• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Pre-explosion Effervescent Zone for the Circumstellar Material in SN 2023ixf

    2023-09-03 01:35:58NoamSoker

    Noam Soker

    Department of Physics,Technion,Haifa,3200003,Israel;soker@physics.technion.ac.il

    Abstract I present the effervescent zone model to account for the compact dense circumstellar material (CSM) around the progenitor of the core collapse supernova(CCSN)SN 2023ixf.The effervescent zone is composed of bound dense clumps that are lifted by stellar pulsation and envelope convection to distances of ≈tens× au,and then fall back.The dense clumps provide most of the compact CSM mass and exist alongside the regular (escaping) wind.I crudely estimate that for a compact CSM within RCSM ≈30 au that contains MCSM ≈0.01 M⊙,the density of each clump is kb ?3000 times the density of the regular wind at the same radius and that the total volume filling factor of the clumps is several percent.The clumps might cover only a small fraction of the CCSN photosphere in the first days post-explosion,accounting for the lack of strong narrow absorption lines.The long-lived effervescent zone is compatible with no evidence for outbursts in the years prior to the SN 2023ixf explosion and the large-amplitude pulsations of its progenitor,and it is an alternative to the CSM scenario of several-years-long high mass loss rate wind.

    Key words: stars: massive– stars: mass-loss– (stars:) supernovae: general– (stars:) supernovae: individual (SN 2023ixf)

    1.Introduction

    A number of studies conclude that the ejecta of the type II core collapse supernova (CCSN) SN 2023ixf interacted with a circumstellar material (CSM) that was extended up to a distance ofRCSM?20–50 au (e.g.,Berger et al.2023;Bostroem et al.2023;Grefenstette et al.2023;Jacobson-Galan et al.2023;Kilpatrick et al.2023;Singh Teja et al.2023;Smith et al.2023).

    Two basic types of models might account for a compact CSM.In one the red supergiant (RSG) progenitor of a CCSN with a close CSM experiences a pre-explosion high-mass ejection episode that starts years to weeks before explosion(e.g.,Foley et al.2007;Pastorello et al.2007;Smith et al.2010;Margutti et al.2014;Ofek et al.2014;Svirski &Nakar 2014;Tartaglia et al.2016;Yaron et al.2017;Wang et al.2019;Bruch et al.2021;Prentice et al.2020;Strotjohann et al.2021).Most of the studies of the CSM of SN 2023ixf take it to result from an outburst that took place a few years before explosion,e.g.,Bostroem et al.(2023) regard the wind velocity to bevw?10 km s?1and deduce the beginning of the high mass loss rate to be τw?17 yr before explosion while Jacobson-Galan et al.(2023) rely onvw?50 km s?1to estimate τw?3–6 yr.Smith et al.(2023)observationally infer the expansion velocity of the CSM to bevw=115 km s?1and from that they calculate τw?0.9–1.5 yr.Smith et al.(2023) consider the CSM to be non-spherical.

    The high mass loss rate phase shortly before explosion might be powered by a binary interaction that is triggered by the sudden expansion of the RSG star years to weeks before explosion (e.g.,Soker 2013;Smith &Arnett 2014).1Soker (2013) suggested (based on earlier binary models of similar types of transients)that a sudden pre-CCSN swelling may trigger asymmetric mass loss in binary systems.Five months later Smith &Arnett (2014) repeated this suggestion.Later papers,e.g.,Smith (2017) and Smith et al.(2023),wrongly attributed this suggestion to Smith &Arnett (2014).The binary interaction likely involves jets (e.g.,a review by Soker 2022).A problem with this type of CSM is that there was no recorded outburst of the progenitor of SN 2023ixf.Neustadt et al.(2023) find no outbursts in the time period of 5600–463 days before explosion.Jencson et al.(2023) find no evidence for an outburst,beside the periodic variability,from 2010 until 10 days before explosion.Soraisam et al.(2023)assert that the star continued its general variability over 16 yr until less than two weeks before explosion.

    The second possibility for a compact CSM,up to ≈100 au,is a long-lived extended material around the CCSN progenitor.Dessart et al.(2017)presented a model of a long-lived complex extended dense zone of ≈0.01M⊙a(bǔ)round RSG progenitors of CCSNe.Moriya et al.(2017)envisaged a dense compact CSM that is the acceleration zone of the wind (also Moriya et al.2018).In this study I consider a different extended material above the RSG progenitor of SN 2023ixf,namely,theeffervescent CSM zonemodel that I proposed to occur in some CCSN progenitors (Soker 2021).

