• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear tight formation control of multiple UAVs based on model predictive control

    2023-07-31 13:30:26RuipingZhengYongxiLyu
    Defence Technology 2023年7期

    Ruiping Zheng ,Yongxi Lyu ,b,*

    a School of Automation, Northwestern Polytechnical University, Xi'an 710129, China

    b Shaanxi Province Key Laboratory of Flight Control and Simulation Technology, Xi'an 710129, China

    Keywords:Unmanned aerial vehicles Tight formation Wake vortex model Model predictive control

    ABSTRACT A tight formation of unmanned aerial vehicles (UAVs) has many advantages,such as fuel saving and deceiving enemy radar during battlefield entry.As a result,research on UAVs in close formation has received much attention,and the controller design for formation holding has become a popular research topic in the control field.However,there are many unknown disturbances in tight formation,and the tail aircraft is disturbed by the wake.This paper establishes a mathematical model of wake vortices for tail aircraft that considers uncertainty and strong interference.Two UAVs are simulated by Computational Fluid Dynamics software,followed by the design of a semiphysical simulation model predictive control(MPC) scheme that suppresses uncertainty and interference sufficiently to enable the tail aircraft to accurately track the lead aircraft and maintain a stable,tight formation.The tight formation controller is verified by numerical simulation and semiphysical simulation.The results show that the designed controller has an excellent control effect in the case of disturbance caused by the wake vortex.

    1.Introduction

    The concept of close formation flight originated from migratory birds[1-3].Birds flying in formation obtain aerodynamic benefits,and when 25 birds fly in a V formation,the range of motion can be increased by about 71%over that of a single bird[4].By measuring the heart rate ofPelecanus onocrotaluswhen they were flying in formation,researchers found that these birds reduce their energy expenditure by flying in formation,thus increasing their range of motion and improving their flight endurance [5].Sekhar et al.analyzed the characteristics of bird formation flight from a thermodynamic point of view,assuming that the V formation is the optimal mode of energy use during flight time [6].

    Many experts,inspired by bird formations,have studied mechanisms to reduce energy consumption during formation flight.Ahmad studied the basic parameters of each model of the aircraft wake vortex and pointed out that the vortex intensity varies with the size of the vortex nucleus radius[7].Blake et al.conducted a wind tunnel testing of aircraft in close formation,placing two vertical tailless delta-wing aircraft in close formation in a wind tunnel[8],where the induced drag on the wingman was reduced by 25% when the wings overlapped by 15%-20%.In their paper [9],Kaden et al.investigated the wake vortex model for transport aircraft formations using adaptive generation to fit the variation of vortex intensity.Numerous studies [10,11] and experimental data illustrate that the influence of the wake vortex flow on wingmen varies sharply when they are in different positions relative to the lead aircraft [8,12-14].

    Therefore,the issue of control of tight formations is critical to the study of tight formations [15].Keeping the wingman in the optimum position in tight formation reduces the drag on it and minimizes fuel consumption.In paper [16],Daniel B.Wilson et al.propose a quaternion based unscented Kalman filter to improve relative state estimate in the UAV formation flight.In paper[15],Q Zhang et al.proposed a robust control method by using the uncertainty and disturbance estimator to enhance the robustness of aircraft formation control.M.Pachter et al.[17] developed a tight formation flight controller that can enable aircraft to take advantage of the reduction in induced drag brought about by the aerodynamic coupling effects.The paper [18] presented a novel aerodynamic model-based robust adaptive control for close formation at level and straight flight.With the rapid development of technology,more and more sophisticated control methods are being applied to UAVs [19,20].In Ref.[21],an adaptive MPC was used to control a multi-UAV formation,and an extended state observer was incorporated to satisfy the expected control effect,but the case discussed in that paper was a distant formation flight,and the effect of the wake vortex airflow of a tight formation was not considered.With the model predictive control (MPC) scheme,the current state is used as the initial state,an optimal control sequence is generated,and the first set of data in the optimal control sequence is used to act on the controlled object [22].The advantage of the MPC is that a multivariate controller adjusts the output considering all factors simultaneously;another important advantage is that it imposes tight constraints on the states and the control inputs [23,24].

    One difficulty faced by tight formation controller design is that it is difficult for a conventional controller to keep the wingman in the proper position stably because of vortex interference.The MPC method can suppress the disturbance well and imposes strict constraints on the states and control inputs [25].Since the controller of a tight formation requires high real-time performance,the MPC cannot be used directly in a tight formation controller[26].However,since the guidance control of the wingman does not require a fast solution frequency,an MPC outer-loop controller was designed in this study,and a conventional control scheme was used for the inner loop of the aircraft.

