• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermal and ignition properties of hexanitrostilbene (HNS)microspheres prepared by droplet microfluidics

    2023-07-31 13:30:50RuishanHanFeipengLuFangZhangYanlanWangMiZhouGuoshengQinJianhuaChenHaifuWangEnyiChu
    Defence Technology 2023年7期

    Rui-shan Han ,Fei-peng Lu ,Fang Zhang ,Yan-lan Wang ,Mi Zhou ,Guo-sheng Qin ,Jian-hua Chen ,Hai-fu Wang ,En-yi Chu ,**

    a State Key Laboratory of Explosion and Technology, Beijing Institute of Technology, Beijing,100081, China

    b Science and Technology on Applied Physical Chemistry Laboratory, Shaanxi Applied Physics-Chemistry Research Institute, Xi'an, 710061, Shaanxi, China

    Keywords:Microfluidics HNS microspheres Thermal stability Ignition threshold

    ABSTRACT HNS-IV (Hexanitrostilbene-IV) is the main charge of the exploding foil initiators (EFI),and the microstructure of the HNS will directly affect its density,flowability,sensitivity,and stability.HNS microspheres were prepared using droplet microfluidics,and the particle size,morphology,specific surface area,thermal performance,and ignition threshold of the HNS microspheres were characterized and tested.The results shown that the prepared HNS microspheres have high sphericity,with an average particle size of 20.52 μm (coefficient of variation less than 0.2),and a specific surface area of 21.62 m2/g(6.87 m2/g higher than the raw material).Without changing the crystal structure and thermal stability of HNS-IV,this method significantly enhances the sensitivity of HNS-IV to short pulses and reduces the ignition threshold of the slapper detonator to below 1000 V.This will contribute to the miniaturization and low cost of EFI.

    1.Introduction

    Exploding foil initiators(EFI),also called slapper detonators,are explosive devices that initiate when a high velocity polymeric flyer impacts the explosive material[1].Since the slapper detonator has no sensitive primary explosive,it can work safely in harsh environments such as strong radiation and stray current.However,the insensitive design also makes it require a very high voltage for initiation,which greatly limits its development towards miniaturization and low cost [2].

    Therefore,reducing the ignition threshold of the EFI has always been the direction pursued in pyrotechnic research.The current methods include: 1.Exploring new methods for integrated manufacturing of EFI [3-8],2.Researching and developing more efficient explosive foil chips[9-20],3.Optimizing the material and structure design of the flyer and accelerating chamber [21-23],4.Improving the refined preparation process of hexanitrostilbene(HNS) [24-27],5.Compound with other explosives [28-30],etc.However,the structural design and optimization of the EFI have approached the maximum.Without using other methods,it is difficult to reduce the ignition threshold of the EFI to below 1000 V simply by adjusting the structural design.

    In terms of explosives research,HNS is an insensitive highexplosive with good heat resistance.Especially HNS-IV,it has the characteristics of high purity,sensitivity to short pulses,low mechanical and electrostatic sensitivity,and good vacuum stability,which makes it the main charge for EFI [31-33].How to further improve the short pulse duration shock waves sensitivity of HNS-IV and reduce the ignition threshold without reducing the thermal safety of the main charge is a problem that needs to be solved urgently.

    Different microstructures in the same material usually lead to different macroscopic properties.For explosives,the microstructure directly affects the density,flowability,sensitivity,and stability[34-39].Common methods for adjusting the microstructure of HNS include recrystallization [40-43],spray drying [25,44],desolvation [45,46],mechanical grinding [26,47],etc.The essence of these methods was to improve the sensitivity by changing the microstructure,increasing the specific surface area and porosity of HNS.Therefore,in this paper,the droplet microfluidic technology was used to aggregate the raw HNS-IV to prepare highly spherical HNS microspheres to obtain high specific surface area and porosity.The influence of structure on the performance of HNS was studied.It was found that the HNS microspheres not only conducive to improving the flowability and bulk density of HNS-IV,thereby improving the charging and pressing properties of HNS-IV,but also enhancing HNS-IV's short pulse duration shock waves sensitivity and reducing the ignition threshold of the EFI without changing the thermal stability of HNS-IV.

    2.Experiment

    2.1.Materials

    Ethyl acetate (EC) and sodium dodecyl sulfate (SDS) were commercially purchased (A.R.) and used without further purification.Nitrocellulose (NC) (viscosity: 1/4 s) was purchased from Sichuan Nitrocell Co.Ltd.HNS(average particle diameter:200 nm)was produced by North University of China.The flow-focusing microfluidic chips and the droplet collection device were produced by Suzhou Wenhao Microfluidic Technology Co.Ltd.

