• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Smoothing Newton Method for NCP with P0-Mapping Based on a New Smoothing Function

    2023-06-29 10:59:24MAChangfeng馬昌鳳WANGTing王婷
    應(yīng)用數(shù)學(xué) 2023年3期
    關(guān)鍵詞:王婷

    MA Changfeng(馬昌鳳),WANG Ting(王婷)

    (1.Key Laboratory of Digital Technology and Intelligent Computing,School of Big Data,Fuzhou University of International Studies and Trade,Fuzhou 350202,China;2.School of Mathematics and Statistics,Fujian Normal University,Fuzhou 350117,China)

    Abstract: The nonlinear complementarity problem (NCP) can be reformulated as the solution of a nonsmooth system of equations.By introducing a new smoothing function,the problem is approximated by a family of parameterized smooth equations.Based on this smoothing function,we propose a smoothing Newton method for NCP with P0-mapping and R0-mapping.The proposed algorithm solves only one linear equations and performs only one line search per iteration.Under suitable conditions,the method is proved to be globally and local quadratically convergent.Numerical results show that the proposed algorithm is effective.

    Key words: Nonlinear complementarity problem;Smoothing Newton method;Smoothing function;Global convergence;Local quadratic convergence

    1.Introduction

    We consider the nonlinear complementarity problem(NCP),to find a vector(x,y)∈R2nsuch that

    whereF: Rn →Rnis a continuously differentiable mapping,(x,y) is short for (xT,yT)T.IfF(x) is an affine function,then NCP reduces to a linear complementarity problem (LCP).

    NCP has many applications in economics and engineering[5?6].Recently,there has been an increasing interest in solving the NCP by using smoothing methods.Roughly speaking,a smoothing method uses a smoothing function to approximate NCP via a family of parameterized smooth equations,solves the smooth equations approximately at each iteration,and refines the smooth approximation as the iterate progresses toward a solution of NCP.It is evident that smoothing functions play an important pole in smoothing methods.Up to now,many smoothing functions have been proposed: the Kanzow smoothing function[7],Engelke-Kanzow smoothing function[8],and so on.

    It is well known that anx ∈Rnsolves(1.1)if and only if it solves the following nonsmooth equations[1?4]:

    where the plus function [·]+is defined by

    The plus function is applied to each component ofx.In this sense,the plus function plays an important role in mathematical programming.But one big disadvantage of the plus function is that it is not smooth because it is not differentiable.Thus numerical methods that use gradients cannot be directly applied to solve a problem involving a plus function.In this paper,we use a smoothing function approximation to the plus function.With this approximation,many efficient algorithms can be easily employed.We are interested in smoothing method.

    The idea of using smooth functions to solve the nonsmooth equation reformulation of complementarity problems and related problems has been investigated actively.[9]Recently,there have been strong interests in smoothing Newton methods for solving the complementarity problem.[21?27]Note that some of them,ZHANG and GAO[21]propose a one-step smoothing Newton method for solving theP0-LCP based on Kanzow’s smoothing function.Their smoothing Newton method solves only one linear system of equations and performs only one line search at each iteration.It is proved that their proposed algorithm has global convergence and local quadratic convergence in absence of strict complementarity assumption at theP0-LCP solution.Later,they extend this method to the NCP based on the smoothing symmetric perturbed Fischer function[21]and the algorithm also has global convergence and local quadratic convergence without strict complementarity assumption.This algorithm has strong convergence results under weaker conditions and has a feature that the full stepsize of 1 will eventually be accepted.Motivated by the feature of this algorithm,in this paper,by using a new smoothing function approximation to the plus function above mentioned and modifying the algorithms in[21],we propose a smoothing method for NCP with aP0-mapping andR0-mapping.Compared to the algorithm in [21],our method has all their properties and has the following nice features: Our algorithm is simper and the fast step in our algorithm keeps the local quadratic convergence.

    We establish the global linear and local quadratic convergence of the algorithm under suitable assumptions.Lastly,we give some numerical results which show that our method is efficient.For any (x,y)∈R2n,μ >0,our smoothing method for NCP is based on the following equation

    whereμis a smoothing parameter.It is easy to show that

    This paper is organized as follows.In Section 2,we study a few properties of the smoothing function.In Section 3,we give a one-step smoothing Newton method and the global linear convergence.The local quadratic convergence of the algorithm are discussed in Section 4.Preliminary numerical results are reported in Section 5.

    In our notation,all vectors are column vectors,Rndenotes the space ofn-dimensional real column vectors,anddenotes the nonnegative [respectively,positive]orthant in Rn.For convenience,we also write (uT,vT)Tas (u,v) for any vectorsuandv.We denoteI={1,2,···,n}.For any continuously differentiable function

    we denote its Jacobian by

    where?gidenotes the gradient ofgifori=1,2,···,n.

    2.Properties of the new Smoothing Function

    In this section,we mention some properties of the new smoothing function.

    Lemma 2.1Let the smoothing function?(μ,t) be defined by (1.5).We have the following results.

    Lemma 2.2For anyμ1≠μ2∈R+,we have

    ProofWithout loss of generality,we assume that 0≤μ1<μ2.

    The proof is completed.