    The primary contributions of this paper are as follows: (1) The non-linear tight formation model built in this paper can incorporate the influence of the wake vortex and describe the formation characteristics more accurately;(2) An outer-loop control law for tight formation is designed based on MPC,which has a certain antiinterference capability while meeting the real-time performance;(3) Numerical simulations and semi-physical experimental simulations are carried out to verify the feasibility and real-time performance of the tight formation system.

    This paper is structured as follows: First,the wake vortexinduced velocity model is presented.Then,the paper explains the controller design and discusses the MPC's stability and accuracy.Finally,the results of the tight formation flight simulation are presented and discussed.

    2.Modeling the formation flight vortex

    The UAV model selected for this study was the XQ7B.Fig.1 shows three views of the UAV,and Table 1 lists its parameters.In close formation flight,the effect of the longitudinal distancelxon the induced force and moment is much smaller than that of the lateral distancelyor the vertical distancelz.Therefore,in this paper,we neglect the effect oflxon the wake vortex [27].

    Table 1 Parameters of the UAV.

    Fig.1.Three views of the UAV.

    Fig.2.Schematic diagram of tight formation induced velocity.

    The Proctor vortex model[28]is derived from an analysis of the vortex tangential velocity by LiDAR and is provided by Eq.(1).

    whereBis the wingspan length,andrcis the radius of the vortex nucleus (5.82% of the aircraft span).ris the distance from the induced velocity point to the vortex line segment,b0=πB/4,Γ0=4W/πBρV.

    Thus,the total induced velocity at each point on the wing of the following aircraft isw(l)=wleft(l)+wright(l).

    The average value of the induced upwash on the wing of the wingman can then be calculated by integratingw(l),

    According to Ref.[29],the values of the variation of forces and moments applied to the wingman can be calculated.The forces are the drag side force and the lift force,and the moments are the roll moment,pitch moment,and yaw moment,created by the upwash and sidewash from the lead aircraft [30].

    In a close formation system,the forces on the wingman are changed considerably by a change in the relative positions of the two aircraft.A change of drag will interfere with the speed control of the original flight control system,and a change of lift will affect the altitude control of the wingman;a change of side force will affect the heading control of the wingman [31].

    The mathematical model of the wake vortex was established in the previous section.The mathematical model of the aircraft wake vortex presented in this paper has been simulated in Computational Fluid Dynamics software to verify the model’s accuracy.These tasks were verified in previous papers [30] and are not repeated here.The wake vortex is a strong disturbance in formation control,and the following points arise from the formation control law.

    (1) The tight formation system is not sufficiently resistant to interference,and the formation holding accuracy is low or unstable.

    (2) The dynamic performance of the formation is poor or fails to meet requirements.

    Our MPC-based formation outer-loop control law avoids the disadvantages of other control laws.The main contributions of this paper include the following:

    (1) The designed control law has a certain suppression effect on disturbances and has strong robustness.

    (2) The formation system eliminates steady-state errors and has excellent dynamic performance.

    3.Problem formulation

    In many scenarios,the wingman must follow a specific position relative to the lead aircraft for the maximum aerodynamic benefit to achieve fuel savings [32].This relative position in the airflow system of the lead aircraft does not change.To facilitate the design of the formation control law,the relative positions of wingman and leader are represented in the inertial coordinate system.As shown in Fig.3,the optimal position changes with the position and attitude of the lead aircraft at a rapid and unknown rate,and the design of the formation controller determines whether the wingman can accurately and consistently track to the optimal position.

    Fig.3.Relative position of the lead aircraft and follow aircraft.

    Fig.4.3-D Tight formation trajectory.

    Fig.5.Longitudinal tracking error.

    Fig.6.Lateral tracking error.

    Fig.7.Vertical tracking error.

    The aircraft kinematics are strongly nonlinear,and the tight formation is a non-complete constrained system.The aircraft generates control inputs that satisfy the nonlinear dynamics constraints and the actuator limit constraints during tracking[33].The designed tight formation control method should overcome the above two difficulties and satisfy the accuracy of tight formation.

    In the inertial coordinate system,the position of the leader is assumed to be(xl,yl,zl),and its optimal position(xd,yd,zd)is constant with respect to the leader.(xf,yf,zf)is the position of the wingman in the inertial coordinate system.When a design engineer develops control laws for a tight formation,the lead aircraft has a set flight path,and the wingman gains aerodynamic formation benefits.The lead aircraft is not affected by the formation airflow,so we need only to design control laws for the wingman.The equations for the nonlinear dynamics of a wingman in the tight formation are shown below.

    whereVf,γf,χfare the airspeed,track angle,and heading angle of the following aircraft,respectively.T,L,Dare the thrust force,lift force,and the drag force,respectively.ΔT,ΔL,ΔDare the uncertainties in aerodynamic forces.