    2.2.Preparation

    The first step was to prepare the dispersed phase and continuous phase solutions.The dispersed phase was the NC/EA solution in which 20 wt% HNS-IV particles were suspended,and the concentration of the NC solution was 1%.The continuous phase was an aqueous solution with 2 wt% SDS dissolved.The flow-focusing microfluidic chip channel had a depth of 100 μm,the width at the intersection point was 250 μm,the width at the exit point was 400 μm.The syringe pumps were used to inject the dispersed phase and the continuous phase solutions into the channels.The dispersed phase flow rate(Qd)and continuous phase flow rate(Qc)were set as 50 and 2000 μL/min,respectively.When the two-phase solutions were subjected to the action of a flow-focusing microfluidic chip,the oil-in-water(O/W)microdroplets with suspended HNS particles were generated.These droplets undergo continuous phase extraction and became semi-solidified HNS microspheres in the microchannels.After entering the droplet collection device,it was further solidified to form HNS microspheres.The entire HNS microsphere preparation system was shown in Fig.1.

    Fig.1.The HNS microsphere preparation device.

    2.3.Characterization

    The morphology of the powder was investigated using a scanning electron microscope (SEM,mod.Vega TS5136XM,Tescan,Czech).And the size and distribution of HNS microspheres were measured and analyzed using the particle size analysis software Nano Measurer.

    The X-ray diffraction (XRD) characterization was performed using D8 advance X-ray Diffraction (Bruker,Germany) measurement,at a resolution of 0.02°.The scanning range was 5°-70°,the scanning rate was 10°/min.

    The HNS microspheres and raw HNS were dispersed in pure water and ethanol respectively by ultrasonic treatment,and the particle size distribution of HNS microspheres and raw HNS was performed using a Malvern MasterSize 5004 laser particle size analyzer.

    Thermogravimetric (TG) and differential thermogravimetric(DTG) tests were carried out by a Thermal Gravimetric Analyzer TG209F1 from Netzsch (Germany).Powder samples with a weight of about 0.2 mg were crimped into an aluminum pan.The analyses were conducted in nitrogen(flow rate 50 mL/min),by heating the sample from 25 to 550°C with heating rate 5°C/min,10°C/min,15°C/min and 20°C/min,respectively.

    The specific surface area (SSA) of HNS microspheres was measured using Quanta NOVA 2200e gas adsorption analyzer(USA).

    The cook-off test was carried out using the cook-off test system developed by our laboratory,which was composed of a temperature control module,a heating module,and a data acquisition module,as shown in Fig.2(a).The test conditions refer to the U.S.military standard MIL-DTL-23659F Appendix A.In this study,the HNS microspheres pellets were first heated to 250°C at a heating rate of 1°C/min and kept for 10 min.Subsequently,the temperature was increased to 350°C at a heating rate of 3.3°C/h and kept for 30 min.

    The initiation threshold of HNS microspheres was determined by the device of electrically exploding foil-driven flyer plate developed in our laboratory,and the schematic of the device was shown in Fig.2(b).The initiation threshold,expressed as initiation voltage,was determined by a sensitivity test using the Langlie method.The testing conditions were as follows: capacitance,0.22 μF;polyimide flyer plate,25 μm;copper foil,0.3 mm(L)×0.3 mm(W)×4.6 μm(H);HNS charge,50±1 mg,Φ 3.4 mm×3.5 mm,and density 1.57 g/cm3.

    3.Results and discussion

    3.1.Morphology, particle size, crystal and specific surface area characterization

    The SEM images of the raw HNS and its particle size distribution were shown in Fig.3(a)and Fig.3(d),respectively.The particle size was about 200 nm.The morphology of the HNS microspheres prepared by droplet microfluidic was shown in Fig.3(b).The spherical degree of HNS microspheres was very high.In order to quantitatively characterize the sphericity of HNS microspheres,the relative standard deviation of the particle diameters in different directions was calculated[48,49].Twenty HNS microspheres were randomly selected on the scanning electron microscope photograph,and their particle sizes in 4 different directions were measured using Nano Measurer software,as shown in Fig.3(c).After calculation,the average relative standard deviation of those HNS microspheres was 2.02%,which indicated that the HNS microspheres have a high degree of sphericity.The particle size distribution of the HNS microspheres was measured using a laser particle size analyzer,as shown in Fig.3(d).Furthermore,the particle size of all 163 HNS microspheres on the scanning electron microscope photograph was measured,and the statistical results are shown in Table 1.The average particle size of the HNS microspheres was 20.48 μm,and the coefficient of variation (CV) was 19.33%.

    Table 1 The particle size statistics of HNS microspheres.

    Fig.3.(a)Scanning electron micrograph of raw HNS;(b)Scanning electron micrograph of HNS microspheres;(c)Schematic diagram of measuring sphericity of HNS microspheres;(d) The particle size distribution of HNS microspheres and raw HNS;(e) XRD spectrum of HNS microspheres and raw HNS;(f) The adsorption and desorption curves of HNS microspheres and raw HNS.

    XRD was used to characterize the crystal form of HNS microspheres and raw HNS.It can be seen from Fig.3(e) that the peak positions and shapes of HNS microspheres and raw HNS were basically the same,which were the same as the standard XRD pattern of HNS.This indicated that the spheroidization process did not change the crystal structure of HNS.