    The effervescent zone is an extended zone from the giant’s surface up toReff≈(10–100)R* where in addition to the regular (escaping) stellar wind there are many dense clumps that do not reach the escape velocity,and hence rise and fall back.The average density of the bound mass might reach tens of times that of the regular wind.Since the effervescent zone can live for thousands of years or more,it removes the need for many type II CCSN progenitors to experience a very strong outburst just years to weeks before explosion.Namely,the long-lived effervescent zone can mimic a short-duration enhanced mass loss rate phase.Again,in many cases the RSG does experience an outburst before explosion,but not in all cases.

    The effervescent CSM model for RSG stars is based on the effervescent zone model for asymptotic giant branch (AGB)stars (Soker 2008).This model was motivated by observations of inhomogeneous outflows from AGB stars,including clumps(dusty or not) and sometimes with inflows alongside the outflow (e.g.,Lopez et al.1997;Vlemmings et al.2002;Diamond &Kemball 2003;Cotton et al.2006;Fonfría et al.2008;Klochkova &Chentsov 2007;Tuyet Nhung et al.2019;Khouri et al.2020).A good example is the pulsating AGB star Mira A that has a radius ofR*?500R⊙(e.g.,Wood &Karovska 2006) and that possesses an inhomogeneous and clumpy asymmetrical compact CSM,up to ≈several×10 au(e.g.,Planesas et al.1990;Lopez et al.1997;Ryde &Sch?ier 2001).

    The presence of compact CSM around some CCSNe and observations of inhomogeneous winds,sometimes with clumps,and/or inflow/outflow in some RSGs (e.g.,Lobel &Dupree 2000;Humphreys et al.2007;Josselin &Plez 2007;Ohnaka et al.2011;Kervella et al.2016;Kamiński 2019) and claims for extended regions where inflow and outflow coexist around stars that are close to their Eddington luminosity limit(e.g.,Owocki &van Marle 2008;van Marle et al.2009)motivated me to develop the effervescent zone model for CCSN progenitors (see Soker 2021 for more details).

    In this Letter I propose that the compact CSM around the progenitor of SN 2023ixf was an effervescent zone rather than the ejecta of a short-lived enhanced mass loss rate episode.I am mostly motivated by the lack of indication of a pre-explosion outburst and from the large-amplitude pulsations of the progenitor.My main goal is to estimate plausible parameters for the effervescent zone(Section 2).I discuss the implications in Section 3.

    2.The Pre-explosion Effervescent Zone

    2.1.An Effervescent Zone

    I do not repeat here the derivations from Soker (2021),but rather only present the basic ingredients of the effervescent zone model that I illustrate schematically in Figure 1 with parameters for the progenitor of SN 2023ixf.

    Figure 1.A schematic drawing of the effervescent zone crudely scaled to a possible effervescent zone around the progenitor of SN 2023ixf at explosion.The thick-blue arrows depict the regular (escaping) wind outflowing with super-escape velocity vw.The red-oval shapes represent the bound dense clumps that rise and fall within the effervescent zone.The orange sphere at the center is the RSG progenitor of SN 2023ixf with radius R*?800 R⊙.The outer edge of the effervescent zone is at Reff ≈30 au.The typical ratio of the density of a clump to that of the regular wind at a given radius is kb ≡ρc/ρwind ≈3000,according to a simple model where most clumps are in a shell near Reff and their solid angle covering fraction is fS ?0.5.

    The clumps in the effervescent zone are uplifted by stellar pulsations with additional uplifting forces by strong convection and possibly magnetic activity and/or rotation.The progenitor of SN 2023ixf had large-amplitude pulsations before explosion(e.g.,Kilpatrick et al.2023;Soraisam et al.2023).The period is about 2.8 yr,which Kilpatrick et al.(2023)note to be consistent with kappa-mechanism pulsations of RSG stars but with a much larger amplitude.These are the type of pulsations that can support an effervescent zone.The stellar radiation cannot accelerate the clumps to escape velocities.Actually,the stellar radiation is already accelerating the regular (escaping wind) to about the maximum possible mass loss rate from momentum balance,wherevwis the terminal wind speed,Lthe stellar luminosity and ηwis the average number of times that a photon transfers its momentum to the wind in the outward radial direction.Generally ηw<1,but in dense and opaque winds this factor can be ηw?1.Substituting typical values gives

    I scale the luminosity according to the inferred values ofL?1.3×105L⊙(Jencson et al.2023),L?1.6×105–3×105L⊙(Soraisam et al.2023)andL?5.5×104L⊙(Kilpatrick et al.2023).I scale the wind velocity for SN 2023ixf according to Smith et al.(2023) who infer it to bevw=115 km s?1.