    The desired tracking position and the longer aircraft position are related as follows:

    where LWIis the rotation matrix,

    The problem of tight formations translates into wingmen tracking the desired position(xd,yd,zd).The system can be viewed as a control system with inputs u(v,γ,χ)and states X(x,y,z)that has the general form of

    Each point on a given trajectory satisfies this kinematic equation,withdrepresenting the desired value,the general form is

    where Xd=[xd,yd,zd]T,ud=[vd,γd,χd]T.

    The following equation can be obtained by expanding Eq.(6)at the desired trajectory point using a Taylor series and ignoring higher-order terms.

    By subtracting Eq.(6) from Eq.(7),one obtains

    To facilitate the design of the model predictive controller,discretize Eq.(8)as follows:

    in whichA(k)=I+TA(t),B(k)=TB(t),andTis the sampling time.

    3.1.Design of the objective function

    The objective function incorporates the optimization of deviations from the state quantities and control inputs of the formation system to track the desired position quickly and smoothly.The objective function consists of three components.

    The first part of the designed objective function considers the wingman's ability to track the desired position.

    The second part of the objective function of the design considers constraints on the variation of control inputs

    The third part of the objective function considers the collision avoidance problem for wingmen and lead aircraft.As shown in Eq.(12).

    wheredfl(t)indicates the distance between the two aircraft.

    Dis the safe collision avoidance distance between the two aircraftdfl(t)≥D.σ=105.

    The objective function of the design is

    3.2.Enhancement of the objective function

    The second part of the objective function has certain shortcomings.It cannot limit the control increment in each sampling period or avoid abrupt changes in the control increment of the controlled system.This affects the continuity of the control variables,so adding a relaxation factor to the objective function and replacing the control amount with the control increment can limit the increment directly and avoid implementing the process where no feasible solution exists.This is shown below.

    3.3.Stability analysis

    The stability of tight formation systems is critical,and this study developed a controller based on the MPC with a nonlinear model.The stability of linear and nonlinear MPCs has been extensively demonstrated in the literature.Here,the stability of the proposed predictive control scheme is investigated by testing the monotonicity of the cost function,where the prediction horizon is finite,and the control horizon is smaller than the prediction horizon[34].The cost function is as follows:

    Assume that the control signal is(k)=[u(k|k),…,u(k+Hu-1|k)]Twhen the optimal solutions are taken at momentk.The control signal is(k+1)=[u(k+1|k),…,u(k+Hu-1|k)]Tat momentk+1 when the suboptimal solution is taken,and the cost function at this moment is

    Eqs.(17) and (16) are subtracted to obtain

    It follows thatJ*(k+1)-J(k)≤0.The cost function of the optimal solution is no greater than the cost function of the suboptimal solution at momentk+1,i.e.,J(k+1)≤J*(k+1),thereforeJ(k+1)-J(k)≤0.The cost function decreases monotonically with time,so the control system is stable.

    4.Experimental results and analysis

    This section discusses the experimental simulations of the formation system with the lead and wingman aircraft of type XQ7B.First,the model of the nonlinear dynamics of the two aircraft was constructed.Then,an established aerodynamic model is added to the wingman's dynamics model to describe the aerodynamic effects of close formation flight since only the wingman is affected by the close formation aerodynamic model and not the leader.Finally,experimental validation is discussed.

    4.1.Numerical simulation

    Numerical simulations were carried out in the MATLAB Simulink module.The lead aircraft flew at a constant speed on one trajectory,while the wingman's initial position was far from the lead aircraft's.The wingman quickly tracked to the desired position,as shown in Fig.4.

    The initial state of the lead aircraft is(xl,yl,zl)=(100,0,1000),vl=27.8 m/s.The initial state of the wingman aircraft is(xf,yf,zf)=(0,100,1000),vf=27.8 m/s.

    With the wake vortex's aerodynamic effects added to the tight formation system,as shown in Figs.5-7,a PID controller cannot suppress the disturbance of the tail vortex,but the designed MPC outer loop meets expectations,is strong and robust,and provides anti-disturbance performance.

    Longitudinal,lateral,and vertical tracking errors arexe=xf-xd,ye=yf-yd,ze=zf-zd,respectively.The speed simulation of the UAVs when use the MPC controller is shown in Fig.8.

    Fig.8.Speed simulation of UAVs.

