• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical Analysis of Random Scattering Induced by Microlensing

    2023-09-03 01:36:38WenwenZhengHouZunChenXuechunChenandGuoliangLi

    Wenwen Zheng ,Hou-Zun Chen ,Xuechun Chen ,and Guoliang Li

    1 Purple Mountain Observatory,Chinese Academy of Sciences,Nanjing 210023,China;wwzheng@pmo.ac.cn

    2 School of Astronomy and Space Science,University of Science and Technology of China,Hefei 230026,China

    3 Institute for Frontier in Astronomy and Astrophysics,Beijing Normal University,Beijing 102206,China

    4 Department of Astronomy,Beijing Normal University,Beijing 100875,China

    Abstract Theoretical investigations into the deflection angle caused by microlenses offer a direct path to uncovering principles of the cosmological microlensing effect.This work specifically concentrates on the the probability density function (PDF) of the light deflection angle induced by microlenses.We have made several significant improvements to the widely used formula from Katz et al.First,we update the coefficient from 3.05 to 1.454,resulting in a better fit between the theoretical PDF and our simulation results.Second,we developed an elegant fitting formula for the PDF that can replace its integral representation within a certain accuracy,which is numerically divergent unless arbitrary upper limits are chosen.Third,to facilitate further theoretical work in this area,we have identified a more suitable Gaussian approximation for the fitting formula.

    Key words: gravitational lensing: micro– methods: analytical– galaxies: stellar content

    1.Introduction

    The strong lensing effect caused by a foreground galaxy may produce multiple macroimages,and in the mean time,the compact objects inhabiting the galaxy can further deflect the light rays,causing a macroimage to split into microimages.This phenomenon is known as the cosmological microlensing effect and was described by Chang&Refsdal(1979).Although it is extremely difficult to directly distinguish microimages,the flux anomaly between macroimages can provide a clue,because light rays from different macroimages are affected by different distributions of microlenses.It is possible to detect this effect in a time-domain observation: The relative motion between the background source,the lens galaxy,the randomly moving stars and the observer induces differences between light curves of macroimages (when other impacts are deducted),which was first confirmed in quasar system Q2237+0305 presented by Irwin et al.(1989).Based on the theory of microlensing,the variation of light curves can contain information on both the source size and the lens mass distributions.This has led to a series of pioneering research efforts on constraining the inner structure of quasars (Kochanek 2004;Mortonson et al.2005;Sluse et al.2012) and the mass distribution of compact objects in the lens galaxy(Wyithe&Turner 2001;Mediavilla et al.2009;Schechter et al.2014;Jiménez-Vicente &Mediavilla 2019).These research efforts have quickly produced significant results.In recent years,a host of unprecedented events has been observed,where individual stars at cosmological distances are magnified to an extreme degree due to their close proximity to massive cluster caustics (Kelly et al.2018;Rodney et al.2018;Chen et al.2019;Kaurov et al.2019;Diego et al.2022;Welch et al.2022).The smooth macrocaustic will be broken into a net of microcaustics in the presence of intra-cluster light (ICL) in clusters,as described in Venumadhav et al.(2017),inducing a variety of fluctuations in the magnification of a star as it moves across the microcaustics.Similar to a lensed quasar system,microlensing light curves also provide the possibility of digging information about the size of the source star,the fractions of ICL and even MACHOS.Therefore,extracting the information contained in the light curves is essential in microlensing studies,and simulations have become the most commonly used method thanks to the vigorous development of computer technology.

    Several approaches have been developed for generating microlensing light curves,with the most commonly used method being inverse ray shooting (IRS) (Kayser et al.1986;Schneider &Wei?,1986).Since then,various optimized versions of the IRS method have been proposed (Wambsganss 1999;Mediavilla et al.2006;Thompson et al.2010;Shalyapin et al.2021;Zheng et al.2022).They share a basic procedure: light rays are traced back from the image plane to the source plane to generate a magnification map,which is then convolved with a moving source to produce a set of light curves.However,the processing of huge amounts of data still poses a great challenge for standard simulations when dealing with caustic-crossing events.New methods,such as those proposed by Meena et al.(2022) and Diego (2022),have been developed to reduce computational costs while still achieving accurate light curves.Additionally,for point sources,there are other methods(Lewis et al.1993;Witt 1993)that are designed to directly produce individual light curves without generating a whole magnification map.

    Nonetheless,all of these approaches face a common challenge: the presence of compact objects can cause some of the light rays to be deflected out of the source plane,leading to a loss of simulation accuracy.To address this issue,the size of the shooting area needs to be increased when setting the image plane in order to ensure precision (Schneider &Wei? 1986,Wambsganss 1999).It is important to note that the size of the increased shooting area should be determined based on the distribution of the microlens-induced deflection angle.This distribution is directly related to the magnification and observable variation in the lensed source light curves,which can provide valuable insight for future theoretical research(Dai&Pascale 2021).Therefore,further study on microlensing deflection angle is necessary.

