• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Way to Quench: Galaxy Evolution in A2142

    2023-09-03 01:36:24ChengGongQuHengYuAntonaldoDiaferioJubeeSohnandDengQiLiu

    Cheng-Gong Qu,Heng Yu,Antonaldo Diaferio,Jubee Sohn,and DengQi Liu

    1 Department of Astronomy,Beijing Normal University,Beijing 100875,China;yuheng@bnu.edu.cn

    2 Dipartimento di Fisica,Università di Torino,Via P.Giuria 1,I-10125 Torino,Italy

    3 Istituto Nazionale di Fisica Nucleare (INFN),Sezione di Torino,Via P.Giuria 1,I-10125 Torino,Italy

    4 Astronomy Program,Department of Physics and Astronomy,Seoul National University,1 Gwanak-ro,Gwanak-gu,Seoul 08826,Republic of Korea

    5 Smithsonian Astrophysical Observatory,60 Garden Street,Cambridge,MA 02138,USA

    Abstract We show how the star formation activity of galaxies is progressively inhibited from the outer region to the center of the massive cluster A2142.From an extended spectroscopic redshift survey of 2239 galaxies covering a circular area of radius ~11 Mpc from the cluster center,we extract a sample of 333 galaxies with known stellar mass,star formation rate,and spectral index Dn4000.We use the Blooming Tree algorithm to identify the substructures of the cluster and separate the galaxy sample into substructure galaxies,halo galaxies,and outskirt galaxies.The substructure and halo galaxies are cluster members,whereas the outskirt galaxies are only weakly gravitationally bound to the cluster.For the cluster members,the star formation rate per stellar mass decreases with decreasing distance R from the cluster center.Similarly,the spectral index Dn4000 increases with R,indicating an increasing average age of the stellar population in galaxies closer to the cluster center.In addition,star formation in substructure galaxies is generally more active than in halo galaxies and less active than in outskirt galaxies,proving that substructures tend to slow down the transition between field galaxies and cluster galaxies.We finally show that most actively star-forming galaxies are within the cluster infall region,whereas most galaxies in the central region are quiescent.

    Key words: galaxies: clusters: individual (A2142)– galaxies: star formation– galaxies: evolution

    1.Introduction

    According to the current model of the formation of cosmic structures,clusters of galaxies form by gravitational instability from perturbations in the initial matter density field.Small groups of galaxies flow along the filaments of the cosmic web and contribute to the formation and evolution of galaxy clusters.In hierarchical scenarios,increasingly massive clusters form,on average,at increasingly later times (Neto et al.2007;Boylan-Kolchin et al.2009).

    Spectrophotometric properties of galaxies are correlated with the density of the galaxy environment.For example,galaxies in the local universe show two distinct distributions in the color–magnitude diagram: a red sequence,mostly due to early-type galaxies,and a blue cloud,mostly due to star-forming late-type galaxies(Strateva et al.2001;Blanton et al.2003).Galaxies on the red sequence are generally located in the dense central regions of galaxy clusters,whereas blue-cloud galaxies populate less dense environments (Dressler 1980;Postman &Geller 1984;Balogh et al.2004;Rawle et al.2013;Odekon et al.2018;Mishra et al.2019).In the current model of galaxy formation,late-type galaxies might evolve into early-type galaxies through various processes,including galaxy merging,tidal stripping,and ram pressure stripping(Bekki 1999;Taylor&Babul 2004).While falling from the outskirts to the center of a massive galaxy cluster,galaxies are likely to be affected by these types of interaction.Although the shock of the hot intracluster medium(ICM)acting on the cold gas of the galaxy can sometimes increase the star formation activity (Safarzadeh&Loeb 2019),this ram pressure stripping mostly removes cold gas from the galaxy and inhibits star formation (Gunn et al.1972;Balogh et al.2000;Jablonka et al.2013;Peng et al.2015;Deshev et al.2020;Taylor et al.2020).The timescale associated with this starvation mechanism is ~4 Gyr (Peng et al.2015),generally longer than the timescale for ram pressure stripping of ~0.5–4 Gyr.

    In a cluster,the local galaxy density is correlated with the distance from the cluster center,and the fraction of late-type galaxies increases with clustrocentric distance,as happens,for example,in the Perseus cluster (Meusinger et al.2020).Similarly,in A2029,the spectral indexDn4000 of the cluster galaxies,an indicator of the age of their stellar population,decreases with clustrocentric distance,suggesting younger stellar populations in the outer galaxies,as expected for latetype galaxies (Sohn et al.2019).

    Most rich clusters exhibit some amount of substructure in the galaxy distribution (Geller &Beers 1982;Wen &Han 2013).Since galaxies in substructures have relative velocities comparable to the velocity dispersion of stars in galaxies,the probability of galaxy mergers increases (Girardi et al.2015;Zarattini et al.2016).Indeed,many early-type galaxies are in substructures (Einasto et al.2014),suggesting that galaxy mergers might have already taken place before the galaxies were completely accreted by the cluster.Because of the diversity of environments within a galaxy cluster and its outer region,investigating the properties of cluster galaxies provides crucial information on galaxy evolution.

    A2142 is a massive galaxy cluster at redshiftz~0.0898.It is located at the center of a supercluster connected to the largescale filamentary structure(Einasto et al.2020).The cold fronts of A2142 observed in X-rays are probably the result of a sloshing cool core in the central region(Markevitch et al.2001;Tittley &Henriksen 2005;Owers et al.2011).A galaxy group that is undergoing ram pressure stripping is also observed near the radiusR500(Eckert et al.2014).The outskirts of the cluster are dominated by star-forming blue galaxies,unlike the inner region (Einasto et al.2018).Although the dense environment of the central region of the cluster has an impact on the evolution of galaxies,many galaxies are within high-density substructures flowing toward the cluster along filaments that surround it.The relation between galaxy properties,clustrocentric distance,and local environment is thus complicated by the presence of substructures.

    The caustic method based on a hierarchical clustering algorithm (Yu et al.2015) can be used to identify the substructures of clusters.The algorithm was successfully applied to A85 (Yu et al.2016) and A2142 (Liu et al.2018).The Blooming Tree algorithm is an updated version of the algorithm (Yu et al.2018).Here,we plan to apply the Blooming Tree algorithm to identify the substructures of A2142 and constrain the relation between galaxy properties and local environment.