    4.2.Conducting experiments on the semiphysical simulation platform

    After numerical simulation,experimental verification was conducted on a semiphysical simulation platform,shown in Fig.9.The nonlinear dynamics models of the lead and following aircraft were run on xPCs.The flight control system communicated directly with the xPC and transmitted control signals to the lead and following aircraft,while the lead and following aircraft transmitted their states to the flight controller.

    Fig.9.Semiphysical simulation of tight formations.

    The simulation results are displayed using Tacview,which visualizes the UAV tight formation system shown in Fig.10.Experimental results demonstrated that the designed tight formation controller meets the semiphysical experimental requirements.The following aircraft can track accurately and quickly to the appropriate position relative to the lead aircraft and has excellent antiinterference performance.

    Fig.10.Semiphysical simulation flight recordings.

    5.Conclusions

    In close formation UAV flight,a wingman in the position appropriate for the lead aircraft has favorable benefits,and there is a higher demand on the resistance of the wingman’s control system to interference.This study developed a tight formation control system that is proposed in the paper as an outer-loop nonlinear MPC that meets robustness and real-time performance requirements.The designed control law was subjected to MATLAB mathematical simulation,Tacview simulation,and semiphysical simulation.The results showed that the designed nonlinear control law met the desired requirements.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was funded by the National Natural Science Foundation of China (Grant Nos.62173277 and 61573286),the Natural Science Foundation of Shaanxi Province (Grant No.2022JM-011),the Aeronautical Science Foundation of China (Grant No.201905053004),and the Shaanxi Province Key Laboratory of Flight Control and Simulation Technology.We thank LetPub(www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

