• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detection of the Milky Way Reflex Motion Caused by the Magellanic Clouds in Different Observation Accuracy

    2023-09-03 01:36:54YaNanCaoHaoTianShiShaoXiangXiangXueYiZhouLiuZhouFan2andJingLi

    Ya-Nan Cao,Hao Tian,Shi Shao,Xiang-Xiang Xue,Yi-Zhou Liu,Zhou Fan2,,and Jing Li

    1 School of Physics and Astronomy,China West Normal University,Nanchong 637009,China;lijing@bao.ac.cn

    2 CAS Key Laboratory of Optical Astronomy,National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China

    3 School of Astronomy and Space Science,University of Chinese Academy of Sciences,Beijing 100049,China

    4 Key Laboratory of Space Astronomy and Technology,National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China

    5 Institute for Frontiers in Astronomy and Astrophysics,Beijing Normal University,Beijing,102206,China;tianhao@nao.cas.cn

    Abstract Motivated by recent studies of the perturbation of the Magellanic Clouds (MCs) on the Milky Way (MW) and the planned multi-band wide-field deep survey named Chinese Space Station Telescope(CSST),we explore the detection limit of the MW reflex motion due to the MCs infall in different observation precision using an MW-MCs-mass galaxy from MAGPIE simulation to provide a reference for the CSST survey.By involving different errors of distance,proper motion,and radial velocity,we investigate the reflex motion characterized by the velocity shift in each velocity component.We find the strongest shifts in the tangential velocities,which align with the motion direction of the MCs.In the ideal case that distance errors dominate,we find a relative distance error of 10%can allow the reliable detection of velocity shifts in tangential velocities within 100 kpc,and a relative distance error of 30% is the minimum requirement to detect the reliable tangential velocity shifts of about 40 km s?1 within 50 kpc.Different errors of proper motions in combination with a relative distance error of 10%or 20%show an error of 0.1 mas yr?1 in proper motions can guarantee the reliable detection of velocity shifts in Vl and Vb up to 80–100 kpc and an error of 0.15 mas yr?1 is the minimum requirement.In the other ideal case that radial velocity errors dominate,we find a radial velocity error of 20 km s?1 can present reliable reflex motion in line-of-sight velocity up to 70 kpc,while the detection volume will be reduced to 50 kpc as the radial velocity error increases to 40 km s?1.When the radial velocity error is larger than 60 km s?1,the velocity shifts cannot be detected anymore.In addition,we find that reliable detection of reflex motion requires at least 20% of the whole sample.

    Key words: Galaxy: kinematics and dynamics– (galaxies:) Magellanic Clouds– Galaxy: halo

    1.Introduction

    Magellanic Clouds(MCs),composed of the Large Magellanic Cloud(LMC)at a distance of ~50 kpc and the Small Magellanic Cloud (SMC) at ~61 kpc,are the closest pair of dwarf galaxies to our Milky Way (MW).In recent years,a myriad of evidence shows that the mass of LMC is about ~1011M⊙,which is more massive than it was believed to be (van der Marel et al.2009;Kallivayalil et al.2013;van der Marel &Kallivayalil 2014;Pe?arrubia et al.2016;Shao et al.2018).About 1/10 of the MW mass cannot be neglected,so the gravitational forces exerted by the MCs are ubiquitously felt by the MW.

    The infall of such a massive LMC can have a significant impact on the MW.Many new phenomena have been proposed,including the reflex motion of the MW in response to the LMC (Gómez et al.2015;Erkal et al.2019,2020;Petersen &Pe?arrubia 2020,2021),the deflections of Galactic streams due to the gravitational tug from the LMC(Erkal et al.2018,2019),and the LMC wake in the MW halo(Gómez et al.2016;Garavito-Camargo et al.2019;Conroy et al.2021).

    LMC challenges the equilibrium of the Milky Way,which prompts the study ofN-body MW simulations including LMC.Gómez et al.(2015) pointed out that the MW center-of-mass can be dislodged significantly as a response to the LMC infall.The resulting reflex motion of the Milky Way is an all-sky effect.The fits to the Orphan stream reveal this could be~50 km s?1(Erkal et al.2019).The first observational evidence of reflex motion was reported by Petersen &Pe?arrubia (2021).They found that the MW center-of-mass is moving at ~32 km s?1detected in the velocities of outer halo stars and MW satellite galaxies.The reflex motion is also reflected directly in the velocity shifts of Galactic tracers beyond 30 kpc (Erkal et al.2020,2021).

    Therefore,obtaining the kinematics of stars beyond 50 kpc is of particular importance.The Chinese Space Station Telescope(CSST) is a planned large space astronomy telescope built by China Manned Space.The CSST is a 2 m space telescope with a large field of view of 1.1 deg2and a shared orbit with the Chinese Space Station,covering a large sky area of 17,500 deg2with a high spatial resolution of ~015(Sun et al.2021).The CSST covers the near-UV-visible-near-infrared band and has a limit of 26 mag for multi-band imaging survey and 23 mag for the slitless spectroscopic survey (resolutionR>200).It is designed to survey 40% of the sky in 10 yr,resolving individual stars in the galaxies within several Mpc.Precise stellar parameters from the slitless spectra from CSST will provide invaluable distances (and proper motions) of stars from 50 to 100 kpc range.

    In this work,we investigate the reliable detection of the velocity shifts given different precision ofobservables,and the dependence on the sample size,based on an MW-MCs simulation.In Section 2,we describe the MW-MCs simulation,the selection of the “MW-halo” sample,and the addition of observation errors.Then we show the velocity shifts detected in different observation errors,directions and sample sizes to conclude the detection limits in Section 3.Finally,we summarize our results in Section 4.