    This paper is organized as follows.In Section 2,we present our data.In Section 3,we separate our sample into three subsamples according to their membership of the cluster,substructures,or outer region.We distinguish star-forming galaxies from quiescent galaxies,and discuss the relation between their physical properties and their environment.We summarize our results in Section 4.Throughout this paper,we adopt a Wilkinson Microwave Anisotropy Probe standard cosmological model with Ωm=0.272,ΩΛ=0.728,andH0=70.4 km s?1Mpc?1(Komatsu et al.2011).All the errors we mention are 1σ.

    2.Observational Data

    Liu et al.(2018)compiled a spectroscopic redshift survey of 2239 galaxies in the field of view of A2142.Hereafter,we call these 2239 galaxies thez-available galaxies.This catalog covers a circle of radius 0°.56 from the cluster center,whose celestial coordinates are R.A.=239°.5833 and decl.=27°2334.This angular radius corresponds to a radius of 10.8 Mpc at the cluster redshiftz=0.09.Figure 1 shows the redshift distribution of the galaxies around this redshift.For the analysis of the structure of A2142,we consider the 1186 galaxies with redshift in the range[0.06,0.12].Hereafter,we call these 1186 galaxies thez-slice galaxies.The redshift distribution of thezslice galaxies is shown by the gray bars in Figure 1.The red solid line is the Gaussian fit to this distribution obtained after 3σ clipping.

    The star formation rates (SFRs) and the stellar masses,M?,of thez-slice galaxies are collected from the GALEX–SDSS–WISE Legacy Catalog (GSWLC,Salim et al.2018).This catalog is based on photometric data in multiple bands,including UV data taken by the Galaxy Evolution Explorer(GALEX,Martin et al.2005) and optical data taken by the Sloan Digital Sky Survey (SDSS,Abazajian et al.2009).

    We also consider the spectral indexDn4000,the ratio of the average flux densities in the narrow continuum bands 3850–3950 ? and 4000–4100 ? (Balogh et al.1999).This spectral index correlates with the age of the stellar population that contributes most of the electromagnetic emission in the optical band (Bruzual et al.1983;Poggianti &Barbaro 1997).TheDn4000 values are queried from the database of SDSS(Hopkins et al.2003).

    There are 333 galaxies,out of the 1186z-slice galaxies,with SFRs,stellar massM?,andDn4000 available.Hereafter,we call these 333 galaxies the data-available galaxies.The spectroscopic completeness of the 2239z-available galaxies as a function of the Petrosianr-band magnitude is shown by the blue line in the top panel of Figure 2.The decrease in spectroscopic completeness at magnitudes fainter than 18 mag is caused by the Petrosianr-band magnitude limitmr,Petro,0<17.77 of the spectroscopic galaxy sample of SDSS(Balogh et al.1999).The red dashed line indicates the ratio between the 333 data-available galaxies and the 1186z-slice galaxies.

    Figure 2.Top panel:the spectroscopic completeness of the z-available galaxies as a function of the Petrosian r-band magnitude(blue line).The red dashed line shows the ratio between the number of data-available galaxies and the number of z-slice galaxies.Bottom panel: the distribution of the ratio between the number of dataavailable galaxies and the number of z-slice galaxies on the sky.In this panel only galaxies with mr,Petro,0<17.77 are considered.The red circle shows a circle of radius 0°.56 around the cluster center indicated by the red cross.

    The bottom panel of Figure 2 shows the spatial distribution of the ratio between the number of data-available galaxies and the number ofz-slice galaxies.We limit the computation of this ratio to the galaxies withmr,Petro,0<17.77.We have 303 dataavailable galaxies and 319z-slice galaxies brighter than this magnitude limit.The two-dimensional map shown in Figure 2 has 10×10 pixels for a squared field of view of 1°.12 on a side.The overall ratio is 303/319=0.95 with a standard deviation 0.286.In the panel,the pixels outside the red circle contain no data.

    3.Data Analysis

    In Section 3.1 we use the Blooming Tree algorithm to split our galaxy sample into three subsamples: halo,substructure,and outskirt galaxies.In Section 3.2 we distinguish starforming galaxies from quiescent galaxies;Section 3.3 discusses the relation between the star formation rate per unit mass (the specific SFR,or sSFR) and the spectral indexDn4000;Section 3.4 focuses on the radial distribution of sSFR andDn4000,and Section 3.5 discusses the galaxy distribution in theR–vdiagram.

    3.1.Halo,Substructure,and Outskirt Galaxies

    The Blooming Tree algorithm is a method for identifying substructure based on the hierarchical clustering algorithm(Yu et al.2018).It arranges all the galaxies in the field of view into a tree,or dendrogram.The arrangement is based on the pairwise projected binding energy,which is estimated from the location of the galaxies on the sky and from their redshift(Diaferio 1999).By adopting a proper density contrast parameter Δη,we can trim the tree into distinct structures:Δη is the difference between two values of η,the former associated with the structure and the latter associated with the surrounding background structure;η combines the line-of-sight velocity dispersion,the size,and the number of galaxies in the structure;increasing values of Δη identify increasingly dense structures (see Yu et al.2018,for further details).

    We apply the Blooming Tree algorithm to the sample of 1186z-slice galaxies.By setting Δη=5,we identify 684 cluster galaxies.By increasing the density contrast to Δη=25,we identify denser structures: we find 16 structures with more than five member galaxies.The basic properties of these 16 structures are listed in Table 1:ngis the number of member galaxies,ndis the number of member galaxies with known SFR,M?,andDn4000,zsubis the average redshift of the structure,andvdispis the velocity dispersion of the structure.All the 480 members of the 16 structures,which are named sub1 to sub16,belong to the 684 cluster galaxies identified with the contrast parameter Δη=5.We associate the remaining 204 out of these 684 galaxies with a diffuse component indicated by grp0 in Table 1.

    Table 1Properties of the Galaxy Structures

    The distribution of thez-slice galaxies on the sky is shown in Figure 3,where the 480 members of the structures are represented as colored squares;the 204 cluster members associated with grp0 are represented as open triangles;the remaining 502z-slice galaxies,which belong neither to the cluster nor to any structure,are represented by black dots.

    Figure 3.Distribution on the sky of the 1186 z-slice galaxies superimposed on the distribution of their Petrosian r-band luminosity.The galaxy sample separates into 382 halo galaxies and 302 substructure galaxies,totalling 684 cluster members,and 502 outskirt galaxies.The open triangles show the members of grp0,the orange squares show the members of the core sub1,the other colored squares show the members of the structures from sub2 to sub16,and the black dots show the outskirt galaxies.The two black dashed circles have radius R500=1.408 Mpc and R200=2.160 Mpc at the cluster redshift z=0.09 (Tchernin et al.2016).

