• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Potential for Constraining Propagation Parameters of Galactic Cosmic Rays with the High Energy Cosmic-radiation Detection Facility on Board China’s Space Station

    2023-09-03 01:37:02ZhiHuiXuQiangYuanZhiChengTangandXiaoJunBi

    Zhi-Hui Xu ,Qiang Yuan ,Zhi-Cheng Tang ,and Xiao-Jun Bi,4

    1 Key Laboratory of Dark Matter and Space Astronomy,Purple Mountain Observatory,Chinese Academy of Sciences,Nanjing 210023,China;yuanq@pmo.ac.cn

    2 School of Astronomy and Space Science,University of Science and Technology of China,Hefei 230026,China

    3 Key Laboratory of Particle Astrophysics,Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China

    4 University of Chinese Academy of Sciences,Beijing 100049,China

    Abstract Precise measurements of the spectra of secondary and primary cosmic rays are crucial for understanding the origin and propagation of those energetic particles.The High Energy Cosmic-radiation Detection (HERD) facility on board China’s Space Station,which is expected to operate in 2027,will push the direct and precise measurements of cosmic-ray fluxes up to PeV energies.In this work,we investigate the potential of HERD for studying the propagation of cosmic rays using measurements of boron,carbon,and oxygen spectra.We find that,compared with the current results,the new HERD measurements can improve the accuracy of the propagation parameters by 8%–40%.The constraints on the injection spectra at high energies will also be improved.

    Key words: (ISM:) cosmic rays– instrumentation: detectors– The Galaxy

    1.Introduction

    The origin,acceleration,and propagation of cosmic rays(CRs)remain unresolved despite many years of studies.One of the most important approaches to solving this problem is to measure the energy spectra of various compositions of CRs precisely.Recent precise measurements by mainly direct detection experiments reveal interesting features of many nuclear species,including hardenings around a rigidity of a few hundred GV(Panov et al.2009;Adriani et al.2011,2019,2020;Aguilar et al.2015a,2015b,2017,2020;Yoon et al.2017;An et al.2019;Alemanno et al.2021) and softenings aroundO(10)TV(Atkin et al.2017;Yoon et al.2017;An et al.2019;Alemanno et al.2021;Albert et al.2022).For secondary nuclei,which are particularly important in understanding the propagation of CRs,hardening features at similar energies with primary nuclei are also found (Aguilar et al.2018,2021;Adriani et al.2022;Alemanno et al.2022).This progress in measurements triggered many theoretical studies to discuss new implications for the origin and propagation of CRs (e.g.,Ohira &Ioka 2011;Yuan et al.2011,2020,2021;Blasi et al.2012;Malkov et al.2012;Tomassetti 2012,2015;Vladimirov et al.2012;Thoudam &H?randel 2014;Cowsik &Madziwa-Nussinov 2016;Guo et al.2016;Guo&Yuan 2018;Yue et al.2020;Kawanaka &Lee 2021;Malkov &Moskalenko 2021,2022;Niu 2022;Ma et al.2023;Zhang et al.2023).

    The above-mentioned structures are found mainly at relatively low energies.At higher energies (e.g.,?10 TeV),our knowledge about precise spectral structures is still limited.To better understand the propagation properties of CRs,improved measurements in a wider energy range are crucial.The High Energy Cosmic-radiation Detection(HERD)facility,planned to be installed in China’s Space Station around 2027,is dedicated to measuring energy spectra of various CR species up to PeV energies(Zhang et al.2014).The core of the HERD detector is a three-dimensional,five-side active calorimeter(CALO) detector,surrounded by fiber trackers (FITs)for track measurements,plastic scintillator detectors covering the trackers for charge measurements and anticoincidence of γ rays,and silicon charge detectors enclosing all the above subdetectors for charge measurements (Kyratzis &HERD Collaboration 2023).A transition radiation detector is employed to provide energy calibration of nuclei.The geometric factor of HERD is about 2–3 m2sr for charged CR detection,and can thus extend the measurements of the spectra of major CR components to >PeV energies.The novel design of HERD makes it a powerful detector for measurements of CR nuclei and electrons/positrons,as well as γ rays in a wide energy range.HERD is expected to significantly advance our understanding of the fundamental problems in CR physics(e.g.,to reveal the nature of the knee),as well as to probe new physics such as the nature of dark matter particles (Huang et al.2016).

