鄔崇振 李啟正 劉燦 王來力
摘 要:產(chǎn)品生命周期評價系統(tǒng)和數(shù)據(jù)庫為高效、準確開展產(chǎn)品生命周期評價提供數(shù)據(jù)處理、結果量化和評價支撐。本文對紡織產(chǎn)品生命周期評價研究文獻中應用的生命周期評價系統(tǒng)與數(shù)據(jù)庫系統(tǒng)界面、數(shù)據(jù)庫和影響評價模型數(shù)量、特征化因子、歸一化因子、權重因子等進行了系統(tǒng)分析。結果表明:Simapro系統(tǒng)和Gabi系統(tǒng)是紡織產(chǎn)品生命周期評價案例使用最多的系統(tǒng),總占比為53.77%;Ecoinvent數(shù)據(jù)庫和Gabi數(shù)據(jù)庫是紡織產(chǎn)品生命周期評價案例使用最多的數(shù)據(jù)庫,總占比為79.24%;Simapro系統(tǒng)和Gabi系統(tǒng)內(nèi)置數(shù)據(jù)庫有相同種類但數(shù)值不同的特征化因子、歸一化因子、權重因子,導致使用兩個系統(tǒng)針對同一紡織產(chǎn)品的生命周期評價結果存在差異;綜合考慮污染物排放渠道和區(qū)域內(nèi)生產(chǎn)規(guī)模、科技水平、經(jīng)濟狀況、環(huán)保政策等因素,構建具有國家、區(qū)域、時間性質(zhì)的紡織產(chǎn)品LCA數(shù)據(jù)庫可以提高評價結果的完整性和準確性。
關鍵詞:紡織產(chǎn)品; 生命周期評價; 評價系統(tǒng); 影響評價;清單數(shù)據(jù)庫
中圖分類號:TS101
文獻標志碼:A
文章編號:1009-265X(2023)04-0029-08
收稿日期:2022-12-16
網(wǎng)絡出版日期:2023-02-23
基金項目:中國工程院戰(zhàn)略研究與咨詢項目(2022-XY-19); 中央外經(jīng)貿(mào)專項資金(繭絲綢)項目(浙財建[2022]95號)
作者簡介:鄔崇振(1998—),男,江西豐城人,碩士研究生,主要從事紡織產(chǎn)品碳足跡核算與評價方面的研究。
通信作者:李啟正,E-mail:liqizheng@zstu.edu.cn
生命周期評價(Life cycle assessment, LCA)是1990年美國環(huán)境毒理和化學學會提出的一種識別產(chǎn)品或工藝在整個生命周期中對環(huán)境影響的綜合方法,可以確定產(chǎn)品生命周期環(huán)境影響的關鍵階段,從而為制定節(jié)能減排策略提供重要的指導作用[1]。產(chǎn)品LCA包括確定目標和范圍、清單分析、影響評估、結果解釋,通常涉及原料生產(chǎn)、產(chǎn)品制造、運輸、消費、廢棄物處置等生命周期過程[2]。數(shù)據(jù)收集與結果評價是產(chǎn)品LCA的兩個關鍵環(huán)節(jié),使用評價系統(tǒng)和其內(nèi)置的能源、物料等投入清單的影響因子數(shù)據(jù)庫可提升產(chǎn)品生命周期評價的效率[3]。
中國是紡織產(chǎn)品的生產(chǎn)和消費大國,通過對紡織產(chǎn)品進行生命周期評價可以量化紡織產(chǎn)品生產(chǎn)和消費產(chǎn)生的環(huán)境影響,進而為綠色低碳紡織產(chǎn)品設計、生產(chǎn)和消費提供參考[4]。筆者梳理了產(chǎn)品LCA系統(tǒng)與數(shù)據(jù)庫應用情況,并就紡織產(chǎn)品LCA研究文獻中應用的生命周期評價系統(tǒng)與數(shù)據(jù)庫的系統(tǒng)界面、數(shù)據(jù)庫和影響評價模型數(shù)量、特征化因子、歸一化因子、權重因子等進行了系統(tǒng)分析,為紡織產(chǎn)品生命周期評價提供參考。