    The adsorption and desorption curves of HNS microspheres and raw HNS were shown in Fig.3(f).It can be seen from the adsorption and desorption curves that in the low pressure section(0-0.2)and the medium pressure section (0.2-0.8),the adsorption and desorption curves are slowly rising and falling.This indicated that the HNS has less intermolecular force with N2and adsorbed slowly.In the high pressure section (0.8-1),the adsorption capacity increased rapidly,which was caused by the slit pores formed by particle aggregation,as shown in Fig.3(b).The adsorption capacity of HNS microspheres was higher than that of raw HNS in the whole pressure range,indicating that HNS microspheres contain more pores in both the nanopores and the slit pores.The specific surface areas of HNS microspheres and raw HNS were measured by the multipoint BET method in the pressure range of 0.05-0.3,they were 26.44 m2/g and 13.09 m2/g,respectively.It also meant that the HNS microspheres have more micropores after spheroidization.

    3.2.Thermal performance and activation energy analysis

    Probing the thermodynamic and kinetic parameters of explosives is an important way to master its thermal decomposition properties.The TG and DTG curves of the raw HNS and HNS microspheres at a heating rates of 5°C/min,10°C/min,15°C/min,and 20°C/min were obtained by thermal gravimetric analyzer,as shown in Fig.4(a)and Fig.4(b).It can be seen from the TG and DTG curves that both the raw HNS and HNS microspheres start to decompose at about 273°C.With the increase of heating rate,the thermal decomposition temperature of raw HNS and HNS microspheres increased gradually.Moreover,the TG curves were all smooth inverted S-shaped,and the DTG curves were all unimodal.This indicated that the thermal decomposition of raw HNS and HNS microspheres in nitrogen atmosphere was a single process andfollowed a single decomposition mechanism.

    Fig.4.(a)The TG and DTG curves of raw HNS;(b)The TG and DTG curves of HNS microspheres;(c)The fitting curves of raw HNS at different decomposition ratios;(d)The fitting curves of HNS microspheres at different decomposition ratios.

    The Friedman method was used to calculate the apparent activation energy(Ea)of HNS microspheres and raw HNS at 0.1,0.2,0.3,and 0.4 decomposition ratios,and the Friedman formula was shown in Eq.(1).

    where β is the heating rate;α is the decomposition ratio;Tis the temperature at different decomposition ratios;Ais the preexponential factor;nis the reaction order;Ris the gas constant 8.314 J·mol-1·K-1.

    According to Eq.(1),took 1/Tas the abscissa and ln(β·dα/dT)as the ordinate to make a scatter plot.The fitting curves of raw HNS and HNS microspheres at different decomposition ratios were obtained by linear fitting,as shown in Fig.4(c) and Fig.4(d),and the slope of the curve was-E/R.TheEadata were listed in Table 2.It can be seen that theEagradually decreases with the proceeds of the reaction.And theEaof HNS microspheres was lower than that of raw HNS,with an average reduction of about 20.87%.It indicated that HNS microspheres have higher reactivity compared to raw HNS.This is because nitrocellulose is also an energetic material with an exothermic peak temperature of about 210°C.A small amount of addition will increase the reactivity of HNS.

    Table 2 The Ea results of raw HNS and HNS microspheres under different decomposition ratios.

    3.3.Cook-off test

    With reference to the charge structure of the slapper detonator,a cook-off test was carried out on the HNS microsphere pellets.The pellets before and after the test were shown in Fig.5(a) and Fig.5(b).The HNS charge shell was intact as before after the cookoff test.The HNS pellets turned into a black residue,but they still maintain a regular cylindrical shape.Their volume was reduced from the original Φ 3.4 mm×3.5 mm to Φ 2.35 mm×2.25 mm,and the mass was reduced to 6.4 mg.The black residue should be the carbon compound remaining after the slow thermal decomposition of HNS.

    Fig.5.(a) Photograph of HNS microsphere pellets before cook-off test;(b) Photograph of HNS microsphere pellets after cook-off test;(c) Temperature-time curve of the cook-off test;(d) X-ray energy spectra of HNS microsphere pellets before and after the cook-off test.

    Fig.5(c)shown the temperature-time curve of the cook-off test when the heating rate was 3.3°C/h.It can be seen from the figure that the measured temperature can better match the preset temperature.This was because the lower heating rate made the temperature gradient between the furnace and the sample smaller,and the test system was close to the thermal equilibrium state.During the whole test,no strong exothermic peak was detected,whichindicated that HNS only had a slow thermal decomposition,and no detonation or deflagration occurred.During the thermal decomposition of HNS,the released energy could be slowly diffused into the surrounding environment,and there was not enough heat accumulation inside the pellet.