    The galaxies are plotted on top of the map of Petrosianr-band luminosity density.The density map is computed from the 1186z-slice galaxies by assuming that ther-band luminosityLRof each galaxy is smoothed with a 2D Gaussian window of 2′width(see Wen &Han 2013 for details).Figure 3 shows that the distribution of the luminosity density is generally consistent with the distribution of the structures,as expected.

    The structures from sub2 to sub16 are distinct components that we identify as cluster substructures.The structure sub1(orange squares in Figure 3)is located at the cluster center and we identify this structure with the cluster core.We define halo galaxies to be the galaxies in the core and in the structure grp0,substructure galaxies to be members of the structures from sub2 to sub16,and outskirt galaxies to be thez-slice galaxies that are neither halo nor substructure galaxies.

    The 333 data-available galaxies,with known SFR,M?,andDn4000,separate into 109 halo galaxies (grp0 and sub1),80 substructure galaxies (sub2 to sub16),and 144 outskirt galaxies.In the following analysis and discussion we focus on these three galaxy subsamples.

    3.2.Star-forming and Quiescent Galaxies

    Cluster galaxies at low redshift are generally distributed into two distinct groups in the plane of stellar mass versus star formation rate,M?–SFR (Noeske et al.2007;Peng et al.2015): the two groups distinguish the star-forming (SF)galaxies,with smaller values of the spectral indexDn4000,and the quiescent galaxies,with larger values ofDn4000.The 333 data-available galaxies in our sample show this bimodal distribution,with most galaxies being massive and quiescent(Figure 4).It is worth noting that there are only star-forming galaxies whenM?<1010.4M⊙.To keep the completeness of our sample,we do not remove them.However,our later results remain the same without these less massive starforming galaxies.

    Figure 4.The distribution of the 333 data-available galaxies in the SFR?M?plane.The red circles,blue squares,and black triangles represent halo,substructure,and outskirt galaxies,respectively.The black dotted line shows the specific SFR,sSFR=10?11 yr?1,separating SF galaxies from quiescent galaxies.S1 and S2 are the brightest galaxies of substructures sub14 and sub3,respectively.BCG is the brightest galaxy of A2142.

    We consider the sSFR,defined as the SFR per unit stellar massM?.We separate the SF from the quiescent galaxies according to the threshold sSFR=10?11yr?1(McGee et al.2011;Wetzel et al.2012).The 333 data-available galaxies separate into 93 SF galaxies and 240 quiescent galaxies.Table 2 lists how these galaxies are distributed into halo,substructure,and outskirt galaxy samples.The fraction of SF galaxies steadily increases from the halo sample to the outskirt sample.This trend suggests that star formation is progressively quenched from the outskirt galaxies to the substructure and the halo galaxies.The larger fraction of SF galaxies in the substructures than in the halo sample is also consistent with the scenario where the substructure galaxies entered the cluster more recently than the halo galaxies,and star formation in substructure galaxies is less inhibited than in halo galaxies.

    Table 2Star-forming and Quiescent Data-available Galaxies

    There are two SF galaxies with SFR larger than 10M⊙yr?1.We label these galaxies S1 and S2.S1,with log [S FR(M⊙yr-1) ]=1.866,is the brightest galaxy of the substructure sub14;S2,with log [S FR(M⊙yr-1) ]=1.156,is the brightest galaxy of the substructure sub3.Sub14 is a substructure falling toward the center of the cluster at a high speed,as shown by Eckert et al.(2014,2017) and Liu et al.(2018).Ram pressure stripping might enhance the star formation rate of S1 (Roberts et al.2021).The image of S1 is also disturbed,suggesting an ongoing galaxy merger (Liu et al.2018).In contrast,the large SFR of S2 might derive from its nature of grand-design spiral galaxy,whose face-on image appears undisturbed.

    The decreasing fraction of quiescent galaxies from the halo to the outskirt sample is also apparent in the decreasing fraction of galaxies lying on the red-sequence relation in the color–magnitude diagram (Figure 5).The mean colors of the quiescent galaxies are comparable in the three samples:0.99±0.07,0.95±0.06,and 0.96±0.06 for the halo,substructure,and outskirt samples,respectively.

    Figure 5.The color–magnitude(mg–mr)–mr diagram for the halo galaxies(top),substructure galaxies(middle),and outskirt galaxies(bottom).The magenta and cyan dots show the quiescent and SF galaxies,respectively.The dashed line in each panel is the red-sequence fit to the quiescent halo galaxies in the top panel:mg ?mr=?0.0314mr+1.528.

    3.3.The sSFR?Dn4000 Relation

    Figure 6 shows the distributions of the spectral indexDn4000 and the sSFR for the galaxies in our three samples.This figure also shows the correlation between these two quantities.For the halo and substructures galaxies,the distributions peak at small sSFR and largeDn4000,whereas for the outskirt galaxies the distributions appear somewhat flat.This different behavior indicates a correlation between the environment and the galaxy properties.

    Figure 6.Top panel: the distribution of sSFR for the halo galaxies (red histogram),the substructure galaxies (blue histogram),and the outskirt galaxies (hollow histogram).Right panel:same as the top panel for Dn4000.Bottom left panel:the relation between sSFR and Dn4000.The two dotted lines are linear fits to the SF and quiescent galaxies separately.For illustrative purposes,the entire galaxy sample is separated into bins of fixed width on the log (s SFRyr -1) axis: for each of these bins,the shaded areas show the rms values of Dn4000 around the mean.BCG,S1,and S2 are the central bright galaxies of A2142,sub14,and sub3,respectively.

    Our galaxy sample indeed confirms the expected anticorrelation between sSFR andDn4000(Kauffmann et al.2004):Dn4000 increases with the age of the stellar population(Balogh et al.1999) and is thus expected to increase with decreasing sSFR if sSFR decreases with increasing age of the stellar population (Duarte Puertas et al.2022).

    We separately fit the sSFR?Dn4000 relation for the SF galaxies and the quiescent galaxies,and findDn4000=-0.39 log (s SFRyr-1)-2.24andDn4000=-0.06 log (s SFRyr-1) +1.17for the two samples,respectively.The relation is steeper for the sample of SF galaxies than for the quiescent galaxies,suggesting that the star formation activity gradually decreases in increasingly denser environments.