1 生命周期評價系統(tǒng)與數(shù)據(jù)庫
對中國知網(wǎng)和Web of Science核心數(shù)據(jù)庫中關于產(chǎn)品LCA研究文獻進行檢索,并對文獻中應用的產(chǎn)品LCA評價系統(tǒng)和數(shù)據(jù)庫進行匯總,結果見表1和表2。
產(chǎn)品LCA研究需要經(jīng)過復雜繁瑣的建模流程和龐大的計算過程,使用LCA系統(tǒng)可以快速、準確地建立產(chǎn)品生命周期模型并量化環(huán)境影響[5]。從表1可知,1120篇文獻中共涉及18個LCA系統(tǒng),527篇產(chǎn)品LCA研究文獻中應用了Simapro系統(tǒng),應用最多,其次是Gabi系統(tǒng)和GREET系統(tǒng),分別有288篇和112篇,3個系統(tǒng)的文獻占比分別為47.05%、25.71%和10%。18個LCA系統(tǒng)的開發(fā)時間分布于1989—2016年,開發(fā)和應用最早的是1989年發(fā)布的Gabi系統(tǒng)。LCA系統(tǒng)在開發(fā)運行后會進行持續(xù)更新,例如Simapro系統(tǒng)最新一次更新是2022年5月發(fā)布的9.4.0.1版本,該版本更新了Agri-footprint數(shù)據(jù)庫,增加了1165個清單數(shù)據(jù);更新了IPCC影響評價模型,增加了64種物料的特征因子;新增了Ecological scarcity、Land use impacts on biodiversity影響評價模型[6-8]。
產(chǎn)品LCA研究需要大量產(chǎn)品的表層清單數(shù)據(jù)和背景清單數(shù)據(jù),使用LCA數(shù)據(jù)庫可以增加數(shù)據(jù)收集的效率,提高評價結果的可信度和可比性[9]。由表2可知,715篇文獻中共涉及22個生命周期評價數(shù)據(jù)庫,其中Ecoinvent數(shù)據(jù)庫在產(chǎn)品LCA應用最多,有342篇,占比為47.83%。其次是Gabi數(shù)據(jù)庫、U.S.LCA數(shù)據(jù)庫和EXIOBASE數(shù)據(jù)庫,分別有173篇、60篇和40篇,占比分別約為24.20%、8.39%和5.59%。LCA數(shù)據(jù)庫的開發(fā)時間分布于1989—2020年,1989年發(fā)布的Gabi是開發(fā)最早的LCA數(shù)據(jù)庫。數(shù)據(jù)采集覆蓋的地域范圍越廣,其評價結果越可靠[7]。若地域范圍的區(qū)域特性突出,清單數(shù)據(jù)無法匹配其他區(qū)域內(nèi)的實際生產(chǎn)情景,會增加評價結果的不確定性[10]。LCA數(shù)據(jù)庫集成在LCA評價系統(tǒng)中,例如Simapro系統(tǒng)集成了
Ecoinvent、IDEMAT、Agribalyse 等數(shù)據(jù)庫,Gabi系統(tǒng)集成了Gabi、Ecoinvent、ICFconcrete等數(shù)據(jù)庫。對產(chǎn)品LCA研究可以使用LCA系統(tǒng)調(diào)用一個或多個LCA數(shù)據(jù)庫的數(shù)據(jù),也可以單獨導出LCA數(shù)據(jù)庫中的數(shù)據(jù)進行環(huán)境影響評價[11]。
2 紡織產(chǎn)品生命周期評價與數(shù)據(jù)庫
紡織產(chǎn)品生命周期過程包括纖維原材料獲取、產(chǎn)品生產(chǎn)加工、運輸銷售、產(chǎn)品使用和廢棄處理,涉及多種物料、能源的投入,并產(chǎn)生多種污染物,對生態(tài)環(huán)境產(chǎn)生影響[12]。紡織產(chǎn)品的LCA受到越來越多的關注和研究,對紡織產(chǎn)品LCA研究文獻進行檢索,并對其中應用的評價系統(tǒng)和數(shù)據(jù)庫進行分析,結果見表3。