    在线观看日韩欧美| 母亲3免费完整高清在线观看| 极品教师在线免费播放| 波多野结衣一区麻豆| 亚洲一区高清亚洲精品| 成人影院久久| 久久久精品国产亚洲av高清涩受| 99国产综合亚洲精品| 一二三四社区在线视频社区8| 老鸭窝网址在线观看| 久9热在线精品视频| 国产亚洲欧美精品永久| av电影中文网址| 午夜免费鲁丝| 午夜成年电影在线免费观看| 欧美中文综合在线视频| 首页视频小说图片口味搜索| 成熟少妇高潮喷水视频| 色婷婷久久久亚洲欧美| 国产不卡一卡二| 国产免费现黄频在线看| 后天国语完整版免费观看| 免费av中文字幕在线| 王馨瑶露胸无遮挡在线观看| 精品卡一卡二卡四卡免费| 精品少妇久久久久久888优播| 王馨瑶露胸无遮挡在线观看| 纯流量卡能插随身wifi吗| 欧美老熟妇乱子伦牲交| 亚洲色图 男人天堂 中文字幕| 熟女少妇亚洲综合色aaa.| 亚洲成国产人片在线观看| av天堂久久9| 亚洲专区字幕在线| 亚洲精品久久午夜乱码| 国产欧美日韩一区二区三区在线| 亚洲精品美女久久久久99蜜臀| 午夜福利免费观看在线| 国产一卡二卡三卡精品| 国产欧美日韩一区二区三| 十八禁网站免费在线| 亚洲精华国产精华精| 亚洲一区高清亚洲精品| 手机成人av网站| 一级a爱片免费观看的视频| 黄色视频,在线免费观看| 女警被强在线播放| 久久热在线av| av天堂久久9| 超碰97精品在线观看| 久热爱精品视频在线9| 村上凉子中文字幕在线| а√天堂www在线а√下载 | 国产精品电影一区二区三区 | 老司机影院毛片| 俄罗斯特黄特色一大片| 51午夜福利影视在线观看| 亚洲欧美一区二区三区黑人| 成年女人毛片免费观看观看9 | 十八禁网站免费在线| 两性夫妻黄色片| 国产精品久久电影中文字幕 | 久久中文看片网| 亚洲av美国av| 在线天堂中文资源库| 亚洲中文av在线| 亚洲色图 男人天堂 中文字幕| 在线播放国产精品三级| 变态另类成人亚洲欧美熟女 | 亚洲精品乱久久久久久| 亚洲成国产人片在线观看| 夫妻午夜视频| 又紧又爽又黄一区二区| 91精品三级在线观看| 最新的欧美精品一区二区| 多毛熟女@视频| 一边摸一边抽搐一进一出视频| 色在线成人网| 80岁老熟妇乱子伦牲交| 在线永久观看黄色视频| 宅男免费午夜| 天堂√8在线中文| 在线观看免费日韩欧美大片| 精品少妇久久久久久888优播| 999久久久精品免费观看国产| 国产av一区二区精品久久| 亚洲国产欧美一区二区综合| 久久ye,这里只有精品| 搡老熟女国产l中国老女人| 好看av亚洲va欧美ⅴa在| 亚洲专区字幕在线| 成人特级黄色片久久久久久久| 精品国产一区二区三区四区第35| 亚洲av日韩在线播放| 婷婷丁香在线五月| 亚洲三区欧美一区| 91麻豆精品激情在线观看国产 | 欧美丝袜亚洲另类 | 99精品欧美一区二区三区四区| 18禁裸乳无遮挡免费网站照片 | 国产精品av久久久久免费| 午夜亚洲福利在线播放| 欧美国产精品一级二级三级| 国产亚洲精品久久久久久毛片 | 久久精品国产综合久久久| 好男人电影高清在线观看| 91成年电影在线观看| 欧美人与性动交α欧美精品济南到| 色婷婷av一区二区三区视频| 99久久精品国产亚洲精品| 亚洲精品乱久久久久久| 久久青草综合色| 亚洲精品中文字幕在线视频| www.999成人在线观看| 免费观看a级毛片全部| 91精品国产国语对白视频| 欧美日韩黄片免| 在线观看一区二区三区激情| 大片电影免费在线观看免费| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美一区二区三区久久| 下体分泌物呈黄色| 乱人伦中国视频| 午夜福利视频在线观看免费| 一区二区日韩欧美中文字幕| 亚洲五月婷婷丁香| 亚洲国产欧美网| 伊人久久大香线蕉亚洲五| 女性生殖器流出的白浆| 中文字幕色久视频| 国产精品免费视频内射| 国产xxxxx性猛交| 一本一本久久a久久精品综合妖精| tube8黄色片| 91麻豆精品激情在线观看国产 | 在线观看免费午夜福利视频| 香蕉久久夜色| 精品乱码久久久久久99久播| 日本撒尿小便嘘嘘汇集6| 高清欧美精品videossex| 久久精品熟女亚洲av麻豆精品| 国产成人精品久久二区二区91| 免费在线观看黄色视频的| 老司机午夜十八禁免费视频| 欧美另类亚洲清纯唯美| 热re99久久国产66热| 男女午夜视频在线观看| 亚洲av日韩在线播放| 国产精品永久免费网站| 嫩草影视91久久| 免费高清在线观看日韩| 