    2.2.The Density of the Clumps

    Consider a clump that is ejected from the star and its density iskbtimes the density of the regular wind at the same radius.The assumptions(Soker 2021)are that it expands radially,i.e.,its cross section facing the star varies asAb(r)∝r2,and that its width (along the radial direction)lbstays constant.The forces that act on a clump are the stellar gravity(inwards;the negative radial direction),and two outwards forces,the drag by the regular wind and the radiation pressure.When the wind mass loss rate is as given by Equation(1)for ηw?1 it turns out that the expression for the maximum radius inside which the acceleration is negative (otherwise the clump escapes with the wind) does not depend on whether it is optically thin or thick and it reads (Soker 2021)

    wherevKep=is the Keplerian velocity on the stellar surface of the RSG star andvescis the escape velocity.

    The escape velocity of the progenitor of SN 2023ixf is uncertain.Hosseinzadeh et al.(2020)report a progenitor radius ofR*?410R⊙.From the luminosity and effective temperatures that studies infer,the progenitor stellar radius isR*?980R⊙(Jencson et al.2023) andR*?500R⊙(Kilpatrick et al.2023).The mass of the progenitor is also uncertain.Jencson et al.(2023) estimate the initial mass asMinit=17±4M⊙.On the other hand Kilpatrick et al.(2023)argue that the luminosity they infer is consistent withMinit=11M⊙a(bǔ)nd Pledger &Shara (2023) estimate thatMinit=8–10M⊙.Neustadt et al.(2023) give the range ofMinit=9–14M⊙.Soraisam et al.(2023) infer a value ofMinit=20±4M⊙.I scale here with a mass at explosion ofM*=10M⊙.Considering the long-period pulsation of 1091±71 days(Soraisam et al.2023),as Kilpatrick et al.(2023) also report,I scale the radius at explosion withR*?800R⊙.This gives,for the escape velocity and for the Keplerian velocity,vesc=69 km s?1andvKep=49 km s?1,respectively.

    I scale the outer radius of the compact CSM,which here is also the outer radius of the effervescent zone,withReff=RCSM=30 au=6445R⊙(Section 1).From Equation(2)withrmax=Reff,I find the condition on the density factor of the clump to stay bounded at the radius of the effervescent zoneReffto be

    Equation (3) gives the lower limit on the density ratio of clumps that reach the radius of the effervescent zone and then fall back.Clumps with lower density will be dragged out by the wind at that radius.For the wind parameters used here the density of the clumps atReffis

    2.3.Global Properties

    The density profile of the clumps in the effervescent zone depends on the velocity distribution of the clumps when they are ejected from the star and on the initial density contrastkb(Soker 2021).Because the clumps slow down as they rise and accelerate as they fall back to the star,the average density is notr?2.It can be shallower than this or steeper,depending on the initial velocity distribution.These properties span an undetermined parameter space of the effervescent zone model.I consider therefore global and average properties.

    Observations imply different CSM properties,depending on the type of observation and analysis.Bostroem et al.(2023)infer a mean density of 5.6×10?14g cm?2.Grefenstette et al.(2023) estimate a mass loss rate of≈ 3×10?4M⊙yr?1for a wind velocity ofvw=50 km s?1,while Jacobson-Galan et al.(2023) estimate a value of≈10?2M⊙yr?1forvw=50 km s?1.The mass of the compact CSM of SN 2023ixf is in the range of 0.001–0.03M⊙.I scale withMCSM=0.01M⊙.

    According to the effervescent zone model there is a regular wind in addition to the dense clumps.For that,the covering fraction of the clumps,which is the total solid angle the clumps cover divided by 4π,cannot be more than about half.Considering that the clumps spend a large fraction of the time near their turning point that is close toReff,I assume a simple model where all clumps are in a shell of widthlbnearReff.The demand on the covering fraction to befS<0.5 yields a constraint on the density of the clumps there to be

    By Equations (4) and (3) this implies that the density factor of the clumps iskb?3000.Since some clumps overlap in the solid angle they cover,the covering fraction for these parameters is actuallyfS<0.5.

    Consider the total volume that the clumps occupy inside the effervescent zoneVb.For a wind mass loss rate and velocity as the scaling of Equation (1),the total wind mass insideReff=30 au isMwind,eff=5.7×10?5M⊙.The relative volume the clumps occupy inside this radius is therefore

    3.Discussion and Summary

    This study presents the effervescent zone model as an alternative scenario to the enhanced mass-loss rate phase a few years before explosion as an explanation for the compact CSM around the progenitor of SN 2023ixf.A schematic drawing of the long-lived effervescent zone is presented in Figure 1.The motivation to propose the effervescent zone model comes from the fact that there are no indications for outbursts in the time period of years before the SN 2023ixf explosion and the largeamplitude pulsations of its progenitor.Such pulsations are expected to have facilitated the formation of an effervescent zone.Previous studies of SN 2023ixf ignored the possibility of an effervescent zone.