    2.Data

    To test the detection of reflex motion of the MW-mass galaxy due to its MCs-mass satellite galaxies under different observation accuracy,we select an MW-mass simulated galaxy from the zoom-in hydrodynamical MAGPIE simulations(S.Shao et al.2023,in preparation),which is accompanied by a pair of satellite galaxies with LMC and SMC masses(hereafter MW-MCs simulation).The detailed selection criteria of the MW-MCs simulation are described in Section 2.1.Then we project the simulation boxx,y,z,vx,vy,vzto the observation space to involve in the observation errors.Specifically,by assuming the Sun’s position and motion in the simulation,we first project the simulation onto the observation space relative to the Sun using position and velocity parameters,including distance modulus(DM),galactic longitude (l),galactic latitude (b),radial velocity (RV),and proper motions (μl,μb).We then add different observation errors to produce the “observables.” Finally we calculate the velocities and positions of the stars using those“observables.”

    2.1.MW-MCs Simulation

    The MW-MCs simulation is a simulated galaxy system that is most like our MW and MCs,selected from the MAGPIE simulations.The MAGPIE project consists of five halos which are selected from a cosmological simulation,Ref-L0100N1504,from the Eagle Project (Schaye et al.2015) that has a periodic box of a side length of 100 Mpc and contains roughly a thousand MW-mass halos.The halos in the MAGPIE simulations have an averaged total mass of ~1012M⊙which is consistent with the inferred mass of our MW halo (e.g.,Wang et al.2020).Particularly,the MW-MCs simulation is also required to have a pair of satellite galaxies in the virial radius of the host galaxy,which is similar to the observed features of our MW-MCs system (S.Shao et al.2023,in preparation).The simulations presented were performed with the code developed for the EAGLE project.The galaxy formation models of the simulations include radiative cooling,star formation,stellar evolution and stellar mass-loss,and thermal feedback that captures the collective effects of stellar winds,radiation pressure,and supernova explosions.The simulation assumes a Planck cosmology (Planck Collaboration et al.2014) with cosmological parameters: Ωm=0.307 (total matter density),Ωb=0.04825 (baryon density),ΩΛ=0.693 (dark energy density),h=0.6777(the Hubble constant at present in units of 100 km s?1Mpc?1),σ8=0.8288 (the rms amplitude of linear mass fluctuations in spheres of 8h?1Mpc comoving radius at redshiftz=0) andns=0.9611 (the spectral index of the primordial power spectrum).Each halo in MAGPIE simulations was run at multiple resolution levels.The typical dark matter particle and gas cell mass resolutions for MAGPIE simulations are 1.2×105M⊙and 6.6×106M⊙,respectively.We make use of the first MAGPIE halo in which the host galaxy is accompanied by a pair of satellite galaxies with stellar masses of 4.4×109M⊙and 1.1×109M⊙and infall total masses of 1.0×1011and 6.0×1010,which are most similar to the masses of LMC and SMC.LMC-mass satellite has an infall lookback time oftinfall=2.7 Gyr and has passed its first pericenter 1.8 Gyr ago(rperi~50 kpc).The spatial distribution of the star particles of the MW-MCs simulation is shown in Figure 1.The relative positions of the three simulated galaxies are also similar to our MW-MCs system.The reflex motion characterized by〈V〉(r)of the host galaxy of the MW-MCs simulation is different from that simulated by Erkal et al.(2020) since they used an idealized simulation without having a cosmological context such as galaxy mergers,but the order of magnitude of the velocity shifts are similar to their results (about tens of kilometers per second in velocity shift).

    Figure 1.The spatial distribution of all star particles and MW star particles.The top row illustrates all of the simulated star particles,represented by gray dots.The blue and red dots denote particles belonging to the LMC-mass and SMC-mass simulated galaxies,respectively.The bottom row displays star particles of MW-mass simulated galaxy.

    In the MW-MCs simulation,we select the members of the satellites using an earlier snapshot when they were still bound to the satellite.Figure 1 shows the spatial distribution of all-star particles in the MW-MCs simulation.The MCs-mass galaxy are represented by the red and blue dots in the top panels.In the bottom panels,the star particles tagged as MW-mass galaxy are shown.

    2.2.Projection to the Observation Space

    Broadly speaking,the observables of a star are the sky positions,multi-band apparent magnitudes,parallax,proper motions,radial velocity,stellar atmospheric parameters,and chemical abundances etc.Different surveys provide different observables.Taking CSST for example,the main survey project of CSST includes two parts,the multi-band imaging survey and the slitless spectroscopic survey,which can provide the sky positions,multi-band magnitudes,radial velocities and stellar atmospheric parameters.The distances of some stars can be determined based on multiband magnitudes and stellar atmospheric parameters.The proper motions are possible to obtain through the synergy with other surveys.Therefore,the kinematics related observables provided by CSST are DM,l,b,RV,μl,and μb.

    To investigate the detection of the reflex motion under different observation accuracy and provide reference for CSST,the simulation boxx,y,z,vx,vy,vzshould be projected to DM,l,b,RV,μl,μb.By locating the“Sun”in the simulation with position(X⊙,Y⊙,Z⊙)=(8,0,0)kpc,we find the velocity of the “Sun” is (Vx,⊙,Vy,⊙,Vz,⊙)=(?11.1,109.5,?4.7)km s?1.We can then use the following procedure to project the MW-MCs simulations into the observation space

    wheredis the distance to the Sun in kpc,landbare the Galactic longitude and latitude in degree,respectively.Here we use distance modulus DM=5 (l og10d-2)instead of the distance because the errors of the apparent magnitudes and absolute magnitudes can be propagated to DM easily.