    For any (x,y)∈R2,from the smoothing function?(μ,·) defined by (1.5),we can obtain that

    By simple calculation,we have

    It is not difficult to see thatare continuous withμ>0.Then,from (2.1)-(2.3),we have the following results.

    Lemma 2.3For any (μ,x,y)∈R++×R2,we have

    Lemma 2.4FunctionH(μ,x,y) is continuously differentiable on R++×Rn×Rnand

    whereIdenotes then×nidentity matrix and

    3.Algorithm and Global Linear Convergence

    Now we give the algorithm and some preliminaries that will be used throughout this paper.

    Algorithm 3.1(One-step smoothing Newton method)

    Step 0 Initialization.Chooseσ ∈(0,0.5],α ∈(0.5,1),δ ∈(0,1),ε≥0.Take an arbitrary vectorz0:=(μ0,x0,y0)∈R++×R2n.Chooseγ ∈[1,∞) such that‖H(z0)‖2/γ <1 andμ0/γ <1.Sete1:=(1,0,···,0)T∈R2n+1andk:=0.

    Definition 3.1A mappingF:Rn →Rnis said to be a

    1)P0mapping if for allx,y ∈Rn,x/=y,there exists an indexi ∈Isuch thatxi≠yiand

    Lemma 3.1LetH(z) :=H(μ,x,y) be defined by (1.3).For anyz:=(μ,x,y)∈R++×R2n,define the level set

    wherez0is given in Algorithm 3.1.Then,for anyμ2≥μ1>0,the set

    is bounded.Furthermore,for anyμ>0,the setLμ(z0) defined by (3.4) is bounded.

    ProofBy Lemma 2.2,for all (x,y)∈Lμ(z0,μ1,μ2),we have

    where the second inequality follows from the relation ofG(μ,x,y) andΦ(μ,x,y).Thus,‖G(0,x,y)‖1is bounded.On the other hand,by‖min{x,F(x)}?min{x,y}‖1≤‖y ?F(x)‖1,we have

    where the first equality follows from min{x,y}=x ?[x ?y]+,(1.4) and Lemma 2.1 (ii),and the last inequality follows from the above deduction.So we have

    By the above inequality,for any (x,y)∈Lμ(z0,μ1,μ2),‖min{x,F(x)}‖1is bounded.By Proposition 3.12 in [10],ifFis anR0function,then{x}is bounded if‖min{x,F(x)}‖1is bounded.BecauseF(x) is continuous and‖y ?F(x)‖1≤‖H(μ,x,y)‖1≤‖H(z0)‖1,we obtain that{y}is bounded if (x,y)∈Lμ(z0,μ1,μ2).Then the setLμ(z0,μ1,μ2) is bounded.This completes the first part of the lemma.The boundedness ofLμ(z0) with anyμ>0 is the immediate corollary of the first part.

    Lemma 3.2IfFis aP0mapping,then Algorithm 3.1 is well defined and generates an infinite sequence{zk=(μk,xk,yk)}withμk ∈R++andμk ≥σkμ0for allk >0.If for anyμ>0,(xk,yk)∈Lμ(z0),then we can show that (xk+1,yk+1)∈Lμ(z0) for allk >0.

    ProofFrom Lemmas 2.3 and 2.4,we can know that

    which imply thatDxand?Dyare positive diagonal matrices for any (μ,x,y)∈R++×R2n.SinceFis aP0mapping,thenF′is aP0matrix for anyx ∈Rn(see [11],Lemma 5.4).Thus,the matrixH′is nonsingular for anyμ>0 (see [12],Lemma 4.1).So the system (3.1) is well defined and has a unique solution.On the other hand,we can show that the backtracking line search (3.3) terminate finitely.From (3.1),we can obtain that

    Therefore,for anyλ ∈(0,1]we obtain that

    Thus,for anyλ ∈(0,1],by differentiability ofH,and combining (3.5),(3.6) andσk=‖H(zk)‖2min{1,‖H(zk)‖2}/γ,we have

    It means that exists a constant∈(0,1]such that

    holds for anyλ ∈(0,].This indicates that Step 3 of Algorithm 3.1 is well defined at thekth iteration.Therefore,by (3.5) and Steps 2-3,we haveμk+1=σkμ0>0 orλk ∈(0,1]andμk+1=μk+λk?μk=(1?λk)μk+λkσkμ0>0.Thus,fromμ0>0 and the above statements,we obtain that Algorithm 3.1 is well defined and generates an infinite sequence{zk=(μk,xk,yk)}withμk ∈R++and we can easily obtainμk ≥σkμ0for allk >0.

    Since (xk,yk)∈Lμ(z0),if Steps 2 is accepted,then from (3.2) andσ ∈(0,0.5),we can know that

    Otherwise,we obtain that (3.3) holds.We have

    which indicates that (xk+1,yk+1)∈Lμ(z0).We complete the proof.

    The following theorem gives the global convergence of Algorithm 3.1 and the boundedness of the iteration sequence generated by Algorithm 3.1.

    Assumption 3.1The solution set of NCP (1.1) is nonempty and bounded.

    Theorem 3.1Suppose thatFis aP0function,and assume that the sequence{zk}is generated by Algorithm 3.1.The following three statements are valid.