    The samples before and after the cook-off test were analyzed by energy dispersive X-ray spectroscopy,and the spectrum was shown in Fig.5(d).The sample before the test had a higher content of N and O elements.However,after the cook-off test,the content of C element in the sample increased significantly,and the content of N and O elements decreased.This also shown that HNS undergone a thermal decomposition reaction under the cook-off test.

    3.4.Initiation threshold test

    To study the initiation threshold of the HNS microspheres,we used a self-made electrically exploding foil-driven flyer plate device to conduct the ignition test of the HNS pellets with a size of Φ3.4 mm × 3.5 mm.The Langlie method was used to predict the test step length and process the test data.The ignition results of the pellets were shown in Fig.6(a) and Fig.6(b),and the ignition voltage and threshold were shown in Table 3.Under the same test conditions,the 50% initiation voltages of HNS microspheres and raw HNS were 913.7 V and 1003.6 V,respectively,which was about 90 V lower than raw HNS.This indicated that after raw HNS were prepared into microspheres by using flow-focusing microfluidic method,the sensitivity of short pulse duration shock waves was significantly improved.This was beneficial to reduce the initiation voltage of the EFI.

    Table 3 Initiation threshold test results of HNS microspheres and Raw HNS by Langlie method.

    Fig.6.(a) The pellets that were successfully ignition;(b) The pellets that were not successfully ignition;(c) The surface of the raw HNS pellets;(d) The surface of the HNS microsphere pellets.

    In order to explore the regulation mechanism of the HNS microspheres that improve the sensitivity of short pulse duration shock waves,the surface of the pellets was characterized by SEM.The microscopic images were shown in Fig.6(c)and Fig.6(d).When the raw HNS or HNS microspheres were pressed into pellets,their surfaces were relatively flat.However,the pellets pressed by HNS microspheres could be clearly seen the squeezed boundary between the microsphere particles,and still maintain the morphology of HNS microspheres.Under the impact of high-speed slappers,HNS microspheres were subjected to short pulse duration shock waves.The air in the voids of the HNS microspheres were adiabatically compressed,so that their temperature rose rapidly,forming “hot spots”.When the temperature of the “hot spot”exceeded the critical of initiation,an explosion was triggered.It was because of these increased nanopores within HNS microspheres that enhanced the slapper sensitivity.In addition,the addition of a small amount of NC could also increase the reactivity of HNS,reduced the temperature of the critical point of initiation,and made the pellets of HNS microspheres easier to detonate.

    4.Conclusions

    (1) Highly spherical HNS microspheres can be prepared quickly and efficiently with the droplet microfluidic method.

    (2) Without changing the crystal structure and thermal stability of HNS,the short pulse duration shock wave initiation threshold of the HNS was reduced to below 1000 V,and the regulation mechanism was explored.This is a great significance for expanding the application range and reducing the volume and price of the EFI.

    (3) Moreover,this method also broadens people's research ideas on the HNS short pulse duration shock waves sensitivity control mechanism,and provides a new direction for the design of EFI.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    The project was financially supported by a foundation item from the China People's Liberation Army General Armaments Department.