法律面前人人平等表现在哪些方面| 亚洲色图av天堂| 国产野战对白在线观看| 少妇被粗大的猛进出69影院| 人妻一区二区av| 69av精品久久久久久| 人妻久久中文字幕网| 国产精品98久久久久久宅男小说| 久久久国产精品麻豆| 久久久久国产一级毛片高清牌| 成年人午夜在线观看视频| 宅男免费午夜| 免费在线观看黄色视频的| √禁漫天堂资源中文www| 美女福利国产在线| 在线十欧美十亚洲十日本专区| 天堂俺去俺来也www色官网| 国产精品久久久人人做人人爽| 一区二区三区精品91| 91精品国产国语对白视频| 国产精品久久久av美女十八| 超色免费av| 亚洲欧美日韩高清在线视频| 日本欧美视频一区| 亚洲精华国产精华精| 女人被狂操c到高潮| 黄色怎么调成土黄色| 色婷婷久久久亚洲欧美| 一进一出抽搐gif免费好疼 | 在线观看一区二区三区激情| 久久久国产成人免费| 天天躁日日躁夜夜躁夜夜| 啦啦啦免费观看视频1| 嫁个100分男人电影在线观看| 国产1区2区3区精品| 日本五十路高清| 亚洲av熟女| 18禁裸乳无遮挡动漫免费视频| 9色porny在线观看| 亚洲一区中文字幕在线| 亚洲 国产 在线| 国产午夜精品久久久久久| 在线av久久热| 侵犯人妻中文字幕一二三四区| 免费在线观看完整版高清| 久久久国产成人免费| 国产免费男女视频| 日韩三级视频一区二区三区| 首页视频小说图片口味搜索| 欧美乱色亚洲激情| 久久久久久人人人人人| 村上凉子中文字幕在线| 啦啦啦 在线观看视频| 国产成人影院久久av| 真人做人爱边吃奶动态| 欧美激情 高清一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 高清欧美精品videossex| 99热只有精品国产| 精品久久蜜臀av无| 建设人人有责人人尽责人人享有的| 亚洲,欧美精品.| 亚洲av日韩在线播放| 99久久精品国产亚洲精品| www.熟女人妻精品国产| 两性午夜刺激爽爽歪歪视频在线观看 | 久久国产亚洲av麻豆专区| 91成人精品电影| 亚洲精品自拍成人| 黄色毛片三级朝国网站| 亚洲欧美激情在线| 国产精品影院久久| 19禁男女啪啪无遮挡网站| 一级片免费观看大全| 多毛熟女@视频| 日韩免费av在线播放| av网站免费在线观看视频| 一级毛片女人18水好多| 一区福利在线观看| 午夜老司机福利片| 亚洲欧美激情在线| 大陆偷拍与自拍| 久久精品国产99精品国产亚洲性色 | 精品高清国产在线一区| 国产淫语在线视频| 操美女的视频在线观看| 亚洲精品成人av观看孕妇| 国产一区二区三区在线臀色熟女 | 精品国产国语对白av| 女人被躁到高潮嗷嗷叫费观| 国产又色又爽无遮挡免费看| 免费观看人在逋| 99热网站在线观看| 亚洲精品久久午夜乱码| 成年动漫av网址| 成人黄色视频免费在线看| 不卡av一区二区三区| 欧美+亚洲+日韩+国产| 欧美激情极品国产一区二区三区| 久久精品成人免费网站| 高清av免费在线| 国产精品98久久久久久宅男小说| 日韩视频一区二区在线观看| 久久青草综合色| 亚洲精品久久成人aⅴ小说| 男人操女人黄网站| 国产亚洲精品一区二区www | 国产免费男女视频| 欧美日本中文国产一区发布| 久久草成人影院| 亚洲专区国产一区二区| 久热这里只有精品99| 大型av网站在线播放| 亚洲一区高清亚洲精品| 国产精品久久久久成人av| 亚洲熟妇中文字幕五十中出 | 美女国产高潮福利片在线看| 日韩三级视频一区二区三区| 久久久久久久久免费视频了| 精品一区二区三卡| 18禁黄网站禁片午夜丰满| 亚洲欧美日韩另类电影网站| 亚洲av成人av| 久久久精品国产亚洲av高清涩受| 久久热在线av| 午夜激情av网站| 日韩精品免费视频一区二区三区| 欧美在线一区亚洲| 亚洲午夜理论影院| 人妻一区二区av| 欧美另类亚洲清纯唯美| 国产精品久久久av美女十八| 久9热在线精品视频| 国产精品98久久久久久宅男小说| 99国产精品一区二区蜜桃av | 久久精品人人爽人人爽视色| tocl精华| 精品国内亚洲2022精品成人 | 久久精品人人爽人人爽视色| 国产成人免费观看mmmm| 成人国产一区最新在线观看| 免费观看a级毛片全部| 亚洲五月色婷婷综合| 欧美日韩亚洲综合一区二区三区_| 国产高清国产精品国产三级| 日韩欧美一区二区三区在线观看 | 热re99久久精品国产66热6| 久久久国产精品麻豆| 性少妇av在线| 精品高清国产在线一区| 国产日韩欧美亚洲二区| 欧美精品人与动牲交sv欧美| 色婷婷久久久亚洲欧美| 18禁美女被吸乳视频| 亚洲国产欧美网| 欧美午夜高清在线| 成年人黄色毛片网站| 亚洲精品国产色婷婷电影| 久久久精品区二区三区| 18禁国产床啪视频网站| 欧美乱妇无乱码| 精品久久久精品久久久| 免费高清在线观看日韩| 国产精品一区二区免费欧美| 亚洲,欧美精品.