    In this work,we study the potential for constraining injection and propagation parameters of HERD,assuming a simple onezone homogeneous propagation model of CRs.We forecast the spectral measurements of boron,carbon,and oxygen CRs according to the latest designed performance of HERD(Kyratzis &HERD Collaboration 2023),and employ the numerical propagation model GALPROP (Strong &Moskalenko 1998,version 56) together with the Markov Chain Monte Carlo (MCMC) algorithm emcee5https://pypi.org/project/emcee/(Foreman-Mackey et al.2013) to constrain the model parameters.This paper is organized as follows.We describe the framework and setup of the propagation model in Section 2.In Section 3,we present the results of our analysis,focusing on the comparison with current results based on existing data.Finally,we summarize our results and discuss their implications in Section 4.

    2.Propagation Model of Cosmic Rays

    The propagation of CRs in the Milky Way,which involves a number of physical processes,can be described by the following equation (Ginzburg &Syrovatskii 1964;Strong et al.2007):

    where ψ is the differential density of CRs per momentum interval,Dxxis the spatial diffusion coefficient,Dppis the diffusion coefficient in momentum space,which is employed to describe the stochastic reacceleration of CRs,Vcis the convection velocity,is the momentum loss rate,τris the timescale of radioactive decay,τfis the timescale of fragmentation,andq(r,p) is the source function.

    We assume that the spatial diffusion coefficient,Dxx,is spatially homogeneous and depends on the rigidity of particles R with the power-law form

    where β=v/cis the velocity of the particle in units of the speed of light,R0≡ 4GV is a reference rigidity,η is introduced to tune the velocity dependence at low energies to better fit the data,and δ is the slope of the rigidity dependence,which reflects the property of interstellar turbulence(Berezinskii et al.1990;Schlickeiser 2002).The convective transport is described by a velocity Vc,which is the fluid velocity of gas containing relativistic particles.Fitting to the data shows that a high convection velocity is disfavored for reproducing the observed low-energy secondary-to-primary ratios such as B/C (Strong &Moskalenko 1998;Yuan et al.2017;Yuan 2019).We therefore ignore convection in this work.The scattering of particles off randomly moving magnetohydrodynamic (MHD) waves results in stochastic acceleration of CRs,which can be described by their diffusion in momentum space with the coefficient (Seo &Ptuskin 1994)

    wherevAis the Alfvén speed of magnetized disturbances;wis the ratio of the energy density of MHD waves to the energy density of the regular magnetic field,and it can be effectively absorbed intovA.

    The spatial distribution of CR sources is assumed to follow the distribution of supernova remnants or pulsars,which is parameterized as the cylindrically symmetric form

    where the unit of rigidity is MV.Note that the spectral hardening feature at several hundred GV is attributed to the injection spectrum of CRs in this work.Possible breaks in the rigidity dependence of the diffusion coefficient (Vladimirov et al.2012;Ma et al.2023) are not considered in the current work.For all primary CRs,the same spectral shape with different abundances is assumed.Finally,the solar modulation,which mainly affects CR spectra at low energies,is applied under the force-field approximation (Gleeson&Axford 1968).The force-field approximation is simplified.Since the solar modulation mainly affects low-energy (?20 GV) spectra of CRs,more complicated modulation models (Potgieter 2013)would have little effect on our conclusion.

    3.Analysis and Results

    3.1.Fitting to Existing Data

    We first run a fitting to existing data,which is used for comparison.The best-fit results of the spectra are also the basis of the prediction of HERD observations.The data used in this work include the spectra of boron,carbon,and oxygen measured by AMS-02 during its first seven years of operation(Aguilar et al.2021).The low-energy spectra of those species measured by ACE6http://www.srl.caltech.edu/ACE/ASC/level2/lvl2DATA_CRIS.htmlwithin the same time window as AMS-02 are extracted (Yuan 2019).Voyager 1 also measured spectra of boron,carbon,and oxygen outside the heliosphere (Cummings et al.2016),which are helpful in determining the solar modulation parameter.To break the degeneracy between the diffusion coefficient and the halo height,we use the10Be/9Be ratio measured by several experiments (Wiedenbeck &Greiner 1980;Simpson &Garcia-Munoz 1988;Connell 1998;Lukasiak 1999;Yanasak et al.2001;Hams et al.2004;Nozzoli &Cernetti 2021).The observational time periods of10Be/9Be vary,and thus there are large uncertainties in their solar modulation parameters.We use the modulation potential retrieved from the Cosmic Ray Database7https://lpsc.in2p3.fr/crdb(Maurin et al.2014,2020),based on the neutron monitor data (Ghelfi et al.2017).The data are summarized in Table 1.

    Table 1Data Used in the Fitting

    Our MCMC process involves 14 parameters,consisting of five propagation parameters (D0,δ,η,zh,andvA),six injection spectral parameters,two normalization parameters for carbon and oxygen,and one parameter for solar modulation.The CR nuclei withZ≤14 were included,with normalization parameters being set to the default values of GALPROP except for carbon and oxygen.