由表3可知,紡織產(chǎn)品LCA研究文獻中有106篇應用了評價系統(tǒng)與數(shù)據(jù)庫。Simapro系統(tǒng)在紡織產(chǎn)品LCA研究中應用最多,占比約為39.62%,其次是Gabi系統(tǒng),占比約為14.15%,openLCA系統(tǒng)占比約為11.32%,Umberto、eFootprint、JEMAI-LCA、EIME系統(tǒng)的應用較少。在評價數(shù)據(jù)庫方面,Ecoinvent數(shù)據(jù)庫在紡織產(chǎn)品LCA研究中應用最多,占比約為60.37%,其次是Gabi數(shù)據(jù)庫,占比約為18.87%,AusLCI數(shù)據(jù)庫、U.S.LCI數(shù)據(jù)庫、CLCD數(shù)據(jù)庫等應用較少。
2.1 系統(tǒng)界面
LCA系統(tǒng)的核算界面有樹形界面、流程圖界面和?;鶊D界面。樹形界面基于區(qū)域數(shù)據(jù)可視化,獲取大型分層數(shù)據(jù)的層次結構和單個數(shù)據(jù)點的值,適用于結構化產(chǎn)品工藝建模。流程圖界面強調(diào)相鄰兩個工序之間的聯(lián)系,突出執(zhí)行的先后順序,適用于流程化產(chǎn)品工藝建模。?;鶊D提供了可視化功能和動態(tài)輸入變化,將物料輸入和能源消耗動態(tài)表示出來。使用?;鶊D建模時,?;^的寬度取決于物料輸入或能源消耗的質(zhì)量,并且當節(jié)點上產(chǎn)生輸入輸出差異時,會自動標紅報警。紡織產(chǎn)品LCA研究應用的系統(tǒng)核算界面見表4。
由表4可知,Simapro系統(tǒng)、EIME系統(tǒng)、eFootprint系統(tǒng)、采用樹形界面,JEMAI-LCA系統(tǒng)和openLCA系統(tǒng)采用流程圖界面,Gabi系統(tǒng)和Umberto系統(tǒng)采用?;鶊D界面。Simapro系統(tǒng)的樹形結構可以從原料生產(chǎn)、纖維加工、織物織造、銷售使用、廢棄處理等多階段對紡織產(chǎn)品的物料消耗及制造工序的能源消耗進行分析,從而能更清晰地發(fā)現(xiàn)紡織產(chǎn)品各階段環(huán)境影響的區(qū)別。Gabi系統(tǒng)的?;鶊D是最直觀的、最具有動態(tài)性的建模圖形界面,可以應用于生產(chǎn)工藝多樣且復雜的紡織產(chǎn)品LCA研究[13]。Simapro系統(tǒng)和Gabi系統(tǒng)內(nèi)置的Ecoinvent數(shù)據(jù)庫、Gabi數(shù)據(jù)庫、IDEMAT數(shù)據(jù)庫包含了大部分紡織產(chǎn)品LCA所需物料和能源的清單數(shù)據(jù),因此在紡織產(chǎn)品LCA研究中Simapro系統(tǒng)和Gabi系統(tǒng)應用最為廣泛。
2.2 數(shù)據(jù)庫和影響評價模型數(shù)量
LCA系統(tǒng)內(nèi)置數(shù)據(jù)庫和影響評價模型數(shù)量直接決定LCA結果的全面性和準確性,因此對紡織產(chǎn)品LCA數(shù)據(jù)庫和影響評價模型數(shù)量進行比較,見表5。