    (a) limk→∞‖H(zk)‖2=0 and limk→∞μk=0.

    (b) Every accumulation point of the sequence{(xk,yk)}is a solution ofNCP(F).

    (c) If Assumption 3.1 is satisfied,then the sequence{(xk,yk)}is bounded.

    Proof(a) LetK1andK2be the sets of iteration indexksuch that the next iteratek+1 is obtained through Step 2 and step 3,respectively.(a) can be proved as follows:Case 1 IfK1is infinite,from (3.2) andσ ∈(0,0.5],we can know that

    Formμk=σkμ0and (3.10),we have limk(∈K1)→∞μk=0.

    Case 2 Suppose that the setK1is finite,thenk ∈K2for allksufficiently large.In the following we assume on the contrary that

    From (3.6) and Lemma 3.2,we obtain that

    whereσ?=Hmin{1,H}/γ.Then,by Lemmas 3.1,3.2,we obtain that the sequence{(xk,yk),k ∈K2}is bounded.Thus,{zk,k ∈K2}is bounded.Subsequently if necessary,we may assume that there exists a pointz?=(μ?,x?,y?)∈R++×R2nsuch that

    It is easy to see that

    From‖H(z?)‖2>0,we have limk→∞λk=0,thus,the stepsize:=λk/δdoes not satisfy the line search criterion (3.3) for any sufficiently largek;i.e.,the following inequality holds:

    for any sufficiently largek,which implies that

    Fromμ?>0,we know thatH(z) is continuously differentiable atz?.Letk →∞,then the above inequality gives

    In addition,by taking parts of the limit on (3.1),we have

    Combining (3.11) with (3.12) we have

    which contradicts the fact thatδ ∈(0,1) andμ0/γ <1.This implies thatH(z?)=0.Thus,μ?=0 by the definition ofH(z).

    In addition,by (3.3),(3.2) and Lemma 3.2,we obtain that{‖H(zk)‖2}and{μk}are monotonically decreasing.Therefore,putting together Case 1 and Case 2,we can know that statement (a) is true.

    (b) Recalling the definition ofH(z) and limk→∞‖H(zk)‖2=0,a simple continuity argument implies that every accumulation point of the sequence{(xk,yk)}is a solution of NCP.

    (c) Similar to the proof of Theorem 3.6 (b) in [20],we can easily obtain that (c) holds.

    4.Local Quadratic Convergence

    In order to discuss the local quadratic convergence of Algorithm 3.1,we need the concept of semismoothness,which was introduced originally by Mifflin[13]for functionals.QI and SUN[14]extended the definition of semismooth function to a vector-valued function.A locally Lipschitz functionF:Rm1→Rm2,which has the generalized Jacobian?F(x)as in Clarke[15],is said to be semismooth atx ∈Rm1if limV ∈?F(x+th′), h′→h, t↓0{V h′}exists for anyh ∈Rm1.F(·) is said to be strongly semismooth atxifFis semismooth atx,and for anyV ∈?F(x+h),h →0,it follows that

    Lemma 4.1[14]Suppose thatΨ:Rn →Rmis a locally Lipschitzian function.Then

    (a)Ψ(·)has generalized Jacobian?Ψ(x)as in[15].AndΨ′(x;h),the directional derivative ofΨatxin the directionh,exists for anyh ∈RnifΨis semismooth atx.Also,Ψ:Rn →Rmis semismooth atx ∈Rnif and only if all its component functions are.

    (b)Ψ(·) is strongly semismooth atxif and only if for anyV ∈?Ψ(x+h),h →0,

    Suppose thatz?is an accumulation point of the sequence{zk}generated by Algorithm 3.1.Then,the assumptions made in Theorem 3.1 indicate thatH(z?)=0 and (x?,y?) is a solution ofNCP(F).Since a vector-valued function is strongly semismooth if and only if all its component functions are strongly semismooth,by Lemma 4.1,we obtain the following lemma.

    Lemma 4.2Let functionΦandHbe defined by (1.4) and (1.3),respectively.Then

    (a)Φ(·,·,·) is strongly semismooth on R+×R2n.

    (b)IfF′(x)is Lipschitz continuous on Rn×n,thenHis strongly semismooth on R+×R2n.

    ProofIt is not difficult to show thatc ?d,(c ?d)2is a strongly semismooth for all(c,d)∈R2.By recalling the definition ofΦand the fact that the composition of strongly semismooth functions is strongly semismooth,we obtain immediately thatΦ(·,·,·)is strongly semismooth at all points R++×R2n,we prove (a).IfF′(x) is Lipschitz continuous on Rn×n,thenxi ?Fi(x),(xi ?Fi(x))2are all strongly semismooth on Rnfor alli ∈I.It is easy to see from Lemma 4.1 that (b) holds.

    Assumption 4.1F′(x) is Lipschitz continuous on Rn×n.

    Theorem 4.1Assume that Assumptions 3.1 and 4.1 are satisfied andz?=(0,x?,y?)is an accumulation point of the infinite sequence{zk}generated by Algorithm 3.1.If allV ∈?H(z?) are nonsingular,then the whole sequence{zk}converges toz?and the relationshold for all sufficiently largek.