    The posterior mean and 1σ uncertainties of the propagation parameters and modulation parameter of the fitting are given in Table 2.The one-dimensional distributions and their twodimensional correlations are shown in the left panel of Figure 1.The best-fitting spectra of boron,carbon,and oxygen,compared with the data,are shown in Figure 2.We note that the derived model parameters are slightly different from those obtained previously,e.g.,Yuan et al.(2020).Specifically,the thickness of the propagation halo is smaller,the Alfvén speed is lower,and the parameter δ is bigger in this work than in Yuan et al.(2020).There are several possible reasons for such differences.First,the data of AMS-02 used in this work are the seven-year measurements(Aguilar et al.2021).Second,we use version 56 of GALPROP in this work,which includes an update of the gas model and results in slightly different production spectra of secondary particles.Third,different data sets used in these works may also result in different constraints on the model parameters.Our results are closer to those given in a recent work (Zhao et al.2023),where some of the abovementioned updates have been included.

    Figure 1.The one-dimensional (diagonal) and two-dimensional (off-diagonal) probability distributions of the propagation parameters.For units of the parameters please refer to Table 2.The left panel is for the fitting to the existing data and the right panel is for the fitting to existing data plus the HERD-predicted spectra.

    Figure 2.Spectra of boron(top left),carbon(top right),and oxygen(bottom).Lines are the best-fitting results obtained in Section 3.1,with solid(dashed)ones being the spectra after (before) the solar modulation.The HERD-predicted data points are shown by pink dots.

    Table 2Fitting Results and 1σ Uncertainties of the Transport and Solar Modulation Parameters

    3.2.Predicted Boron,Carbon,and Oxygen Spectra from HERD

    Based on the best-fitting spectra of boron,carbon,and oxygen CRs,we predict the HERD measurements.We choose a bin width of Δ logE=0.2for energy,and calculate the expected number of counts in each energy bin based on the simulated effective acceptance of the latest HERD design,for an operational time of 10 years.The effective acceptance takes into account both the geometric factor and the shower development in the CALO based on Monte Carlo simulations.Only the events with early developing showers with sufficient path lengths in the CALO are selected to ensure a good reconstruction quality.To enable a good flux measurement,we further require that the number of events in each energy bin is bigger than 10.Statistical uncertainties and the estimated systematic uncertainties of ~10% (An et al.2019;Alemanno et al.2021) are added in quadrature.We start the HERD spectra from ~8 TeV,since the spectrometer experiments such as AMS-02 have already measured the spectra with good precision at lower energies.The inclusion of low-energy data points,as long as they are consistent with those of AMS-02,is expected not to change our conclusion significantly.The predicted fluxes measured by HERD,together with other experimental data,are shown in Figure 2.

    3.3.Constraints on Model Parameters by Including HERD

    We redo the fitting in Section 3.1 to derive the constraints on the model parameters after including the HERD spectra on boron,carbon,and oxygen.The results are given in Table 2 and Figure 1.We find that adding the HERD data will reduce the errors of model parameters by about 8% to 40%.The improvement on the constraint of δ is the most significant.This is expected since HERD mainly improves the measurements at high energies.Note that new measurements of AMS-02 and DAMPE showed hardenings of the B/C and B/O ratios at high energies (Aguilar et al.2021;Alemanno et al.2022),which are not included in this work.However,it is expected that HERD can definitely give better measurements of such ratios above 1 TeV/nucleon,and can thus better constrain the energy dependence of the diffusion coefficient at high energies.There are slight improvements to other propagation parameters,which are mainly determined by low-energy data.Figure 3 compares the constraints on parameters δ,η,andvA,for the fittings without (blue) and with (red) HERD data.

    Figure 3.Comparison of the constraints on selected propagation parameters for the fitting without (blue) and with (red) HERD data.

    The inclusion of HERD data at high energies is expected to improve the constraints on the wide-band injection spectra of CRs.Figure 4 shows the comparison of the injection spectra of the two fittings.The shaded bands represent the 1σ spans of the fitting results.As can be seen,the uncertainties above 1 TV are smaller when adding the HERD data.

    Figure 4.The 1σ bands of injection spectra for the fitting without (blue) and with (red) HERD data.

    4.Summary and Discussion

    Precise measurements of spectra of primary and secondary CRs in a wide energy range are very important in probing the propagation of Galactic CRs.In this work we study the prospect of constraining CR propagation parameters with the planned HERD mission on board China’s Space Station.HERD is expected to measure precisely energy spectra of carbon and oxygen nuclei up to 100 TeV/nucleon and boron nuclei to>10 TeV/nucleon.These measurements are expected to be very helpful in understanding the energy dependence of the diffusion coefficient as well as the injection spectra above 1 TeV/nucleon,which are rarely constrained by existing data.