    3.4.The Radial Distribution of sSFR and Dn4000

    The properties of cluster galaxies are closely related to the local galaxy density,which,in turn,generally depends on the clustrocentric distance (Odekon et al.2018;Coccato et al.2020;Meusinger et al.2020).Figure 7 shows the dependence of the sSFR on the projected radiusRfrom the cluster center for the entire galaxy sample (top panel) and for the three galaxy samples separately(bottom panel).The data are divided into 10 equally spaced radial bins.The median value of each bin is given.Their rms values are shown with shading.Despite the large scatter,our entire sample shows that sSFR increases withR.The substructure galaxies are mainly responsible for this trend.Indeed,the outskirt galaxies show a flat relation,with larger sSFRs than substructure galaxies,on average,and the halo galaxies show a slightly decreasing relation.

    Figure 7.The dependence of sSFR on the projected clustrocentric radius R.Top panel:the entire galaxy sample(dots)with the rms values of sSFR around the mean in each of the 10 evenly spaced radial bins(shaded area).The solid black line indicates the median value of sSFR in each bin.The two vertical solid lines show the two radii R500=1.408 Mpc and R200=2.16 Mpc.Bottom panel: same as the top panel for the three galaxy subsamples separately: halo (red),substructure (blue),and outskirt galaxies (black/gray).

    Figure 8 shows the dependence ofDn4000 onR(Balogh et al.1999).It mirrors the dependence of sSFR onR,because of the correlation between sSFR andDn4000 shown in Figure 6:for the entire sample,Dn4000 decreases with increasingR,similarly to the galaxies in A2029 (Sohn et al.2019).As in the sSFR–Rrelation,this trend is mostly due to the substructure galaxies,whereas halo and outskirt galaxies have shallower relations,with the values ofDn4000 of the outskirt galaxies smaller,on average,than those for the other two galaxy samples.

    Figure 8.Same as Figure 7 for the Dn4000–R relation.

    Figures 7 and 8 show that the average values of sSFR andDn4000 of the substructure galaxies in the cluster center are comparable to the values of the halo galaxies.Similarly,at large radii,these quantities of the substructure galaxies are comparable to the values of the outskirt galaxies.This result suggests (1) that the substructure galaxies are sensitive to the environment of their own substructure,and (2) that substructures tend to slow down the transition from field galaxies to cluster galaxies.This scenario is consistent with results of simulations,which suggest that orphan galaxies that have lost their subhalos are more vulnerable to environmental effects than those that still have them(Cora et al.2018).Those orphan galaxies belong to the diffuse halo galaxies here.

    Considering that the sSFR depends strongly on the stellar mass,the mass segregation effect could bias our result.We check the distribution of radial stellar mass logM?of the three subsamples and find their median masses are consistent at all radii,as Figure 9 shows.

    Figure 9.Same as Figure 7 for the logM?–R relation.

    3.5.The R–v Diagram

    We know only three out of the six phase-space coordinates of each galaxy in the field of view of A2142: the two celestial coordinates and the line-of-sight velocity.This limited knowledge prevents us from grasping the full dynamics of the cluster and its structure.Nevertheless,from the distribution of galaxies in theR–vdiagram,namely the line-of-sight velocity versus the projected distance from the cluster center,we can infer the global depth of the gravitational potential well of the cluster,or,equivalently,the escape velocity from the cluster (Diaferio &Geller 1997;Diaferio 1999;Serra et al.2011),and identify the galaxies that are members of the cluster (Serra &Diaferio 2013).This information can be extracted for a large interval of projected distances from the cluster center,from the central region to radii much larger than the virial radius,in regions where the dynamical equilibrium hypothesis does not hold and where the galaxies surrounding the cluster are falling into it for the first time.

    Figure 10 shows theR–vdiagram,or projected phase-space(PPS)diagram,of our three galaxy samples.The blue dotted lines show the location of the caustics derived in Sohn et al.(2020).The caustics are related to the escape velocity from the cluster(Diaferio&Geller 1997;Diaferio 1999).According to Serra &Diaferio(2013),the sample of galaxies within the caustics contains(95±3)% of the real members and is contaminated by ~8% of interlopers within 3R200.The caustic technique thus represents a valid procedure to identify cluster members in real data.

    Figure 10.The R–v diagram of the 333 data-available galaxies of A2142.The data-available galaxies consist of 80 substructure galaxies(squares),109 halo galaxies(circles),and 144 outskirt galaxies(triangles).Cyan and magenta symbols show SF and quiescent galaxies,respectively.The symbol size is proportional to the specific SFR.The red square on the left is the BCG.The blue dotted lines show the caustic location.The black solid and dashed lines are described in the text.

    Alternatively,Oman&Hudson(2016)adopt an approximate relation to identify cluster members.Their relation is based on dark matter-only simulations.By defining as interlopers those satellite dark matter halos with distance,in real space,r3d>2.5rvir,withrvirthe cluster virial radius,they find that,in theR–vdiagram,the linev/σ3d=?(4/3)R/rvir+2 roughly separates the region of theR–vdiagram dominated by the cluster members from the region dominated by interlopers.The black solid lines in Figure 10 show the line of Oman&Hudson(2016),where we setσ3d=σclusterandR200/rvir=0.73.The black solid lines are roughly consistent with the caustic location and thus appear to be a reasonable proxy for the caustics.For the sake of simplicity,we adopt these black solid lines,rather than the caustics,as the cluster boundaries.

    Figure 10 shows two additional sets of black dashed lines:they have the same slope as the black solid lines and cross thev/σcluster=0 axis atR200andR500,respectively.We adopt these lines in theR–vdiagram as the counterparts ofR200andR500in real space.

    The distribution of our galaxy samples in theR–vdiagram is generally consistent with the identification of the cluster members derived in Section 3.1: most outskirt galaxies(triangles),which are not expected to be cluster members,lie outside the regions identified by the caustics or the black solid lines,whereas most halo and substructure galaxies,which are expected to be cluster members,are within these regions.

    We now investigate the star formation activities of the galaxies in the infall region of the cluster.We define the infall region as the band of theR–vdiagram between the black solid line and the black dashed line crossing the point (R200,0).We consider the specific SFR,sSFR,and the spectral indexDn4000 as a function of the distance Δdof each galaxy from the black solid line: Δdis thus the segment perpendicular to the black solid line joining the galaxy and the black solid line.According to the analysis of the orbits of galaxies falling into clusters in numerical simulations (e.g.,Yoon et al.2017;Arthur et al.2019),a galaxy that is falling into the cluster traces a trajectory roughly parallel to the black solid line in theR–vdiagram;the radial coordinateRof this trajectory clearly decreases during the galaxy infall.Therefore,larger Δdimplies larger initial radial distance of the falling galaxy.