由表5可知,Simapro系統(tǒng)和Gabi系統(tǒng)內(nèi)置的數(shù)據(jù)庫種類和影響評價模型的數(shù)量最多且差值較大,原因之一是Simapro系統(tǒng)和Gabi系統(tǒng)會保留版本更新前的影響評價模型,而其他LCA系統(tǒng)會用新的影響評價模型取代舊版本的影響評價模型。Siamapro系統(tǒng)與Gabi系統(tǒng)的影響評價模型與其他系統(tǒng)的openLCA系統(tǒng)沒有自帶數(shù)據(jù)庫,需要去其官網(wǎng)下載LCA數(shù)據(jù)庫,其中4個數(shù)據(jù)庫免費使用,其余16個數(shù)據(jù)庫需要付費使用。Gabi系統(tǒng)只有Gabi教育版數(shù)據(jù)庫可以免費使用,其他數(shù)據(jù)庫均需付費。Simapro系統(tǒng)可免費使用部分Ecoinvent數(shù)據(jù)庫進行生命周期評價,其他數(shù)據(jù)庫需要付費使用。研究者在使用Gabi系統(tǒng)、Simapro系統(tǒng)或者openLCA系統(tǒng)進行產(chǎn)品LCA時[14],如果背景清單繁多,一個數(shù)據(jù)庫中并沒有包含所有的數(shù)據(jù)清單,通常采用混合式LCA數(shù)據(jù)庫來進行核算,也即使用兩個或兩個以上LCA數(shù)據(jù)庫進行核算,導致研究者會使用非本地區(qū)的數(shù)據(jù)來計算,造成LCA結果出現(xiàn)誤差。
2.3 紡織產(chǎn)品主要LCA系統(tǒng)比較
不同的LCA系統(tǒng)對同一紡織產(chǎn)品進行LCA評價,得到的LCA評價結果不同。紡織產(chǎn)品使用的LCA系統(tǒng)以Simapro系統(tǒng)和Gabi系統(tǒng)為主,因此對Simapro系統(tǒng)和Gabi系統(tǒng)比較[15-20],見表6。
Simapro系統(tǒng)可以聯(lián)網(wǎng)多用戶使用,在同一項目或同一數(shù)據(jù)庫進行協(xié)同工作。而Gabi系統(tǒng)是封閉
式工作,互動性低,耗時長。此外,LCA系統(tǒng)使用的LCIA模型不同,也會對評價結果產(chǎn)生影響[21]。例如,氣候變化類別有不同的度量標準,這些度量標準因所考慮的時間段(20年、100年或500年)或指標(輻射強迫增加或溫度增加)而參數(shù)不同。各種供應商以LCI數(shù)據(jù)庫的形式提供輔助數(shù)據(jù)。流程建模有不同的方法。不同的系統(tǒng)邊界、假設以及數(shù)據(jù)集的時空有效性會導致不同的結果[22]。因此使用者可以匹配自身需求,確定核算邊界,理清產(chǎn)品組成,明晰數(shù)據(jù)來源,選擇與核算數(shù)據(jù)時間、區(qū)域來源相近的LCA系統(tǒng)進行核算。
2.4 特征化因子
特征化因子是將同種環(huán)境影響類型的生命周期清單分析結果轉化成具有相同單位的特征化指標的因子。特征化指標的值是后續(xù)影響評價的重要部分[23]。LCA系統(tǒng)內(nèi)置數(shù)據(jù)庫之間往往是有相同種類、數(shù)值卻不同的特征化因子。以紡織產(chǎn)品LCA研究中應用廣泛的的Simapro系統(tǒng)和Gabi系統(tǒng)為例,對兩個評價系統(tǒng)內(nèi)ReCiFe2016數(shù)據(jù)庫的紡織產(chǎn)品相關因子進行比較,見表7。
由表7可知,Simapro系統(tǒng)中的氟氯氰菊酯的特征因子比Gabi系統(tǒng)大,相差645倍。其次為氟蟻腙,兩個系統(tǒng)的海洋毒性特征化因子相差370倍。產(chǎn)生差異的原因之一是Simapro系統(tǒng)和Gabi系統(tǒng)分別由不同機構開發(fā),在產(chǎn)品工藝流程的廢棄物排放渠道選擇上存在差異,Simapro系統(tǒng)中氯氰菊酯和α-氯氰菊酯的廢棄物排放渠道是排放到水體,而Gabi系統(tǒng)中氯氰菊酯和α-氯氰菊酯的廢棄物排放渠道是排放到大氣。
2.5 歸一化因子