    Under a framework of a continuous source distribution and spatially homogeneous propagation with reacceleration,we fit the boron,carbon,and oxygen data to obtain the constraints on the model parameters.We focus on a comparison of the results for the fittings without and with the HERD data.It is shown that adding the HERD data improves the constraint on the slope parameter (δ) of the energy dependence of the diffusion coefficient significantly.Quantitatively,the error on δ decreases by about 40% after adding the HERD data.Slight improvements to other propagation parameters are also found.In addition,the HERD data are useful in improving the constraints on the injection spectra of primary CRs at high energies.

    The model assumption of the current work is simplified.Possible improvements of future works may include (1) study of more secondary (such as lithium,beryllium,fluorine,subiron)and primary(oxygen,neon,magnesium,silicon,iron)CR spectra by HERD and particularly the effects of different mass groups(Wu&Chen 2019;Ferronato Bueno et al.2022;Wang et al.2022;Zhao et al.2023),(2)discussion of spectral breaks in the diffusion coefficient (Vladimirov et al.2012;Ma et al.2023),and (3) investigation of spatially inhomogeneous propagation as indicated by recent observations (Tomassetti 2012;Guo &Yuan 2018;Zhao et al.2021).

    Acknowledgments

    We thank Wei Jiang,Zhao-Qiang Shen,and Cheng-Rui Zhu for the helpful discussion.This work is supported by the National Key Research and Development Program of China(No.2021YFA0718404),the National Natural Science Foundation of China(No.12220101003),and the Project for Young Scientists in Basic Research of Chinese Academy of Sciences(No.YSBR-061).