    Figure 11 shows the Δddistribution of the 93 SF galaxies,namely the data-available galaxies with log (s SFRyr-1) >-11.Out of these 93 galaxies,30 are cluster members: specifically there are 20 substructure galaxies and 10 halo galaxies.Out of these 20 and 10 galaxies,17 and 8,respectively,lie in the infall region,namely in the band between the black solid line and the outer black dashed line in theR–vdiagram.Therefore,83%(25 out of 30) of the cluster members that are actively forming stars are in the infall region.Our sample thus demonstrates,as expected,that the dense intracluster medium withinR200inhibits the star formation activity.The only SF galaxy(LEDA 1801474)withinR500is a halo galaxy.The SDSS image of this galaxy suggests that its star formation activity is triggered by an ongoing merger.

    Figure 11.Top:relation between sSFR and Δd for the 93 SF galaxies in the data-available galaxy sample.Middle:the distribution of Δd for the full sample of 93 SF galaxies.Bottom:the distribution of Δd for the halo,substructure,and outskirt SF galaxies separately.The two vertical black dotted lines indicate R200(Δd=?0.9)and R500 (Δd=?1.2),respectively.The vertical black solid line is the boundary line Δd=0.

    Figure 12 shows the Δddistribution of the 82 galaxies with spectral indexDn4000<1.6.We call these galaxies blue galaxies.Their distribution is similar to the distribution of sSFR in Figure 11.There are 26 (84%) out of 31 blue galaxies that are cluster members,namely either substructure or halo galaxies,in the infall region.There are 17 out of 20 substructure blue galaxies,and 9 out of 11 halo blue galaxies.The only blue galaxy withinR500is a halo galaxy (SDSS J155827.26+271300.3).Its color might be contaminated by a nearby blue object,which is only 4 arcsec away.

    Figure 12.Same as Figure 11 for the 82 blue galaxies with Dn4000<1.6.

    Figures 11 and 12 show that the SF and blue galaxies that are cluster members are concentrated in the infall region,namely in the PPS region located between the black dashed line corresponding toR200and the black solid line.This result indicates that the dense ICM environment substantially inhibits the star formation activity of the galaxies once they enter the region withinR200.In addition,the transition from star-forming galaxies to quiescent galaxies substantially ends at radii larger thanR500.

    4.Summary

    We compiled a catalog of 333 galaxies from a spectroscopic redshift survey of 2239 galaxies in the field of view of the cluster A2142 (Liu et al.2018).The survey covers a circular area of radius ~11 Mpc from the cluster center.Each of the 333 galaxies has measured stellar massM?,SFR,and spectral indexDn4000.We use the Blooming Tree algorithm,an algorithm for the identification of cluster substructure (Yu et al.2018),to separate our sample into three subsamples: the halo,the substructure,and the outskirt galaxies.The halo and the substructure galaxies are cluster members.The outskirt galaxies are still in the outer region of the cluster,but,according to the Blooming Tree algorithm,their gravitational bond to the cluster is weak.

    We investigate the relation between the environment and the star formation activity of the galaxies in these three subsamples.Our main conclusions are as follows.

    1.The specific SFR,sSFR=SFR/M?,is larger in the outskirt galaxies and smaller in the halo galaxies.In addition,the sSFR increases,on average,with increasing distance from the cluster center;similarly,the spectral indexDn4000,which is an indicator of the age of the stellar population,decreases with increasing distance from the cluster center.Both results show that the star formation activity tends to be inhibited in a high-density environment.

    2.The sSFR of substructure galaxies is intermediate between the sSFR of halo galaxies and that of outskirt galaxies;in addition,the sSFR depends on the environment of the substructure of the galaxy,being smaller,on average,for galaxies in substructures that are close to the cluster center,and larger for galaxies in substructures that are in the outer region of the cluster.The spectral indexDn4000 shows the same behavior.This result demonstrates that substructures tend to slow down the transition between field galaxies and cluster galaxies.

    3.Galaxies that are actively forming stars mostly lie in the cluster infall region,roughly betweenR200and the turnaround radius: star formation is progressively inhibited while approachingR200and substantially quenched withinR200.

    Our analysis demonstrates the relevance of spectroscopic redshifts for investigating the connection between the physical properties of galaxies and their environment.For this goal,our Blooming Tree algorithm proves efficient at associating the galaxies with the composite structures of a cluster.The application of the Blooming Tree algorithm to data from future extensive spectroscopic surveys,such as Euclid(Euclid Collaboration et al.2022) or LSST (Ivezi? et al.2019),is thus expected to greatly enhance our comprehension of galaxy evolution in clusters.

    Acknowledgments

    We thank the referee for their valuable comments and suggestions in the report.This work was supported by Bureau of International Cooperation,Chinese Academy of Sciences GJHZ1864.A.D.acknowledges partial support from the INFN grant InDark.

