产免费福利视频在线观看| 国产人妻一区二区三区在| 国产 一区精品| 国产大屁股一区二区在线视频| 丰满乱子伦码专区| 成人高潮视频无遮挡免费网站| 18禁裸乳无遮挡免费网站照片| 日韩av在线免费看完整版不卡| 特大巨黑吊av在线直播| 色综合亚洲欧美另类图片| 成人欧美大片| 最近中文字幕高清免费大全6| 日本免费在线观看一区| 久久精品国产亚洲网站| 热99在线观看视频| 国产探花在线观看一区二区| 日本av手机在线免费观看| av.在线天堂| 韩国av在线不卡| 午夜a级毛片| 黄色欧美视频在线观看| 我要搜黄色片| 日本免费在线观看一区| 国产视频内射| 国产精品av视频在线免费观看| 国产成人精品一,二区| 在线免费观看的www视频| 免费av观看视频| 精品久久久久久久末码|