    两性夫妻黄色片| 久久久a久久爽久久v久久| 老司机影院成人| videossex国产| 啦啦啦视频在线资源免费观看| 日韩av免费高清视频| 极品人妻少妇av视频| 自拍欧美九色日韩亚洲蝌蚪91| 青春草亚洲视频在线观看| 黄色毛片三级朝国网站| 亚洲国产精品成人久久小说| 飞空精品影院首页| 欧美精品高潮呻吟av久久| 亚洲,欧美精品.| 欧美人与善性xxx| av线在线观看网站| 精品人妻一区二区三区麻豆| 18禁观看日本| 女人被躁到高潮嗷嗷叫费观| 久久久久久免费高清国产稀缺| 欧美 日韩 精品 国产| 纯流量卡能插随身wifi吗| 女人被躁到高潮嗷嗷叫费观| 国产欧美日韩一区二区三区在线| 天天躁夜夜躁狠狠躁躁| 久久精品国产亚洲av天美| 欧美成人午夜免费资源| 青春草国产在线视频| 三级国产精品片| 激情视频va一区二区三区| 香蕉精品网在线| 亚洲美女搞黄在线观看| 亚洲av综合色区一区| 久久久久国产精品人妻一区二区| 日韩一区二区三区影片| 日韩一区二区三区影片| 女的被弄到高潮叫床怎么办| 亚洲五月色婷婷综合| 精品国产超薄肉色丝袜足j| 少妇熟女欧美另类| 国产精品蜜桃在线观看| 欧美 日韩 精品 国产| 女的被弄到高潮叫床怎么办| 久久久久久久大尺度免费视频| 免费黄网站久久成人精品| 黑人巨大精品欧美一区二区蜜桃| 如何舔出高潮| 久久久久久久大尺度免费视频| 国产乱人偷精品视频| 亚洲国产精品国产精品| 青春草视频在线免费观看| 午夜免费观看性视频| 国产精品国产av在线观看| 99re6热这里在线精品视频| 国产一区二区激情短视频 | 97在线人人人人妻| 中文字幕亚洲精品专区| 精品亚洲乱码少妇综合久久| 丁香六月天网| 国产淫语在线视频| 伦精品一区二区三区| 国产一区二区三区综合在线观看| 亚洲男人天堂网一区| 国产一区二区三区综合在线观看| 波野结衣二区三区在线| 99国产综合亚洲精品| av.在线天堂| 亚洲精品日韩在线中文字幕| 国产有黄有色有爽视频| 午夜福利在线免费观看网站| 美女脱内裤让男人舔精品视频| 亚洲av日韩在线播放| 日韩一本色道免费dvd| 午夜日本视频在线| 国产极品粉嫩免费观看在线| 精品久久蜜臀av无| 国产精品 欧美亚洲| 天堂8中文在线网| 男男h啪啪无遮挡| 一级毛片我不卡| 国产 精品1| 亚洲美女搞黄在线观看| 一级爰片在线观看| 日韩视频在线欧美| 少妇的逼水好多| av有码第一页| 美女脱内裤让男人舔精品视频| 大话2 男鬼变身卡| av福利片在线| 精品久久蜜臀av无| 久久人人爽av亚洲精品天堂| av国产久精品久网站免费入址| 久久午夜福利片| 2021少妇久久久久久久久久久| 国产 精品1| 国产精品久久久久久久久免| 国产日韩欧美亚洲二区| 少妇被粗大的猛进出69影院| 国产一区二区三区综合在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲一码二码三码区别大吗| 天天操日日干夜夜撸| 在线精品无人区一区二区三| 久久久久久久久久久免费av| 亚洲第一区二区三区不卡| 婷婷色麻豆天堂久久| 国产麻豆69| 激情五月婷婷亚洲| 男男h啪啪无遮挡| 国产老妇伦熟女老妇高清| 亚洲精品国产av蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 免费在线观看完整版高清| 99精国产麻豆久久婷婷| 欧美精品一区二区大全| 欧美日韩成人在线一区二区| 桃花免费在线播放| 亚洲综合色惰| 多毛熟女@视频| 男男h啪啪无遮挡| 妹子高潮喷水视频| av在线老鸭窝| 岛国毛片在线播放| 中文字幕人妻丝袜制服| 欧美日韩成人在线一区二区| 久久久久视频综合| 看免费av毛片| 女性被躁到高潮视频| 亚洲精品在线美女| 亚洲国产精品国产精品| 久久久精品免费免费高清| 欧美黄色片欧美黄色片| 欧美成人精品欧美一级黄| 午夜老司机福利剧场| 欧美日韩一级在线毛片| 人妻系列 视频| 成人国产麻豆网| 老熟女久久久| 毛片一级片免费看久久久久| 国产精品女同一区二区软件| 91精品国产国语对白视频| 丝袜脚勾引网站| 伊人久久国产一区二区| 欧美老熟妇乱子伦牲交| 满18在线观看网站| 欧美日韩一级在线毛片| av网站在线播放免费| 啦啦啦在线免费观看视频4| 国产精品熟女久久久久浪| 超碰97精品在线观看| 久久国产精品男人的天堂亚洲| 在线精品无人区一区二区三| 叶爱在线成人免费视频播放| 