    ORCID iDs

    精品国产美女av久久久久小说| 观看免费一级毛片| 一区二区三区高清视频在线| 久久九九热精品免费| АⅤ资源中文在线天堂| ponron亚洲| 国产熟女xx| 国产成人aa在线观看| 每晚都被弄得嗷嗷叫到高潮| 99久国产av精品| 精品无人区乱码1区二区| 神马国产精品三级电影在线观看| 亚洲人成网站高清观看| 别揉我奶头~嗯~啊~动态视频| 国产精品久久久av美女十八| 麻豆成人av在线观看| 韩国av一区二区三区四区| 黑人欧美特级aaaaaa片| 麻豆成人午夜福利视频| 久久中文字幕人妻熟女| 18禁观看日本| 欧美不卡视频在线免费观看| 高潮久久久久久久久久久不卡| 午夜激情福利司机影院| 中亚洲国语对白在线视频| 国产精品一及| 看黄色毛片网站| 欧美色视频一区免费| 我要搜黄色片| 色噜噜av男人的天堂激情| 久久久久久人人人人人| 全区人妻精品视频| 欧美激情久久久久久爽电影| 久久久精品大字幕| 精品久久久久久久末码| 露出奶头的视频| 亚洲精品在线观看二区| 一个人看视频在线观看www免费 | 国产精品一及| 97碰自拍视频| 变态另类成人亚洲欧美熟女| 欧美高清成人免费视频www| 高清在线国产一区| 三级毛片av免费| 搡老妇女老女人老熟妇| 免费电影在线观看免费观看| 国产亚洲av高清不卡| 亚洲 欧美一区二区三区| x7x7x7水蜜桃| 久久天躁狠狠躁夜夜2o2o| 国产成人福利小说| 丁香欧美五月| 亚洲一区二区三区色噜噜| 一本综合久久免费| 伦理电影免费视频| 最近在线观看免费完整版| 制服丝袜大香蕉在线| 国产91精品成人一区二区三区| 久久国产乱子伦精品免费另类| 国产高清视频在线播放一区| 91在线观看av| 亚洲在线观看片| x7x7x7水蜜桃| 男人和女人高潮做爰伦理| 性色av乱码一区二区三区2| 中文字幕人妻丝袜一区二区| 国产三级中文精品| 网址你懂的国产日韩在线| 日韩大尺度精品在线看网址| 老司机福利观看| 国产日本99.免费观看| 搡老妇女老女人老熟妇| 久久久精品欧美日韩精品| 一个人免费在线观看的高清视频| 波多野结衣高清作品| 午夜福利在线在线| 亚洲午夜精品一区,二区,三区| xxx96com| 国产av一区在线观看免费| 成年女人毛片免费观看观看9| 免费在线观看成人毛片| 18禁裸乳无遮挡免费网站照片| 国内毛片毛片毛片毛片毛片| 婷婷六月久久综合丁香| 麻豆久久精品国产亚洲av| 变态另类成人亚洲欧美熟女| 国产精品电影一区二区三区| 99久久成人亚洲精品观看| 成年女人毛片免费观看观看9| 91麻豆av在线| 日本撒尿小便嘘嘘汇集6| 国产精品久久视频播放| 舔av片在线| 亚洲av成人av| 久久久久久大精品| 色在线成人网| 亚洲电影在线观看av| 国产精品98久久久久久宅男小说| 搡老熟女国产l中国老女人| 69av精品久久久久久| 国产黄色小视频在线观看| 又大又爽又粗| 免费在线观看亚洲国产| 成人亚洲精品av一区二区| 可以在线观看毛片的网站| 国产乱人伦免费视频| 欧美日本亚洲视频在线播放| 岛国在线免费视频观看| 国产综合懂色| 手机成人av网站| 国产一级毛片七仙女欲春2| 国内少妇人妻偷人精品xxx网站 | 在线观看日韩欧美| 国产av一区在线观看免费| 黄色丝袜av网址大全| 成人一区二区视频在线观看| 99国产精品一区二区三区| 午夜两性在线视频| 少妇丰满av| 免费高清视频大片| 成人无遮挡网站| 热99re8久久精品国产| 久久伊人香网站| 成人精品一区二区免费| 亚洲中文字幕日韩| 亚洲激情在线av| tocl精华| 欧美乱色亚洲激情| 日本 av在线| 桃红色精品国产亚洲av| 免费一级毛片在线播放高清视频| 日韩欧美精品v在线| 欧美zozozo另类| 日韩欧美国产在线观看| 此物有八面人人有两片| 亚洲精华国产精华精| 精品久久久久久久久久免费视频| 午夜福利18| 免费搜索国产男女视频| 国产激情欧美一区二区| 五月伊人婷婷丁香| 99在线视频只有这里精品首页| 欧美高清成人免费视频www| 97人妻精品一区二区三区麻豆| 精品久久久久久久末码| 一级毛片女人18水好多| 一a级毛片在线观看| 男人的好看免费观看在线视频| 日日夜夜操网爽| 2021天堂中文幕一二区在线观| 69av精品久久久久久| 久久热在线av| 99国产极品粉嫩在线观看| 亚洲欧美日韩卡通动漫| 国产成人av激情在线播放| 日韩精品青青久久久久久| 亚洲欧美一区二区三区黑人| 精品国产乱子伦一区二区三区| 伊人久久大香线蕉亚洲五| 一夜夜www| 高清在线国产一区| 人人妻人人澡欧美一区二区| 国产精华一区二区三区| 亚洲自偷自拍图片 自拍| 在线永久观看黄色视频| 在线看三级毛片| 手机成人av网站| 男女床上黄色一级片免费看| 99久久综合精品五月天人人| 欧美一区二区精品小视频在线| 免费大片18禁| 淫妇啪啪啪对白视频| 国产精品影院久久| 亚洲五月婷婷丁香| 亚洲欧洲精品一区二区精品久久久| 免费在线观看影片大全网站| 最近最新中文字幕大全免费视频| 国产激情偷乱视频一区二区| 国产精品久久久人人做人人爽| 欧美日韩福利视频一区二区| 国产精品1区2区在线观看.