    The proper motions and radial velocity can be calculated by

    2.3.Errors of the Observables

    To evaluate the detection of the reflex motion,different errors of distances,radial velocities,and proper motions are added to the simulation.The choices of the error range for different observables are based on literature and the properties of CSST.

    The ideal stellar tracers to map the MW halo should be bright enough to be observed in the distant halo,so the K giants,blue-horizontal-branch stars and RR Lyrae stars have long been used to study our MW halo.K giants are the most prominent stars in the halo with a typical distance error of~20%(Xue et al.2014),equivalent to a distance modulus error of ~0.4 mag (δd/d=0.46×δDM) derived from the lowresolution spectroscopic surveys such as SDSS and LAMOST.As standard candles,blue horizontal branch stars (BHBs) and RR Lyrae stars (RRLs) have better distances,with a typical distance error of <10% for BHBs (Xue et al.2008) and 3%~5% for RRLs (Bhardwaj 2020).The equivalent distance modulus errors are ~0.2 mag and ~0.1 mag for BHBs and RRLs respectively.Considering deep surveys such as CSST may have larger errors on the distance estimations,we choose the DM errors ranging from 0.1 to 1.0 mag(equivalent distance errors ranging from 5%to 50%)to evaluate the detection of the reflex motion.

    Radial velocity is obtained from the spectrum,and its accuracy is proportional to the resolution and signal-to-noise ratio (S/N) of the spectrum.A typical radial velocity error is about 10 km s?1for low resolution (R~2000) spectroscopic survey,such as LAMOST and SDSS.CSST is planned to take slitless spectra for stars brighter thang=23 mag with resolutionR>200.Sun et al.(2021) predicted that the wellcalibrated slitless spectra with an S/N of 100 enable a typical radial velocity error of about 3 km s?1for AFGKM stars and about 10 km s?1for OB stars.However,the ideal cases are always a minority.Due to the very low resolution of the slitless spectra,it is possible to give larger errors of radial velocities for most stars.Therefore,we choose the errors of radial velocities ranging from 20 to 200 km s?1.

    Proper motions can only be obtained from multi-epoch observation with a long enough time baseline.Gaia can provide the best proper motions of stars for now with an error<0.5 mas yr?1for stars brighter than 20 mag.Though CSST is not designed to do the astrometry survey to provide the proper motions,a combination with previous surveys enables measurements of the proper motions at higher accuracy than Gaia with a longer time baseline,especially for the faint stars.Taking care of the worst case,we adopt the errors of the proper motions ranging from 0.05 to 0.5 mas yr?1.Please note that we have incorporated the same error value for μland μb.

    We use 10 equally spaced errors within each error range.The errors are randomly produced from a Gaussian distribution with a center of 0 and a sigma of the given error.Then we add the errors to the simulation to construct 10 samples with errors from small to large.Please note that we assume the quality of the data is related to each observable to avoid making grid in error space.The distributions of the DM,RV,μland μbwith different errors are shown in Figure 2.

    Figure 2.The distribution of the distance modulus DM,heliocentric radial velocity(RV),and proper motions(μl,μb)before and after adding errors.The black lines represent the data before the error was added.

    3.Results

    The reflex motion induced by the MCs’ infall can be explored by the mean velocity in radial shells.If there are no MCs,the MW stellar halo is in equilibrium,so the mean velocity is close to zero.But MCs’ infall breaks the equilibrium and leads to the shifts of the mean velocities〈Vx〉,〈Vy〉,〈Vz〉 from zero beyond 30 kpc,especially in thezdirection(Erkal et al.2020).Here we adopt a set of spherical coordinate(d,l,b).Most of the time,we cannot have all three velocity components.The coordinate of(d,l,b)is centered at the Sun,where the observables can be separated completely to investigate the effect from individual observables.Based on the 10 samples with different errors constructed in Section 2,we transfer DM,l,b,RV,μl,μbtoVlos,Vl,Vb,dand then computing the mean velocities in different distance bins to construct “observed” velocity shifts.Here all velocities are in Galactic standard of rest.The influence of the observables’errors on the detection of reflex motion is investigated by comparing the “observed” velocity shifts with the “real”velocity shifts that do not involve any errors.In order to quantitatively describe how similar the “observed” velocity shifts are to the “real” velocity shifts,we define “reliable detection” as the case that the “real” velocity shifts lie within 2σ errors of the “observed” velocity shifts.The observed errors of the mean velocities are propagated from the errors of observables by Monte Carlo sampling.The statistical errors of the mean velocities are derived from bootstrap resampling.We add the observed errors in quadrature to the statistical errors to get 1σ errors of the mean velocities.In this section,we will describe the detection of the reflex motion in different observation accuracy in detail.

    3.1.The Effect from DM Errors

    The distance is essential to convert proper motions to tangential velocities.Furthermore,the reflex motion investigated here is characterized by the mean velocity shifts varying with distances.Therefore,when we explore the influence of the distances’errors,a current typical error of proper motion needs to be considered.Gaia DR3 has provided proper motions better than 0.04 mas yr?1for stars brighter thanG=15 mag and 0.1 mas yr?1for stars brighter thanG=17 mag.In future,the precision of proper motion will be improved as the increase of the observation baseline.As a result,we take an ideal precision of proper motion as 0.05 mas yr?1.

    Assuming no error in RV,an error of 0.05 mas yr?1in proper motion,and an arithmetic sequence of 10 DM errors ranging from 0.1 to 1.0 mag,we then calculate the mean velocities(Vlos,Vl,Vb)of the star particles located at variousd,ranging from 30 to 130 kpc.