    狠狠狠狠99中文字幕| 啪啪无遮挡十八禁网站| 两性夫妻黄色片| 极品人妻少妇av视频| 法律面前人人平等表现在哪些方面| 黄色a级毛片大全视频| 在线十欧美十亚洲十日本专区| 每晚都被弄得嗷嗷叫到高潮| 在线观看免费视频网站a站| 国产一区二区激情短视频| 欧美在线一区亚洲| 欧美成人免费av一区二区三区| 一级毛片精品| 一区二区三区高清视频在线| 99精品欧美一区二区三区四区| 大型av网站在线播放| 美女 人体艺术 gogo| 国产片内射在线| 国产精品亚洲美女久久久| 男人舔女人的私密视频| 欧美黄色片欧美黄色片| 久久久久九九精品影院| 天堂影院成人在线观看| 又紧又爽又黄一区二区| 婷婷六月久久综合丁香| 亚洲国产精品成人综合色| 97超级碰碰碰精品色视频在线观看| 精品久久久久久久久久免费视频| 999精品在线视频| 少妇被粗大的猛进出69影院| 电影成人av| 亚洲成a人片在线一区二区| 国产区一区二久久| 少妇的丰满在线观看| 欧美另类亚洲清纯唯美| 精品久久久久久成人av| 老司机午夜福利在线观看视频| 在线av久久热| 亚洲欧美激情综合另类| 桃色一区二区三区在线观看| 欧美丝袜亚洲另类 | 久久婷婷成人综合色麻豆| 午夜视频精品福利| 午夜影院日韩av| 久久亚洲精品不卡| 国产私拍福利视频在线观看| 久久香蕉国产精品| 国产精品精品国产色婷婷| 欧美日韩乱码在线| 99riav亚洲国产免费| 麻豆国产av国片精品| 亚洲成a人片在线一区二区| 亚洲精品国产一区二区精华液| 国产av一区在线观看免费| 久久影院123| 可以在线观看毛片的网站| 777久久人妻少妇嫩草av网站| 午夜福利高清视频| av在线播放免费不卡| 日韩三级视频一区二区三区| 中亚洲国语对白在线视频| 丝袜人妻中文字幕| aaaaa片日本免费| 法律面前人人平等表现在哪些方面| 黄色a级毛片大全视频| 久久精品亚洲精品国产色婷小说| 国产乱人伦免费视频| 成人特级黄色片久久久久久久| 男人舔女人的私密视频| 亚洲片人在线观看| 成人亚洲精品一区在线观看| 欧美激情高清一区二区三区| cao死你这个sao货| 欧美色视频一区免费| 精品午夜福利视频在线观看一区| 精品第一国产精品| 女人爽到高潮嗷嗷叫在线视频| 女同久久另类99精品国产91| 国产精品久久久久久亚洲av鲁大| 国产蜜桃级精品一区二区三区| 精品国产美女av久久久久小说| 欧美日本中文国产一区发布| x7x7x7水蜜桃| av电影中文网址| 亚洲国产精品sss在线观看| 国产精品av久久久久免费| 老司机午夜十八禁免费视频| 亚洲国产精品合色在线| 亚洲av美国av| 日本撒尿小便嘘嘘汇集6| 美国免费a级毛片| 国产精品久久久av美女十八| 免费看十八禁软件| 中文字幕久久专区| 国产乱人伦免费视频| 最好的美女福利视频网| 欧美日本中文国产一区发布| 一级,二级,三级黄色视频| 亚洲精品中文字幕一二三四区| 亚洲欧美激情综合另类| 日日摸夜夜添夜夜添小说| 久久精品91蜜桃| 国产主播在线观看一区二区| a在线观看视频网站| 别揉我奶头~嗯~啊~动态视频| 国产熟女午夜一区二区三区| 亚洲av成人不卡在线观看播放网| 日韩中文字幕欧美一区二区| 成人三级黄色视频| 国产av精品麻豆| 欧美乱妇无乱码| 国产亚洲欧美98| 99国产精品99久久久久| 国产99白浆流出| 国产精品久久久久久精品电影 | 欧美黑人精品巨大| 黑丝袜美女国产一区| 99香蕉大伊视频| 美女扒开内裤让男人捅视频| 午夜日韩欧美国产| 精品少妇一区二区三区视频日本电影| 成人三级黄色视频| 免费观看人在逋| 久久久国产成人免费| 熟女少妇亚洲综合色aaa.| 男男h啪啪无遮挡| 妹子高潮喷水视频| av在线播放免费不卡| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲欧美日韩无卡精品| 久久精品影院6| 18美女黄网站色大片免费观看| 18禁黄网站禁片午夜丰满| 最新美女视频免费是黄的| 中文字幕精品免费在线观看视频| 免费在线观看影片大全网站| 男女做爰动态图高潮gif福利片 | 国产亚洲欧美98| 亚洲中文日韩欧美视频| 亚洲五月色婷婷综合| 18禁观看日本| 亚洲精品美女久久久久99蜜臀| 最近最新免费中文字幕在线| 如日韩欧美国产精品一区二区三区| 村上凉子中文字幕在线| 亚洲国产精品久久男人天堂| 韩国av一区二区三区四区| 久久人人97超碰香蕉20202| 亚洲精品美女久久久久99蜜臀| 国产熟女午夜一区二区三区| 