歸一化因子是一個區(qū)域內(nèi)一年各項影響類型的特征化指標,與特征化結果的比值結果為無量綱數(shù)據(jù),其結果可以幫助識別產(chǎn)品的主要影響類型[24]。LCA系統(tǒng)內(nèi)置數(shù)據(jù)庫之間同樣存在具有相同種類、數(shù)值卻不同的歸一化因子的情況。對Simapro系統(tǒng)和Gabi系統(tǒng)內(nèi)EDIP模型的歸一化因子進行比較,見表8。
由表8可知,Simapro系統(tǒng)中水體富營養(yǎng)化潛值歸一化因子比Gabi系統(tǒng)大,相差5.97倍。其次是酸化潛值、臭氧消耗潛值,分別相差4.58倍和4.02倍。產(chǎn)生差異的原因之一是Simapro系統(tǒng)和Gabi系統(tǒng)的開發(fā)商所在地區(qū)的生產(chǎn)規(guī)模和科技水平不同,對同種環(huán)境影響實施的對策有差異,導致Gabi系統(tǒng)的歸一化因子小于Simapro系統(tǒng)的歸一化因子[25]。
2.6 加權因子
加權因子是將歸一化結果轉化成不同影響類型的加權綜合指標因子。其結果可以用于比較單一產(chǎn)品工藝流程環(huán)境影響的大小,也支持不同產(chǎn)品的環(huán)境影響評價[26]。Simapro系統(tǒng)和Gabi系統(tǒng)中集成的ReCiFe2016數(shù)據(jù)庫中,Simapro系統(tǒng)的人體健康損害、生態(tài)環(huán)境損害、資源消耗等加權因子比Gabi系統(tǒng)小,差值均為0.99667倍。產(chǎn)生差異的原因之一是加權因子是折算因子,可以通過專家調(diào)查法和基于志愿支付法得出,前者通過詢問一組專家的意見,得出各種環(huán)境影響類型或損害的重要性評分,后者通過被調(diào)查者用經(jīng)濟價值衡量各環(huán)境類型或損害的重要性[27]。
3 結 論
本文對產(chǎn)品LCA研究文獻中的LCA系統(tǒng)和數(shù)據(jù)庫進行了梳理,并對其在紡織產(chǎn)品LCA研究應用時的特征化因子、歸一化因子和加權化因子等關鍵問題進行了分析討論,結論如下:
a)紡織產(chǎn)品LCA研究文獻中使用最多的LCA系統(tǒng)是Simapro系統(tǒng)和Gabi系統(tǒng),總占比約為53.77%。使用最多的LCA數(shù)據(jù)庫是Ecoinvent數(shù)據(jù)庫和Gabi數(shù)據(jù)庫,總占比約為79.24%。
b)各主要LCA系統(tǒng)與數(shù)據(jù)庫的特征化因子、歸一化因子、權重因子不一致,數(shù)據(jù)庫與影響評價模型數(shù)量不同,導致針對同一紡織產(chǎn)品使用不同LCA系統(tǒng)和數(shù)據(jù)庫進行LCA研究時,結果存在差異。
c)LCA系統(tǒng)與數(shù)據(jù)庫的污染物排放渠道和區(qū)域內(nèi)生產(chǎn)規(guī)模、科技水平、經(jīng)濟狀況、環(huán)保政策的差別是使用不同LCA系統(tǒng)對紡織產(chǎn)品進行LCA研究時結果存在差異的主要原因。為提高紡織LCA結果的準確性,應建立統(tǒng)一的紡織產(chǎn)品LCA模型和具有區(qū)域性質(zhì)、基準統(tǒng)一的LCA數(shù)據(jù)庫。
參考文獻:
[1]HURNI H, GIGER M, LINIGER H, et al. Soils, agriculture and food security: The interplay between ecosystem functioning and human well-being[J]. Current Opinion in Environmental Sustainability, 2015, 15:25-34.