    There are some undetermined properties of the effervescent zone model,including the density and velocity distributions of the clumps that the RSG star ejects as a result of its pulsations and envelope convection.For that,at this stage I limit the study to present the possible properties of individual clumps (Section 2.2) and the global properties in the effervescent zone (Section 2.3).Because the CSM properties of SN 2023ixf are not well determined,the quantities I derive are all scaled.These include the lower limit on the ratio of the clump density to the regular wind density (Equation (3)) and its density at the effervescent radius (Equation (4)) in order for the clump to fall back.A stronger lower bound on the clumps’ density comes from the global demand that the clumps supply the CSM mass,but that they do not cover more than about half of the solid angle in order to allow the existence of a regular(escaping)wind(Equation(5)).The total volume the clumps occupy within the effervescent zone for the parameters I use here isfV?0.06 (Equation (6)).

    The effervescent zone model has the following implications.First,as said,there is no need for a pre-explosion outburst during the several years before explosion.Second,the dense gas might show redshifted and blueshifted emission of up to several tens of km s?1,and any value in between the red and blueshifted emissions.There are a total ofNc≈50 clumps in the effervescent zone.About half dominate the emission toward the observer.Therefore,the spectrum is a combination of these clumps,which will have one peak at the stellar velocity relative to the observer,with a spread due to Doppler shifts.The regular wind,however,will have stronger blueshifted emission.This might lead to a complicated spectrum.In particular,if the dense clumps have a small covering fraction along the line of sight to the photosphere of the ejecta then their influence on the absorption lines is small.Our next step will be to calculate the absorption and emission properties of the effervescent zone.

    For the lack of narrow blueshifted absorption lines Smith et al.(2023) suggest that most of the dense CSM is not along our line of sight.They further propose that a binary interaction ejected the dense CSM into a disk or a torus in the equatorial plane,and that this disk/torus does not cross our line of sight to the supernova photosphere.They attribute the disappearance of CSM lines to a flow structure where the supernova ejecta engulf the highly non-spherical CSM.In the effervescent zone model that I suggest here for SN 2023ixf,the dense clumps replace the equatorial mass ejection.The small solid angle coverage by the dense clumps,fS<0.5,and the small filling fractionfV(Equation (6)),suggest that the clumps might play the same role as a dense equatorial disk or torus.

    I encourage future studies of the ejecta-CSM interaction of SN 2023ixf to consider the effervescent zone model.

    Acknowledgments

    I thank an anonymous referee for useful comments.This research was supported by a grant from the Israel Science Foundation (769/20).