    Figure 3 shows the mean velocity shifts in each velocity component for three representative cases of DM errors.We find stronger velocity shifts inVl,andVbthan that inVlos,which is consistent with the moving direction of LMC-mass galaxy.An oscillation in velocity shifts is found inVlosandVl,which could be due to the fact that LMC-mass galaxy has passed its first pericenter in simulation,while in reality,LMC has been approaching its first pericenter.When DM errors are 0.2 mag,the“observed”velocity shifts of〈Vl〉and〈Vb〉show very good consistent with “real” velocity shifts to about 100 kpc,while reliable detection of the 〈Vlos〉 shifts only can be traced to 50 kpc.With the increase of DM errors to 0.6 mag,it is impossible to detect any reliable velocity shifts in 〈Vlos〉,but the reliable detection of shifts in 〈Vl〉 and 〈Vb〉 still can be traced to about 50 kpc.The stronger the velocity shifts,the greater the admissible margin of error in observations.Moreover,the larger the observation error,the closer the distance from which reliable velocity shifts can be detected.From the above tests,we find that a DM error of 0.6 mag is a minimum requirement to detect reliable tangential velocity shifts of about 40 km s?1within 50 kpc.

    Figure 3.The effects of distance errors on the mean velocities of Vlos,Vl,and Vb.Three vertical panels show the velocity shifts with different errors of DM,while three horizontal panels show velocity shifts of different velocity components.The black line is the mean velocity without adding error,and the red lines show the mean velocity after involving errors of DM.The color bands show 2σ and 3σ regions.

    3.2.The Effect from Proper Motion Errors

    In Section 3.1 we have found that the errors of DM should not be worse than 0.6 mag,so we test the effect of proper motion errors by adopting two typical DM errors of 0.2 and 0.4 mag (corresponding to a relative distance error of ~10% for BHB stars and ~20%for RGB stars).We adopt 10 errors of the proper motions from 0.05 to 0.5 mas yr?1,and show 3 representative cases in Figures 4 and 5.When DM errors are 0.2 mag,a proper motion error of 0.15 mas yr?1allows reliable detection on velocity shifts in both〈Vl〉and〈Vb〉up to 60 kpc,and a proper motion error of 0.1 mas yr?1extends the reliable detection distance region up to about 100 kpc (shown as Figure 4).When the distance errors are getting large to 20%,a proper motion error of 0.1 mas yr?1can guarantee the reliable detection of velocity shifts in 〈Vb〉 to 80 kpc and in 〈Vl〉 to 60 kpc,while a proper motion error of 0.15 mas yr?1allows reliable detection of shifts in 〈Vl〉 to about 50 kpc.Therefore,when the stellar distances are accurate to 10%~20%,a proper motion of 0.15 mas yr?1is the minimum requirement to trace reliable tangential velocity shifts.

    Figure 5.Same as Figure 4,but the DM error is 0.4 mag.

    3.3.The Effect from RV Errors

    We investigate the impact of RV errors on the detection of velocity shifts by setting the DM errors to 0.2 and 0.4 mag,the proper motion errors to 0,and the RV error to 0–200 km s?1.Figure 6 shows that an RV error of 20 km s?1can trace reliable velocity shifts to about 70 kpc for both cases of DM errors.When DM error is 0.2 mag,the RV error of 40 km s?1still can show reliable detection to 50 kpc.When the error of RV increases to 60 km s?1,velocity shifts cannot be detected.

    Figure 6.The effect of RV errors on the mean velocity in Vlos.The DM error is either 0.2 mag or 0.4 mag,and there is no error in the proper motions.The black line is the velocity shifts without adding error,and the red line is the velocity shifts with errors.The color bands are 2σ and 3σ errors.

    3.4.The Effect from the Sample Size

    Limited by the observational depth of all surveys,it is impossible to obtain all the stars in the Galactic halo.Therefore,we perform the results of experiments with randomly selected subsamples of 40%,20%,10%,and 5%from the full simulated sample to investigate the effect of sample size on the detection of reflex motion.For the subsamples,we involve a DM error of 0.1 mag,a proper motion error of 0.05 mas yr?1,an RV error of 10 km s?1.As shown in Figure 7,the black line indicates the mean velocity distribution traced with all the samples without errors.While the results with different fractions of the whole sample are represented by different color lines.The subsample containing 40%of the whole sample shows the velocity profiles are able to be traced well to 90 kpc.If there is only 20% of the whole sample,the reliable detection of velocity shifts can be traced to 60 kpc.With lower fractions,the samples are unable to trace the outer volumes because of the low number of samples with larger distances.On the other hand,even in the inner volume with lower fractions,the profile becomes more fluctuated because of the stronger Poisson noise.As a result,20% of the sample size is the minimum requirement on the detection of reflex motion.

    Figure 7.The mean velocity distribution along the distance for different sample sizes.The solid black line represents the mean velocity of the simulated data without errors.We show the four data sets as color lines(blue:40%of the sample size;orange:20%of the sample size;green:10%of the sample size;red:5%of the sample size).All subsamples are added ideal errors.

    4.Summary

    The Milky Way and the LMC are in disequilibrium and,in particular,the LMC pushes the outer parts of our galaxy out of equilibrium (Erkal et al.2019).In this study,we demonstrate that the LMC should be perturbative to our MW halo,showing signs of global motion for areas beyond 30 kpc.We propose the minimum requirements for the errors of observables to be able to detect reliable reflex motions,which could be a reference for surveys to evaluate the potential to study the reflex motion.

    (i) The minimum requirement on DM error is 0.6 mag.For DM errors below 0.6 mag (30% in distance error),the reliable detection of shifts in tangential velocities can be traced to 50 kpc,while nearly no reliable velocity shifts inVloscan be detected.When the distances are good to 10%(0.2 mag in DM error),we can detect reliable reflex motion in tangential velocities up to 100 kpc and in line-of-sight velocity up to 50 kpc.