    Remarkable results were presented in Katz et al.(1986)(hereafter K86),where the integral form of the probability density distribution of the deflection angles is given in detail(their Equation (13)).K86 concluded that the probability density function(PDF)has a Gaussian form at small deflection angles and is inversely proportional to the quartic of deflection angle at the infinite end.This provides a basis for all types of methods that include an “image-to-source-plane ray mapping”part to set a buffer to control missing light rays.

    In our previous simulation work (Zheng et al.2022),we included a “negative mass sheet” term in the deflection angle equation,which led us to reanalyze the PDF of the deflection angles.Our new analysis yielded a different result that showed better consistency with our simulation.This paper is organized as follows:In Section 2,we present the theoretical derivation of the PDF of the deflection angle.This section is divided into three subsections: In subsection 2.1 we re-deduced the PDF of the deflection angle.Subsection 2.2 describes the process of obtaining a fitting formula for the PDF and in subsection 2.3 we present the methods we used to obtain a Gaussian approximation.A short summary of this work is provided in Section 3.

    2.Probability Density Function of the Deflection Angle

    Ideally,in the absence of compact objects,all light rays traveling from an image rectangle with a side length ratio of|1 ?κ ?γ|/|1 ?κ+γ|would fall within a square.However,the presence of compact objects causes some of the rays to scatter out,indicating the effect of the deflection angle induced by microlensing.Referring to our previous work Zheng et al.(2022),the general form of the deflection angle can be written as

    where θ and θidenote the light positions and lens positions on the image/lens plane,respectively.N* is the number of microlenses(hereafter stars,as they are the majority in number)whilemidenotes their mass.κ is the dimensionless surface mass density of the mass sheet (which contains both the compact and smooth mass)and γ is the external shear;both are derived from the strong lens model.

    The general form of the deflection angle can be written as a sum of three terms.The first term represents the impact of local convergence and shear.The second term indicates the contribution from the individual stars,with the mean surface mass density of κ*,whereas the third termα κ?*represents a negative mass sheet that is only composed of smooth matter,with the same κ* value to cancel out the redundant mass from the second term.Thus,the sum of the second and third terms represents the perturbation caused by compact objects.This perturbation will be the deflection angle we mainly focus on in this work.

    2.1.PDF of the Deflection Angle

    In K86,the integral representation of scattering PDF has the form (their Equation (13)),

    where φ denotes the deflection angle,and J0is the Bessel function of the first kind.x=φ/φ0and φ0is a scaling parameter that is related to the number of microlensesN,as will be explained in detail later in the text.

    However,in their approach,they only considered the deflection angle contributed from the individual stars,so the negative mass sheet was taken as an overall variable.Consequently,in every situation,the negative mass sheet occupied by each star will not overlap.In contrast,we assume that each star carries a negative circular mass sheet with radiusR,and that the two parts of each star have equal and opposite masses,resulting in a net zero mass.This means that both parts act as a scattering source when calculating the deflection angle.In this situation,the negative mass sheets of the scattering sources may overlap depending on their distance,which we consider to be a more natural scenario for random scattering of microlensing.

    Then for one scattering source,the deflection angle at impact parameterb(b≤R) is

    and for more details on this part of the derivation please refer to Appendix A.

    Equation (9) has the same form as the one derived by K86,which has been modified from 3.05 to 1.45.Figure 1 displays a comparison between Equations (8) and (9),along with the deviations caused by the different numerators.Here we find that Equations (8) and (9) are in good agreement,which indicates that the approximations used are reasonable.On the other hand,the difference brought by the two numerators is non-negligible.

    Figure 1.The comparison of Equations (8) and (9).The dark blue solid line represents the numerical solution result of Equation(8),while orange and green dashed lines correspond to Equation (9) and the result of K86,respectively.

    Suppose there areNstars with uniform mass randomly distributed in a circular plane with radiusR.We choose a circular plane,rather than a rectangular one,for ease of calculation,which will not lead to a different result.Each star and its corresponding negative mass sheet occupy a circular area with radiusR0=.

    Hence,the final scattering angle distribution is to repeat the convolution operation of ρ1(φ)Ntimes.In Fourier space we have This is the integral representation of the scattering PDF in terms of our negative mass sheet model.Not surprisingly,it has the same form as Equation(2)except for the coefficient 1.454.

    In Figure 2 we compare the numerical results (dashed lines)of Equations(12)and(2)(K86,Equation(13))with a series of simulation results (solid lines) obtained using our GPU-PMO code (Zheng et al.2022).The PDF of the deflection angle is calculated with a varying number of lenses (from 102to 107)signified by different colors in Figure 2.Only 102,103,104and 106are shown in the figure for clarity.The numerical result for Equation (2) is plotted in the left panel while that for Equation (12) is in the right panel.The deflection angle is scaled by φ0.As affirmed in Figure 2,our modified equation,Equation (12),fits the simulation results better compared to Equation (2).This suggests that our assumption and derived new coefficient of 1.454 are reasonable.