    ORCID iDs

    欧美丝袜亚洲另类 | 女人高潮潮喷娇喘18禁视频| 国产亚洲欧美在线一区二区| 十八禁人妻一区二区| 久久草成人影院| 丝袜美足系列| 国产精品综合久久久久久久免费 | 国产欧美日韩一区二区精品| 欧美另类亚洲清纯唯美| 天天一区二区日本电影三级 | 成人三级做爰电影| 成人亚洲精品av一区二区| 精品日产1卡2卡| 免费一级毛片在线播放高清视频 | 国产国语露脸激情在线看| 欧美久久黑人一区二区| 一边摸一边抽搐一进一出视频| 国产亚洲精品第一综合不卡| 久久久精品欧美日韩精品| 母亲3免费完整高清在线观看| bbb黄色大片| 黄色a级毛片大全视频| 一级黄色大片毛片| 国产高清激情床上av| 波多野结衣av一区二区av| 久久精品影院6| 两性夫妻黄色片| 欧美大码av| 天天一区二区日本电影三级 | 十八禁网站免费在线| 免费在线观看完整版高清| 国产不卡一卡二| 精品人妻在线不人妻| 一a级毛片在线观看| 亚洲视频免费观看视频| 99在线人妻在线中文字幕| 欧美老熟妇乱子伦牲交| 男女下面进入的视频免费午夜 | 法律面前人人平等表现在哪些方面| 国产精品美女特级片免费视频播放器 | 欧美黑人欧美精品刺激| 在线天堂中文资源库| 精品国产乱码久久久久久男人| 日韩欧美一区视频在线观看| 久久久久国产一级毛片高清牌| 欧美日韩福利视频一区二区| 亚洲五月婷婷丁香| 亚洲国产欧美一区二区综合| 亚洲五月婷婷丁香| 免费在线观看黄色视频的| 黄色片一级片一级黄色片| 女人被狂操c到高潮| 亚洲成国产人片在线观看| 一级毛片精品| 人人妻,人人澡人人爽秒播| 天堂动漫精品| 波多野结衣一区麻豆| 黄色a级毛片大全视频| 手机成人av网站| 久久国产精品影院| 国产成人欧美| 神马国产精品三级电影在线观看 | 日本精品一区二区三区蜜桃| av有码第一页| 国产成人精品无人区| 久久亚洲真实| 如日韩欧美国产精品一区二区三区| 午夜老司机福利片| 99久久99久久久精品蜜桃| 黑人巨大精品欧美一区二区蜜桃| 国产精品二区激情视频| 久久久久久国产a免费观看| 两个人视频免费观看高清| 满18在线观看网站| av超薄肉色丝袜交足视频| 在线观看免费午夜福利视频| 91麻豆av在线| 国产视频一区二区在线看| 黄色女人牲交| tocl精华| 99re在线观看精品视频| 久久久精品欧美日韩精品| 欧美日韩福利视频一区二区| 大码成人一级视频| 亚洲国产中文字幕在线视频| 黑人欧美特级aaaaaa片| 搡老熟女国产l中国老女人| 成人国产综合亚洲| 在线观看免费视频日本深夜| 此物有八面人人有两片| 国产又爽黄色视频| 国产黄a三级三级三级人| 久久久久久久精品吃奶| 国产亚洲av嫩草精品影院| e午夜精品久久久久久久| 国产av一区在线观看免费| 啦啦啦观看免费观看视频高清 | 国产精品二区激情视频| 久久中文字幕人妻熟女| 99riav亚洲国产免费| 久久国产精品人妻蜜桃| 久久婷婷成人综合色麻豆| 欧美激情极品国产一区二区三区| 久久久久国产一级毛片高清牌| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产看品久久| 真人一进一出gif抽搐免费| 中文字幕av电影在线播放| www.自偷自拍.com| cao死你这个sao货| 欧美最黄视频在线播放免费| 一级a爱片免费观看的视频| 亚洲黑人精品在线| 欧美黄色淫秽网站| 久久人人爽av亚洲精品天堂| 一本大道久久a久久精品| 中文亚洲av片在线观看爽| 最好的美女福利视频网| 亚洲久久久国产精品| 两个人视频免费观看高清| 99精品久久久久人妻精品| 欧美中文日本在线观看视频| 精品一区二区三区四区五区乱码| av天堂久久9| 男男h啪啪无遮挡| 两性午夜刺激爽爽歪歪视频在线观看 | or卡值多少钱| 国产熟女午夜一区二区三区| 一本大道久久a久久精品| av欧美777| 男人的好看免费观看在线视频 | 欧美国产日韩亚洲一区| 亚洲精品在线美女| 日本a在线网址| 高清在线国产一区| 亚洲国产欧美日韩在线播放| 国产精品自产拍在线观看55亚洲| 多毛熟女@视频| 激情视频va一区二区三区| 欧美激情极品国产一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 国产精品亚洲一级av第二区| 国产av精品麻豆| 午夜福利成人在线免费观看| 午夜福利高清视频| a级毛片在线看网站| 国产成人av激情在线播放| 黑人巨大精品欧美一区二区蜜桃| 1024视频免费在线观看| 丁香六月欧美| 黄色女人牲交| 性少妇av在线| 欧美乱码精品一区二区三区| 久久人人97超碰香蕉20202| 亚洲av美国av| av超薄肉色丝袜交足视频| 人人妻人人澡人人看| 我的亚洲天堂| 亚洲色图av天堂| 午夜福利18| 十八禁网站免费在线| 麻豆av在线久日| 熟女少妇亚洲综合色aaa.