    ProofIt follows from Theorem 3.1 thatH(z?)=0.Because allV ∈?H(z?) are nonsingular,then for allzksufficiently close toz?,we have

    whereC >0 is some constant.By Lemma 4.2(ii),we know thatH(z)is strongly semismooth atz?.Hence,for allzksufficiently close toz?,we have

    On the other hand,we know thatH(z) is strongly semismooth atz?which implies thatH(·)locally Lipschitz continuous nearz?,that is,for allzksufficiently close toz?,we have

    Similar to the proof of Theorem 3.1 in [16],for allzksufficiently close toz?,we get

    Then,becauseH(z)is strongly semismooth atz?by Lemma 4.2,H(z)must be local Lipschitz.

    Therefore,for allzksufficiently close toz?,we obtain that

    In view of the updating rule in Step 2 of the smoothing Newton method,(4.6) implies that the smoothing Newton method eventually executes the fast step only forksufficiently large,i.e.,there exists an indexk0such thatk ∈K1and=zkfor allk ≥k0.Therefore,for allk ≥k0,we have

    which,together with (4.6),implies

    Then,for allzksufficiently close toz?,we haveμk+1=.The whole proof is completed.

    5.Numerical Experiment

    In this section,we test our algorithm on some typical test problems.The stopping criterion we used for our algorithm is

    for someε>0.Throughout the numerical experiments,the parameters used in the algorithm areε=10?10,σ=0.5,δ=0.1,μ0=10?2,γ=‖H(z0)‖2/μ0andα=0.95,and sety0=F(x0).All the programming is implemented in MATLAB 7.1.The test problems are introduced as follows: In the first two linear test problems,we have the formF(x)=Mx+qand choose the initial pointx0=(1,1,···,1)T.We summarize the results of our algorithm for several values of the dimensionnin Table 1 and Table 2,respectively.In the last three nonlinear test problems,we choose difference initial points and the numerical results are listed in Table 3,Table 4 and Table 5,respectively.

    LCP 1This linear complementary problem is one for which Murty has shown that principal pivot method I is known to run in a number of pivots exponential in the number of variables in the problem (see [17]),where

    Tab.1 LCP1 Numerical results

    Tab.2 LCP2 Numerical results

    Tab.3 NCP1 Numerical results

    Tab.4 NCP2 Numerical results

    Tab.5 NCP3 Numerical results

    Tab.6 Results of our algorithm by random initial points

    LCP 2This is a linear complementarity problem,where

    NCP 1This problem is a nonlinear complementarity problem from Kojima-Shindoet[18]

    NCP 3This problem is a nonlinear complementarity problem from Kanzow(see [19]).It is obtained by five different definitions,where

    From Tables 1-5,we see that the algorithm can solve these problems efficiently.From Column 4 of the five tables,we know that‖H‖2tends to 0 rapidly at the end of the algorithm.This shows the quadratic convergence behavior of our method.

    To illustrate the stability of our algorithm,we use the algorithm to solve problems NCP1,NCP2 and NCP3 for the initial pointx0which is produced randomly in (0,10).The number of the iterations is listed in Table 6.

    6.Conclusions

    Based on the ideas developed in smoothing Newton methods,we approximated the solution of the equivalent system of nonsmooth equations of nonlinear complementarity problem withP0-function andR0-function by making use of a new smoothing function.Then we presented a so-called one-step smoothing-type algorithm to solve the parameterized smooth equations.We have shown that Algorithm 3.1 converges globally and has local quadratic convergence result if the NCP(F) (1.1) satisfies a non-singularity condition andF′(x) is Lipschitz continuous on Rn×n.Numerical experiments show that the algorithm is efficient.Furthermore,these experiments demonstrate the quadratic convergence.