[2]袁琳琳,姚慶達,但年華,等.鉻鞣黃牛革全生命周期評價[J].皮革科學與工程,2021,31(4):11-16.
YUAN Linlin, YAO Qingda, DAN Nianhua, et al. Life cycle assessment evaluation of chrome tanned cattle leather[J]. Leather Science and Engineering, 2021, 31(4): 11-16.
[3]王玉濤,王豐川,洪靜蘭,等.中國生命周期評價理論與實踐研究進展及對策分析[J].生態(tài)學報,2016,36(22):7179-7184.
WANG Yutao, WANG Fengchuan, HONG Jinglan, et al. The development of life cycle assessment theory research in China and analysis of countermeasures[J]. Acta Ecologica Sinica, 2016, 36(22): 7179-7184.
[4]ASTUDILLO M F, THALWITZ G, VOLLRATH F. Life cycle assessment of Indian silk[J]. Journal of Cleaner Production, 2014, 81: 158-167.
[5]王賽賽,吳雄英,丁雪梅.三種LCA核算軟件對印花布碳足跡核算的比較[J].印染,2014,40(18):41-44.
WANG Saisai, WU Xiongying, DING Xuemei. Comparison of the industrial carbon footprint of printed fabrics using three LCA accounting software[J]. China Dyeing & Finishing, 2014, 40(18): 41-44.
[6]GOEDKOOP M, OELE M, EFFTING S. What's new in Simapro 9.4[EBOL]. [2022-5-31].https:support.simapro.comarticlesArticleRelease-Notes.
[7]CHAUDHARY A, VERONES F, DE BAAN L, et al. Quantifying land use impacts on biodiversity: Combining species-area models and vulnerability indicators[J]. Environmental science & technology, 2015, 49(16): 9987-9995.
[8]LAMBRECHT H, LEWERENZ S, HOTTENROTH H, et al. Ecological scarcity based impact assessment for a decentralised renewable energy system[J]. Energies, 2020, 13(21): 5655.
[9]GOEDKOOP M, OELE M, EFFTING S. Simapro Database Manual Methods Library. Netherland: PRe.Consultants[EBOL]. [2022-5-31]. http:www.pre.nlsimapro impact_assessment_methods.html.
[10]豐翔,孫麗蓉,朱紫嫄,等.紡織產(chǎn)品生命周期評價研究進展[J].印染助劑,2022,39(10):1-6.
FENG Xiang, SUN Lirong, ZHU Ziyuan, et al. Research progress of textile products life cycle assessment[J]. Textile Auxiliaries, 2022, 39(10): 1-6.
[11]KAZAN H, AKGUL D, KERC A. Life cycle assessment of cotton woven shirts and alternative manufacturing techniques[J]. Clean Technologies and Environmental Policy, 2020, 22(4): 849-864.
[12]GOMES-CAMPOS A, VIALLE C, ROUILLY A, et al. Flax fiber for technical textile: A life cycle inventory[J]. Journalof Cleaner Production, 2021, 281: 125177.
[13]ORMAZABAL M, JACA C, PUGA-LEAL R. Analysis and comparison of life cycle assessment and carbon footprint software[C]Proceedings of the Eighth International Conference on Management Science and Engineering Management. Berlin, Heidelberg: Springer, 2014: 1521-1530.