| 搞女人的毛片| 色在线成人网| 欧美日本中文国产一区发布| 99国产综合亚洲精品| 久99久视频精品免费| 欧美中文综合在线视频| www日本在线高清视频| 欧美+亚洲+日韩+国产| 国产精品一区二区三区四区久久 | 亚洲熟妇中文字幕五十中出| 可以免费在线观看a视频的电影网站| 色老头精品视频在线观看| 国产野战对白在线观看| 在线观看一区二区三区| 日韩视频一区二区在线观看| tocl精华| 可以在线观看毛片的网站| 色在线成人网| 亚洲一卡2卡3卡4卡5卡精品中文| 老熟妇乱子伦视频在线观看| 午夜福利免费观看在线| 制服人妻中文乱码| 亚洲第一av免费看| 国产成人影院久久av| 午夜日韩欧美国产| 久久精品国产清高在天天线| aaaaa片日本免费| 国产精品免费视频内射| 女性生殖器流出的白浆| 亚洲男人的天堂狠狠| 国产一区二区三区视频了| 欧美日韩亚洲综合一区二区三区_| 日本在线视频免费播放| 神马国产精品三级电影在线观看 | 中文字幕人成人乱码亚洲影| 久久精品亚洲熟妇少妇任你| 99久久久亚洲精品蜜臀av| 国产精品日韩av在线免费观看 | 国产亚洲av高清不卡| 欧美黑人精品巨大| 又紧又爽又黄一区二区| 亚洲美女黄片视频| 久久精品国产亚洲av高清一级| 欧美丝袜亚洲另类 | 国产97色在线日韩免费| 久久久久久久久中文| 亚洲国产欧美日韩在线播放| 国产精品二区激情视频| 99精品久久久久人妻精品| 欧美性长视频在线观看| 变态另类丝袜制服| 午夜久久久久精精品| 国产男靠女视频免费网站| 一边摸一边抽搐一进一小说| 免费在线观看视频国产中文字幕亚洲| av有码第一页| 制服人妻中文乱码| avwww免费| 欧美人与性动交α欧美精品济南到| 不卡av一区二区三区| 日本精品一区二区三区蜜桃| √禁漫天堂资源中文www| 日韩免费av在线播放| av网站免费在线观看视频| 91精品国产国语对白视频| 国产av一区二区精品久久| 非洲黑人性xxxx精品又粗又长| 少妇 在线观看| 大陆偷拍与自拍| 九色国产91popny在线| 亚洲成人精品中文字幕电影| 男人的好看免费观看在线视频 | 亚洲 欧美一区二区三区| 久久狼人影院| 久久精品国产99精品国产亚洲性色 | 久久狼人影院| 99riav亚洲国产免费| √禁漫天堂资源中文www| 欧美精品亚洲一区二区| 日韩欧美一区二区三区在线观看| 久久久久久久久久久久大奶| 法律面前人人平等表现在哪些方面| 又紧又爽又黄一区二区| 99热只有精品国产| 在线观看午夜福利视频| 黑人欧美特级aaaaaa片| 天天躁夜夜躁狠狠躁躁| 亚洲,欧美精品.| 搡老妇女老女人老熟妇| 午夜久久久在线观看| 夜夜看夜夜爽夜夜摸| 一二三四社区在线视频社区8| 中国美女看黄片| 免费观看精品视频网站| 人人妻人人澡欧美一区二区 | 亚洲色图综合在线观看| 国产亚洲精品第一综合不卡| 亚洲aⅴ乱码一区二区在线播放 | 国产一区二区在线av高清观看| 老司机午夜福利在线观看视频| 午夜视频精品福利| 国产色视频综合| 色老头精品视频在线观看| 成人亚洲精品一区在线观看| 日日夜夜操网爽| 一进一出好大好爽视频| 欧洲精品卡2卡3卡4卡5卡区| 啦啦啦免费观看视频1| 国产成人av教育| 国产视频一区二区在线看| 精品免费久久久久久久清纯| 在线观看舔阴道视频| 99国产精品免费福利视频| 法律面前人人平等表现在哪些方面| 亚洲伊人色综图| 好男人在线观看高清免费视频 | 欧美黑人精品巨大| 可以免费在线观看a视频的电影网站| 久久婷婷成人综合色麻豆| 一级,二级,三级黄色视频| 91九色精品人成在线观看| 天堂√8在线中文| 伦理电影免费视频| 久久精品国产亚洲av香蕉五月| 久久久久久亚洲精品国产蜜桃av| 亚洲专区中文字幕在线| 给我免费播放毛片高清在线观看| 国产亚洲精品久久久久久毛片| 亚洲一码二码三码区别大吗| 天天一区二区日本电影三级 | 黑人操中国人逼视频| 久久精品国产清高在天天线| 国产国语露脸激情在线看| 日韩国内少妇激情av| 国产精品久久久人人做人人爽| 高清毛片免费观看视频网站| 最新美女视频免费是黄的| 国产成人欧美| 亚洲成av人片免费观看| 亚洲va日本ⅴa欧美va伊人久久| 