    Figure 2.The probability density distribution of the deflection angle.Solid lines represent the distribution realized by our simulation,dashed lines represent the numerical results of Equation (2)concluded by K86 (left) and the newly acquired Equation (12)(right).The star mass is uniformly distributed with M=1 M⊙,and different colors stand for deflection angle distributions with different numbers of stars: 102,103,104 and 106.

    2.2.The Fitting Formula for Deflection Angle Probability Density Function

    As mentioned in K86,the limits of the integration of Equation(2)cannot run from 0 to ∞,otherwise it will lead to a formal divergence.Therefore,in practice,K86 terminates the integration when the integrand becomes exponentially small.They calculate the asymptotic limits for Equation (2) and conclude that for small φ,the density is a Gaussian,and for large φ,it is inversely proportional to the fourth power of the deflection angle.

    In this work,we attempt to obtain the analytic result of Equation (12) rather than rely on the asymptotic limits.

    First,we definet=φ/φ0,replace the coefficient 1.454 with the parameter β,and defineσ2=ln(β),to rewrite Equation (12)

    By inserting Taylor expansion

    The specific process of solving these two integrals is described in Appendix B,here we jump to the result

    and for the infinite end,Ei(z)has an asymptotic expansion state as

    Theoretically,series (19) does not converge for a fixedz,therefore,the asymptotic series needs to be cut off before the term becomeszn

    Altogether,we obtain the fitting formula of the PDF

    To investigate the behavior of the fitting formula (20) at large and small scattering angles,we insert the series(18) and(19) into the fitting formula and take the limitt→0,t→∞.

    For φ ?φ0,i.e.,t→0,we find

    For φ ?φ0,i.e.,t→∞we infer that

    and this result is generally consistent with that in K86.

    In addition,the normalization of the fitting PDF given by Equation(20)is required,and we prove that it has already been normalized to unity.This part is described in Appendix C.

    We examine Equation (20) by comparing its solution with numerical results of Equation (12) and the simulations,as sketched in Figure 3.Solid lines are simulation results (left panel) and numerical results (right panel) of Equation (12),while dashed lines are the solutions of Equation (20) in both panels.It can be concluded from the figure that the fitting PDF,Equation(20),is reliable,and its numerical solution is in good agreement with both the simulations and the numerical results of Equation (12).

    Figure 3.Comparison between the simulation (solid lines in left panel),Equation (12) (solid lines in right panel) and Equation (20) (dashed lines in both panels).Different colors stand for the deflection angle distributions with different numbers of stars:102,103,104 and 106,which are uniformly distributed with M >=1 M⊙.

    Furthermore,we expand our result to microlenses with a mass spectrum,along the path of K86.The PDF for a nonuniform mass distribution could be described as

    According to the convention above,we also verify the validity of Equation (23) and Equation (24),similar to Figure 3,as presented in Figure 4.A Salpeter mass distribution with the mass range from 0.1M⊙to 10M⊙resulting in 〈M〉=0.3M⊙is chosen in our realization.Notably,here in Figure 4 the deflection angle is scaled with.Good consistency can be drawn from both the left panel and the right panel indicating the reliability of Equation (23) and Equation (24).

    Figure 4.The probability density distribution of the deflection angle with a Salpeter mass distribution.Solid lines represent the distribution realized by our simulation(left)and the numerical result of Equation(23)(right),while dashed lines signify the numerical result of Equation(24).The star mass follows a Salpeter distribution,and the mass range is from 0.1 M⊙to 10 M⊙,leading to 〈M〉=0.3 M⊙.Different colors stand for different numbers of stars: 104,105,106 and 107.

    Figure 5.The comparison of the approximate k and the real k(top)and relative error of (bottom).Two vertical gray lines signify the value of σ when N=102 and N=109,respectively.The horizontal gray line in the bottom panel marks the relative error of equaling 1%.

    Figure 6.The comparison results of the fitting formula Equation(20),the new Gaussian distribution and the Gaussian distribution from K86;the x-axis is logarithmic.The red,green and blue lines stand for the situation with 102,104 and 106 stars in the uniform mass.

    2.3.Gaussian Approximation of the Fitting Formula

    In the previous section,we obtained a fitting formula for the integral form of the probability distribution for microlensing induced deflection angle.Nevertheless,in order to simplify the following theoretical derivations,we aim to find a suitable Gaussian approximation,which is suggested by the central limit theorem applied to multiple deflection distributions that are dominated by small angles.Given the deviations between Equation (2) and our fitting formula and the simulations mentioned before,the Gaussian distribution obtained by K86 may not be the best approximation for our fitting formula.