[14]SALIERI B, STOUDMANN N, HISCHIER R, et al. How relevant are direct emissions of microplastics into freshwater from an LCA perspective?[J]. Sustainability, 2021, 13(17): 9922.
[15]RICE G, CLIFT R, BURNS R. Comparison of currently available European LCA software[J]. The International Journal of Life Cycle Assessment,1997, 2(1):53-59.
[16]Herrmann I T, Moltesen A. Does it matter which Life Cycle Assessment (LCA) tool you choose? A comparative assessment of Simapro and GaBi[J]. Journal of Cleaner Production, 2015, 86: 163-169.
[17]LOPES SD A, Nunes A O, Piekarski C M, et al. Why using different Life Cycle Assessment software tools can generate different results for the same product system? A cause-effect analysis of the problem[J]. Sustainable Production and Consumption, 2019, 20: 304-315.
[18]Pauer E, Wohner B, Tacker M. The influence of database selection on environmental impact results. Life cycle assessment of packaging usingGaBi, ecoinvent 3.6, and the environmental footprint database[J]. Sustainability, 2020, 12(23): 9948.
[19]鄭秀君,胡彬.我國生命周期評價(LCA)文獻綜述及國外最新研究進展[J].科技進步與對策,2013,30(6):155-160.
ZHENG Xiujun, HU Bin. Domestic literature review and the latest overseas research progress life cycle assessment[J]. Science & Technology Progress and Policy, 2013,30(6):155-160.
[20]ROSAL, GRAMMATIKOS S A. Comparative life cycle assessment of cotton and other natural fibers for textile applications[J]. Fibers, 2019, 7(12): 101.
[21]SPECK R, SELKE S, AURAS R, et al. Life cycle assessment software: Selection can impact results[J]. Journal of Industrial Ecology, 2016, 20(1): 18-28.
[22]DAIC' P, NEDEFF V, C'URCˇIC' S. Analysis and evaluation of software tools for life cycle assessment[J]. Annals of the University of Petrosani, Electrical Engineering, 2007, 9(12): 6-15.
[23]MACENO M M C, JOO S, VOLTOLINI D R, et al. Life cycle assessment and circularity evaluation of the non-medical masks in the Covid-19 pandemic:A Brazilian case[J]. Environment, Development and Sustainability, 2022,24(8): 1-28.
[24]馬俊濱,邢玉靜,余慧玲,等.黑色原液著色再生聚酯短纖維的全生命周期分析研究[J].合成纖維工業(yè),2021,44(6):1-5.
MA Junbin, XING Yujing, YU Huiling, et al. Life cycle assessment on black dope-dyed recycled polyester staple fiber[J]. China Synthetic Fiber Industry, 2021, 44(6): 1-5.
[25]REUM N. Qualification practices of companies in the electronics Industry against the background of qualification problems in selected regions of Germany, Poland and the Netherlands[J]. Journal of Vocational Education & Training, 2020, 72(4): 620.
[26]謝明輝,滿賀誠,段華波,等.生命周期影響評價方法及本地化研究進展[J].環(huán)境工程技術學報,2022,12(6):2148-2156.
XIE Minghui,MAN Hecheng, DUAN Huabo, et al. Research progress on the life cycle impact assessment methods and their localization in China[J]. Journal of Environmental Engineering Technology, 2022, 12(6): 2148-2156.
[27]AZEVEDO L B, VAN ZELM R, ELSHOUT P M F, et al. Species richness-phosphorus relationships for lakes and streams worldwide[J]. Global Ecology and Biogeography, 2013, 22(12): 1304-1314.