    猜你喜歡
    王婷
    湖北工程學(xué)院美術(shù)與設(shè)計(jì)學(xué)院教師王婷作品
    當(dāng)自卑遇見(jiàn)自卑
    關(guān)聯(lián)方披露準(zhǔn)則修訂建議
    王婷
    “悅讀”理念指導(dǎo)下的小學(xué)英語(yǔ)繪本閱讀教學(xué)實(shí)踐與探究
    奇險(xiǎn)太行
    炎黃地理(2019年10期)2019-09-10 07:22:44
    An Analysis of the Image of Room in Pinter’s Plays
    An Appreciation of Symbols in Invisible Man
    不能丟的信任
    A movie review of Jodhaa Akbar
    国产熟女午夜一区二区三区| 国产精品久久久久久人妻精品电影 | 最新的欧美精品一区二区| 久久精品人人爽人人爽视色| kizo精华| 欧美变态另类bdsm刘玥| 天天躁夜夜躁狠狠躁躁| 日韩 亚洲 欧美在线| 99久久综合免费| 久久影院123| 老司机午夜福利在线观看视频 | 精品一区二区三卡| 纯流量卡能插随身wifi吗| 18禁观看日本| 下体分泌物呈黄色| 欧美大码av| 成人黄色视频免费在线看| 18在线观看网站| 中文字幕另类日韩欧美亚洲嫩草| av有码第一页| 久久天堂一区二区三区四区| 国产精品久久久av美女十八| 在线亚洲精品国产二区图片欧美| 国产精品国产三级国产专区5o| 我要看黄色一级片免费的| 国产人伦9x9x在线观看| 精品一区二区三区四区五区乱码| 麻豆av在线久日| 久久精品国产亚洲av高清一级| 美女脱内裤让男人舔精品视频| 久久亚洲国产成人精品v| 久久久精品免费免费高清| 丁香六月天网| 狠狠精品人妻久久久久久综合| 午夜激情av网站| 搡老熟女国产l中国老女人| 91老司机精品| 亚洲欧洲精品一区二区精品久久久| 国产97色在线日韩免费| 国产欧美日韩一区二区精品| 国产精品久久久久久人妻精品电影 | 中文字幕精品免费在线观看视频| 亚洲国产中文字幕在线视频| 国产亚洲午夜精品一区二区久久| 国产激情久久老熟女| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产av新网站| 后天国语完整版免费观看| 在线看a的网站| 欧美在线黄色| a级毛片黄视频| 91九色精品人成在线观看| 国产成人免费无遮挡视频| 一级毛片女人18水好多| 男女高潮啪啪啪动态图| 在线观看舔阴道视频| 国产99久久九九免费精品| 午夜激情久久久久久久| 国产成人一区二区三区免费视频网站| 中文欧美无线码| 久久久久国内视频| 国产成人影院久久av| 久久免费观看电影| 欧美在线一区亚洲| 男女免费视频国产| 国产精品九九99| 中文字幕另类日韩欧美亚洲嫩草| 午夜福利免费观看在线| kizo精华| 少妇被粗大的猛进出69影院| av视频免费观看在线观看| 十八禁高潮呻吟视频| 国产高清视频在线播放一区 | 免费女性裸体啪啪无遮挡网站| 大片电影免费在线观看免费| 精品高清国产在线一区| xxxhd国产人妻xxx| 久久久久久久精品精品| 天堂8中文在线网| 男女高潮啪啪啪动态图| 免费久久久久久久精品成人欧美视频| 在线av久久热| 国产精品秋霞免费鲁丝片| 精品国产乱码久久久久久小说| 18在线观看网站| a在线观看视频网站| 亚洲国产精品一区二区三区在线| 黑丝袜美女国产一区| 亚洲男人天堂网一区| 人人妻人人爽人人添夜夜欢视频| 欧美激情 高清一区二区三区| 久久久欧美国产精品| 1024香蕉在线观看| 国产欧美日韩精品亚洲av| 亚洲成人国产一区在线观看| 亚洲国产精品999| 久久中文字幕一级| 亚洲人成电影观看| 大香蕉久久成人网| 最近中文字幕2019免费版| 女性生殖器流出的白浆| 国产精品av久久久久免费| 19禁男女啪啪无遮挡网站| 精品乱码久久久久久99久播| 人妻一区二区av| 欧美黑人欧美精品刺激| 一二三四社区在线视频社区8| 蜜桃在线观看..