    Assuming that the standard deviation of the new Gaussian distribution is σn,we can use chi-squared as a measure to find a suitable σnfor the fitting formula(20).

    We define χ2as

    From solving the integrals on both sides of the equation we acquire

    Despite a complex solution for this cubic equation having been obtained,we decide to replace it with an approximate but more concise form

    3.Summary

    The cosmological microlensing effect can be induced by the existence of compact objects in the lens plane,leading to observable stochastic variations in the fluxes of the lensed sources.In order to improve our understanding of this effect and facilitate further analytical research,it is necessary to reexamine the microlensing deflection angle.We calculate the PDF of the light deflection angle using a more appropriate assumption and obtain an integral expression that has better agreement with the simulation results.Moreover,through mathematical deduction,we obtain a fitting formula for this integral expression,which allows for the direct and almost accurate calculation of the deflection angle probability density distribution.In addition,we find a more suitable Gaussian approximation for this fitting formula,which can simplify subsequent theoretical work.

    Acknowledgments

    The authors thank the anonymous referee for helpful comments.This work is supported by the National Natural Science Foundation of China (NSFC,Grant Nos.U1931210,11673065 and 11273061).We acknowledge the cosmology simulation database (CSD) in the National Basic Science Data Centre (NBSDC) and its funds the NBSDC-DB-10 (No.2020000088).We acknowledge the science research grants from the China Manned Space Project with No.CMS-CSST-2021-A12.

    Data Availability

    This theoretical study does not generate any new data.

    Appendix A The Derivation of Equation (8)

    For Equation (8) ata?1,we make some deductions by integrating it by parts and using some basic properties of a Bessel function:

    noting that F(0)=1.

    For smalla,the Taylor series of the J1state is

    Since expanding Equation(A2)should be valid for some finite area,i.e.,0

    Then we expand the function of α near infinity

    Theoretically,we expect the value ofsshould be very close to 1.8412,which is the first root of transcendental equation J0(x)=J2(x).Further numerical test suggests thats?1.866 is a better choice,which gives

    Appendix B The Derivation of Equation (15)

    The first integral formula of Equation (15) is a special case(l=1) of the following result

    Equation (B1) can be derived by inserting the Taylor series of J0into the left integral,and exchanging the integration and summation.

    Forl=1,we have

    To deal with the second term in Equation (15),we take the derivative oflon both sides of Equation (B1) and letl=3,

    Appendix C Normalization of the Fitting Probability Density Function

    We will prove that the fitting PDF given by Equation (20)has already been normalized to unity.Here,we list two basic integral formulas,