    (ii) The minimum requirement on proper motion error is 0.15 mas yr?1.The mean tangential velocities 〈Vl〉 and 〈Vb〉can reflect the real velocity shift up to about 100 kpc if the relative error of distance is ~10% and the error of proper motion is less than 0.1 mas yr?1.When the errors of proper motions increase to 0.15 mas yr?1,the reliable reflex motion can be detected to about 50–60 kpc for stars with distances accurate to 10%~20%.

    (iii)The minimum requirement on RV error is 40 km s?1.An RV error of 20 km s?1allows us to detect reliable reflex motion to 70 kpc when the distances are better than 20%.When the DM error is 0.2 mag,the RV error of 40 km s?1still can show reliable detection to 50 kpc.When the error of RV increases to 60 km s?1,velocity shifts cannot be detected anymore.

    (iv) A sample size of 20% or more is required to reflect the true velocity shift.

    Acknowledgments

    This work is supported by the National Key Research and Development Program of China No.2019YFA0405504,the science research grants from the China Manned Space Project with NO.CMS-CSST-2021-B03,the National Natural Science Foundation of China(NSFC)grant Nos.11988101,11890694,12103062,12273027,12273053 and 12173046,and CAS Project for Young Scientists in Basic Research grant No.YSBR-062.S.S.acknowledges support from the K.C.Wong Foundation.J.L.would like to acknowledge the Sichuan Youth Science and Technology Innovation Research Team(grant No.21CXTD0038),and the Innovation Team Funds of China West Normal University (grant No.KCXTD2022-6).