| 人人妻人人爽人人添夜夜欢视频| 在线永久观看黄色视频| 免费黄频网站在线观看国产| 精品国产一区二区三区四区第35| 一区二区三区激情视频| 午夜福利影视在线免费观看| 9191精品国产免费久久| 高清欧美精品videossex| 欧美激情久久久久久爽电影 | 亚洲国产毛片av蜜桃av| 97在线人人人人妻| 涩涩av久久男人的天堂| 日韩视频在线欧美| 久久国产精品男人的天堂亚洲| 久久精品国产亚洲av香蕉五月 | 大片电影免费在线观看免费| 久久久久精品国产欧美久久久 | 欧美日韩av久久| 亚洲一区中文字幕在线| 精品高清国产在线一区| 欧美精品人与动牲交sv欧美| 51午夜福利影视在线观看| 日韩欧美一区二区三区在线观看 | 国产99久久九九免费精品| 欧美精品av麻豆av| 黄色a级毛片大全视频| 成年人午夜在线观看视频| 伦理电影免费视频| 精品第一国产精品| 午夜福利视频精品| 欧美人与性动交α欧美软件| 一区二区三区乱码不卡18| 欧美日韩精品网址| 国产精品久久久久久精品古装| 亚洲少妇的诱惑av| 亚洲成人免费av在线播放| 美女中出高潮动态图| 1024香蕉在线观看| 亚洲久久久国产精品| 视频区欧美日本亚洲| 美女脱内裤让男人舔精品视频| 母亲3免费完整高清在线观看| 亚洲熟女精品中文字幕| 国产成人免费观看mmmm| 正在播放国产对白刺激| av国产精品久久久久影院| 亚洲自偷自拍图片 自拍| 丰满饥渴人妻一区二区三| 亚洲精品国产av蜜桃| 精品亚洲成a人片在线观看| 日韩 欧美 亚洲 中文字幕| 美女高潮喷水抽搐中文字幕| 久久久精品免费免费高清| 久热这里只有精品99| 国产av精品麻豆| 满18在线观看网站| 亚洲精品日韩在线中文字幕| 国产色视频综合| 国产成人免费观看mmmm| av一本久久久久| av天堂久久9| 国产成人系列免费观看| 免费少妇av软件| 亚洲视频免费观看视频| 国产男女超爽视频在线观看| 中国美女看黄片| 国产精品秋霞免费鲁丝片| 看免费av毛片| 亚洲精品国产区一区二| 精品亚洲成国产av| 国产精品久久久人人做人人爽| 精品人妻熟女毛片av久久网站| 成年美女黄网站色视频大全免费| 国产黄色免费在线视频| 成年女人毛片免费观看观看9 | 国产人伦9x9x在线观看| av国产精品久久久久影院| 国产亚洲精品一区二区www | 叶爱在线成人免费视频播放| 一级片免费观看大全| 操出白浆在线播放| 老司机午夜福利在线观看视频 | 一个人免费在线观看的高清视频 | 国产成人一区二区三区免费视频网站| 十分钟在线观看高清视频www| 欧美另类亚洲清纯唯美| 日韩制服骚丝袜av| 亚洲avbb在线观看| 夜夜夜夜夜久久久久| 日本vs欧美在线观看视频| 最新在线观看一区二区三区| 各种免费的搞黄视频| xxxhd国产人妻xxx| 久久精品亚洲熟妇少妇任你| 韩国高清视频一区二区三区| videos熟女内射| 午夜福利,免费看| 在线看a的网站| 国产熟女午夜一区二区三区| 亚洲精品乱久久久久久| 一级毛片女人18水好多| 欧美 亚洲 国产 日韩一| 国产成人欧美| 国产一区有黄有色的免费视频| 黄片小视频在线播放| 国产福利在线免费观看视频| 99久久国产精品久久久| 成人18禁高潮啪啪吃奶动态图| 91精品伊人久久大香线蕉| 欧美成人午夜精品| 巨乳人妻的诱惑在线观看| 久久久水蜜桃国产精品网| cao死你这个sao货| 菩萨蛮人人尽说江南好唐韦庄| 亚洲情色 制服丝袜| 一区二区三区乱码不卡18| 秋霞在线观看毛片| 美女午夜性视频免费| 国产精品av久久久久免费| 国产一区二区三区av在线| 亚洲精品乱久久久久久| 中文字幕高清在线视频| 久久久精品区二区三区| 波多野结衣一区麻豆| 高清在线国产一区| 亚洲欧美精品综合一区二区三区| kizo精华| 国产色视频综合| 两个人看的免费小视频| 国产淫语在线视频| 亚洲国产av新网站| 精品国产超薄肉色丝袜足j| 狠狠婷婷综合久久久久久88av| 亚洲欧美日韩高清在线视频 | 亚洲欧美一区二区三区黑人| 精品高清国产在线一区| 日韩,欧美,国产一区二区三区| www.精华液| 乱人伦中国视频| 嫁个100分男人电影在线观看| 欧美乱码精品一区二区三区| 国产一区二区激情短视频 | 国产免费现黄频在线看| 久久影院123| 久久国产精品男人的天堂亚洲| 国产欧美日韩综合在线一区二区| 精品福利观看| 黄频高清免费视频| 国精品久久久久久国模美| 80岁老熟妇乱子伦牲交| 亚洲精品国产一区二区精华液| 国产深夜福利视频在线观看| 桃红色精品国产亚洲av| www日本在线高清视频| 视频区欧美日本亚洲| 91大片在线观看| 国产xxxxx性猛交| 视频区图区小说| 美女国产高潮福利片在线看| 欧美日韩亚洲综合一区二区三区_| 久久综合国产亚洲精品| 欧美老熟妇乱子伦牲交| 久久久久精品国产欧美久久久 | 国产精品秋霞免费鲁丝片| 国产亚洲一区二区精品| 国产成人影院久久av| 99国产精品一区二区三区| 久久久国产精品麻豆| 国产成人av激情在线播放| 在线观看免费视频网站a站| 夜夜夜夜夜久久久久| 欧美日韩亚洲高清精品| 国产色视频综合| av免费在线观看网站| 美女脱内裤让男人舔精品视频| av在线播放精品| 国产一卡二卡三卡精品| 亚洲成国产人片在线观看| 欧美 日韩 精品 国产| 丝袜人妻中文字幕| 水蜜桃什么品种好| 一级片免费观看大全| 