    Combining them with the series (18),by straightforward practice we have

    嫁个100分男人电影在线观看| 久久久久久久久久黄片| 香蕉丝袜av| 女警被强在线播放| 欧美日本视频| 在线视频色国产色| 免费搜索国产男女视频| 日韩欧美在线二视频| 欧美日韩瑟瑟在线播放| 久久精品夜夜夜夜夜久久蜜豆 | 美女高潮到喷水免费观看| 亚洲狠狠婷婷综合久久图片| or卡值多少钱| 国产真实乱freesex| 精品一区二区三区av网在线观看| 成人欧美大片| 黑人操中国人逼视频| 一本综合久久免费| 亚洲精品国产区一区二| 一进一出抽搐gif免费好疼| 一a级毛片在线观看| 国产亚洲精品久久久久5区| 亚洲人成伊人成综合网2020| 熟妇人妻久久中文字幕3abv| 日韩 欧美 亚洲 中文字幕| 日本免费a在线| 十分钟在线观看高清视频www| 韩国av一区二区三区四区| 亚洲av成人不卡在线观看播放网| 国内毛片毛片毛片毛片毛片| 老司机福利观看| 99国产精品一区二区三区| 日韩成人在线观看一区二区三区| 亚洲av熟女| 色综合欧美亚洲国产小说| 欧美性长视频在线观看| 久久国产精品男人的天堂亚洲| 丝袜美腿诱惑在线| 午夜久久久在线观看| 又黄又爽又免费观看的视频| 久久天堂一区二区三区四区| 国产熟女午夜一区二区三区| 特大巨黑吊av在线直播 | 国产精品免费一区二区三区在线| 一区二区三区精品91| 久久午夜综合久久蜜桃| 黑人巨大精品欧美一区二区mp4| 黄色女人牲交| 国产av又大| 亚洲欧美日韩高清在线视频| 久久久久亚洲av毛片大全| 国产精品日韩av在线免费观看| 免费在线观看黄色视频的| 免费观看精品视频网站| 老熟妇仑乱视频hdxx| 女生性感内裤真人,穿戴方法视频| 亚洲精品久久国产高清桃花| 中文字幕精品亚洲无线码一区 | 黄色成人免费大全| 人人妻,人人澡人人爽秒播| 美女午夜性视频免费| 中文字幕另类日韩欧美亚洲嫩草| 色尼玛亚洲综合影院| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利一区二区在线看| 久久人妻福利社区极品人妻图片| 免费看十八禁软件| 男人操女人黄网站| 1024手机看黄色片| 精品欧美国产一区二区三| 成人三级做爰电影| 高潮久久久久久久久久久不卡| 色老头精品视频在线观看| 欧美国产精品va在线观看不卡| 色在线成人网| 男女视频在线观看网站免费 | 激情在线观看视频在线高清| 男女床上黄色一级片免费看| 99热6这里只有精品| 国产熟女xx| 国产成人系列免费观看| www.www免费av| 黄片播放在线免费| 亚洲精品在线观看二区| 一个人观看的视频www高清免费观看 | 亚洲激情在线av| 大香蕉久久成人网| 热re99久久国产66热| 婷婷精品国产亚洲av在线| 久久中文字幕一级| 级片在线观看| 好男人电影高清在线观看| 成人免费观看视频高清| 免费看日本二区| 超碰成人久久| 18禁国产床啪视频网站| 女警被强在线播放| 成人国产综合亚洲| 国产精品久久久久久精品电影 | 亚洲真实伦在线观看| 制服丝袜大香蕉在线| 成人国语在线视频| 一级毛片高清免费大全| 熟妇人妻久久中文字幕3abv| 麻豆久久精品国产亚洲av| 久久国产精品男人的天堂亚洲| 波多野结衣高清作品| 亚洲精品中文字幕一二三四区| 婷婷丁香在线五月| 国产精品免费视频内射| 岛国视频午夜一区免费看| 好男人在线观看高清免费视频 | 黑丝袜美女国产一区| 给我免费播放毛片高清在线观看| 亚洲欧洲精品一区二区精品久久久| 欧美日韩瑟瑟在线播放| 无遮挡黄片免费观看| 人成视频在线观看免费观看| 亚洲欧洲精品一区二区精品久久久| 黑人巨大精品欧美一区二区mp4| 搡老岳熟女国产| 一二三四社区在线视频社区8| 国产亚洲精品久久久久5区| 欧美一级毛片孕妇| 亚洲成人免费电影在线观看| 欧美激情极品国产一区二区三区| 在线看三级毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 国产私拍福利视频在线观看| 俺也久久电影网| 怎么达到女性高潮| 午夜免费成人在线视频| 免费人成视频x8x8入口观看| 99久久精品国产亚洲精品| 欧美黄色淫秽网站| 亚洲午夜理论影院| 男人舔女人的私密视频| 香蕉av资源在线| 亚洲色图 男人天堂 中文字幕| 国产激情欧美一区二区| 在线观看66精品国产| 一级a爱片免费观看的视频| 久久久国产精品麻豆| 