    ORCID iDs

    日韩大片免费观看网站| 亚洲精品,欧美精品| 在线观看三级黄色| 美国免费a级毛片| 女人被躁到高潮嗷嗷叫费观| 99re6热这里在线精品视频| 一级,二级,三级黄色视频| 777米奇影视久久| 亚洲综合精品二区| 在线观看人妻少妇| 欧美激情高清一区二区三区 | 成年av动漫网址| 亚洲,欧美,日韩| 亚洲一码二码三码区别大吗| 国产精品三级大全| 午夜激情av网站| 国产免费又黄又爽又色| 成人毛片60女人毛片免费| av片东京热男人的天堂| 热99国产精品久久久久久7| 日日啪夜夜爽| 香蕉丝袜av| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品av麻豆狂野| 另类精品久久| 国产一区二区三区综合在线观看| 久久精品久久久久久噜噜老黄| 天堂8中文在线网| 一边摸一边做爽爽视频免费| 欧美黄色片欧美黄色片| 男人操女人黄网站| 一二三四中文在线观看免费高清| 老熟女久久久| 女人久久www免费人成看片| 亚洲天堂av无毛| 国产精品女同一区二区软件| 丝袜在线中文字幕| 亚洲av日韩精品久久久久久密 | 又大又爽又粗| 国产成人啪精品午夜网站| 国产老妇伦熟女老妇高清| 国产成人系列免费观看| 51午夜福利影视在线观看| 中国三级夫妇交换| 老司机亚洲免费影院| 日本欧美视频一区| 日韩人妻精品一区2区三区| 欧美日韩亚洲国产一区二区在线观看 | 1024视频免费在线观看| 国产男女内射视频| 欧美成人午夜精品| 人妻一区二区av| 免费人妻精品一区二区三区视频| 色视频在线一区二区三区| 热re99久久精品国产66热6| 午夜福利一区二区在线看| 90打野战视频偷拍视频| 久久久久久久久久久免费av| 精品人妻熟女毛片av久久网站| 精品福利永久在线观看| 欧美日韩福利视频一区二区| 久久这里只有精品19| 爱豆传媒免费全集在线观看| 午夜日韩欧美国产| 亚洲国产精品国产精品| 亚洲一码二码三码区别大吗| 久久久久人妻精品一区果冻| 国产亚洲一区二区精品| 久久久久久久久久久免费av| 中文字幕色久视频| 美女国产高潮福利片在线看| 18禁国产床啪视频网站| 少妇被粗大猛烈的视频| 9191精品国产免费久久| 国产精品香港三级国产av潘金莲 | www.精华液| 两性夫妻黄色片| 亚洲色图 男人天堂 中文字幕| 亚洲精品国产色婷婷电影| 老司机在亚洲福利影院| 国产一卡二卡三卡精品 | 免费观看性生交大片5| 亚洲精品中文字幕在线视频| 国产成人精品福利久久| 精品久久久久久电影网| 老司机深夜福利视频在线观看 | 一级黄片播放器| 亚洲,欧美精品.| 两性夫妻黄色片| 我的亚洲天堂| 极品少妇高潮喷水抽搐| 大话2 男鬼变身卡| 青春草亚洲视频在线观看| 日韩中文字幕欧美一区二区 | 大香蕉久久成人网| 国产一区二区 视频在线| 妹子高潮喷水视频| 天天添夜夜摸| 国产精品亚洲av一区麻豆 | 亚洲av中文av极速乱| 成人漫画全彩无遮挡| 婷婷成人精品国产| 中文字幕另类日韩欧美亚洲嫩草| 国产视频首页在线观看| 中文字幕亚洲精品专区| 亚洲欧美一区二区三区黑人| 亚洲情色 制服丝袜| 妹子高潮喷水视频| 岛国毛片在线播放| 亚洲av男天堂| 我要看黄色一级片免费的| 亚洲国产看品久久| 日本av免费视频播放| 亚洲,一卡二卡三卡| 韩国精品一区二区三区| av.在线天堂| 亚洲国产中文字幕在线视频| 老司机靠b影院| 女人久久www免费人成看片| 精品一区二区免费观看| 黄色视频在线播放观看不卡| 看免费成人av毛片| 爱豆传媒免费全集在线观看| 激情视频va一区二区三区| 九草在线视频观看| 一边亲一边摸免费视频| 欧美 日韩 精品 国产| 免费高清在线观看日韩| 久久久国产一区二区| 黄色视频在线播放观看不卡| 一本一本久久a久久精品综合妖精| 哪个播放器可以免费观看大片| 久久99热这里只频精品6学生| 嫩草影视91久久| 久久人妻熟女aⅴ| 欧美国产精品一级二级三级| 天天躁夜夜躁狠狠躁躁| 欧美日韩一区二区视频在线观看视频在线| av一本久久久久| 婷婷色av中文字幕| 大话2 男鬼变身卡| 国产av国产精品国产| 老熟女久久久| 纵有疾风起免费观看全集完整版| 久久青草综合色| 国产日韩欧美亚洲二区| 国产成人精品久久二区二区91 | 巨乳人妻的诱惑在线观看| 久久久久久久久久久久大奶| 国产免费视频播放在线视频| 国产又爽黄色视频| 成人手机av| 啦啦啦视频在线资源免费观看| 涩涩av久久男人的天堂| 最新的欧美精品一区二区| 最近中文字幕高清免费大全6| 久久精品国产a三级三级三级| 亚洲欧美精品自产自拍| 最近中文字幕高清免费大全6| 女人高潮潮喷娇喘18禁视频| 久久精品亚洲av国产电影网| 日本欧美国产在线视频| 国产在线免费精品| 国产精品 欧美亚洲| 婷婷色av中文字幕| 大话2 男鬼变身卡| 久久综合国产亚洲精品| 一级爰片在线观看| 别揉我奶头~嗯~啊~动态视频 | 免费观看性生交大片5| 涩涩av久久男人的天堂| 亚洲精品,欧美精品| 中文字幕av电影在线播放| 涩涩av久久男人的天堂| 母亲3免费完整高清在线观看| 色视频在线一区二区三区| 亚洲精品一区蜜桃| 久久性视频一级片| 一级毛片我不卡| 人妻人人澡人人爽人人| 亚洲人成网站在线观看播放| 亚洲精品,欧美精品| 美女福利国产在线| 国产精品国产av在线观看| 欧美人与性动交α欧美精品济南到| 亚洲婷婷狠狠爱综合网| 少妇被粗大的猛进出69影院| 国产一区二区在线观看av| 国产片特级美女逼逼视频| 亚洲第一青青草原| 午夜老司机福利片| 日韩一区二区三区影片| 亚洲成人av在线免费| 亚洲欧洲日产国产| av线在线观看网站| 老鸭窝网址在线观看| 欧美少妇被猛烈插入视频| 女人被躁到高潮嗷嗷叫费观| 亚洲激情五月婷婷啪啪| 