免费在线观看视频国产中文字幕亚洲 | 国产麻豆69| 精品国产超薄肉色丝袜足j| 日韩人妻精品一区2区三区| 亚洲自偷自拍图片 自拍| 亚洲中文av在线| 精品第一国产精品| 免费在线观看完整版高清| 夫妻午夜视频| 久久久久久久久免费视频了| av在线老鸭窝| 丝袜脚勾引网站| 99久久精品国产亚洲精品| 一级片免费观看大全| 国产成人一区二区三区免费视频网站| 黄色视频不卡| 成年av动漫网址| 热99久久久久精品小说推荐| 日本91视频免费播放| 日韩制服骚丝袜av| 2018国产大陆天天弄谢| 无限看片的www在线观看| 欧美久久黑人一区二区| 国产精品欧美亚洲77777| 一级毛片电影观看| 精品第一国产精品| 又黄又粗又硬又大视频| 咕卡用的链子| 亚洲欧美清纯卡通| 天天躁日日躁夜夜躁夜夜| 亚洲精品中文字幕在线视频| av线在线观看网站| 人人妻人人澡人人爽人人夜夜| 99精国产麻豆久久婷婷| 国产精品一区二区在线观看99| 精品亚洲成国产av| 亚洲avbb在线观看| 午夜91福利影院| 午夜福利乱码中文字幕| 久久精品亚洲av国产电影网| 99久久国产精品久久久| 久久青草综合色| 欧美+亚洲+日韩+国产| 少妇精品久久久久久久| 性高湖久久久久久久久免费观看| 欧美人与性动交α欧美精品济南到| 搡老乐熟女国产| 一级a爱视频在线免费观看| 新久久久久国产一级毛片| 丝袜美腿诱惑在线| 老司机午夜福利在线观看视频 | 脱女人内裤的视频| 成年av动漫网址| 亚洲精品美女久久av网站| 菩萨蛮人人尽说江南好唐韦庄| 精品久久久精品久久久| 欧美 日韩 精品 国产| 青春草视频在线免费观看| 90打野战视频偷拍视频| 免费不卡黄色视频| 我要看黄色一级片免费的| 在线永久观看黄色视频| 满18在线观看网站| 日韩大片免费观看网站| 久久国产精品影院| 国产91精品成人一区二区三区 | 免费观看a级毛片全部| 久久久久久久精品精品| 午夜福利视频在线观看免费| 肉色欧美久久久久久久蜜桃| 国产欧美日韩综合在线一区二区| 老司机福利观看| 国产精品久久久久成人av| 久久精品国产亚洲av香蕉五月 | 韩国精品一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 精品少妇内射三级| 国产精品国产三级国产专区5o| 欧美激情 高清一区二区三区| av片东京热男人的天堂| 久热爱精品视频在线9| 男女无遮挡免费网站观看| 国产成人精品无人区| 久久久精品94久久精品| 亚洲精品国产av蜜桃| 十八禁网站免费在线| 汤姆久久久久久久影院中文字幕| 99久久99久久久精品蜜桃| 男人舔女人的私密视频| 国产亚洲欧美在线一区二区| 久久这里只有精品19| 午夜福利影视在线免费观看| 日本五十路高清| 男女之事视频高清在线观看| 最新在线观看一区二区三区| 国产精品一区二区精品视频观看| 亚洲中文av在线| 日韩中文字幕视频在线看片| 热re99久久精品国产66热6| 欧美日韩中文字幕国产精品一区二区三区 | 一区二区日韩欧美中文字幕| tocl精华| 老熟妇乱子伦视频在线观看 | 一本—道久久a久久精品蜜桃钙片| 黄网站色视频无遮挡免费观看| 黄频高清免费视频| 人人澡人人妻人| 日韩制服丝袜自拍偷拍| 国产成人影院久久av| 国产成人精品久久二区二区免费| 亚洲欧美激情在线| 狠狠婷婷综合久久久久久88av| 成人18禁高潮啪啪吃奶动态图| 在线观看www视频免费| 大陆偷拍与自拍| 欧美另类亚洲清纯唯美| 少妇 在线观看| 亚洲人成77777在线视频| 国产麻豆69| 欧美 日韩 精品 国产| 久久免费观看电影| 午夜91福利影院| 五月开心婷婷网| 久久午夜综合久久蜜桃| 亚洲精品国产区一区二| 69av精品久久久久久 | 久久国产亚洲av麻豆专区| 宅男免费午夜| 91麻豆av在线| 999久久久国产精品视频| 亚洲一码二码三码区别大吗| 美女扒开内裤让男人捅视频| 97在线人人人人妻| 别揉我奶头~嗯~啊~动态视频 | 久久天躁狠狠躁夜夜2o2o| 亚洲一卡2卡3卡4卡5卡精品中文| www日本在线高清视频| 十八禁网站免费在线| 丰满人妻熟妇乱又伦精品不卡| 在线观看人妻少妇| 在线观看免费视频网站a站| 日韩欧美免费精品| 亚洲第一欧美日韩一区二区三区 | 久久午夜综合久久蜜桃| 12—13女人毛片做爰片一| 满18在线观看网站| 我要看黄色一级片免费的| 俄罗斯特黄特色一大片| 一级毛片精品| 精品乱码久久久久久99久播| 久久久久国产一级毛片高清牌| 亚洲精品中文字幕在线视频| 69av精品久久久久久 | 欧美精品啪啪一区二区三区 | 亚洲国产av新网站| 久久久久久免费高清国产稀缺| 大型av网站在线播放| 在线观看舔阴道视频| 在线天堂中文资源库| 国产人伦9x9x在线观看| 男人添女人高潮全过程视频| 亚洲国产av新网站| 国产高清视频在线播放一区 | 国产亚洲av高清不卡| 亚洲国产精品一区二区三区在线| 男男h啪啪无遮挡| 亚洲,欧美精品.