国产av一区二区精品久久| 亚洲色图 男人天堂 中文字幕| 国产精品电影一区二区三区| 国产野战对白在线观看| 亚洲av熟女| 国产在线精品亚洲第一网站| 亚洲国产毛片av蜜桃av| 欧美中文日本在线观看视频| 久久婷婷成人综合色麻豆| 久久精品国产亚洲av高清一级| 中文字幕最新亚洲高清| av天堂在线播放| 啪啪无遮挡十八禁网站| 多毛熟女@视频| 午夜视频精品福利| 99香蕉大伊视频| 精品国产亚洲在线| 青草久久国产| 亚洲欧美精品综合一区二区三区| 免费搜索国产男女视频| 亚洲中文日韩欧美视频| 两个人免费观看高清视频| 在线观看免费日韩欧美大片| 国产1区2区3区精品| 自线自在国产av| 欧美成人性av电影在线观看| 最近最新中文字幕大全电影3 | 精品卡一卡二卡四卡免费| 老汉色av国产亚洲站长工具| 脱女人内裤的视频| 19禁男女啪啪无遮挡网站| 精品一区二区三区av网在线观看| 亚洲久久久国产精品| 最近最新中文字幕大全电影3 | 国产欧美日韩一区二区三| 精品久久久久久成人av| av在线播放免费不卡| 性欧美人与动物交配| 午夜福利高清视频| 一级片免费观看大全| 啦啦啦观看免费观看视频高清 | 精品熟女少妇八av免费久了| 亚洲成人免费电影在线观看| 国产精品九九99| 欧美日韩福利视频一区二区| 国产亚洲精品av在线| 亚洲国产毛片av蜜桃av| a在线观看视频网站| 欧美久久黑人一区二区| 日本欧美视频一区| 国产成人欧美在线观看| 日本欧美视频一区| 亚洲男人的天堂狠狠| 午夜福利欧美成人| 亚洲国产精品久久男人天堂| 日本 av在线| 美女扒开内裤让男人捅视频| 两个人免费观看高清视频| 精品久久久久久成人av| 国产免费av片在线观看野外av| 成人亚洲精品av一区二区| 久久国产精品男人的天堂亚洲| 中文字幕色久视频| 国产xxxxx性猛交| 99久久综合精品五月天人人| 巨乳人妻的诱惑在线观看| 国产单亲对白刺激| 国产又色又爽无遮挡免费看| 成人18禁在线播放| 在线免费观看的www视频| 久久人妻av系列| 欧美黄色片欧美黄色片| 亚洲 欧美一区二区三区| 久久久水蜜桃国产精品网| 脱女人内裤的视频| 午夜福利免费观看在线| 国产成+人综合+亚洲专区| 成人免费观看视频高清| 国产aⅴ精品一区二区三区波| 午夜影院日韩av| 好男人在线观看高清免费视频 | 搞女人的毛片| 香蕉丝袜av| 欧美绝顶高潮抽搐喷水| 一个人观看的视频www高清免费观看 | 日韩欧美国产一区二区入口| e午夜精品久久久久久久| 亚洲美女黄片视频| 国产亚洲欧美精品永久| 一进一出好大好爽视频| 国内精品久久久久精免费| 亚洲精品美女久久av网站| 日日爽夜夜爽网站| 国产精品精品国产色婷婷| 国产伦一二天堂av在线观看| 99国产精品一区二区蜜桃av| 黑人巨大精品欧美一区二区mp4| 久久久久九九精品影院| 在线观看www视频免费| 午夜精品在线福利| 国产精品综合久久久久久久免费 | 国产日韩一区二区三区精品不卡| 一二三四社区在线视频社区8| 最新美女视频免费是黄的| 天天躁狠狠躁夜夜躁狠狠躁| 极品人妻少妇av视频| 亚洲自拍偷在线| 人妻久久中文字幕网| 日韩欧美一区视频在线观看| 国产精品一区二区免费欧美| 国产三级黄色录像| 精品人妻1区二区| 一边摸一边做爽爽视频免费| 国产亚洲精品久久久久5区| 免费一级毛片在线播放高清视频 | 国产麻豆69| 亚洲国产高清在线一区二区三 | 亚洲精品美女久久久久99蜜臀| 亚洲免费av在线视频| 久久精品91蜜桃| 亚洲精品粉嫩美女一区| 午夜久久久久精精品| 免费少妇av软件| 亚洲avbb在线观看| 亚洲av美国av| 久久久久久久久中文| 91av网站免费观看| 国产精品1区2区在线观看.| 免费看十八禁软件| 每晚都被弄得嗷嗷叫到高潮| 两人在一起打扑克的视频| 国产视频一区二区在线看| 亚洲色图 男人天堂 中文字幕| 日本免费一区二区三区高清不卡 | 亚洲欧美日韩无卡精品| 国产精品永久免费网站| 老汉色av国产亚洲站长工具| 91九色精品人成在线观看| 日日干狠狠操夜夜爽| 一级a爱视频在线免费观看| 国产亚洲av嫩草精品影院| 午夜精品国产一区二区电影| 欧美中文日本在线观看视频| 丰满的人妻完整版| 一级毛片精品| 一夜夜www| 97人妻天天添夜夜摸| 在线观看免费日韩欧美大片| 嫩草影视91久久| 久久精品国产99精品国产亚洲性色 | 欧美老熟妇乱子伦牲交| 国产精品亚洲av一区麻豆| av天堂在线播放| 国产精品秋霞免费鲁丝片| 日本免费一区二区三区高清不卡 | 