| 国产av不卡久久| 久久精品国产99精品国产亚洲性色| 婷婷精品国产亚洲av| 亚洲国产欧洲综合997久久,| 校园春色视频在线观看| 欧美一区二区精品小视频在线| 最近最新中文字幕大全免费视频| 看黄色毛片网站| avwww免费| 香蕉国产在线看| 好看av亚洲va欧美ⅴa在| 九九久久精品国产亚洲av麻豆 | 又紧又爽又黄一区二区| 俄罗斯特黄特色一大片| 脱女人内裤的视频| 男女做爰动态图高潮gif福利片| 亚洲成av人片免费观看| 亚洲色图av天堂| 日韩欧美一区二区三区在线观看| a级毛片在线看网站| 一级毛片精品| 黄片小视频在线播放| 老司机午夜十八禁免费视频| 三级国产精品欧美在线观看 | 精品国产亚洲在线| 免费人成视频x8x8入口观看| 在线观看舔阴道视频| 免费av毛片视频| 午夜激情福利司机影院| 国产一区二区三区视频了| 日本免费a在线| 国产 一区 欧美 日韩| 2021天堂中文幕一二区在线观| 国产成人影院久久av| 91九色精品人成在线观看| 色吧在线观看| 国产69精品久久久久777片 | 99久久综合精品五月天人人| 国产精品影院久久| 十八禁人妻一区二区| 9191精品国产免费久久| 久久久水蜜桃国产精品网| 精品久久久久久成人av| 最好的美女福利视频网| 亚洲成人久久爱视频| 老司机在亚洲福利影院| 黄频高清免费视频| 亚洲av片天天在线观看| 99在线人妻在线中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 我的老师免费观看完整版| 国产高清有码在线观看视频| 波多野结衣巨乳人妻| 草草在线视频免费看| 很黄的视频免费| 亚洲人成网站在线播放欧美日韩| 免费观看人在逋| 人妻丰满熟妇av一区二区三区| 精品电影一区二区在线| 久久久国产精品麻豆| 51午夜福利影视在线观看| 国产一区二区激情短视频| 亚洲在线观看片| 国产99白浆流出| 丰满人妻一区二区三区视频av | 999精品在线视频| 欧美一区二区国产精品久久精品| 欧美成人免费av一区二区三区| 色老头精品视频在线观看| 88av欧美| 97超级碰碰碰精品色视频在线观看| 欧美日韩瑟瑟在线播放| 婷婷六月久久综合丁香| 久久午夜亚洲精品久久| 欧美乱色亚洲激情| 男女下面进入的视频免费午夜| 一边摸一边抽搐一进一小说| 国内精品久久久久精免费| 欧美+亚洲+日韩+国产| 香蕉丝袜av| 午夜福利成人在线免费观看| 国产亚洲av高清不卡| 长腿黑丝高跟| 欧美色欧美亚洲另类二区| 日本熟妇午夜| 亚洲美女视频黄频| 国产亚洲精品久久久com| 小蜜桃在线观看免费完整版高清| 色在线成人网| 久久天躁狠狠躁夜夜2o2o| 久久久精品大字幕| 嫩草影视91久久| 亚洲七黄色美女视频| 久久久久精品国产欧美久久久| 日本黄大片高清| 亚洲18禁久久av| x7x7x7水蜜桃| 不卡av一区二区三区| 国产精品免费一区二区三区在线| 熟女人妻精品中文字幕| 久久精品亚洲精品国产色婷小说| 99久久久亚洲精品蜜臀av| 黄色视频,在线免费观看| 女人被狂操c到高潮| 免费av不卡在线播放| www.999成人在线观看| 99热6这里只有精品| 日本熟妇午夜| 午夜免费观看网址| 国产淫片久久久久久久久 | 国产成年人精品一区二区| 国产成人一区二区三区免费视频网站| 日韩国内少妇激情av| 国产91精品成人一区二区三区| 操出白浆在线播放| 搞女人的毛片| 国产高清视频在线观看网站| 国产成人欧美在线观看| 欧美三级亚洲精品| 91在线精品国自产拍蜜月 | 国产精品一区二区精品视频观看| 亚洲,欧美精品.| 黄色片一级片一级黄色片| 国产亚洲精品综合一区在线观看| 国产高清视频在线播放一区| 亚洲国产精品成人综合色| 久久久久久久久免费视频了| 亚洲美女黄片视频| 丝袜人妻中文字幕| 国产熟女xx| 国产伦精品一区二区三区视频9 | 国产成年人精品一区二区| 在线看三级毛片| 婷婷精品国产亚洲av| 国产一区二区激情短视频| 成年女人毛片免费观看观看9| 亚洲中文字幕日韩| 最近视频中文字幕2019在线8| 亚洲男人的天堂狠狠| 1000部很黄的大片| 国产高清有码在线观看视频| 淫妇啪啪啪对白视频| 色在线成人网| 桃红色精品国产亚洲av| 在线观看舔阴道视频| 免费av毛片视频| x7x7x7水蜜桃| av天堂中文字幕网| 亚洲国产欧美人成| 亚洲一区高清亚洲精品| 亚洲成人免费电影在线观看| 国产伦人伦偷精品视频| 精品久久久久久久久久免费视频| 精华霜和精华液先用哪个| 真人一进一出gif抽搐免费| 国产精品国产高清国产av| 国产一区二区在线av高清观看| 久久伊人香网站| 2021天堂中文幕一二区在线观| 亚洲精品久久国产高清桃花| 一本综合久久免费| 1024香蕉在线观看| 特大巨黑吊av在线直播| 91字幕亚洲| 免费人成视频x8x8入口观看| 91九色精品人成在线观看| 免费高清视频大片| 午夜成年电影在线免费观看| 亚洲精品在线观看二区| 国模一区二区三区四区视频 | 十八禁网站免费在线| 性欧美人与动物交配| 熟女电影av网| 亚洲性夜色夜夜综合| 最新美女视频免费是黄的| 亚洲真实伦在线观看| 欧美黑人巨大hd| 国产成人精品久久二区二区免费| 色噜噜av男人的天堂激情| 久99久视频精品免费| 亚洲欧美精品综合一区二区三区| 九九热线精品视视频播放| 国产高清videossex| 亚洲精品一区av在线观看| 一边摸一边抽搐一进一小说| netflix在线观看网站| 欧美黄色片欧美黄色片| 性欧美人与动物交配| 悠悠久久av| 亚洲黑人精品在线| 亚洲国产欧美网| 久久精品国产清高在天天线| 99久久精品国产亚洲精品| 久久精品91蜜桃| 岛国在线免费视频观看| 波多野结衣巨乳人妻| 免费电影在线观看免费观看| 欧美一级毛片孕妇| 国产三级中文精品| 色视频www国产| 色在线成人网| 亚洲男人的天堂狠狠| 久久这里只有精品中国| 制服人妻中文乱码| 丰满人妻一区二区三区视频av | 9191精品国产免费久久| 日本免费a在线| 日本熟妇午夜| 亚洲国产中文字幕在线视频| 亚洲片人在线观看| 天堂影院成人在线观看| 国产精品一区二区三区四区久久| 国产精品电影一区二区三区| 国产精品一及| 美女扒开内裤让男人捅视频| 啦啦啦免费观看视频1| 欧美丝袜亚洲另类 | 最近在线观看免费完整版| 一进一出抽搐gif免费好疼| 国产成人aa在线观看| 欧美又色又爽又黄视频| 亚洲精品456在线播放app | 精品久久久久久久久久免费视频| 亚洲精品国产精品久久久不卡| 波多野结衣巨乳人妻| 天天添夜夜摸| 色老头精品视频在线观看| 中亚洲国语对白在线视频| 久久香蕉精品热| 亚洲成av人片免费观看| 嫩草影视91久久| e午夜精品久久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 