久久青草综合色| 亚洲国产欧美日韩在线播放| 亚洲国产看品久久| 精品一品国产午夜福利视频| 黄片小视频在线播放| 少妇裸体淫交视频免费看高清 | 美女国产高潮福利片在线看| av天堂在线播放| 91成年电影在线观看| 国产极品粉嫩免费观看在线| 人人澡人人妻人| 黑人巨大精品欧美一区二区mp4| 一a级毛片在线观看| 日韩av在线大香蕉| 亚洲成国产人片在线观看| 中文字幕av电影在线播放| 女人被躁到高潮嗷嗷叫费观| 国产主播在线观看一区二区| 嫩草影院精品99| 久9热在线精品视频| 最新美女视频免费是黄的| 欧美日韩精品网址| 天天躁狠狠躁夜夜躁狠狠躁| or卡值多少钱| 国产av又大| xxx96com| 亚洲中文字幕日韩| 免费在线观看完整版高清| 老鸭窝网址在线观看| 亚洲免费av在线视频| 99国产精品99久久久久| 国产精品综合久久久久久久免费 | 成人手机av| www.熟女人妻精品国产| 色老头精品视频在线观看| 涩涩av久久男人的天堂| 99国产综合亚洲精品| 久久精品成人免费网站| 欧美另类亚洲清纯唯美| 亚洲国产精品合色在线| 久久久水蜜桃国产精品网| 亚洲成a人片在线一区二区| 亚洲专区国产一区二区| 免费看美女性在线毛片视频| 中文字幕久久专区| 少妇被粗大的猛进出69影院| 成人国语在线视频| 18禁观看日本| 久久久久九九精品影院| 女性被躁到高潮视频| 91精品三级在线观看| 狂野欧美激情性xxxx| 亚洲精品在线美女| 极品教师在线免费播放| 中文字幕最新亚洲高清| 在线视频色国产色| 亚洲五月婷婷丁香| 亚洲av五月六月丁香网| 国产精品自产拍在线观看55亚洲| 怎么达到女性高潮| 久久婷婷人人爽人人干人人爱 | 97人妻精品一区二区三区麻豆 | 97超级碰碰碰精品色视频在线观看| 一级a爱视频在线免费观看| 成人免费观看视频高清| 国产日韩一区二区三区精品不卡| 男女午夜视频在线观看| 操出白浆在线播放| 久久久久久免费高清国产稀缺| 视频区欧美日本亚洲| 多毛熟女@视频| ponron亚洲| 99国产精品一区二区蜜桃av| 9191精品国产免费久久| 国产欧美日韩精品亚洲av| 久久草成人影院| 999精品在线视频| av视频在线观看入口| 日本五十路高清| 亚洲国产欧美一区二区综合| 久久精品国产综合久久久| 他把我摸到了高潮在线观看| 色综合欧美亚洲国产小说| 老汉色∧v一级毛片| 亚洲欧美一区二区三区黑人| 色播在线永久视频| 黄色视频不卡| 国产在线精品亚洲第一网站| 久久精品aⅴ一区二区三区四区| 国产熟女午夜一区二区三区| 日韩精品中文字幕看吧| 俄罗斯特黄特色一大片| 亚洲精品av麻豆狂野| 精品久久久久久,| 香蕉国产在线看| 天天一区二区日本电影三级 | 又黄又粗又硬又大视频| videosex国产| 最近最新中文字幕大全电影3 | 他把我摸到了高潮在线观看| 色av中文字幕| 国产野战对白在线观看| 99久久国产精品久久久| 动漫黄色视频在线观看| 国产精品久久视频播放| 一边摸一边抽搐一进一出视频| 国产一区二区在线av高清观看| 日本三级黄在线观看| 国产精品影院久久| 精品欧美国产一区二区三| 亚洲av片天天在线观看| 一区福利在线观看| 如日韩欧美国产精品一区二区三区| 黑人操中国人逼视频| 一a级毛片在线观看| 最近最新免费中文字幕在线| 亚洲色图综合在线观看| 婷婷精品国产亚洲av在线| 国产成人精品久久二区二区91| 成人三级做爰电影| 国产精品98久久久久久宅男小说| 变态另类丝袜制服| 亚洲一区高清亚洲精品| 中文字幕精品免费在线观看视频| 在线观看一区二区三区| 久久天躁狠狠躁夜夜2o2o| 在线播放国产精品三级| 亚洲三区欧美一区| 欧美日本中文国产一区发布| 首页视频小说图片口味搜索| 亚洲午夜精品一区,二区,三区| 久久精品aⅴ一区二区三区四区| 久久性视频一级片| 国产精品电影一区二区三区| 乱人伦中国视频| 久久中文字幕一级| √禁漫天堂资源中文www| 久久精品91蜜桃| 国产精品爽爽va在线观看网站 | 18禁裸乳无遮挡免费网站照片 | 国产成人啪精品午夜网站| 12—13女人毛片做爰片一| 国产亚洲欧美在线一区二区| 久久人妻av系列| 日韩精品免费视频一区二区三区| 老司机午夜十八禁免费视频| 悠悠久久av| 这个男人来自地球电影免费观看| 色婷婷久久久亚洲欧美| 国产av精品麻豆| 免费一级毛片在线播放高清视频 | 精品卡一卡二卡四卡免费| 国产欧美日韩精品亚洲av| 正在播放国产对白刺激| 国产xxxxx性猛交| 