美国免费a级毛片| av视频免费观看在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜激情av网站| 亚洲精品美女久久av网站| 亚洲国产av影院在线观看| 一区二区三区乱码不卡18| 国产日韩欧美视频二区| 黑人欧美特级aaaaaa片| 中文字幕精品免费在线观看视频| 新久久久久国产一级毛片| 亚洲久久久国产精品| 国产有黄有色有爽视频| 欧美日韩成人在线一区二区| 啦啦啦在线观看免费高清www| 又黄又粗又硬又大视频| 国产成人精品福利久久| 国产精品欧美亚洲77777| 亚洲国产成人一精品久久久| 亚洲一区二区三区欧美精品| 中文字幕精品免费在线观看视频| 男女床上黄色一级片免费看| 桃花免费在线播放| 国产无遮挡羞羞视频在线观看| 天天添夜夜摸| 午夜免费鲁丝| 精品人妻在线不人妻| 久久性视频一级片| 久久久久精品性色| 亚洲成人av在线免费| 国产精品欧美亚洲77777| 女人被躁到高潮嗷嗷叫费观| 日韩人妻精品一区2区三区| 久久国产亚洲av麻豆专区| avwww免费| 婷婷色综合大香蕉| 亚洲五月色婷婷综合| 美女高潮到喷水免费观看| 国产精品免费大片| 熟妇人妻不卡中文字幕| 成人手机av| 亚洲欧美清纯卡通| 亚洲久久久国产精品| av又黄又爽大尺度在线免费看| 欧美成人午夜精品| 高清黄色对白视频在线免费看| 看免费av毛片| 久久天堂一区二区三区四区| 亚洲av福利一区| 飞空精品影院首页| 最新的欧美精品一区二区| 丰满少妇做爰视频| 欧美激情极品国产一区二区三区| 久久午夜综合久久蜜桃| 国产淫语在线视频| 99热网站在线观看| 亚洲精品在线美女| 老鸭窝网址在线观看| 丝袜美足系列| 在线天堂中文资源库| 午夜久久久在线观看| www.自偷自拍.com| 国产精品一国产av| 男人爽女人下面视频在线观看| 女性生殖器流出的白浆| 亚洲 欧美一区二区三区| 巨乳人妻的诱惑在线观看| av免费观看日本| 亚洲欧美一区二区三区国产| 在线看a的网站| 毛片一级片免费看久久久久| 亚洲,欧美,日韩| √禁漫天堂资源中文www| 国产在线一区二区三区精| 超色免费av| 美国免费a级毛片| 国产精品二区激情视频| 国产片内射在线| 精品亚洲成a人片在线观看| 久久99精品国语久久久| 国产精品99久久99久久久不卡 | av在线播放精品| 80岁老熟妇乱子伦牲交| 精品午夜福利在线看| 18禁观看日本| 亚洲天堂av无毛| 亚洲精品国产av成人精品| 亚洲成av片中文字幕在线观看| 又粗又硬又长又爽又黄的视频| 亚洲美女搞黄在线观看| 国产熟女午夜一区二区三区| 日韩中文字幕欧美一区二区 | 亚洲综合色网址| 女的被弄到高潮叫床怎么办| 黄片无遮挡物在线观看| 精品国产国语对白av| 亚洲专区中文字幕在线 | 国产免费一区二区三区四区乱码| kizo精华| 欧美中文综合在线视频| 欧美av亚洲av综合av国产av | 91成人精品电影| 亚洲熟女精品中文字幕| 国产乱来视频区| 精品免费久久久久久久清纯 | 飞空精品影院首页| 91国产中文字幕| 老司机影院成人| 成人亚洲精品一区在线观看| 啦啦啦视频在线资源免费观看| 宅男免费午夜| 欧美另类一区| 亚洲国产看品久久| 777米奇影视久久| 97在线人人人人妻| 99精品久久久久人妻精品| 国产日韩欧美视频二区| 男女之事视频高清在线观看 | 又黄又粗又硬又大视频| 亚洲成人av在线免费| 久久97久久精品| 18禁国产床啪视频网站| 制服人妻中文乱码| 久久狼人影院| 中国三级夫妇交换| 欧美av亚洲av综合av国产av | 精品亚洲乱码少妇综合久久| 亚洲美女视频黄频| 免费黄网站久久成人精品| 黄片无遮挡物在线观看| 久久久精品区二区三区| 久久99精品国语久久久| 亚洲欧美激情在线| 免费高清在线观看视频在线观看| 一边摸一边做爽爽视频免费| 国产女主播在线喷水免费视频网站| 一级毛片我不卡| 啦啦啦 在线观看视频| 青春草亚洲视频在线观看| 久久婷婷青草| 国产成人啪精品午夜网站| 欧美在线黄色| 操美女的视频在线观看| 女人高潮潮喷娇喘18禁视频| 国产成人免费观看mmmm| 国产日韩欧美亚洲二区| 一级毛片 在线播放| 亚洲国产精品国产精品| 亚洲色图 男人天堂 中文字幕| 秋霞在线观看毛片| 天天躁夜夜躁狠狠久久av| 99久国产av精品国产电影| 精品国产一区二区三区久久久樱花| 日日摸夜夜添夜夜爱| 男女床上黄色一级片免费看| 人人妻人人添人人爽欧美一区卜| 亚洲在久久综合| av天堂久久9| 亚洲精品久久成人aⅴ小说| 一本—道久久a久久精品蜜桃钙片| 999久久久国产精品视频| 十八禁人妻一区二区| 9热在线视频观看99| 国产福利在线免费观看视频| 女性被躁到高潮视频| 狠狠婷婷综合久久久久久88av| 黄色毛片三级朝国网站| 女性生殖器流出的白浆| 精品少妇内射三级| 天天添夜夜摸| 美国免费a级毛片| 国产精品av久久久久免费| 丝袜美足系列| 成人免费观看视频高清| 久久97久久精品| 亚洲男人天堂网一区| 免费不卡黄色视频| 国产在视频线精品| av片东京热男人的天堂| 午夜日韩欧美国产| 巨乳人妻的诱惑在线观看| 一级片免费观看大全| 亚洲精品av麻豆狂野| 美女中出高潮动态图| 日本av免费视频播放| 欧美 亚洲 国产 日韩一| 男女床上黄色一级片免费看| 各种免费的搞黄视频| 国产亚洲av高清不卡| 成人亚洲欧美一区二区av| 成人影院久久| 国产乱人偷精品视频| 超色免费av| 中文字幕精品免费在线观看视频| 欧美人与善性xxx| 国产一区亚洲一区在线观看| 久久久久久免费高清国产稀缺| 国产有黄有色有爽视频| 咕卡用的链子| 国产有黄有色有爽视频| www日本在线高清视频| 男女下面插进去视频免费观看| www日本在线高清视频| 久久精品国产亚洲av高清一级| 99久国产av精品国产电影| 国产成人精品久久久久久| 亚洲精品日本国产第一区| 成人毛片60女人毛片免费| 曰老女人黄片| 