别揉我奶头~嗯~啊~动态视频| 亚洲精品国产一区二区精华液| 一级毛片高清免费大全| 老司机靠b影院| 国产精品,欧美在线| 少妇裸体淫交视频免费看高清 | 国产v大片淫在线免费观看| 国产精品免费视频内射| 国产不卡一卡二| 变态另类丝袜制服| 免费看十八禁软件| 亚洲国产中文字幕在线视频| 看黄色毛片网站| 搞女人的毛片| 国产成人欧美| 国产免费av片在线观看野外av| 麻豆av在线久日| 亚洲精品av麻豆狂野| 99国产极品粉嫩在线观看| 久久久久久久精品吃奶| 淫妇啪啪啪对白视频| 自线自在国产av| 国产精品日韩av在线免费观看| av片东京热男人的天堂| 国语自产精品视频在线第100页| 亚洲成av片中文字幕在线观看| 午夜激情福利司机影院| 日本成人三级电影网站| 老汉色av国产亚洲站长工具| 欧美黄色淫秽网站| 999久久久精品免费观看国产| 成在线人永久免费视频| 两个人看的免费小视频| 中文字幕人成人乱码亚洲影| 在线观看免费午夜福利视频| 麻豆成人av在线观看| 久久香蕉国产精品| 亚洲第一电影网av| 97碰自拍视频| 国产成人影院久久av| 啦啦啦韩国在线观看视频| 日本五十路高清| 欧美黑人巨大hd| 免费观看精品视频网站| 日韩欧美一区二区三区在线观看| 成年免费大片在线观看| 999久久久精品免费观看国产| av在线天堂中文字幕| 欧美日韩亚洲国产一区二区在线观看| 久久婷婷成人综合色麻豆| 免费看美女性在线毛片视频| 中文字幕久久专区| 草草在线视频免费看| 在线观看日韩欧美| 亚洲国产精品合色在线| 美女高潮到喷水免费观看| 精品欧美一区二区三区在线| 一进一出抽搐gif免费好疼| 欧美zozozo另类| 中文字幕久久专区| 黄色女人牲交| 国产精品美女特级片免费视频播放器 | 午夜老司机福利片| 麻豆成人av在线观看| 国产三级黄色录像| 国产亚洲欧美精品永久| 老熟妇仑乱视频hdxx| 久久久久久久精品吃奶| 中文字幕高清在线视频| 亚洲av美国av| 成人18禁在线播放| 搡老岳熟女国产| 久久九九热精品免费| 黑人操中国人逼视频| 日韩欧美一区二区三区在线观看| xxxwww97欧美| 精品国产亚洲在线| 大型av网站在线播放| 夜夜躁狠狠躁天天躁| 国产亚洲精品第一综合不卡| 禁无遮挡网站| 欧美日韩瑟瑟在线播放| 久久中文字幕人妻熟女| 中文字幕久久专区| 男女午夜视频在线观看| 午夜精品久久久久久毛片777| 中文字幕精品免费在线观看视频| 亚洲欧美日韩无卡精品| 国产精品精品国产色婷婷| 99久久精品国产亚洲精品| av免费在线观看网站| 亚洲精品色激情综合| 国产成人欧美在线观看| 亚洲电影在线观看av| 国产精品精品国产色婷婷| 中文在线观看免费www的网站 | 天天添夜夜摸| 99精品在免费线老司机午夜| 午夜免费观看网址| 非洲黑人性xxxx精品又粗又长| 男男h啪啪无遮挡| 男人舔奶头视频| 日韩欧美三级三区| 午夜精品在线福利| 欧美最黄视频在线播放免费| 老汉色∧v一级毛片| 国内毛片毛片毛片毛片毛片| 色尼玛亚洲综合影院| 黑人巨大精品欧美一区二区mp4| 中文字幕高清在线视频| 久久久久久久久免费视频了| 丝袜在线中文字幕| 国产精品爽爽va在线观看网站 | 人妻丰满熟妇av一区二区三区| 身体一侧抽搐| 19禁男女啪啪无遮挡网站| 99热6这里只有精品| 人妻久久中文字幕网| 黄片播放在线免费| 亚洲成人久久性| 亚洲精品粉嫩美女一区| 女警被强在线播放| 久久久久久久久免费视频了| 久久久久久免费高清国产稀缺| 国产欧美日韩一区二区三| 美女 人体艺术 gogo| 一二三四在线观看免费中文在| 亚洲性夜色夜夜综合| 人人澡人人妻人| 国产真人三级小视频在线观看| 一进一出抽搐动态| 麻豆久久精品国产亚洲av| 国产精品久久久久久人妻精品电影| netflix在线观看网站| 88av欧美| 国产精品久久电影中文字幕| 一级a爱片免费观看的视频| 午夜激情福利司机影院| 大型黄色视频在线免费观看| 在线观看免费日韩欧美大片| 亚洲人成网站在线播放欧美日韩| 亚洲精华国产精华精| 超碰成人久久| 久久中文字幕一级| 麻豆一二三区av精品| 免费电影在线观看免费观看| 中文在线观看免费www的网站 | 宅男免费午夜| 成年人黄色毛片网站| 真人做人爱边吃奶动态| 最好的美女福利视频网| 夜夜爽天天搞| svipshipincom国产片| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品美女久久av网站| 亚洲成国产人片在线观看| 少妇 