Life cycle assessment system and database analysis of textile products
WU Chongzhena, LI Qizhenga,b, LIU Canc, WANG Lailic
(a.College of Textile Science and Engineering (International Institute of Silk);b. Periodicals Agency;
c.School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China)
Abstract:
Life cycle assessment (LCA) is a comprehensive method to identify and evaluate the environmental impact of a product or a process throughout the life cycle, which can effectively identify the key stages of the environmental impact of a product's life cycle and thus provide important and accurate guidance for the development of energy conservation and emission reduction strategies. Due to the long and complex supply chain and manufacturing processes, the textile industry is inevitably one of the most pollutant industries around the world. Therefore, conducting life cycle assessment and selecting the appropriate LCA systems and databases for textile products and production processes are of vital significance. China is one of the largest producers and consumers of textile products around the world. LCA of textile products is an effective tool to quantify the environmental impacts generated by the production and consumption of textile products, which further provides valid references for green and low-carbon textile product design, production and consumption. Data collection and result evaluation are two key aspects of product LCA. Using LCA system and its built-in database of impact factors for energy, materials and other input lists can greatly improve the efficiency and accuracy of LCA for products.
In order to conduct a systematic and comprehensive analysis of LCA systems and databases for textile products, we firstly searched literature pertaining to product LCA research on China National Knowledge Infrastructure (CNKI) and Web of Science and summarized the product LCA systems and databases applied in the literature. Considering that LCA of textile products is receiving increasing attention and research, we then searched the literature on LCA research of textile products and analyzed the assessment systems and databases applied in literature. According to the fiber category, the literature found was classified and the impact models and LCA databases used were listed and compared. In addition, we systematically analyzed and compared the accounting interfaces of the current LCA systems of textile products, including the tree interface, flowchart interface and Sankey diagram interface and so on. The built-in Ecoinvent database, Gabi database, and IDEMAT database of Simapro and Gabi systems contain most of the material and energy inventory data required for conducting LCA of textile products. Thus, Simapro and Gabi systems are most widely used in LCA studies of textile products among the current LCA systems. Database and the number of impact assessment models, characterization factors, normalization factors as well as weighting factors applied in the research literature of LCA of textile products were compared as well. And we took the characterization factor of marine ecotoxicity and normalization factors of EDIP model for example. On the whole, the number of built-in databases and impact assessment models in the LCA system directly determines the comprehensiveness and accuracy of LCA results. LCA systems often have the same sorts of characterization factors with different values between built-in databases. Taking the Simapro and Gabi systems which are widely used in LCA studies of textile products as examples, we compared the marine ecotoxicity characterization factors of the ReCiFe2016 database and normalization factors of EDIP model within the two evaluation systems. In addition, we analyzed the reasons and influencing factors for the differences in weighting factors in different LCA systems. The inconsistency of characterization factors, normalization factors, and weighting factors among major LCA systems and databases, as well as the different numbers of databases and impact assessment models lead to differences in results when LCA studies are conducted for the same textile product using different LCA systems and databases. The results show that in terms of cases of LCA of textile products, Simapro system and Gabi system are the systems used most commonly, accounting for 53.77% in total. In terms of impact evaluation databases used in cases of LCA of textiles, Ecoinvent database and Gabi database are the databases used most commonly in the LCA of textile products, accounting for 79.24% in total. Moreover, the built-in databases of Simapro and Gabi systems have the same type of characterization factors, normalization factors, and weighting factors with different values, resulting in discrepancy between the life cycle assessment results for the same textile products. The reasons for the differences include the facts that the Simapro and Gabi systems are developed by separate institutions, and that the production scale and technology levels in the developers' regions, and the conversion factors are different.
The differences between LCA systems and databases of pollutant emission channels and production scale, technology level, economic status, and environmental policies in the region are the main reasons for the different results when different LCA systems for LCA studies of textile products are used. By comprehensively considering the above factors, constructing an LCA system and database of textile products with regional features and a unified benchmark can improve the integrity and accuracy of the evaluation results.
Keywords:
textile products; life cycle assessment; evaluation system; impact evaluation; list database