精品少妇一区二区三区视频日本电影| 国产成人精品无人区| 亚洲欧美日韩另类电影网站| 久99久视频精品免费| 亚洲美女黄片视频| 亚洲精品国产色婷婷电影| 久久久水蜜桃国产精品网| 韩国av一区二区三区四区| cao死你这个sao货| 国产一区二区三区视频了| 很黄的视频免费| 精品国产一区二区三区四区第35| 久久人人爽av亚洲精品天堂| 色综合站精品国产| 美女国产高潮福利片在线看| 欧美乱妇无乱码| 乱人伦中国视频| 色av中文字幕| 中文字幕人妻丝袜一区二区| 国产亚洲精品一区二区www| 母亲3免费完整高清在线观看| 亚洲中文字幕一区二区三区有码在线看 | 岛国在线观看网站| 欧美乱妇无乱码| 人人妻,人人澡人人爽秒播| 欧美日韩亚洲国产一区二区在线观看| 日本精品一区二区三区蜜桃| 精品久久久精品久久久| 久久精品国产亚洲av高清一级| 天天一区二区日本电影三级 | 亚洲va日本ⅴa欧美va伊人久久| 国产精品精品国产色婷婷| 看片在线看免费视频| 91精品三级在线观看| 九色国产91popny在线| 国产又爽黄色视频| 亚洲成a人片在线一区二区| 久久久久亚洲av毛片大全| 操出白浆在线播放| 午夜视频精品福利| 久9热在线精品视频| 在线观看www视频免费| 大香蕉久久成人网| 侵犯人妻中文字幕一二三四区| 51午夜福利影视在线观看| 亚洲国产精品合色在线| 制服诱惑二区| 亚洲国产精品999在线| av天堂久久9| 91成年电影在线观看| 手机成人av网站| 一区在线观看完整版| 亚洲欧美日韩无卡精品| xxx96com| 91av网站免费观看| 亚洲电影在线观看av| 女警被强在线播放| 久久亚洲精品不卡| 看片在线看免费视频| 久久久久久久精品吃奶| 国产高清视频在线播放一区| 成人三级做爰电影| 在线天堂中文资源库| 欧美国产精品va在线观看不卡| 国产色视频综合| 自线自在国产av| 亚洲av电影不卡..在线观看| 日韩三级视频一区二区三区| 欧美激情久久久久久爽电影 | av中文乱码字幕在线| 国产av一区在线观看免费| 久久久久久久午夜电影| 国产精品一区二区精品视频观看| 国产麻豆成人av免费视频| 精品一品国产午夜福利视频| 中文字幕av电影在线播放| 男女下面插进去视频免费观看| 老司机靠b影院| 婷婷丁香在线五月| 国产黄a三级三级三级人| 欧美激情久久久久久爽电影 | 丁香欧美五月| 啦啦啦观看免费观看视频高清 | 久久精品91蜜桃| 在线av久久热| 中文字幕人妻丝袜一区二区| 久久久久久久久中文| 国内毛片毛片毛片毛片毛片| 欧美国产精品va在线观看不卡| 亚洲一码二码三码区别大吗| 黄色成人免费大全| 中国美女看黄片| 精品电影一区二区在线| svipshipincom国产片| 成人免费观看视频高清| 久热爱精品视频在线9| 亚洲欧美激情综合另类| 国产精品,欧美在线| 好看av亚洲va欧美ⅴa在| 男人的好看免费观看在线视频 | 中文亚洲av片在线观看爽| 女人精品久久久久毛片| 亚洲成av片中文字幕在线观看| 欧美性长视频在线观看| 99香蕉大伊视频| 久久亚洲精品不卡| 午夜日韩欧美国产| 午夜免费激情av| 成人三级黄色视频| 日日夜夜操网爽| av超薄肉色丝袜交足视频| 久久久久亚洲av毛片大全| 久久影院123| 午夜亚洲福利在线播放| 黄色 视频免费看| www.精华液| 嫩草影院精品99| 精品国产亚洲在线| 精品午夜福利视频在线观看一区| 亚洲精品国产精品久久久不卡| 国产精品一区二区精品视频观看| 免费在线观看亚洲国产| 亚洲av美国av| 日韩精品中文字幕看吧| 国产成人一区二区三区免费视频网站| 一进一出好大好爽视频| 中文字幕精品免费在线观看视频| 69精品国产乱码久久久| 久久婷婷人人爽人人干人人爱 | 一级,二级,三级黄色视频| 最好的美女福利视频网| 国产成人av激情在线播放| 久久久久久久精品吃奶| 国产精品影院久久| 精品一区二区三区av网在线观看| 99国产精品一区二区蜜桃av| 此物有八面人人有两片| 亚洲情色 制服丝袜| 69av精品久久久久久| 国产精品影院久久| 国产成人av激情在线播放| 欧美在线一区亚洲| 午夜免费成人在线视频| 午夜免费鲁丝| 亚洲国产欧美一区二区综合| 欧美日本亚洲视频在线播放| 脱女人内裤的视频| 欧美成人一区二区免费高清观看 | 久久伊人香网站| 免费看美女性在线毛片视频| 国产高清视频在线播放一区| 伦理电影免费视频| 51午夜福利影视在线观看| 久久人人97超碰香蕉20202| 最近最新中文字幕大全电影3 | 两性夫妻黄色片| 日本 av在线|