法律面前人人平等表现在哪些方面| 国产伦精品一区二区三区视频9 | 9191精品国产免费久久| 两个人视频免费观看高清| 国产精品一区二区精品视频观看| 两性夫妻黄色片| 国产爱豆传媒在线观看| 首页视频小说图片口味搜索| 国内揄拍国产精品人妻在线| 国产精品一区二区免费欧美| 亚洲国产欧美人成| 国产免费男女视频| 欧美成人一区二区免费高清观看 | 桃色一区二区三区在线观看| 亚洲美女黄片视频| 国产久久久一区二区三区| 国产精品免费一区二区三区在线| 国产伦精品一区二区三区四那| 最近视频中文字幕2019在线8| 超碰成人久久| 又大又爽又粗| 精品电影一区二区在线| 国产成人欧美在线观看| 精品国产美女av久久久久小说| 久久久精品大字幕| 天天添夜夜摸| 国产精品一区二区精品视频观看| 1024手机看黄色片| 国产三级在线视频| svipshipincom国产片| 精品乱码久久久久久99久播| 小蜜桃在线观看免费完整版高清| 两个人视频免费观看高清| 欧美日韩综合久久久久久 | 熟女电影av网| 99久久国产精品久久久| 中文字幕人成人乱码亚洲影| 久久国产精品人妻蜜桃| 亚洲无线在线观看| 国产精品一区二区三区四区免费观看 | 色吧在线观看| 波多野结衣巨乳人妻| 精品免费久久久久久久清纯| 精品不卡国产一区二区三区| bbb黄色大片| 日韩欧美精品v在线| svipshipincom国产片| 亚洲18禁久久av| 国产亚洲精品av在线| 免费看美女性在线毛片视频| 精品福利观看| 国产成人影院久久av| 日韩免费av在线播放| 亚洲欧美激情综合另类| 男女做爰动态图高潮gif福利片| 天堂网av新在线| 国产成年人精品一区二区| 亚洲天堂国产精品一区在线| 五月玫瑰六月丁香| 一本综合久久免费| 亚洲欧美一区二区三区黑人| 日本熟妇午夜| 欧美在线一区亚洲| 我的老师免费观看完整版| 成年免费大片在线观看| 香蕉av资源在线| 丁香六月欧美| 欧美zozozo另类| 午夜福利在线观看免费完整高清在 | 久久精品综合一区二区三区| 757午夜福利合集在线观看| 亚洲五月婷婷丁香| av天堂在线播放| 欧美极品一区二区三区四区| 中文字幕人妻丝袜一区二区| 无限看片的www在线观看| 在线观看午夜福利视频| 波多野结衣高清无吗| 欧美中文日本在线观看视频| 亚洲美女黄片视频| 美女高潮的动态| 亚洲美女黄片视频| 在线观看日韩欧美| 欧美日韩黄片免| 18禁裸乳无遮挡免费网站照片| 国产精品99久久99久久久不卡| 岛国在线免费视频观看| 国产亚洲精品av在线| 国产一区二区激情短视频| 淫妇啪啪啪对白视频| 在线免费观看的www视频| 日本在线视频免费播放| 久久亚洲精品不卡| 少妇的丰满在线观看| 成人特级黄色片久久久久久久| 亚洲精品久久国产高清桃花| 网址你懂的国产日韩在线| 久久久久久久精品吃奶| 亚洲va日本ⅴa欧美va伊人久久| a级毛片a级免费在线| 高潮久久久久久久久久久不卡| 免费电影在线观看免费观看| 国产久久久一区二区三区| 国内揄拍国产精品人妻在线| 国产精品亚洲av一区麻豆| 97人妻精品一区二区三区麻豆| 性欧美人与动物交配| 亚洲国产精品sss在线观看| 最新在线观看一区二区三区| 免费av毛片视频| 小蜜桃在线观看免费完整版高清| 亚洲精华国产精华精| 伊人久久大香线蕉亚洲五| 欧美中文综合在线视频| 色综合站精品国产| 国产精品1区2区在线观看.| 国产麻豆成人av免费视频| 少妇丰满av| 成人欧美大片| 亚洲黑人精品在线| 亚洲 国产 在线| 日本在线视频免费播放| 中文字幕熟女人妻在线| 午夜两性在线视频| 成人鲁丝片一二三区免费| 美女高潮喷水抽搐中文字幕| 日韩国内少妇激情av| 久久午夜亚洲精品久久| 国产真人三级小视频在线观看| 免费在线观看日本一区| 99国产精品一区二区蜜桃av| 精品电影一区二区在线| 丰满人妻熟妇乱又伦精品不卡| 一个人免费在线观看的高清视频| 欧美日韩综合久久久久久 | 人妻夜夜爽99麻豆av| 色av中文字幕| 欧美一区二区国产精品久久精品| 变态另类成人亚洲欧美熟女| 亚洲成a人片在线一区二区| 18禁国产床啪视频网站| 搡老熟女国产l中国老女人| 亚洲五月婷婷丁香| 美女大奶头视频| 欧美一级a爱片免费观看看| 一夜夜www| 一进一出抽搐gif免费好疼| 蜜桃久久精品国产亚洲av| 欧美日韩中文字幕国产精品一区二区三区| 变态另类成人亚洲欧美熟女| 夜夜夜夜夜久久久久| 99精品欧美一区二区三区四区| 在线十欧美十亚洲十日本专区| 麻豆成人午夜福利视频| 国产伦精品一区二区三区四那| 欧美黑人巨大hd| 亚洲精品在线观看二区| 真实男女啪啪啪动态图| 亚洲欧美一区二区三区黑人| 午夜福利高清视频| 亚洲第一电影网av| 国产精品av久久久久免费| 亚洲精品在线美女| 欧美日韩亚洲国产一区二区在线观看| 亚洲av日韩精品久久久久久密| 女同久久另类99精品国产91| 欧美中文日本在线观看视频| 国产黄a三级三级三级人| 手机成人av网站| 很黄的视频免费| 亚洲av免费在线观看| 欧美绝顶高潮抽搐喷水| 久99久视频精品免费| 一进一出好大好爽视频| 欧美绝顶高潮抽搐喷水| 熟女人妻精品中文字幕| 国产精品一及| www日本在线高清视频| 国产精品美女特级片免费视频播放器 | 美女 人体艺术 gogo| 亚洲激情在线av| 日本熟妇午夜| 国产成人一区二区三区免费视频网站| 丰满人妻一区二区三区视频av | 日本黄大片高清| www.精华液| 叶爱在线成人免费视频播放| 两个人的视频大全免费| 亚洲avbb在线观看| 久久精品综合一区二区三区| 日本黄色视频三级网站网址| 欧美另类亚洲清纯唯美| 黄色视频,在线免费观看| 亚洲成人久久性| av黄色大香蕉| 亚洲精品中文字幕一二三四区| 欧美+亚洲+日韩+国产| 黑人欧美特级aaaaaa片| 亚洲aⅴ乱码一区二区在线播放| 国产精品影院久久| 日韩大尺度精品在线看网址|