亚洲av中文av极速乱| 日本vs欧美在线观看视频| 久久午夜综合久久蜜桃| 日韩免费高清中文字幕av| 精品少妇一区二区三区视频日本电影 | 久久精品aⅴ一区二区三区四区 | 日韩中字成人| 高清av免费在线| 男男h啪啪无遮挡| 国产亚洲一区二区精品| 国产日韩欧美在线精品| 午夜福利,免费看| 夫妻性生交免费视频一级片| 2022亚洲国产成人精品| 亚洲成国产人片在线观看| 日韩成人av中文字幕在线观看| 色婷婷久久久亚洲欧美| 男男h啪啪无遮挡| 国产精品一二三区在线看| 亚洲国产成人一精品久久久| 80岁老熟妇乱子伦牲交| 肉色欧美久久久久久久蜜桃| 五月伊人婷婷丁香| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美一区二区三区久久| 久久久久久人人人人人| 80岁老熟妇乱子伦牲交| 制服丝袜香蕉在线| 少妇人妻 视频| 免费观看无遮挡的男女| 国产黄色视频一区二区在线观看| 国产野战对白在线观看| 黄色配什么色好看| 最近最新中文字幕大全免费视频 | 巨乳人妻的诱惑在线观看| 日韩,欧美,国产一区二区三区| 美女大奶头黄色视频| 一本色道久久久久久精品综合| 午夜免费鲁丝| 国产日韩欧美视频二区| 女人高潮潮喷娇喘18禁视频| 久久精品国产亚洲av涩爱| 久久精品国产亚洲av高清一级| 菩萨蛮人人尽说江南好唐韦庄| 欧美精品av麻豆av| 不卡av一区二区三区| 欧美成人午夜免费资源| 亚洲精华国产精华液的使用体验| 大话2 男鬼变身卡| 女人精品久久久久毛片| 欧美日韩视频高清一区二区三区二| www日本在线高清视频| 亚洲内射少妇av| 啦啦啦在线免费观看视频4| 狂野欧美激情性bbbbbb| 久久久久久久亚洲中文字幕| 久久久久久久久久久免费av| 只有这里有精品99| 免费久久久久久久精品成人欧美视频| av国产久精品久网站免费入址| 中文字幕制服av| 久久毛片免费看一区二区三区| 亚洲第一区二区三区不卡| 国产欧美日韩综合在线一区二区| 久久影院123| av不卡在线播放| 欧美成人午夜免费资源| 亚洲在久久综合| 亚洲人成电影观看| 国产精品欧美亚洲77777| 亚洲国产最新在线播放| 久久久久久人人人人人| 欧美老熟妇乱子伦牲交| 欧美精品人与动牲交sv欧美| 成人国产av品久久久| 美女午夜性视频免费| 亚洲av电影在线进入| 人人妻人人澡人人看| 日本av手机在线免费观看| 精品少妇一区二区三区视频日本电影 | 免费久久久久久久精品成人欧美视频| 久久97久久精品| 性色av一级| 成人午夜精彩视频在线观看| 五月开心婷婷网| 五月伊人婷婷丁香| 日日摸夜夜添夜夜爱| 婷婷成人精品国产| 亚洲精品一二三| 一级,二级,三级黄色视频| 爱豆传媒免费全集在线观看| 亚洲欧美一区二区三区久久| 91成人精品电影| 国产男女超爽视频在线观看| 亚洲国产av影院在线观看| 国产高清国产精品国产三级| 日韩一区二区三区影片| 少妇精品久久久久久久| 岛国毛片在线播放| 69精品国产乱码久久久| 久久久久人妻精品一区果冻| 一级a爱视频在线免费观看| 久久精品熟女亚洲av麻豆精品| 黄频高清免费视频| 十分钟在线观看高清视频www| 一二三四中文在线观看免费高清| 晚上一个人看的免费电影| www.自偷自拍.com| 国产欧美亚洲国产| 搡女人真爽免费视频火全软件| 美女福利国产在线| 18禁动态无遮挡网站| kizo精华| 日本午夜av视频| 日日摸夜夜添夜夜爱| 亚洲五月色婷婷综合| h视频一区二区三区| 欧美xxⅹ黑人| 一本—道久久a久久精品蜜桃钙片| 在线观看免费高清a一片| 亚洲精品国产av蜜桃| 岛国毛片在线播放| 18在线观看网站| 多毛熟女@视频| 亚洲欧美中文字幕日韩二区| 精品亚洲成国产av| 久久精品人人爽人人爽视色| 成人国产麻豆网| 少妇猛男粗大的猛烈进出视频| 超碰97精品在线观看| 91精品三级在线观看| 亚洲天堂av无毛| 少妇猛男粗大的猛烈进出视频| 精品99又大又爽又粗少妇毛片| 午夜福利乱码中文字幕| 永久免费av网站大全| 午夜激情久久久久久久| 亚洲精品日本国产第一区| 久久婷婷青草| 日韩一本色道免费dvd| 丰满乱子伦码专区| 在线观看www视频免费| 亚洲视频免费观看视频| 1024视频免费在线观看| 青春草亚洲视频在线观看| 亚洲三区欧美一区| 国产毛片在线视频| 欧美精品一区二区免费开放| 91久久精品国产一区二区三区| 亚洲精品成人av观看孕妇| 