亚洲一区二区三区欧美精品| 在线观看www视频免费| 日本av免费视频播放| 国产一级毛片在线| 久久精品久久久久久噜噜老黄| 男人舔女人的私密视频| 午夜老司机福利片| 新久久久久国产一级毛片| 免费不卡黄色视频| 国产一区有黄有色的免费视频| 久久久久国产一级毛片高清牌| 欧美在线黄色| 中文字幕最新亚洲高清| 精品人妻熟女毛片av久久网站| 亚洲,一卡二卡三卡| 亚洲av日韩精品久久久久久密 | 啦啦啦在线免费观看视频4| 成年人免费黄色播放视频| 久久久久久久精品精品| 五月开心婷婷网| av卡一久久| 黑丝袜美女国产一区| 超碰成人久久| 精品福利永久在线观看| 亚洲欧美激情在线| 国产熟女午夜一区二区三区| 999久久久国产精品视频| 国产麻豆69| 91成人精品电影| 亚洲国产欧美在线一区| 国产精品国产av在线观看| 两个人看的免费小视频| 国产欧美亚洲国产| 天天躁日日躁夜夜躁夜夜| 大话2 男鬼变身卡| 曰老女人黄片| 在线观看免费日韩欧美大片| 999久久久国产精品视频| 国产成人91sexporn| 欧美av亚洲av综合av国产av | 久久精品国产亚洲av涩爱| 高清不卡的av网站| 欧美日韩亚洲综合一区二区三区_| 亚洲四区av| 一级片免费观看大全| 一区二区三区激情视频| 亚洲av成人精品一二三区| 新久久久久国产一级毛片| 777米奇影视久久| 久久久精品免费免费高清| 国产高清国产精品国产三级| 伦理电影大哥的女人| 高清欧美精品videossex| 色精品久久人妻99蜜桃| 中文字幕制服av| 一本色道久久久久久精品综合| 成年动漫av网址| 青青草视频在线视频观看| 伦理电影大哥的女人| 人妻人人澡人人爽人人| 一级片免费观看大全| 性色av一级| 日本一区二区免费在线视频| 国产亚洲av片在线观看秒播厂| 欧美日韩亚洲国产一区二区在线观看 | 岛国毛片在线播放| 欧美乱码精品一区二区三区| 一级片免费观看大全| 久久久精品区二区三区| 亚洲国产av新网站| 久久狼人影院| 国产精品女同一区二区软件| 亚洲成色77777| 不卡av一区二区三区| 日韩av不卡免费在线播放| 亚洲av综合色区一区| 国产精品秋霞免费鲁丝片| 国产又爽黄色视频| 丰满迷人的少妇在线观看| 亚洲中文av在线| 亚洲欧美清纯卡通| 亚洲av中文av极速乱| 欧美成人精品欧美一级黄| 美女主播在线视频| 亚洲国产欧美日韩在线播放| 久久精品亚洲av国产电影网| 成年女人毛片免费观看观看9 | 黄色一级大片看看| 男女边吃奶边做爰视频| 十八禁高潮呻吟视频| 国产精品成人在线| 久久精品亚洲熟妇少妇任你| 亚洲av电影在线进入| 亚洲,一卡二卡三卡| 日韩,欧美,国产一区二区三区| 精品卡一卡二卡四卡免费| 久久99一区二区三区| 韩国高清视频一区二区三区| 国产一区二区在线观看av| 久久狼人影院| 久久久久久久精品精品| 你懂的网址亚洲精品在线观看| 最近2019中文字幕mv第一页| 别揉我奶头~嗯~啊~动态视频 | 18禁国产床啪视频网站| 99久久综合免费| 欧美精品人与动牲交sv欧美| 中文字幕亚洲精品专区| 自拍欧美九色日韩亚洲蝌蚪91| 日韩 欧美 亚洲 中文字幕| 精品第一国产精品| 亚洲成人av在线免费| 国产精品一区二区精品视频观看| 美女主播在线视频| 久久国产精品男人的天堂亚洲| 精品第一国产精品| 国产av精品麻豆| 少妇 在线观看| 69精品国产乱码久久久| 欧美97在线视频| 日本av手机在线免费观看| 亚洲人成77777在线视频| a 毛片基地| 欧美日韩一级在线毛片| 国产免费又黄又爽又色| 天堂8中文在线网| 免费女性裸体啪啪无遮挡网站| 少妇 在线观看| 波多野结衣一区麻豆| av在线老鸭窝| 黄片播放在线免费| 欧美日韩一区二区视频在线观看视频在线| 韩国av在线不卡| 亚洲国产av影院在线观看| 久久精品aⅴ一区二区三区四区| 高清不卡的av网站| 美女大奶头黄色视频| 久久久久久久国产电影| 日韩av免费高清视频| 在线天堂中文资源库| 国产片特级美女逼逼视频| av免费观看日本| tube8黄色片| 国产成人av激情在线播放| 最近中文字幕2019免费版| 亚洲精品第二区| 国产一区二区在线观看av| 国产又色又爽无遮挡免| 王馨瑶露胸无遮挡在线观看| 亚洲av国产av综合av卡| 女人高潮潮喷娇喘18禁视频| 国产高清国产精品国产三级| 大陆偷拍与自拍| 国产日韩欧美视频二区| 七月丁香在线播放| 男女床上黄色一级片免费看| www日本在线高清视频| 哪个播放器可以免费观看大片| 午夜影院在线不卡| 精品少妇久久久久久888优播| 亚洲欧美精品自产自拍| 丝袜在线中文字幕| av网站在线播放免费| 成年人免费黄色播放视频| 欧美日韩av久久| 日韩制服骚丝袜av| kizo精华| 又黄又粗又硬又大视频| 国产 一区精品| 免费少妇av软件| 丁香六月欧美| 视频在线观看一区二区三区| 极品少妇高潮喷水抽搐| 9色porny在线观看| 在线看a的网站| 久久久久久人妻| 搡老乐熟女国产| 久久人妻熟女aⅴ| 欧美 日韩 精品 国产| 国产亚洲午夜精品一区二区久久| 成人亚洲精品一区在线观看| 国产黄色视频一区二区在线观看| 操美女的视频在线观看| 亚洲久久久国产精品| 亚洲国产精品成人久久小说| 国产精品秋霞免费鲁丝片| 欧美激情 高清一区二区三区| 一级毛片我不卡| 国产精品偷伦视频观看了| 精品国产一区二区三区四区第35| 热re99久久国产66热| 欧美日韩成人在线一区二区| 十八禁高潮呻吟视频| 成人18禁高潮啪啪吃奶动态图| 大话2 男鬼变身卡| 亚洲图色成人| 观看美女的网站| 伊人亚洲综合成人网| 国产亚洲精品第一综合不卡| 亚洲色图综合在线观看| 最新的欧美精品一区二区| 日韩视频在线欧美| 精品国产国语对白av| 免费观看a级毛片全部| 午夜福利一区二区在线看| 2021少妇久久久久久久久久久| 成人国产麻豆网|