亚洲人成伊人成综合网2020| 国产一级毛片七仙女欲春2 | 91大片在线观看| 午夜a级毛片| 亚洲成国产人片在线观看| 亚洲av成人不卡在线观看播放网| 真人一进一出gif抽搐免费| 国产精品亚洲一级av第二区| 日本a在线网址| 久久精品国产综合久久久| 亚洲精品国产精品久久久不卡| 亚洲情色 制服丝袜| 欧美黑人精品巨大| 亚洲第一欧美日韩一区二区三区| 亚洲精品在线观看二区| 日韩有码中文字幕| 色哟哟哟哟哟哟| 国产成人影院久久av| 免费无遮挡裸体视频| 精品国产乱码久久久久久男人| 一级毛片高清免费大全| 久久久水蜜桃国产精品网| 人人澡人人妻人| 91麻豆精品激情在线观看国产| 亚洲精品国产一区二区精华液| 亚洲国产精品sss在线观看| 99久久精品国产亚洲精品| 亚洲 国产 在线| 99香蕉大伊视频| 欧美亚洲日本最大视频资源| 十八禁人妻一区二区| 欧美日韩精品网址| av视频在线观看入口| 国产免费男女视频| 黑丝袜美女国产一区| 国产1区2区3区精品| 天堂动漫精品| 最近最新中文字幕大全电影3 | av有码第一页| 九色国产91popny在线| 国产av一区二区精品久久| 亚洲第一欧美日韩一区二区三区| 97碰自拍视频| 亚洲精品久久国产高清桃花| 亚洲专区字幕在线| 中文字幕人妻丝袜一区二区| 国产单亲对白刺激| 国产一区二区三区视频了| 黑丝袜美女国产一区| 国产日韩一区二区三区精品不卡| 亚洲 国产 在线| 国产一区二区三区在线臀色熟女| 伦理电影免费视频| 村上凉子中文字幕在线| tocl精华| 又黄又爽又免费观看的视频| 啦啦啦 在线观看视频| 精品日产1卡2卡| 女人被躁到高潮嗷嗷叫费观| 国产精品久久久久久人妻精品电影| 啦啦啦韩国在线观看视频| 亚洲国产精品sss在线观看| 欧美成狂野欧美在线观看| 在线观看舔阴道视频| 国产精品免费一区二区三区在线| 欧美色欧美亚洲另类二区 | 日本免费a在线| 亚洲精品国产色婷婷电影| 黑人巨大精品欧美一区二区蜜桃| 母亲3免费完整高清在线观看| 黄色毛片三级朝国网站| 两个人免费观看高清视频| 国产麻豆69| 午夜两性在线视频| 亚洲性夜色夜夜综合| 欧美久久黑人一区二区| 亚洲成人精品中文字幕电影| 青草久久国产| 亚洲情色 制服丝袜| 少妇粗大呻吟视频| 亚洲专区字幕在线| 十八禁网站免费在线| 在线播放国产精品三级| 丁香欧美五月| 日韩一卡2卡3卡4卡2021年| 亚洲中文字幕一区二区三区有码在线看 | 视频区欧美日本亚洲| 欧美大码av| 国产不卡一卡二| 老司机午夜十八禁免费视频| 亚洲一区二区三区色噜噜| 色精品久久人妻99蜜桃| 少妇熟女aⅴ在线视频| 亚洲九九香蕉| 精品久久久久久久人妻蜜臀av | 久9热在线精品视频| 国产乱人伦免费视频| 精品国产乱码久久久久久男人| 91精品国产国语对白视频| 深夜精品福利| 日韩欧美在线二视频| av天堂在线播放| 桃色一区二区三区在线观看| 色在线成人网| 精品久久蜜臀av无| 亚洲片人在线观看| 中文字幕最新亚洲高清| 欧美黑人欧美精品刺激| 亚洲 欧美一区二区三区| 国产亚洲欧美在线一区二区| 精品国产国语对白av| 免费女性裸体啪啪无遮挡网站| 亚洲国产精品合色在线| 亚洲精华国产精华精| 一边摸一边做爽爽视频免费| 制服诱惑二区| 精品电影一区二区在线| 国产麻豆69| 日韩成人在线观看一区二区三区| 久久草成人影院| 国产高清激情床上av| 日韩欧美国产在线观看| 日本精品一区二区三区蜜桃| 亚洲精品av麻豆狂野| 日韩视频一区二区在线观看| 熟妇人妻久久中文字幕3abv| 69av精品久久久久久| 亚洲五月色婷婷综合| 久久九九热精品免费| 成人av一区二区三区在线看| 亚洲欧美激情综合另类| 免费少妇av软件| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产欧美网| 免费看a级黄色片| 自拍欧美九色日韩亚洲蝌蚪91| avwww免费| 国产aⅴ精品一区二区三区波| 老汉色av国产亚洲站长工具| 色播在线永久视频| 久久久久久久精品吃奶| 精品国产超薄肉色丝袜足j| 国产欧美日韩综合在线一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久精品国产欧美久久久| 88av欧美| 亚洲国产欧美网| 满18在线观看网站| 日本黄色视频三级网站网址| 午夜老司机福利片| 国产一区在线观看成人免费| 亚洲天堂国产精品一区在线| 19禁男女啪啪无遮挡网站| 韩国av一区二区三区四区| 