午夜福利,免费看| 波多野结衣一区麻豆| 啦啦啦视频在线资源免费观看| 美女视频免费永久观看网站| 看免费成人av毛片| 五月伊人婷婷丁香| 午夜91福利影院| 国产xxxxx性猛交| 超色免费av| 亚洲婷婷狠狠爱综合网| 青春草视频在线免费观看| 国产精品 国内视频| 国产精品免费大片| 麻豆精品久久久久久蜜桃| 99国产精品免费福利视频| 一区在线观看完整版| 久久国产亚洲av麻豆专区| 97在线人人人人妻| 亚洲国产精品一区二区三区在线| 97在线视频观看| 黄色 视频免费看| 国产在线免费精品| 色婷婷av一区二区三区视频| 好男人视频免费观看在线| 精品亚洲成a人片在线观看| 母亲3免费完整高清在线观看 | 视频在线观看一区二区三区| 成人漫画全彩无遮挡| 啦啦啦啦在线视频资源| 美女高潮到喷水免费观看| 18禁裸乳无遮挡动漫免费视频| 一级毛片我不卡| 秋霞伦理黄片| 国产精品成人在线| xxxhd国产人妻xxx| 精品亚洲乱码少妇综合久久| 亚洲欧美一区二区三区黑人 | 国产精品久久久av美女十八| 亚洲av国产av综合av卡| 色播在线永久视频| 日本欧美视频一区| 纵有疾风起免费观看全集完整版| 制服人妻中文乱码| 天天躁夜夜躁狠狠躁躁| 欧美最新免费一区二区三区| 中文字幕色久视频| 三级国产精品片| av有码第一页| 亚洲一级一片aⅴ在线观看| 国产精品熟女久久久久浪| 赤兔流量卡办理| 久久99蜜桃精品久久| 9191精品国产免费久久| 乱人伦中国视频| 成人毛片a级毛片在线播放| 又粗又硬又长又爽又黄的视频| 亚洲五月色婷婷综合| 欧美+日韩+精品| 日韩制服骚丝袜av| 国产精品嫩草影院av在线观看| 欧美激情 高清一区二区三区| 26uuu在线亚洲综合色| 欧美 亚洲 国产 日韩一| 考比视频在线观看| 99香蕉大伊视频| 欧美 亚洲 国产 日韩一| 99国产精品免费福利视频| 99热网站在线观看| 亚洲国产精品成人久久小说| 久久鲁丝午夜福利片| 美女主播在线视频| 久久国内精品自在自线图片| 亚洲,欧美精品.| 色吧在线观看| 麻豆乱淫一区二区| 亚洲经典国产精华液单| 一级片'在线观看视频| 99热全是精品| 亚洲经典国产精华液单| 欧美日韩亚洲国产一区二区在线观看 | 夫妻午夜视频| 国产精品蜜桃在线观看| 中文字幕人妻丝袜制服| 多毛熟女@视频| 女人被躁到高潮嗷嗷叫费观| 肉色欧美久久久久久久蜜桃| 久久久久人妻精品一区果冻| 亚洲精品中文字幕在线视频| 免费高清在线观看日韩| 免费久久久久久久精品成人欧美视频| 亚洲精品国产av蜜桃| 精品国产乱码久久久久久男人| 伦理电影免费视频| 亚洲国产欧美日韩在线播放| 久久人妻熟女aⅴ| 久久综合国产亚洲精品| 国产亚洲精品第一综合不卡| 汤姆久久久久久久影院中文字幕| 精品少妇内射三级| 欧美av亚洲av综合av国产av | 成人亚洲精品一区在线观看| 欧美日韩视频精品一区| 午夜福利视频精品| 性色av一级| 国产成人精品福利久久| 色吧在线观看| 国产一级毛片在线| 天堂中文最新版在线下载| 啦啦啦中文免费视频观看日本| 国产精品久久久av美女十八| 只有这里有精品99| 99久久综合免费| 久久久精品免费免费高清| 国产熟女午夜一区二区三区| 我要看黄色一级片免费的| 亚洲久久久国产精品| 中文字幕色久视频| 国产精品蜜桃在线观看| 伊人亚洲综合成人网| xxxhd国产人妻xxx| 国产又爽黄色视频| 亚洲熟女精品中文字幕| 精品卡一卡二卡四卡免费| 亚洲第一av免费看| 男人操女人黄网站| 在现免费观看毛片| 亚洲精品美女久久av网站| 高清av免费在线| 精品99又大又爽又粗少妇毛片| 日韩一本色道免费dvd| 日韩欧美精品免费久久| 99re6热这里在线精品视频| 国产精品人妻久久久影院| 18禁观看日本| 丝袜人妻中文字幕| 亚洲精品国产av成人精品| 伦精品一区二区三区| 亚洲国产欧美在线一区| 亚洲国产成人一精品久久久| 寂寞人妻少妇视频99o| 卡戴珊不雅视频在线播放| 深夜精品福利| 啦啦啦在线观看免费高清www| 18禁动态无遮挡网站| 日韩一本色道免费dvd| 99九九在线精品视频| h视频一区二区三区| 日韩一卡2卡3卡4卡2021年| 亚洲欧美中文字幕日韩二区| 亚洲经典国产精华液单| 亚洲av电影在线观看一区二区三区| 国产一区有黄有色的免费视频| 日韩精品有码人妻一区| 久久精品夜色国产| 国产有黄有色有爽视频| 黄片播放在线免费| 在线观看一区二区三区激情| 