| 国产激情久久老熟女| videos熟女内射| 一区二区av电影网| 国产精品麻豆人妻色哟哟久久| 法律面前人人平等表现在哪些方面 | 亚洲伊人久久精品综合| 日韩 欧美 亚洲 中文字幕| 国产人伦9x9x在线观看| 日韩熟女老妇一区二区性免费视频| av电影中文网址| 国产成人精品久久二区二区91| 97精品久久久久久久久久精品| 制服诱惑二区| 新久久久久国产一级毛片| www.精华液| 国产精品二区激情视频| 美国免费a级毛片| 少妇裸体淫交视频免费看高清 | 交换朋友夫妻互换小说| 丰满饥渴人妻一区二区三| 国产精品秋霞免费鲁丝片| 欧美97在线视频| 亚洲国产精品一区三区| 亚洲人成77777在线视频| 一边摸一边抽搐一进一出视频| 超色免费av| 亚洲av成人不卡在线观看播放网 | 人人妻人人爽人人添夜夜欢视频| 国产成人精品久久二区二区免费| 欧美精品人与动牲交sv欧美| 飞空精品影院首页| 一本色道久久久久久精品综合| 精品人妻在线不人妻| 国产高清videossex| 亚洲精品美女久久av网站| 夜夜骑夜夜射夜夜干| 国产精品 国内视频| 欧美亚洲日本最大视频资源| 国产成人免费观看mmmm| 他把我摸到了高潮在线观看 | www.自偷自拍.com| 亚洲第一欧美日韩一区二区三区 | 俄罗斯特黄特色一大片| 久久人人爽人人片av| bbb黄色大片| 精品国产一区二区三区四区第35| 精品一区二区三区av网在线观看 | 麻豆av在线久日| 18禁观看日本| 欧美中文综合在线视频| www.av在线官网国产| 不卡av一区二区三区| 欧美日韩成人在线一区二区| 亚洲伊人色综图| 欧美另类一区| videosex国产| 欧美日韩精品网址| 99精品久久久久人妻精品| 国产又爽黄色视频| 黄片播放在线免费| 亚洲九九香蕉| 日韩一区二区三区影片| 亚洲国产av影院在线观看| 一个人免费看片子| 久久影院123| 99国产综合亚洲精品| 一边摸一边做爽爽视频免费| 国产麻豆69| 国产精品久久久人人做人人爽| 一级毛片精品| 一级片免费观看大全| 成年av动漫网址| 夫妻午夜视频| 久久精品人人爽人人爽视色| 欧美日韩av久久| 欧美日韩一级在线毛片| h视频一区二区三区| 精品国内亚洲2022精品成人 | 国产又爽黄色视频| 亚洲 欧美一区二区三区| 美女脱内裤让男人舔精品视频| 国产亚洲av高清不卡| 免费不卡黄色视频| 午夜福利,免费看| 一区二区三区乱码不卡18| 欧美日韩成人在线一区二区| 无遮挡黄片免费观看| 亚洲情色 制服丝袜| 黄频高清免费视频| 国产一级毛片在线| 777米奇影视久久| 99re6热这里在线精品视频| 国产精品熟女久久久久浪| 成人黄色视频免费在线看| 欧美97在线视频| 黄色毛片三级朝国网站| 伊人亚洲综合成人网| 日韩制服丝袜自拍偷拍| 国产高清国产精品国产三级| 国产av精品麻豆| 一区二区三区激情视频| 亚洲成国产人片在线观看| 亚洲男人天堂网一区| 亚洲va日本ⅴa欧美va伊人久久 | 日韩一区二区三区影片| 首页视频小说图片口味搜索| 日本精品一区二区三区蜜桃| 老司机深夜福利视频在线观看 | 亚洲成人免费av在线播放| 久久影院123| 成年美女黄网站色视频大全免费| 丝袜在线中文字幕| 国产亚洲午夜精品一区二区久久| 免费高清在线观看日韩| 精品国产超薄肉色丝袜足j| 爱豆传媒免费全集在线观看| 亚洲国产日韩一区二区| 男人爽女人下面视频在线观看| 国产极品粉嫩免费观看在线| 亚洲视频免费观看视频| 日韩免费高清中文字幕av| 中文欧美无线码| 国产精品久久久av美女十八| 免费高清在线观看视频在线观看| 日本91视频免费播放| 免费在线观看日本一区| 天天操日日干夜夜撸| 成年av动漫网址| 欧美大码av| 少妇裸体淫交视频免费看高清 | 香蕉国产在线看| 成年动漫av网址| netflix在线观看网站| 成人手机av| 巨乳人妻的诱惑在线观看| 久久 成人 亚洲| 中国美女看黄片| 天天躁狠狠躁夜夜躁狠狠躁| 丁香六月欧美| 中亚洲国语对白在线视频| 精品亚洲乱码少妇综合久久| 午夜免费鲁丝| 最近最新免费中文字幕在线| av天堂在线播放| 久久人人爽av亚洲精品天堂| 久久精品国产亚洲av高清一级| 自线自在国产av| 国产精品一区二区免费欧美 | 亚洲国产成人一精品久久久| 高清在线国产一区| 男女之事视频高清在线观看| 好男人电影高清在线观看| 欧美大码av| 纵有疾风起免费观看全集完整版| 人人妻,人人澡人人爽秒播| 日本av手机在线免费观看| 电影成人av| 国产亚洲精品第一综合不卡|