在线观看| 亚洲av美国av| 无人区码免费观看不卡| 国产黄片美女视频| 亚洲av成人av| 欧美成狂野欧美在线观看| 国产熟女xx| 亚洲片人在线观看| 国产欧美日韩一区二区精品| 中文字幕久久专区| 不卡一级毛片| 天堂动漫精品| 欧美色欧美亚洲另类二区| 99久久99久久久精品蜜桃| 亚洲真实伦在线观看| 在线观看午夜福利视频| 亚洲欧美精品综合一区二区三区| 久久久久久久精品吃奶| www日本在线高清视频| 99国产综合亚洲精品| 成人精品一区二区免费| 国产精品爽爽va在线观看网站 | 草草在线视频免费看| 欧美一级毛片孕妇| 男人舔女人下体高潮全视频| 国产精品久久电影中文字幕| 巨乳人妻的诱惑在线观看| 国产麻豆成人av免费视频| 成人av一区二区三区在线看| 久99久视频精品免费| 老司机靠b影院| 一本一本综合久久| 日韩欧美 国产精品| 欧美乱妇无乱码| 亚洲三区欧美一区| 欧美成狂野欧美在线观看| 熟女电影av网| 成年人黄色毛片网站| 一区二区三区激情视频| 国产色视频综合| 中文亚洲av片在线观看爽| 久久精品成人免费网站| 黄网站色视频无遮挡免费观看| 中国美女看黄片| 在线观看66精品国产| 老鸭窝网址在线观看| 岛国在线观看网站| a级毛片在线看网站| 白带黄色成豆腐渣| a级毛片在线看网站| 精品福利观看| www.www免费av| 国产视频一区二区在线看| 视频在线观看一区二区三区| 夜夜看夜夜爽夜夜摸| 俺也久久电影网| 国产亚洲精品久久久久久毛片| 一级片免费观看大全| 手机成人av网站| 欧美zozozo另类| 美女国产高潮福利片在线看| 人成视频在线观看免费观看| 欧美国产精品va在线观看不卡| 波多野结衣高清作品| 我的亚洲天堂| 亚洲中文av在线| 久久 成人 亚洲| 19禁男女啪啪无遮挡网站| 啦啦啦韩国在线观看视频| 99在线人妻在线中文字幕| 制服人妻中文乱码| 免费高清视频大片| 99国产精品99久久久久| 日韩视频一区二区在线观看| 91九色精品人成在线观看| 亚洲九九香蕉| 亚洲一区中文字幕在线| 久久久久国内视频| 欧美亚洲日本最大视频资源| 中文字幕人妻熟女乱码| 国产精品久久久久久亚洲av鲁大| 久久久国产成人精品二区| 亚洲美女黄片视频| 校园春色视频在线观看| 日韩欧美一区视频在线观看| 亚洲天堂国产精品一区在线| 亚洲成av片中文字幕在线观看| 午夜免费鲁丝| 色综合站精品国产| 无限看片的www在线观看| 51午夜福利影视在线观看| 亚洲国产精品合色在线| 亚洲精品久久国产高清桃花| 身体一侧抽搐| 精品无人区乱码1区二区| 国产av在哪里看| xxxwww97欧美| 久久狼人影院| 国产片内射在线| 99热只有精品国产| 国产精品电影一区二区三区| 黄色视频,在线免费观看| 熟妇人妻久久中文字幕3abv| 母亲3免费完整高清在线观看| 国产精品免费视频内射| 久久午夜亚洲精品久久| 欧美+亚洲+日韩+国产| xxxwww97欧美| avwww免费| 日韩欧美国产在线观看| 19禁男女啪啪无遮挡网站| 国产成人精品久久二区二区免费| 久久人妻福利社区极品人妻图片| 老熟妇乱子伦视频在线观看| 黄片大片在线免费观看| 亚洲专区中文字幕在线| www国产在线视频色| 欧美在线黄色| 国产又黄又爽又无遮挡在线| 欧美激情极品国产一区二区三区| 国产亚洲精品一区二区www| 国产高清有码在线观看视频 | 亚洲 国产 在线| 国产区一区二久久| 一区二区日韩欧美中文字幕| 国产成人av激情在线播放| 琪琪午夜伦伦电影理论片6080| 欧美乱码精品一区二区三区| 99国产精品一区二区蜜桃av| 久久香蕉精品热| 久9热在线精品视频| 此物有八面人人有两片| 欧美成人免费av一区二区三区| 久久精品国产亚洲av香蕉五月| xxx96com| 琪琪午夜伦伦电影理论片6080| 好看av亚洲va欧美ⅴa在| av视频在线观看入口| 精品不卡国产一区二区三区| 欧美日韩福利视频一区二区| 欧美日本亚洲视频在线播放| www.