| 老司机福利观看| 国产男靠女视频免费网站| 99热国产这里只有精品6| 日本黄色视频三级网站网址 | 在线十欧美十亚洲十日本专区| 一进一出好大好爽视频| 欧美乱妇无乱码| 中文字幕av电影在线播放| 国产在线一区二区三区精| 国产成人精品无人区| 9191精品国产免费久久| 岛国毛片在线播放| 国产激情欧美一区二区| 99在线人妻在线中文字幕 | 国产成人精品在线电影| 欧美最黄视频在线播放免费 | 99在线人妻在线中文字幕 | 韩国精品一区二区三区| 成人亚洲精品一区在线观看| 99热网站在线观看| 国产精品一区二区精品视频观看| 欧美激情高清一区二区三区| 天天躁日日躁夜夜躁夜夜| 日本黄色日本黄色录像| 高潮久久久久久久久久久不卡| 欧美老熟妇乱子伦牲交| 欧美久久黑人一区二区| 国产又爽黄色视频| 欧美黄色淫秽网站| 色在线成人网| 久久香蕉激情| 不卡av一区二区三区| av欧美777| 超色免费av| 精品国内亚洲2022精品成人 | 欧美乱妇无乱码| 女同久久另类99精品国产91| 中国美女看黄片| 一级a爱视频在线免费观看| 免费女性裸体啪啪无遮挡网站| 一级毛片高清免费大全| 亚洲av日韩精品久久久久久密| 看免费av毛片| av视频免费观看在线观看| 午夜精品久久久久久毛片777| 亚洲国产欧美网| 久久精品国产a三级三级三级| 国产精品av久久久久免费| 欧美一级毛片孕妇| 久久人人97超碰香蕉20202| 亚洲人成电影观看| 国产精品99久久99久久久不卡| 久久99一区二区三区| 在线十欧美十亚洲十日本专区| 成在线人永久免费视频| 9色porny在线观看| 久久精品国产亚洲av香蕉五月 | 黄色女人牲交| 久久久精品国产亚洲av高清涩受| 黑人操中国人逼视频| 两个人免费观看高清视频| 欧美乱妇无乱码| 国产乱人伦免费视频| 免费人成视频x8x8入口观看| 国产精品99久久99久久久不卡| 亚洲国产欧美一区二区综合| 国产精品一区二区精品视频观看| 久久亚洲真实| 一级黄色大片毛片| 免费观看人在逋| 亚洲欧洲精品一区二区精品久久久| 超碰97精品在线观看| 91av网站免费观看| 多毛熟女@视频| 欧美成人免费av一区二区三区 | 无人区码免费观看不卡| 99久久精品国产亚洲精品| 少妇被粗大的猛进出69影院| 久久这里只有精品19| 老熟妇仑乱视频hdxx| 亚洲一卡2卡3卡4卡5卡精品中文| 女人被躁到高潮嗷嗷叫费观| 日韩有码中文字幕| 亚洲中文字幕日韩| 久久中文字幕一级| av一本久久久久| 极品少妇高潮喷水抽搐| 亚洲精华国产精华精| 咕卡用的链子| 亚洲精品美女久久av网站| 丰满迷人的少妇在线观看| 国产精品二区激情视频| 91老司机精品| 99国产精品免费福利视频| xxxhd国产人妻xxx| 美女高潮到喷水免费观看| 日日爽夜夜爽网站| 叶爱在线成人免费视频播放| 欧美 亚洲 国产 日韩一| 天天添夜夜摸| 黑人猛操日本美女一级片| 黑人巨大精品欧美一区二区蜜桃| 久久久久久久精品吃奶| 一级毛片女人18水好多| 久久亚洲精品不卡| 高清在线国产一区| 捣出白浆h1v1| 啦啦啦视频在线资源免费观看| 国产成人精品在线电影| 亚洲一区二区三区不卡视频| 精品福利永久在线观看| 国产精品免费视频内射| 十八禁人妻一区二区| 欧美成人午夜精品| 日韩人妻精品一区2区三区| 王馨瑶露胸无遮挡在线观看| 国产一卡二卡三卡精品| 日本撒尿小便嘘嘘汇集6| 欧美日韩黄片免| 国产精品av久久久久免费| 黄色a级毛片大全视频| 国产精品欧美亚洲77777| 精品福利观看| 一个人免费在线观看的高清视频| 国产男女内射视频| 亚洲精品自拍成人| netflix在线观看网站| 久久这里只有精品19| 色尼玛亚洲综合影院| 婷婷丁香在线五月| 一本综合久久免费| 乱人伦中国视频| 老司机靠b影院| 天天影视国产精品| 欧美激情极品国产一区二区三区| 国产精品久久久久久人妻精品电影| 视频区图区小说| 精品久久久精品久久久| 亚洲国产精品sss在线观看 | 操出白浆在线播放| 丁香六月欧美| 亚洲精品中文字幕在线视频| 国产精品二区激情视频| 久久久久国内视频| 精品一区二区三区av网在线观看| 