69av精品久久久久久| 亚洲中文字幕日韩| 久久久精品国产亚洲av高清涩受| 国产不卡一卡二| 两个人看的免费小视频| or卡值多少钱| 精品福利观看| 别揉我奶头~嗯~啊~动态视频| 国产男靠女视频免费网站| 精品日产1卡2卡| 黄片小视频在线播放| 看片在线看免费视频| 久久人妻熟女aⅴ| 亚洲欧美精品综合一区二区三区| 国产熟女午夜一区二区三区| 精品久久久久久,| 在线播放国产精品三级| 国产亚洲欧美在线一区二区| 岛国在线观看网站| 亚洲色图 男人天堂 中文字幕| 人人妻,人人澡人人爽秒播| 国产亚洲欧美精品永久| 午夜福利,免费看| 中文字幕高清在线视频| 免费搜索国产男女视频| 99久久久亚洲精品蜜臀av| 性欧美人与动物交配| 精品国产美女av久久久久小说| 成人欧美大片| 国产成人精品久久二区二区91| 成人特级黄色片久久久久久久| 热99re8久久精品国产| 久久国产精品男人的天堂亚洲| 国产日韩一区二区三区精品不卡| 国产一区二区三区在线臀色熟女| 国产乱人伦免费视频| 一区在线观看完整版| 村上凉子中文字幕在线| 国产aⅴ精品一区二区三区波| 视频区欧美日本亚洲| 欧美不卡视频在线免费观看 | 大型av网站在线播放| 精品国产超薄肉色丝袜足j| 性少妇av在线| 国产蜜桃级精品一区二区三区| 免费观看精品视频网站| 18禁美女被吸乳视频| 久久精品91蜜桃| 亚洲欧美激情综合另类| 丰满的人妻完整版| 精品卡一卡二卡四卡免费| 久久久久久久久久久久大奶| 日本免费一区二区三区高清不卡 | 日本 av在线| 免费在线观看日本一区| 亚洲欧美一区二区三区黑人| 亚洲精品国产区一区二| 成年女人毛片免费观看观看9| 免费在线观看完整版高清| 欧美乱码精品一区二区三区| 免费人成视频x8x8入口观看| ponron亚洲| 欧美另类亚洲清纯唯美| 亚洲精品粉嫩美女一区| 亚洲国产欧美网| 丝袜美腿诱惑在线| 欧美乱色亚洲激情| 精品国产乱码久久久久久男人| 午夜福利影视在线免费观看| 俄罗斯特黄特色一大片| 国产伦一二天堂av在线观看| or卡值多少钱| 韩国av一区二区三区四区| 香蕉丝袜av| 欧美精品啪啪一区二区三区| 69av精品久久久久久| 777久久人妻少妇嫩草av网站| a级毛片在线看网站| 精品不卡国产一区二区三区| 亚洲人成电影观看| 在线观看www视频免费| 午夜精品久久久久久毛片777| 国产精品综合久久久久久久免费 | 黑人操中国人逼视频| 日韩欧美免费精品| 在线十欧美十亚洲十日本专区| cao死你这个sao货| 久热爱精品视频在线9| 亚洲五月婷婷丁香| 少妇粗大呻吟视频| 极品人妻少妇av视频| 美女午夜性视频免费| 人妻丰满熟妇av一区二区三区| 久久精品国产亚洲av高清一级| 老司机靠b影院| 色综合欧美亚洲国产小说| 啦啦啦 在线观看视频| 成年版毛片免费区| 国产精品秋霞免费鲁丝片| 久久精品国产亚洲av香蕉五月| 久久久久久久久中文| 日韩高清综合在线| 村上凉子中文字幕在线| 人妻丰满熟妇av一区二区三区| 亚洲一码二码三码区别大吗| 999久久久国产精品视频| 欧美国产日韩亚洲一区| 国产av精品麻豆| 精品国产亚洲在线| 狂野欧美激情性xxxx| 亚洲精品美女久久av网站| 欧美日韩瑟瑟在线播放| 18禁黄网站禁片午夜丰满| 丰满的人妻完整版| 欧美乱色亚洲激情| 久久久国产成人免费| 久久精品aⅴ一区二区三区四区| 国产成人精品久久二区二区免费| 久久精品成人免费网站| 久久久久亚洲av毛片大全| 久久午夜综合久久蜜桃| 亚洲av第一区精品v没综合| 纯流量卡能插随身wifi吗| 高清在线国产一区| 91av网站免费观看| 亚洲五月色婷婷综合| 久9热在线精品视频| 日本五十路高清| 中文字幕色久视频| 色综合亚洲欧美另类图片| 怎么达到女性高潮| 久久中文字幕人妻熟女| 成人国产综合亚洲| 禁无遮挡网站| 国产精品影院久久| 亚洲avbb在线观看| 日本精品一区二区三区蜜桃| 在线国产一区二区在线| 最近最新中文字幕大全免费视频| 一边摸一边做爽爽视频免费| 69精品国产乱码久久久| av天堂在线播放| www.精华液| 一二三四社区在线视频社区8| 91九色精品人成在线观看| 母亲3免费完整高清在线观看| 久久久久久免费高清国产稀缺| 精品一区二区三区四区五区乱码| 午夜福利欧美成人| 久久久久久久久免费视频了| 大陆偷拍与自拍| 国产精品1区2区在线观看.| 国产熟女午夜一区二区三区| 久久人人精品亚洲av| 一夜夜www| 亚洲中文日韩欧美视频|