精华液| 美女高潮喷水抽搐中文字幕| 亚洲精品av麻豆狂野| 99国产综合亚洲精品| 美女国产高潮福利片在线看| 91国产中文字幕| 好男人电影高清在线观看| 久久久国产成人精品二区| 成人午夜高清在线视频 | 欧美zozozo另类| 一二三四在线观看免费中文在| 欧美乱妇无乱码| 亚洲av成人不卡在线观看播放网| 国产亚洲欧美精品永久| 99精品欧美一区二区三区四区| 精品高清国产在线一区| 欧美成人性av电影在线观看| 国产精品亚洲一级av第二区| 国产国语露脸激情在线看| 波多野结衣av一区二区av| 国产精品永久免费网站| 亚洲激情在线av| 日日摸夜夜添夜夜添小说| 中文字幕另类日韩欧美亚洲嫩草| 日本成人三级电影网站| 一进一出抽搐动态| 国产不卡一卡二| 国产在线精品亚洲第一网站| 黑丝袜美女国产一区| 曰老女人黄片| 欧美人与性动交α欧美精品济南到| 国产男靠女视频免费网站| 亚洲国产中文字幕在线视频| 天堂√8在线中文| 久久精品国产综合久久久| 99国产精品一区二区蜜桃av| 国产一区二区三区视频了| 97超级碰碰碰精品色视频在线观看| avwww免费| 人妻丰满熟妇av一区二区三区| 成在线人永久免费视频| 侵犯人妻中文字幕一二三四区| av福利片在线| 巨乳人妻的诱惑在线观看| xxx96com| 久久人妻福利社区极品人妻图片| 一边摸一边做爽爽视频免费| 精品无人区乱码1区二区| av欧美777| 啦啦啦观看免费观看视频高清| 久久中文字幕人妻熟女| 国产视频一区二区在线看| 国产成人av教育| 日韩 欧美 亚洲 中文字幕| 国产成人av激情在线播放| 俄罗斯特黄特色一大片| 国产亚洲精品久久久久久毛片| 午夜老司机福利片| 久久婷婷人人爽人人干人人爱| 日日爽夜夜爽网站| 国产成人精品久久二区二区91| 欧美日韩黄片免| 首页视频小说图片口味搜索| 国产91精品成人一区二区三区| 精品高清国产在线一区| 母亲3免费完整高清在线观看| 12—13女人毛片做爰片一| 久久久久国产一级毛片高清牌| 久久久久久久久久黄片| 欧美乱色亚洲激情| 亚洲成av人片免费观看| 亚洲国产毛片av蜜桃av| 黄色a级毛片大全视频| 香蕉丝袜av| 成人特级黄色片久久久久久久| 国产视频内射| 免费在线观看完整版高清| 久久久久免费精品人妻一区二区 | 日韩欧美在线二视频| 在线永久观看黄色视频| 色尼玛亚洲综合影院| 午夜福利一区二区在线看| 国内久久婷婷六月综合欲色啪| 午夜免费观看网址| xxx96com| АⅤ资源中文在线天堂| 国产99久久九九免费精品| 女生性感内裤真人,穿戴方法视频| 真人做人爱边吃奶动态| 免费看美女性在线毛片视频| 美女国产高潮福利片在线看| 国产精品 国内视频| 亚洲精品在线美女| 老司机午夜福利在线观看视频| 欧美黑人欧美精品刺激| 亚洲最大成人中文| 麻豆国产av国片精品| 午夜福利欧美成人| 成人一区二区视频在线观看| а√天堂www在线а√下载| 老司机靠b影院| 成人亚洲精品av一区二区| 国产午夜精品久久久久久| 亚洲色图av天堂| bbb黄色大片| 色综合亚洲欧美另类图片| 亚洲av成人一区二区三| 男人的好看免费观看在线视频 | 亚洲一码二码三码区别大吗| 少妇粗大呻吟视频| 日本三级黄在线观看| 90打野战视频偷拍视频| 久热爱精品视频在线9| 很黄的视频免费| 精品国产美女av久久久久小说| 韩国av一区二区三区四区| 国产亚洲av嫩草精品影院| 一级a爱片免费观看的视频| 欧美最黄视频在线播放免费| 一个人观看的视频www高清免费观看 | 国产精品亚洲av一区麻豆| 国产精品二区激情视频| 女性被躁到高潮视频| 欧美日韩一级在线毛片| 男女做爰动态图高潮gif福利片| 亚洲午夜理论影院| 91国产中文字幕| 国产一区在线观看成人免费| 看片在线看免费视频| 在线观看午夜福利视频| 亚洲欧美日韩无卡精品| 国产激情欧美一区二区| 午夜福利在线观看吧| 色在线成人网| 国产精品电影一区二区三区| 久久精品91无色码中文字幕| 午夜福利高清视频| 女人被狂操c到高潮| 国产又色又爽无遮挡免费看| 国产av一区在线观看免费| 国产精品免费一区二区三区在线| 亚洲国产欧美日韩在线播放| 可以在线观看的亚洲视频| 午夜影院日韩av| 国产精品久久电影中文字幕| 久久精品影院6| 亚洲精品一卡2卡三卡4卡5卡| av片东京热男人的天堂| 老汉色av国产亚洲站长工具| 777久久人妻少妇嫩草av网站| 国产视频内射| 天堂√8在线中文| 亚洲精品一卡2卡三卡4卡5卡| 国产97色在线日韩免费| 亚洲熟妇熟女久久| 亚洲五月色婷婷综合| 精品无人区乱码1区二区| 亚洲av美国av| 免费无遮挡裸体视频| 亚洲成a人片在线一区二区| 免费高清视频大片| 一级a爱视频在线免费观看| 久久久久久亚洲精品国产蜜桃av| 国产欧美日韩精品亚洲av| 黄色成人免费大全| 狂野欧美激情性xxxx| 宅男免费午夜| 黑人操中国人逼视频| a级毛片在线看网站| 日韩免费av在线播放| 首页视频小说图片口味搜索| 日韩精品免费视频一区二区三区| 欧美大码av| or卡值多少钱| 国语自产精品视频在线第100页|