王馨瑶露胸无遮挡在线观看| 在线观看一区二区三区激情| 久久久久精品人妻al黑| 久久久国产成人免费| 亚洲欧美一区二区三区久久| 91成人精品电影| 国产精品久久久久久人妻精品电影| 国产高清国产精品国产三级| 丰满饥渴人妻一区二区三| 岛国毛片在线播放| 日本撒尿小便嘘嘘汇集6| 两个人看的免费小视频| 曰老女人黄片| 日本精品一区二区三区蜜桃| 精品一区二区三区四区五区乱码| 色老头精品视频在线观看| 国产一卡二卡三卡精品| 免费在线观看黄色视频的| 黑人操中国人逼视频| 精品视频人人做人人爽| 亚洲人成电影观看| 看免费av毛片| 99国产极品粉嫩在线观看| 夜夜爽天天搞| 精品国内亚洲2022精品成人 | 国产精品二区激情视频| 欧美日韩福利视频一区二区| 黑人操中国人逼视频| 国产精品久久久人人做人人爽| 超色免费av| 啦啦啦在线免费观看视频4| 精品人妻1区二区| 最新的欧美精品一区二区| 真人做人爱边吃奶动态| 日韩 欧美 亚洲 中文字幕| 一边摸一边抽搐一进一小说 | 国产一卡二卡三卡精品| 免费不卡黄色视频| 欧美不卡视频在线免费观看 | 色尼玛亚洲综合影院| 亚洲av成人不卡在线观看播放网| 久久人妻福利社区极品人妻图片| av一本久久久久| 女人高潮潮喷娇喘18禁视频| 91成年电影在线观看| 国产精品欧美亚洲77777| 亚洲全国av大片| av超薄肉色丝袜交足视频| 亚洲av成人一区二区三| av欧美777| 亚洲欧美激情综合另类| 欧美不卡视频在线免费观看 | 日日爽夜夜爽网站| 国产高清激情床上av| 免费在线观看黄色视频的| 国产精品乱码一区二三区的特点 | 高清在线国产一区| 新久久久久国产一级毛片| 超色免费av| 搡老熟女国产l中国老女人| 欧美黑人欧美精品刺激| 色婷婷av一区二区三区视频| 亚洲熟女毛片儿| 99国产综合亚洲精品| 成人18禁在线播放| 久久久国产欧美日韩av| 国产色视频综合| 又黄又爽又免费观看的视频| 国产三级黄色录像| 91大片在线观看| 日韩成人在线观看一区二区三区| 老司机午夜十八禁免费视频| 激情视频va一区二区三区| 精品久久久久久久毛片微露脸| xxx96com| 国产高清激情床上av| 欧美黄色淫秽网站| 亚洲国产欧美日韩在线播放| 亚洲av熟女| 丝袜美足系列| 黄色女人牲交| 首页视频小说图片口味搜索| 免费在线观看影片大全网站| 一边摸一边抽搐一进一出视频| 国产欧美日韩一区二区三| 欧美黄色淫秽网站| 天天躁夜夜躁狠狠躁躁| 欧美精品人与动牲交sv欧美| av电影中文网址| 亚洲成人国产一区在线观看| 成熟少妇高潮喷水视频| 免费看a级黄色片| 午夜精品久久久久久毛片777| 国产精品98久久久久久宅男小说| 免费观看人在逋| 亚洲在线自拍视频| 国产精品国产av在线观看| 久久久久久亚洲精品国产蜜桃av| 日韩免费av在线播放| 欧美亚洲 丝袜 人妻 在线| 757午夜福利合集在线观看| 午夜福利免费观看在线| 国产高清videossex| 国产在线观看jvid| 国产精品秋霞免费鲁丝片| 动漫黄色视频在线观看| 欧美精品人与动牲交sv欧美| 免费在线观看视频国产中文字幕亚洲| 在线天堂中文资源库| 久久久久精品国产欧美久久久| 国产成人系列免费观看| 国产熟女午夜一区二区三区| 99国产精品一区二区三区| 亚洲av日韩精品久久久久久密| 黄色怎么调成土黄色| 一本一本久久a久久精品综合妖精| 高清av免费在线| 在线视频色国产色| 精品无人区乱码1区二区| 免费在线观看影片大全网站| 两性夫妻黄色片| 国产精品98久久久久久宅男小说| 国产成人精品无人区| 不卡av一区二区三区| 亚洲av电影在线进入| 最近最新中文字幕大全电影3 | 成年人午夜在线观看视频| 俄罗斯特黄特色一大片| 色综合婷婷激情| 国产亚洲欧美在线一区二区| 日日爽夜夜爽网站| 亚洲精品国产精品久久久不卡| 亚洲情色 制服丝袜| 亚洲视频免费观看视频| 欧美另类亚洲清纯唯美| 国产成人系列免费观看| 日韩一卡2卡3卡4卡2021年| 欧美日韩黄片免| 在线观看免费日韩欧美大片| 国产精品98久久久久久宅男小说| 欧美精品人与动牲交sv欧美| 欧美激情久久久久久爽电影 | 久久 成人 亚洲| 啦啦啦 在线观看视频| 最新美女视频免费是黄的| 精品国产美女av久久久久小说| 欧洲精品卡2卡3卡4卡5卡区| 久热这里只有精品99| 欧美中文综合在线视频| 精品久久久久久,| 成年人黄色毛片网站| 久久精品亚洲精品国产色婷小说| 国产精品一区二区在线观看99| 一级毛片女人18水好多|