18在线观看网站| av国产久精品久网站免费入址| 丁香六月天网| 欧美人与性动交α欧美精品济南到 | 亚洲欧洲日产国产| 亚洲av.av天堂| 999精品在线视频| 成人毛片a级毛片在线播放| 大片免费播放器 马上看| 亚洲成av片中文字幕在线观看 | 美国免费a级毛片| 国产免费现黄频在线看| 久久综合国产亚洲精品| 久久久精品免费免费高清| 可以免费在线观看a视频的电影网站 | 久久影院123| 国产精品香港三级国产av潘金莲 | 久久婷婷青草| 成年女人毛片免费观看观看9 | 国产精品久久久久久精品古装| 成人毛片a级毛片在线播放| 丝袜美足系列| 高清视频免费观看一区二区| √禁漫天堂资源中文www| tube8黄色片| 最新中文字幕久久久久| 国产一级毛片在线| 欧美亚洲 丝袜 人妻 在线| 国产精品嫩草影院av在线观看| 国产av码专区亚洲av| 丝袜美足系列| 日本黄色日本黄色录像| 欧美精品av麻豆av| 久久狼人影院| 99久久中文字幕三级久久日本| 国产欧美日韩一区二区三区在线| 亚洲精品久久久久久婷婷小说| a 毛片基地| 久久人妻熟女aⅴ| 国产精品久久久久久av不卡| 成年人免费黄色播放视频| 久久午夜综合久久蜜桃| 久久婷婷青草| 国产成人精品婷婷| 精品亚洲成a人片在线观看| 日本vs欧美在线观看视频| 欧美成人午夜免费资源| 日本av免费视频播放| 亚洲精品在线美女| 91aial.com中文字幕在线观看| 亚洲三区欧美一区| 一级,二级,三级黄色视频| 下体分泌物呈黄色| 伦理电影大哥的女人| 国产精品一区二区在线不卡| 欧美97在线视频| 少妇人妻 视频| 蜜桃国产av成人99| 1024视频免费在线观看| 99久国产av精品国产电影| videosex国产| 观看美女的网站| 久久av网站| 国产视频首页在线观看| 极品少妇高潮喷水抽搐| 免费高清在线观看视频在线观看| 亚洲一区中文字幕在线| 午夜福利在线免费观看网站| 久久综合国产亚洲精品| 人妻 亚洲 视频| 啦啦啦在线观看免费高清www| 亚洲国产精品国产精品| 哪个播放器可以免费观看大片| 国产亚洲一区二区精品| 中文天堂在线官网| 五月天丁香电影| 在线看a的网站| 夜夜骑夜夜射夜夜干| 久久女婷五月综合色啪小说| 天堂8中文在线网| 免费看不卡的av| 亚洲av福利一区| 男女午夜视频在线观看| 少妇被粗大猛烈的视频| 国产一级毛片在线| av网站免费在线观看视频| videossex国产| 国产精品.久久久| 丰满迷人的少妇在线观看| 欧美人与善性xxx| 久久人人爽av亚洲精品天堂| 精品人妻在线不人妻| 精品久久久久久电影网| 黄网站色视频无遮挡免费观看| 成人毛片a级毛片在线播放| 国产精品久久久久成人av| 亚洲成色77777| 亚洲色图综合在线观看| 捣出白浆h1v1| 日韩av免费高清视频| 久久久久久久亚洲中文字幕| 亚洲精品乱久久久久久| 高清在线视频一区二区三区| 搡女人真爽免费视频火全软件| 国产精品蜜桃在线观看| 国产精品成人在线| 人妻系列 视频| 亚洲精品视频女| 99久久精品国产国产毛片| 免费大片黄手机在线观看| 国产成人免费无遮挡视频| 欧美+日韩+精品| 观看美女的网站| 国产毛片在线视频| 久久人人爽av亚洲精品天堂| 亚洲,欧美精品.| 大片电影免费在线观看免费| 美女中出高潮动态图| 国产一区亚洲一区在线观看| av在线app专区| 少妇人妻久久综合中文| 久久人人97超碰香蕉20202| 国产精品一国产av| 超碰97精品在线观看| 久久精品亚洲av国产电影网| 国产日韩欧美视频二区| 亚洲激情五月婷婷啪啪| 在线 av 中文字幕| 亚洲第一区二区三区不卡| av不卡在线播放| 制服丝袜香蕉在线| 高清欧美精品videossex| 日本-黄色视频高清免费观看| 2021少妇久久久久久久久久久| 高清黄色对白视频在线免费看| 亚洲欧美中文字幕日韩二区| 18在线观看网站| 免费看av在线观看网站| 久久精品久久久久久噜噜老黄| 国产乱人偷精品视频| 精品久久蜜臀av无| 久久久精品免费免费高清| 成人漫画全彩无遮挡| 久久久久久久久久久免费av| 99九九在线精品视频| 国产免费福利视频在线观看| 亚洲欧美一区二区三区国产| 91aial.com中文字幕在线观看| 久久久久久久国产电影| 亚洲精品乱久久久久久| 久久久欧美国产精品| 91在线精品国自产拍蜜月| 欧美日韩综合久久久久久| 最近中文字幕2019免费版| 日日摸夜夜添夜夜爱|